1
|
Escors D, Chocarro L, Echaide M, Rodriguez-Neira C, Vilaplana B, Kochan G. Programmed Death-1 Ligand 1 Domain Organization, Signaling Motifs, and Interactors in Cancer Immunotherapy. Cancers (Basel) 2025; 17:1635. [PMID: 40427133 PMCID: PMC12110588 DOI: 10.3390/cancers17101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Immunotherapies targeting the programmed cell death-1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1) pathway sparked a revolution in cancer treatment. These breakthrough therapies work by disrupting the interaction between PD-1-expressed on T cells-and its ligand PD-L1, commonly found on the surface of cancer cells. By using monoclonal antibodies to block this binding, the immune system is unleashed to fight cancer more effectively. However, PD-L1's role extends far beyond immune evasion. When situated on cancer cells, PD-L1 transmits inhibitory signals through PD-1, silencing the effector functions of T cells. However, PD-L1 also engages in reverse signaling, also called intrinsic signaling, delivering intracellular instructions that contribute to cancer cell survival, even in the absence of PD-1 binding. This signaling cascade shields cancer cells from apoptosis, drives proliferation, regulates DNA damage responses, and even functions as a co-transcriptional transactivator, amplifying cancer's ability to thrive. The intricate mechanisms behind PD-L1's intrinsic signaling are under intense investigation. In this review, we provide a historical perspective on the discoveries leading to PD-L1's structure, signaling motifs, and interacting partners, shedding light on its multifaceted roles and the promising therapeutic possibilities ahead.
Collapse
Affiliation(s)
- David Escors
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| | | | | | | | | | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Sun Z, Wang H, Dai G, Meng Y, Shi S, Ren S. Integrated analysis identifies P4HA2 as a key regulator of STAT1-mediated colorectal cancer progression and a potential biomarker for precision therapy. Front Oncol 2025; 15:1581860. [PMID: 40406250 PMCID: PMC12094996 DOI: 10.3389/fonc.2025.1581860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/15/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction P4HA2 is implicated in regulating tumor microenvironment formation and may play roles in inflammation and tumor immunity. However, its mechanistic involvement in colorectal cancer (CRC) remains largely unexplored. Methods We analyzed P4HA2 expression in CRC tissues and correlated it with clinicopathological features. Functional assays (CCK8, wound healing, Transwell) were performed to assess proliferation and migration. Proteomic analysis identified downstream targets, with STAT1/PD-L1 pathway validation. Results High P4HA2 expression correlated with advanced T/M stages and served as an independent poor prognostic factor. Functional experiments confirmed P4HA2's role in promoting CRC proliferation and migration. Mechanistically, P4HA2 bound to and downregulated STAT1, subsequently modulating the STAT1/PD-L1 pathway. Discussion Our findings reveal P4HA2 promotes CRC progression and suppresses anti-tumor immunity via STAT1/PD-L1 axis regulation. This study uncovers a novel pathogenic mechanism, positioning P4HA2 as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yinan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huanle Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guohang Dai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Meng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shasha Shi
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Hao S, Liu Z, Lenz HJ, Yu J, Zhang L. Werner helicase as a therapeutic target in mismatch repair deficient colorectal cancer. DNA Repair (Amst) 2025; 149:103831. [PMID: 40203476 DOI: 10.1016/j.dnarep.2025.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the United States. A key driver of CRC development is microsatellite instability (MSI), which is caused by DNA mismatch repair deficiency and characterized by hypermutability of short-tandem repeat sequences. A significant portion of MSI CRCs do not respond to checkpoint immunotherapy treatments, highlighting an unmet need for improved therapies. Recent studies have revealed that MSI cancer cells require Werner (WRN), a RecQ family DNA helicase, for survival. Inhibiting WRN has emerged as a promising approach for targeting MSI CRCs that are insensitive to standard therapies. Several highly potent small-molecule WRN inhibitors have been developed and exhibited striking in vitro and in vivo activities against MSI cancers. Two of these WRN inhibitors, HRO761 and VVD-133214, have recently entered clinical trials. In this review, we summarize recent studies on WRN as a synthetic lethal target in MSI CRC and the development of WRN inhibitors as a new class of anticancer agents.
Collapse
Affiliation(s)
- Suisui Hao
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Chen M, Zhou Y, Bao K, Chen S, Song G, Wang S. Multispecific Antibodies Targeting PD-1/PD-L1 in Cancer. BioDrugs 2025; 39:427-444. [PMID: 40106158 DOI: 10.1007/s40259-025-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The development of immune checkpoint inhibitors has revolutionized the treatment of patients with cancer. Targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1(PD-L1) interaction using monoclonal antibodies has emerged as a prominent focus in tumor therapy with rapid advancements. However, the efficacy of anti-PD-1/PD-L1 treatment is hindered by primary or acquired resistance, limiting the effectiveness of single-drug approaches. Moreover, combining PD-1/PD-L1 with other immune drugs, targeted therapies, or chemotherapy significantly enhances response rates while exacerbating adverse reactions. Multispecific antibodies, capable of binding to different epitopes, offer improved antitumor efficacy while reducing drug-related side effects, serving as a promising therapeutic approach in cancer treatment. Several bispecific antibodies (bsAbs) targeting PD-1/PD-L1 have received regulatory approval, and many more are currently in clinical development. Additionally, tri-specific antibodies (TsAbs) and tetra-specific antibodies (TetraMabs) are under development. This review comprehensively explores the fundamental structure, preclinical principles, clinical trial progress, and challenges associated with bsAbs targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Yuli Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaicheng Bao
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Siyu Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Guoqing Song
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
5
|
Yoshikawa S, Maeda C, Iizuka A, Ikeya T, Yamashita K, Ashizawa T, Kanematsu A, Miyata H, Kikuchi Y, Urakami K, Ohshima K, Nagashima T, Yamaguchi K, Kiyohara Y, Akiyama Y. Characterization of the Neoantigen Profile in a Tumor Mutation Burden-high Melanoma Patient With Multiple Metastases. Cancer Genomics Proteomics 2025; 22:496-509. [PMID: 40280722 PMCID: PMC12041879 DOI: 10.21873/cgp.20517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/AIM Recently, neoantigen (NA) profiling has been intensively performed for the development of novel immunotherapy. We previously reported a melanoma case with a high tumor mutation burden that achieved complete remission after anti-programmed death-1 therapy. We herein revisited the same case, characterized the NA profiles of other metastatic lesions using in silico algorithms and in vitro CTL assays, and investigated the immunological status, including tumor-infiltrating lymphocytes and the T cell receptor (TCR) repertoire profile, in metastatic sites. MATERIALS AND METHODS NA candidates obtained from whole-exome sequencing were applied to the HLA-binding prediction algorithm, NetMHCpan4.1. HLA-A*2402-restricted sequence candidates with a strong binding capacity (<50 nM) and elution affinity (<1%) were selected and evaluated for synthetic peptide candidates. The immunological status in metastatic sites was characterized using gene expression profiling, immunohistochemistry, and a TCR repertoire analysis. RESULTS The genomic analysis revealed that all metastatic sites, such as costal, intra-muscular, and brain lesions, had >1,500 SNVs, and 12 driver mutations were common to all sites. New driver mutations were identified in intra-muscular (KMT2C: p.P3292S) and brain (JAK1: p.S404P) metastases and a functional analysis of these mutations revealed that JAK1 mutation exhibited a promoting effect on invasion activity. CTL assays using synthetic NA peptides identified more NA epitopes in brain metastasis. CONCLUSION These results might suggest that the heterogeneity of driver gene mutations is unremarkable, while immunological response is variable in metastatic sites. As a result, the genomic and immunological investigation has provided a very valuable and informative suggestion regarding better cancer therapy decisions.
Collapse
Affiliation(s)
- Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Chie Maeda
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akira Iizuka
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoatsu Ikeya
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kazue Yamashita
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tadashi Ashizawa
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akari Kanematsu
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Haruo Miyata
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasufumi Kikuchi
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostic Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostic Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Office of the President Emeritus, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshio Kiyohara
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan;
| |
Collapse
|
6
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
7
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025; 39:1011-1030. [PMID: 40140631 PMCID: PMC12055591 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
8
|
Liu Y, Zhang Y, Yang X, Lang S, Zhu Y, Song J, Zhu Y, Xu H, Pei P, Zhu H, Yang K, Liu T. Reprogramming of radiation-deteriorated TME by liposomal nanomedicine to potentiate radio-immunotherapy. J Control Release 2025; 383:113792. [PMID: 40311685 DOI: 10.1016/j.jconrel.2025.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Radiotherapy, although widely used for cancer therapy, always triggers changes in tumor microenvironment (TME) that lead to radioresistance and immunosuppression. In particular, during X-ray irradiation, hypoxia exacerbation would reduce radiosensitivity of tumor cells, while programmed cell death ligand 1 (PD-L1) upregulation impairs antitumor immune responses and exacerbates DNA damage repair, collectively resulting in severe T cell exhaustion and unsatisfactory therapeutic effect. Herein, we developed a liposomal nanodrug, C/J-LipoRGD, to simultaneously encapsulate a biological enzyme and a bromodomain containing 4 (BRD4) inhibitor for tumor-targeting delivery and TME modulation. Among C/J-LipoRGD, catalase could catalyze the decomposition of the excess H2O2 in tumors and improve TME oxygenation. Meanwhile, JQ1 as a BRD4 inhibitor after being taken by cancer cells could downregulate PD-L1 expression in both cellular membrane and cytosol, inhibiting PD-1/PD-L1 interaction and DNA damage repair. By alleviating hypoxia and downregulating PD-L1 expression, C/J-LipoRGD reverses T cell exhaustion in TME. Altogether, C/J-LipoRGD-based radiotherapy significantly inhibited tumor growth and meanwhile triggered immunogenic cell death (ICD) of cancer cells to activate T cell-mediated anti-tumor immunity. After the combination with αPD-1, C/J-LipoRGD-based radio-immunotherapy achieved complete tumor eradication and metastases elimination in 80 % mice with survival over 80 days. This multifunctional nanodrug represents a promising strategy to overcome therapy resistance and optimize radio-immunotherapy outcomes.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanxiang Zhang
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xulu Yang
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shanshan Lang
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yansheng Zhu
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiawei Song
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Zhu
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haiyi Xu
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Teng Liu
- Department of Pathology, the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Verdys P, Johansen AZ, Gupta A, Presti M, Dionisio E, Madsen DH, Curioni-Fontecedro A, Donia M. Acquired resistance to immunotherapy in solid tumors. Trends Mol Med 2025:S1471-4914(25)00061-9. [PMID: 40274520 DOI: 10.1016/j.molmed.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Acquired resistance to immunotherapy (ARI) is a major challenge in solid tumors, limiting long-term success in up to 65% of patients who initially respond to immunotherapy. Defining ARI clinically remains complex, but ongoing efforts aim to establish standardized criteria. This review describes recent insights into ARI, revealing complex mechanisms involving both tumor-intrinsic mechanisms - such as antigen loss and presentation defects, interferon γ (IFNγ) insensitivity, tumor-mediated T cell exclusion, and metabolic reprogramming - as well as extrinsic factors such as inhibitory molecule upregulation, immunosuppressive cells, extracellular matrix (ECM) remodeling, and dysbiotic microbiota. Understanding the development of ARI is crucial for prevention and effective interventions. The integration of innovative strategies and translational research on appropriately collected samples is key to overcoming ARI and ensuring durable benefits for patients.
Collapse
Affiliation(s)
- Perrine Verdys
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anurag Gupta
- Department of Medical Oncology, University of Fribourg, Fribourg, Switzerland
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Edoardo Dionisio
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
10
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
11
|
Kuno S, Pakpian N, Muanprasat C. The potential role of PD-1/PD-L1 small molecule inhibitors in colorectal cancer with different mechanisms of action. Eur J Pharmacol 2025; 992:177351. [PMID: 39922421 DOI: 10.1016/j.ejphar.2025.177351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide, with increasing incidence in younger ages highlighting the need for new or alternative therapy, of which is immune checkpoint inhibitors. Antibody-based immune checkpoint inhibitors targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized cancer treatment, including CRC. However, the low response rate in CRC highlights the need for additional research and innovative therapies. Small molecule inhibitors have risen as another strategy worth exploring, considering their potential to target a wide array of PD-1/PD-L1-related pathways. This review focuses on the potential of small molecule inhibitors targeting the PD-1/PD-L1 axis in CRC. Exploring various classes of small molecule inhibitors, including those that directly block the PD-1/PD-L1 interaction and others that target upstream regulators or downstream signaling pathways involved in PD-1/PD-L1-mediated immune suppression. Additionally, modulation of post-transcriptional and post-translational processes, thereby influencing the expression, stability, or localization of PD-1/PD-L1 proteins to enhance antitumor immunity, provides a multifaceted treatment approach. By disrupting these pathways, these inhibitors can restore immune system activity against tumor cells, offering new hope for overcoming resistance and improving outcomes in CRC patients who do not respond to conventional immune checkpoint inhibitors (ICIs). Integrating these small molecules into CRC treatment strategies could represent a promising advancement in the battle against the challenging disease.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nattaporn Pakpian
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
12
|
Liao Y, Yang R, Wang B, Ruan Y, Cui L, Yang J, Yu X, Han S, Yao Y, Luan X, Li Y, Shi M, Li S, Liu C, Zhang Y. Mevalonate kinase inhibits anti-tumor immunity by impairing the tumor cell-intrinsic interferon response in microsatellite instability colorectal cancer. Oncogene 2025; 44:944-957. [PMID: 39725712 DOI: 10.1038/s41388-024-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Insufficient tumor cell-intrinsic interferon response represents a major obstacle in immune checkpoint blockade (ICB) therapy, particularly in anti-PD-1 treatment. Although cholesterol metabolism has been demonstrated to be a critical regulator of anti-tumor immune responses, whether cholesterol influences tumor cell-intrinsic interferon response in microsatellite instability (MSI) colorectal cancer (CRC) remains unknown. Through comprehensive siRNA library screening and Gene Set Enrichment Analysis (GSEA), we identified mevalonate kinase (MVK) as a crucial negative regulator of tumor cell-intrinsic interferon response in MSI CRC cells. Genetic ablation of MVK resulted in significant upregulation of Th1 type chemokines (CXCL9 and CXCL10) and enhanced CD8+T cell infiltration in MSI CRC, consequently leading to marked tumor growth suppression in immunocompetent mice. At the molecular level, we demonstrated that MVK physically interacts with the transcriptional activation domain (TAD) of signal transducer and activator of transcription 1 (STAT1). This interaction substantially impairs STAT1 nuclear translocation, thereby attenuating interferon signaling cascade. Furthermore, analyses of humanized PBMC-PDX models and clinical cohorts of MSI CRC patients revealed that reduced MVK expression in tumor tissues strongly correlates with favorable responses to anti-PD-1 therapy. Collectively, our findings establish MVK as a pivotal mediator in cholesterol synthesis pathway that negatively regulates tumor cell-intrinsic interferon response in MSI CRC. These results suggest that therapeutic targeting of MVK represents a promising strategy to enhance ICB efficacy through potentiation of interferon responses in MSI CRC patients.
Collapse
Affiliation(s)
- Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Rui Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xindi Luan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yingjue Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Mengde Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China.
- Heilongjiang Province Key Laboratory of Research on Molecular Targeted Anti-Tumor Drugs, Harbin, China.
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| |
Collapse
|
13
|
Zhang Y, Khanniche A, Li Y, Wu Z, Wang H, Zhang H, Li X, Hu L, Kong X. A myeloid IFN gamma response gene signature correlates with cancer prognosis. Clin Transl Med 2025; 15:e70139. [PMID: 40165405 PMCID: PMC11959096 DOI: 10.1002/ctm2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The IFN-γ cytokine plays a dual role in anti-tumor immunity, enhancing immune defense against cancer cells while promoting tumor survival and progression. Its influence on prognosis and therapeutic responses across cancer types remains unclear. OBJECTIVE This study aimed to perform a pan-cancer analysis of IFN-γ response genes to determine their prognostic significance and evaluate their impact on clinical outcomes and anti-PD1 immunotherapy responses. METHODS Using multiple datasets, 46 IFN-γ response genes were identified as prognostic for disease-specific survival, and their expression was used to construct the IFN-γ Response Gene Network Signature (IFGRNS) score. The prognostic and therapeutic relevance of the IFGRNS score was assessed across cancer types, considering tumor pathology, genomic alterations, tumor mutation burden, and microenvironment. Single-cell transcriptomic analysis identified cellular contributors, and a murine pancreatic cancer (PAN02) model was used to validate findings with anti-PD1 therapy. RESULTS The IFGRNS score emerged as a robust prognostic indicator of survival, with higher scores correlating with worse outcomes in most cancer types. The prognostic significance of the score was influenced by factors such as cancer type, tumor pathology, and the tumor microenvironment. Single-cell analysis revealed that myeloid cells, particularly the M2 macrophage subtype, demonstrated high levels of IFGRNS expression, which was associated with tumor progression. A negative correlation was observed between the IFGRNS score and outcomes to anti-PD1 immunotherapy in urologic cancers, where patients with higher scores showed worse prognosis and lower response rates to therapy. Experimental validation in the PAN02 murine model confirmed that anti-PD1 therapy significantly reduced tumor size and IFGRNS expression in M2 macrophages, supporting the clinical findings. CONCLUSIONS The IFGRNS score is a novel prognostic indicator for survival and therapeutic responses in cancer. These findings underline the complexity of IFN-γ signaling and suggest potential applications for the IFGRNS score in cancer diagnosis, prognosis, and immunotherapy. Novelty & impact statements: IFN-γ response genes play a significant role in tumour biology, yet comprehensive analysis across various cancers is limited. This study identifies a novel prognostic biomarker, the IFGRNS score, which is elevated in myeloid lineage cells and correlates with survival across multiple cancers. The IFGRNS score is also associated with tumour pathology, immune microenvironment, and immunotherapy response, highlighting its diagnostic and therapeutic potential in cancer management. KEY POINTS IFN-γ cytokine plays a dual role in cancer, aiding immune defense but also promoting tumor progression. A novel IFGRNS score, based on 46 IFN-γ response genes, was identified as a strong prognostic marker for survival across cancer types. Higher IFGRNS scores correlate with worse prognosis and reduced response to anti-PD1 immunotherapy, particularly in urologic cancers. M2 macrophages were identified as key contributors to high IFGRNS scores, associated with tumor progression. Findings were validated in a murine cancer model, highlighting the potential of the IFGRNS score for cancer prognosis and therapy guidance.
Collapse
Affiliation(s)
- Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
| | - Asma Khanniche
- ANDA Biology Medicine Development (Shenzhen) Co., LTDShenzhenChina
| | - Yizhe Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
| | - Zhenchuan Wu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
- ANDA Biology Medicine Development (Shenzhen) Co., LTDShenzhenChina
| | - Hailong Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
- ANDA Biology Medicine Development (Shenzhen) Co., LTDShenzhenChina
| | - Hongyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
| | - Xiaoxue Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
- ANDA Biology Medicine Development (Shenzhen) Co., LTDShenzhenChina
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
14
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
15
|
Liu Y, Liu Y, Niu X, Chen A, Li Y, Yu Y, Mo B, Liu Z, Xu T, Cheng J, Wu Z, Wei W. Massively parallel interrogation of human functional variants modulating cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:88. [PMID: 40102418 PMCID: PMC11920242 DOI: 10.1038/s41392-025-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuran Niu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Ang Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Binrui Mo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Cheng
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
16
|
Wei W, Dang Y, Chen G, Han C, Zhang S, Zhu Z, Bie X, Xue J. Comprehensive analysis of senescence-related genes identifies prognostic clusters with distinct characteristics in glioma. Sci Rep 2025; 15:9540. [PMID: 40108265 PMCID: PMC11923138 DOI: 10.1038/s41598-025-93482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Cellular senescence, defined as a state of permanent arrest in cell growth, is regarded as a crucial tumor suppression mechanism. However, accumulating scientific evidence suggests that senescent cells play a detrimental role in the progression of cancer. Unfortunately, the current lack of reliable markers that specifically reflect the level of senescence in cancer greatly hinders our in-depth understanding of this important biological foundation. Therefore, the search for more specific and reliable markers to reveal the specific role of senescent cells in cancer progression is particularly urgent and important. To uncover the role of senescence in gliomas, we collected senescence-related genes for integrated analysis. Consensus clustering was used to subtype gliomas based on the senescence gene set, and we identified two robust prognostic clusters of gliomas with distinct survival outcomes, multi-omics landscapes, immune characteristics, and differential drug responses. Multiple external datasets were used to validate the stability of our subtypes. Various computational and experimental methods, including WGCNA (Weighted Gene Co-expression Network Analysis), ssGSEA (single-sample Gene Set Enrichment Analysis), and machine learning algorithms (lasso regression, support vector machines, random forests), were employed for analysis. We found that CEBPB and LMNA are associated with poor prognosis in gliomas and may mediate immunosuppression and tumor proliferation. Drug prediction indicated that dasatinib is a potential therapeutic agent. Our findings provide insights into the role of the senescence gene set in patient stratification and precision medicine.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ying Dang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Gang Chen
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Chao Han
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Siwei Zhang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ziqiang Zhu
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xiaohua Bie
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Jungang Xue
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
17
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Castro F, Pinto ML, Leite Pereira C, Serre K, Costa ÂM, Cavadas B, Barbosa MA, Vermaelen K, León S, Serrano D, Gärtner F, Calvo A, Gonçalves RM, De Wever O, Oliveira MJ. Chitosan/γ-PGA nanoparticles and IFN-γ immunotherapy: A dual approach for triple-negative breast cancer treatment. J Control Release 2025; 379:621-635. [PMID: 39832747 DOI: 10.1016/j.jconrel.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Interferon-γ (IFN-γ) is a key mediator in antitumor immunity and immunotherapy responses, yet its clinical applications remain restricted to chronic granulomatous disease and malignant osteopetrosis. IFN-γ effectiveness as a standalone treatment has shown limited success in clinical trials and its potential for synergistic effects when combined with immunotherapies is under clinical exploration. A particularly compelling combination is that of IFN-γ with Toll-like receptor (TLR) agonists that holds significant promise for cancer treatment. Previously, we demonstrated chitosan (Ch)/poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs), known to activate TLRs, as adjuvants to radiotherapy by remodeling breast tumor microenvironment and systemic immunosuppression. These immunomodulatory abilities make Ch/γ-PGA NPs promising adjuvants to IFN-γ-based therapies. Here, we addressed the synergistic therapeutic potential of combining Ch/γ-PGA NPs with IFN-γ therapy in the 4T1 orthotopic breast tumor mouse model. While control animals (placebo-treated) had progressive tumor growth and lung metastases, those treated with either NPs or IFN-γ alone had a significant slower tumor growth. Remarkably, primary tumor growth was halted throughout the duration of the treatment when both treatments were combined. Although the animals did not achieve durable complete responses upon treatment withdrawal, it was notable that the NPs plus IFN-γ group presented a lower lung metastatic burden compared to other groups. Systemically, the combination therapy slightly attenuated immunosuppression and the percentage of splenic myeloid cells, while increased the percentage of T helper 1 cells and of cytotoxic T cells. Overall, this proof-of-concept study suggests that Ch/γ-PGA NPs potentiate IFN-γ effects to reduce tumor progression, presenting a novel approach for anticancer strategies.
Collapse
Affiliation(s)
- Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | - Marta Laranjeiro Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Prof. Egas Moniz, Lisboa, Portugal
| | - Ângela Margarida Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karim Vermaelen
- Tumor Immunology Laboratory, Department of Pulmonary Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent University, Belgium
| | - Sergio León
- IdiSNA - Navarra Institute for Health Research, Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain; CIBERONC (-) Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Diego Serrano
- IdiSNA - Navarra Institute for Health Research, Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Alfonso Calvo
- IdiSNA - Navarra Institute for Health Research, Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain; CIBERONC (-) Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Raquel Madeira Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Olivier De Wever
- CRIG - Cancer Research Institute Ghent, Ghent University, Belgium; LECR - Laboratory Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Belgium
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Teramoto K, Ueda Y, Murai R, Ogasawara K, Nakayama M, Ishigaki H, Itoh Y. A hemoperfusion column selectively adsorbs LAP+ lymphocytes to improve anti-tumor immunity and survival of tumor-bearing rats. PLoS One 2025; 20:e0305153. [PMID: 40053558 PMCID: PMC11888139 DOI: 10.1371/journal.pone.0305153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/19/2024] [Indexed: 03/09/2025] Open
Abstract
Reducing the number of immunosuppressive cells in blood is a potential strategy for activating anti-tumor immunity, which provides a promising approach to cancer treatment. In this study, we developed an adsorbent designed to selectively target and adsorb lymphocytes expressing latency-associated peptide (LAP), which is abundantly expressed on the surface of CD4+ regulatory T cells (Tregs) and CD14+ monocytes. We investigated whether diethylenetriamine-conjugated polysulfone adsorbent-based direct hemoperfusion (DHP) enhances anti-tumor immunity in a rat cancer model with KDH-V liver cells. Our findings revealed that DHP significantly reduced LAP+ Tregs in both peripheral blood and tumor tissues in treated mice. Consequently, cytotoxic T-lymphocytes increased in tumor-bearing rats. The anti-tumor effect was negated by the addition of cells detached from the absorbent, indicating that these cells play a crucial role in inhibiting the observed therapeutic effect. The results suggest that depleting LAP+ immunosuppressive cells in blood can enhance anti-tumor immunity and improve survival of patients.
Collapse
Affiliation(s)
- Kazuo Teramoto
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yuji Ueda
- Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Ryosuke Murai
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Kazumasa Ogasawara
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
20
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
21
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Zhu Q, Zhang R, Zhao Z, Xie T, Sui X. Harnessing phytochemicals: Innovative strategies to enhance cancer immunotherapy. Drug Resist Updat 2025; 79:101206. [PMID: 39933438 DOI: 10.1016/j.drup.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Cancer immunotherapy has revolutionized cancer treatment, but therapeutic ineffectiveness-driven by the tumor microenvironment and immune evasion mechanisms-continues to limit its clinical efficacy. This challenge underscores the need to explore innovative approaches, such as multimodal immunotherapy. Phytochemicals, bioactive compounds derived from plants, have emerged as promising candidates for overcoming these barriers due to their immunomodulatory and antitumor properties. This review explores the synergistic potential of phytochemicals in enhancing immunotherapy by modulating immune responses, reprogramming the tumor microenvironment, and reducing immunosuppressive factors. Integrating phytochemicals with conventional immunotherapy strategies represents a novel approach to mitigating resistance and enhancing therapeutic outcomes. For instance, nab-paclitaxel has shown the potential in overcoming resistance to immune checkpoint inhibitors, while QS-21 synergistically enhances the efficacy of tumor vaccines. Furthermore, we highlight recent advancements in leveraging nanotechnology to engineer phytochemicals for improved bioavailability and targeted delivery. These innovations hold great promise for optimizing the clinical application of phytochemicals. However, further large-scale clinical studies are crucial to fully integrate these compounds into immunotherapeutic regimens effectively.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao; Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
23
|
Mariniello A, Borgeaud M, Weiner M, Frisone D, Kim F, Addeo A. Primary and Acquired Resistance to Immunotherapy with Checkpoint Inhibitors in NSCLC: From Bedside to Bench and Back. BioDrugs 2025; 39:215-235. [PMID: 39954220 PMCID: PMC11906525 DOI: 10.1007/s40259-024-00700-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 02/17/2025]
Abstract
Immunotherapy with checkpoint inhibitors has become the cornerstone of systemic treatment for non-oncogene addicted non-small-cell lung cancer. Despite its pivotal role, a significant proportion of patients-approximately 70-85%-either exhibit primary resistance to PD-1 blockade or develop acquired resistance following an initial benefit, even in combination with chemotherapy and/or anti-CTLA-4 agents. The phenomenon of primary and acquired resistance to immunotherapy represents a critical clinical challenge, largely based on our incomplete understanding of the mechanisms of action of immunotherapy, and the resulting lack of accurate predictive biomarkers. Here, we review the definitions and explore the proposed mechanisms of primary and acquired resistance, including those related to the tumor microenvironment, systemic factors, and intrinsic tumor characteristics. We also discuss translational data on adaptive changes within tumor cells and the immune infiltrate following exposure to checkpoint inhibitors. Lastly, we offer a comprehensive overview of current and emerging therapeutic strategies designed to prevent primary resistance and counteract acquired resistance.
Collapse
Affiliation(s)
- Annapaola Mariniello
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Maxime Borgeaud
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Marc Weiner
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Daniele Frisone
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Floryane Kim
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, rue Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
24
|
Smahel M, Johari SD, Smahelova J, Pfeiferova L, Nunvar J. Spatial immune heterogeneity in a mouse tumor model after immunotherapy. Cancer Sci 2025; 116:622-632. [PMID: 39624899 PMCID: PMC11875765 DOI: 10.1111/cas.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Lucie Pfeiferova
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics, Czech Academy of SciencesPragueCzech Republic
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| |
Collapse
|
25
|
Arias-Badia M, Chen P, Lwin YM, Srinath A, Lyu A, Fan Z, Kwek SS, Luong DN, Setayesh A, Sakamoto M, Clark M, Lea A, Wolters RM, Goodearl A, Harding FA, Gorman JV, Ritacco W, Fong L. Sequential JAK inhibition enhances antitumor immunity after combined anti-PD-1 and anti-CTLA4. JCI Insight 2025; 10:e187921. [PMID: 40014402 PMCID: PMC11981626 DOI: 10.1172/jci.insight.187921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
While immune checkpoint inhibition (CPI) has reshaped cancer treatment, the majority of patients with cancer do not benefit from this approach, which can also cause immune-related adverse events. Induction of IFN-γ responses is thought be necessary for antitumor immunity, but growing evidence also implicates IFN-γ as a tumor-intrinsic mediator of CPI resistance. CPI-induced IFN-γ mediates activation-induced cell death in T cells as an immune-intrinsic mechanism of resistance. In this study, we found that transient block of IFN-γ signaling through administration of the JAK1 inhibitor ABT-317 enhanced antitumor T cell responses with CPI in preclinical models. Importantly, sequential but not concomitant ABT-317 treatment led to significantly reduced toxicity and improved tumor efficacy. Sequential treatment reduced activation-induced T cell death and enhanced expansion of tumor-reactive T cell subsets with increased effector function in vivo and ex vivo. Only CPI in combination with ABT-317 also enhanced memory responses by protecting mice from tumor rechallenge. These results demonstrate that JAK inhibition within a discrete time window following CPI addresses an immune-intrinsic mechanism of therapeutic resistance.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - PeiXi Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yee May Lwin
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Aahir Srinath
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Zenghua Fan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Serena S. Kwek
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Diamond N. Luong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ali Setayesh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mason Sakamoto
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Clark
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Averey Lea
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rachel M. Wolters
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Jacob V. Gorman
- Research and Development, AbbVie, North Chicago, Illinois, USA
| | - Wendy Ritacco
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Lawson NM, Ye L, Cho CY, Zhao B, Mitchell T, Martín-Barrio I, Beernaert B, Gupta A, Banu M, Lissanu Y, Shaffer S, Tawbi H, Li J, Gule-Monroe MK, Alvarez-Breckenridge CA, Huse JT, Murphy MB, Yin F, Lang FF, Parkes EE, Weinberg JS, Akdemir KC. Recurrent ERBB2 alterations are associated with esophageal adenocarcinoma brain metastases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.19.25322558. [PMID: 40061311 PMCID: PMC11888521 DOI: 10.1101/2025.02.19.25322558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Brain metastases in esophageal adenocarcinoma (EAC) patients are associated with poor prognosis and remain understudied. We performed multi-omics analysis with whole-genome sequencing and single-cell spatial transcriptomics on the brain metastases and matched primary tumors. Our analysis identified ERBB2 as a recurrent oncogene in EAC brain metastases, with 9 out of 10 cases harboring amplifications. Single-cell whole-genome and multi-region sequencing revealed that ERBB2 alterations, occur early during disease progression and are associated with monoclonal seeding. Although the median survival in our cohort was 13 months, one patient on HER2 antibody-drug conjugate therapy remains a long-term survivor beyond 34 months. Interestingly, the sole patient without an ERBB2 alteration had JAK2 deletion, high T cell infiltration in the brain lesion, and survived 35 months after immune checkpoint therapy. Our findings have significant clinical implications for the treatment and management of EAC brain metastases.
Collapse
Affiliation(s)
- Nora M. Lawson
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Lingqun Ye
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Chae Yun Cho
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Zhao
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Mitchell
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Archit Gupta
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Matei Banu
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Yonathan Lissanu
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Sydney Shaffer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Jason T. Huse
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Feng Yin
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F. Lang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Kadir C. Akdemir
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science of Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
- Lead Author
| |
Collapse
|
27
|
Bloom M, Podder S, Dang H, Lin D. Advances in Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1936. [PMID: 40076561 PMCID: PMC11900920 DOI: 10.3390/ijms26051936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Over the past several years, the therapeutic landscape for patients with advanced, unresectable, or metastatic hepatocellular carcinoma has been transformed by the incorporation of checkpoint inhibitor immunotherapy into the treatment paradigm. Frontline systemic treatment options have expanded beyond anti-angiogenic tyrosine kinase inhibitors, such as sorafenib, to a combination of immunotherapy approaches, including atezolizumab plus bevacizumab and durvalumab plus tremelimumab, both of which have demonstrated superior response and survival to sorafenib. Additionally, combination treatments with checkpoint inhibitors and tyrosine kinase inhibitors have been investigated with variable success. In this review, we discuss these advances in systemic treatment with immunotherapy, with a focus on understanding both the underlying biology and mechanism of these strategies and their efficacy outcomes in clinical trials. We also review challenges in identifying predictive biomarkers of treatments and discuss future directions with novel immunotherapy targets.
Collapse
Affiliation(s)
- Matthew Bloom
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| | - Sourav Podder
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Daniel Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| |
Collapse
|
28
|
Gschwind A, Ossowski S. AI Model for Predicting Anti-PD1 Response in Melanoma Using Multi-Omics Biomarkers. Cancers (Basel) 2025; 17:714. [PMID: 40075562 PMCID: PMC11899402 DOI: 10.3390/cancers17050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have demonstrated significantly improved clinical efficacy in a minority of patients with advanced melanoma, whereas non-responders potentially suffer from severe side effects and delays in other treatment options. Predicting the response to anti-PD1 treatment in melanoma remains a challenge because the current FDA-approved gold standard, the nonsynonymous tumor mutation burden (nsTMB), offers limited accuracy. METHODS In this study, we developed a multi-omics-based machine learning model that integrates genomic and transcriptomic biomarkers to predict the response to anti-PD1 treatment in patients with advanced melanoma. We employed least absolute shrinkage and selection operator (LASSO) regression with 49 biomarkers extracted from tumor-normal whole-exome and RNA sequencing as input features. The performance of the multi-omics AI model was thoroughly compared to that of nsTMB alone and to models that use only genomic or transcriptomic biomarkers. RESULTS We used publicly available DNA and RNA-seq datasets of melanoma patients for the training and validation of our model, forming a meta-cohort of 449 patients for which the outcome was recorded as a RECIST score. The model substantially improved the prediction of anti-PD1 outcomes compared to nsTMB alone, with an ROC AUC of 0.7 in the training set and an ROC AUC of 0.64 in the test set. Using SHAP values, we demonstrated the explainability of the model's predictions on a per-sample basis. CONCLUSIONS We demonstrated that models using only RNA-seq or multi-omics biomarkers outperformed nsTMB in predicting the response of melanoma patients to ICI. Furthermore, our machine learning approach improves clinical usability by providing explanations of its predictions on a per-patient basis. Our findings underscore the utility of multi-omics data for selecting patients for treatment with anti-PD1 drugs. However, to train clinical-grade AI models for routine applications, prospective studies collecting larger melanoma cohorts with consistent application of exome and RNA sequencing are required.
Collapse
Affiliation(s)
- Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
30
|
Bao Y, Cruz G, Zhang Y, Qiao Y, Mannan R, Hu J, Yang F, Gondal M, Shahine M, Kang S, Mahapatra S, Chu A, Choi JE, Yu J, Lin H, Miner SJ, Robinson DR, Wu YM, Zheng Y, Cao X, Su F, Wang R, Hosseini N, Cieslik M, Kryczek I, Vaishampayan U, Zou W, Chinnaiyan AM. The UBA1-STUB1 Axis Mediates Cancer Immune Escape and Resistance to Checkpoint Blockade. Cancer Discov 2025; 15:363-381. [PMID: 39540840 PMCID: PMC11803397 DOI: 10.1158/2159-8290.cd-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE Our study reveals UBA1 as a predictive biomarker for clinical outcomes in ICB cohorts, mediating cancer immune evasion and ICB resistance. We further highlight JAK1 stabilization as a key mechanism of UBA1 inhibition and nominate the UBA1-STUB1 axis as an immuno-oncology therapeutic target to improve the efficacy of ICB.
Collapse
Affiliation(s)
- Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Gabriel Cruz
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Mahnoor Gondal
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Miriam Shahine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sarah Kang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Alec Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jae Eun Choi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, Michigan
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, Michigan
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Noshad Hosseini
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, Michigan
| | - Ulka Vaishampayan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Weiping Zou
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, Michigan
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Gao C, Chen L, Zhao L, Su Y, Ma M, Zhang W, Hong X, Xiao L, Xu B, Hu T. Apatinib Degrades PD-L1 and Reconstitutes Colon Cancer Microenvironment via the Regulation of Myoferlin. Cancers (Basel) 2025; 17:524. [PMID: 39941891 PMCID: PMC11816266 DOI: 10.3390/cancers17030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND For most colorectal cancer (CRC) patients, expanding the benefits of immunotherapy, particularly through blocking programmed cell death-1 (PD-1) and its ligand (PD-L1), is crucial, especially in cases with limited response to neoadjuvant therapy. This study investigates the role of Myoferlin (MYOF) as a novel target in CRC immunotherapy. METHODS Human CRC cell lines (RKO, HCT116), normal intestinal epithelial cells (HIEC-6), and the murine CRC cell line MC38 were used to study the effects of apatinib and MYOF in CRC cells. RNA sequencing, the CPTAC and TCGA databases, and other molecular and cellular methods were applied to disclose the mechanisms involved. A series of mouse models were established to assess the effects of apatinib and MYOF knockdown on tumor progression, immune cell infiltration, and immune checkpoint protein response. RESULTS We found that MYOF is overexpressed in CRC and linked to immune cell infiltration and checkpoint expression. Suppression of MYOF expression significantly inhibited CRC cell proliferation and migration, as well as reduced PD-L1 protein levels. Integrative analysis showed that apatinib modulates MYOF expression via VEGFR2, resulting in decreased PD-L1 expression, increased CD8+ T cell infiltration, and reduced pro-tumor M2 macrophages. Animal experiments further revealed that apatinib treatment or MYOF knockdown enhanced the efficacy of immune checkpoint blockade (ICB) in CRC. CONCLUSIONS These findings highlight novel antitumor mechanisms of MYOF and suggest that combining apatinib with ICB therapy may improve CRC treatment outcomes, offering a promising strategy to enhance immune responses.
Collapse
Affiliation(s)
- Chunyi Gao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Lu Chen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Lingying Zhao
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
| | - Li Xiao
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen 361004, China;
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (C.G.); (L.C.); (Y.S.); (M.M.); (W.Z.); (X.H.)
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
32
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
33
|
Nihira NT, Wu W, Hosoi M, Togashi Y, Sunada S, Miyoshi Y, Miki Y, Ohta T. Nuclear PD-L1 triggers tumour-associated inflammation upon DNA damage. EMBO Rep 2025; 26:635-655. [PMID: 39747659 PMCID: PMC11811057 DOI: 10.1038/s44319-024-00354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress. PD-L1 interacts with ATR and is essential for Chk1 activation and chromatin binding. cGAS-STING and NF-κB activation in the late phase of the DNA damage response is inhibited by PD-L1 deletion or by inhibitors of ATR and Chk1. Consequently, the induction of proinflammatory chemocytokines at this stage is inhibited by deletion of PD-L1, but restored by the ATR activator Garcinone C. Inhibition of nuclear localisation by PD-L1 mutations or the HDAC2 inhibitor Santacruzamate A inhibits chemocytokine induction. Conversely, the p300 inhibitor C646, which accelerates PD-L1 nuclear localisation, promotes chemocytokine induction. These findings suggest that nuclear PD-L1 strengthens the properties of hot tumours and contributes to shaping the tumour microenvironment.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Mitsue Hosoi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Shigeaki Sunada
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, 113-8421, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yoshio Miki
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, 305-8550, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan.
| |
Collapse
|
34
|
Chang TH, Ho PC. Interferon-driven Metabolic Reprogramming and Tumor Microenvironment Remodeling. Immune Netw 2025; 25:e8. [PMID: 40078784 PMCID: PMC11896656 DOI: 10.4110/in.2025.25.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
IFNs play a critical role in cancer biology, including impacting tumor cell behavior and instructing the tumor microenvironment (TME). IFNs recently have been shown to reprogram tumor metabolism through distinct mechanisms. Furthermore, IFNs shape the TME by modulating immune cell infiltration and function, contributing to the intricate interaction between the tumor and stromal cells. This review summarizes the effects of IFNs on metabolic reprogramming and their impacts on the function of immune cells within the TME, with a particular focus on the dual roles of IFNs in mediating both anti-tumor and pro-tumor immune responses. Understanding the significance of IFNs-mediated processes aids to advise future therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Tzu-Hsuan Chang
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Sheng Y, Lin Y, Qiang Z, Shen X, He Y, Li L, Li S, Zhang G, Wang F. Protein kinase a suppresses antiproliferative effect of interferon-α in hepatocellular carcinoma by activation of protein tyrosine phosphatase SHP2. J Biol Chem 2025; 301:108195. [PMID: 39826687 PMCID: PMC11849638 DOI: 10.1016/j.jbc.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent PKA suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1. Additionally, cAMP-degrading phosphodiesterase 4D (PDE4D) physically interacts with RACK1 to regulate PKA-mediated SHP2 activity and STAT1 phosphorylation. IFN-α activates PKA by inducing the expression of cyclooxygenase 2 (COX2) and the production of prostaglandin E2 (PGE2), which in turn stimulates the binding of SHP2 to IFNAR2 via RACK1. A COX inhibitor aspirin potently increases the antitumor effects of IFN-α in the suppression of HCC cell proliferation in vivo. Higher expression of COX2 and phosphorylated STAT3 is associated with poor development and prognosis in HCC patients by analyzing human HCC clinical samples. These observations suggest that a fundamental PKA/SHP2-dependent negative feedback loop acts on IFN signaling, and inhibition of this signaling by the selective COX2 inhibitors may enhance the clinical efficacy of type I IFNs in treating HCC.
Collapse
MESH Headings
- Humans
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/enzymology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/enzymology
- Interferon-alpha/pharmacology
- Interferon-alpha/metabolism
- Receptors for Activated C Kinase
- Animals
- Cell Proliferation/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Mice
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Signal Transduction/drug effects
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/genetics
- Cell Line, Tumor
- Phosphorylation/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Dinoprostone/metabolism
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaofei Shen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
36
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2025; 116:329-337. [PMID: 39601129 PMCID: PMC11786313 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wenjie Ma
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Zijian Zou
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Jingqin Zhong
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Xinyi Lin
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wanlin Liu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wei Sun
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
37
|
Strati A, Adamopoulos C, Kotsantis I, Psyrri A, Lianidou E, Papavassiliou AG. Targeting the PD-1/PD-L1 Signaling Pathway for Cancer Therapy: Focus on Biomarkers. Int J Mol Sci 2025; 26:1235. [PMID: 39941003 PMCID: PMC11818137 DOI: 10.3390/ijms26031235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The PD1/PD-L1 axis plays an important immunosuppressive role during the T-cell-mediated immune response, which is essential for the physiological homeostasis of the immune system. The biology of the immunological microenvironment is extremely complex and crucial for the development of treatment strategies for immunotherapy. Characterization of the immunological, genomic or transcriptomic landscape of cancer patients could allow discrimination between responders and non-responders to anti-PD-1/PD-L1 therapy. Immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in a variety of malignancies in landmark trials and has fundamentally changed cancer therapy. Current research focuses on strategies to maximize patient selection for therapy, clarify mechanisms of resistance, improve existing biomarkers, including PD-L1 expression and tumor mutational burden (TMB), and discover new biomarkers. In this review, we focus on the function of the PD-1/PD-L1 signaling pathway and discuss the immunological, genomic, epigenetic and transcriptomic landscape in cancer patients receiving anti-PD-1/PD-L1 therapy. Finally, we provide an overview of the clinical trials testing the efficacy of antibodies against PD-1/PD-L1.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
38
|
Das L, Das S. A comprehensive insights of cancer immunotherapy resistance. Med Oncol 2025; 42:57. [PMID: 39883235 DOI: 10.1007/s12032-025-02605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
Cancer is a major global health issue that is usually treated with multiple therapies, such as chemotherapy and targeted therapies like immunotherapy. Immunotherapy is a new and alternative approach to treating various types of cancer that are difficult to treat with other methods. Although immune checkpoint inhibitors have shown promise for long-term efficacy, they have limited effectiveness in common cancer types such as breast, prostate, and lung. Some patients do not respond to immunotherapy, while others develop resistance to the treatment over time, which is classified as primary or acquired resistance. Cancer immunotherapy, specifically immune checkpoint inhibitor-based resistance involves multiple factors such as genes, metabolism, inflammation, and angiogenesis. However, cutting-edge research has identified the mechanisms of immunotherapy resistance and possible solutions. Current research may improve biomarker identification and modify treatment strategies, which will lead to better clinical outcomes. This review provides a comprehensive discussion of the current mechanisms of immunotherapy resistance, related biomarker modulation, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Laavanya Das
- Department of Food and Nutrition, Brainware University, 398, Ramkrishnapur Rd, Barasat, Kolkata, West Bengal, 700125, India
| | - Subhadip Das
- Department of In Vivo Pharmacology, TCG Lifesciences Pvt. Ltd, BN 7, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
39
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
40
|
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Ma Z, Yang J, Jia W, Li L, Li Y, Hu J, Luo W, Li R, Ye D, Lan P. Histone lactylation-driven B7-H3 expression promotes tumor immune evasion. Theranostics 2025; 15:2338-2359. [PMID: 39990209 PMCID: PMC11840737 DOI: 10.7150/thno.105947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/05/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Tumor cells possess sophisticated strategies to circumvent immune detection, including the modulation of endogenous immune checkpoints, particularly those within the B7 family. Elucidating the mechanisms that govern the induction of B7 family molecules is crucial for the advancement of immunotherapy. Lysine lactylation (Kla), a newly identified epigenetic modification, is suggested may play a role in reshaping the tumor microenvironment and facilitating immune evasion. Methods: We analyzed the glycolysis pathway's enrichment in patients with immune-evading tumors and assessed the impact of lactate treatment on the antitumor immunity of CD8+ T cells in the tumor microenvironment. We interrupted glycolysis using lactate dehydrogenase A (LDHA) knockdown and sodium oxamate, and evaluated its effects on CD8+ T cell cytotoxicity. Additionally, we investigated the correlation between B7-H3 expression and the glycolysis pathway, and explored the molecular mechanisms underlying lactate-induced B7-H3 expression. Results: Our findings revealed that the glycolysis pathway was highly enriched in immune-evading tumors. Lactate treatment inhibited the antitumor immunity of CD8+ T cells, whereas interruption of glycolysis via LDHA knockdown or treatment with sodium oxamate augmented the cytotoxicity of CD8+ T cells, effectively counteracting tumor immune evasion. B7-H3 expression was found to be closely linked with the glycolysis pathway. Mechanistically, lactate-upregulated H3K18la directly bound to the B7-H3 promoter in conjunction with the transcription factor Creb1 and its co-activator Ep300, leading to increased B7-H3 expression and contributing to tumor progression by compromising the proportion and cytotoxicity of tumor-infiltrating CD8+ T cells. In mouse tumor bearing models, inhibiting glycolysis and B7-H3 expression suppressed tumor cell growth, activated tumor-infiltrating CD8+ T cells, and demonstrated potent anti-tumor efficacy. Furthermore, this approach enhanced the efficacy of anti-PD-1 treatment. Conclusions: This study uncovers a novel mechanism by which lactate modulates the immune microenvironment through the glycolysis pathway and B7-H3 expression, providing new avenues for lactate metabolism-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| | - Jincui Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Le Li
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yixin Li
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junjie Hu
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Luo
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ronghui Li
- Department of neurosurgery, Affiliated Hospital of Shandong University of traditional Chinese Medicine, Weifang, 250100, China
| | - Dawei Ye
- Department of oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, 430030 Wuhan, People's Republic of China
| |
Collapse
|
42
|
Na K, Kim HJ. CD274/PD-L1 copy number gained malignant peripheral nerve sheath tumor: A case report and literature review. Medicine (Baltimore) 2025; 104:e41165. [PMID: 40184088 PMCID: PMC11709148 DOI: 10.1097/md.0000000000041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
RATIONALE Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas with a poor prognosis, particularly in metastatic cases. Traditional treatments have shown limited effectiveness, highlighting the need for innovative therapeutic approaches. This case report aims to emphasize the critical role of genomic profiling in identifying therapeutic targets, particularly immune checkpoint inhibitors, to improve treatment strategies for MPNST. PATIENT CONCERNS An 82-year-old male presented with a long-standing history of MPNST, multiple recurrences, and a recent rapid enlargement of a mass in the right axillary region. The patient also reported a 10% weight loss over the last 6 months. DIAGNOSES Comprehensive genomic profiling of the tumor revealed significant alterations, including CD274/PD-L1 amplification, CDKN2A loss, and TP53 mutation. These genetic findings were aligned with previous cases that responded favorably to immune checkpoint inhibitors. INTERVENTIONS Despite the potential for targeted immunotherapy, the patient's economic constraints prevented the initiation of immune checkpoint inhibitor therapy. The patient underwent multiple surgical interventions, including an above-elbow amputation. OUTCOMES The patient experienced severe wound bleeding and a significant decline in general condition, requiring intensive care unit support. Given the poor prognosis and high surgical risks, the patient's caregivers opted for hospice care. LESSONS Genomic profiling identifies genetic alterations that could guide immune checkpoint inhibitor therapy, offering the promise of personalized treatment for MPNST patients. By highlighting the potential of genomic profiling, this case demonstrates the importance of integrating personalized immunotherapy into future treatment paradigms for MPNST.
Collapse
Affiliation(s)
- Kiyong Na
- Department of Pathology, College of Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hong Jun Kim
- Department of Medical Oncology, College of Medicine, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
43
|
Lau VWC, Mead GJ, Varyova Z, Mazet JM, Krishnan A, Roberts EW, Prota G, Gileadi U, Midwood KS, Cerundolo V, Gérard A. Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models. Nat Commun 2025; 16:2. [PMID: 39746898 PMCID: PMC11696141 DOI: 10.1038/s41467-024-54791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Loss of IFNγ-sensitivity by tumours is thought to be a mechanism enabling evasion, but recent studies suggest that IFNγ-resistant tumours can be sensitised for immunotherapy, yet the underlying mechanism remains unclear. Here, we show that IFNγ receptor-deficient B16-F10 mouse melanoma tumours are controlled as efficiently as WT tumours despite their lower MHC class I expression. Mechanistically, IFNγ receptor deletion in B16-F10 tumours increases IFNγ availability, triggering a remodelling of the immune landscape characterised by inflammatory monocyte infiltration and the generation of 'mono-macs'. This altered myeloid compartment synergises with an increase in antigen-specific CD8+ T cells to promote anti-tumour immunity against IFNγ receptor-deficient tumours, with such an immune crosstalk observed around blood vessels. Importantly, analysis of transcriptomic datasets suggests that similar immune remodelling occurs in human tumours carrying mutations in the IFNγ pathway. Our work thus serves mechanistic insight for the crosstalk between tumour IFNγ resistance and anti-tumour immunity, and implicates this regulation for future cancer therapy.
Collapse
Affiliation(s)
- Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Gracie J Mead
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zofia Varyova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anagha Krishnan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Immunodynamics Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gennaro Prota
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Zheng DX, Bozym DJ, Tarantino G, Sullivan RJ, Liu D, Jenkins RW. Overcoming Resistance Mechanisms to Melanoma Immunotherapy. Am J Clin Dermatol 2025; 26:77-96. [PMID: 39636504 DOI: 10.1007/s40257-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
The advent of immune checkpoint inhibition has revolutionized treatment of advanced melanoma. While most patients derive survival benefit from established immunotherapies, notably monoclonal antibodies blocking cytotoxic T-lymphocyte antigen 4 and programmed cell death protein 1, a subset does not optimally respond due to the manifestation of innate or acquired resistance to these therapies. Combination regimens have proven efficacious relative to single-agent blockade, but also yield high-grade treatment toxicities that are often dose-limiting for patients. In this review, we discuss the significant strides made in the past half-decade toward expanding the melanoma immunotherapy treatment paradigm. These include newly approved therapies, adoption of neoadjuvant immunotherapy, and studies in the clinical trials pipeline targeting alternative immune checkpoints and key immunoregulatory molecules. We then review how developments in molecular and functional diagnostics have furthered our understanding of the tumor-intrinsic and -extrinsic mechanisms driving immunotherapy resistance, as well as highlight novel biomarkers for predicting treatment response. Throughout, we discuss potential approaches for targeting these resistance mechanisms in rational combination with established immunotherapies to improve outcomes for patients with melanoma.
Collapse
Affiliation(s)
- David X Zheng
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Bozym
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Wu L, Pi W, Huang X, Yang L, Zhang X, Lu J, Yao S, Lin X, Tan X, Wang Z, Wang P. Orchestrated metal-coordinated carrier-free celastrol hydrogel intensifies T cell activation and regulates response to immune checkpoint blockade for synergistic chemo-immunotherapy. Biomaterials 2025; 312:122723. [PMID: 39121732 DOI: 10.1016/j.biomaterials.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.
Collapse
Affiliation(s)
- Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Luping Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinru Tan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
46
|
Jang D, Hwa C, Kim S, Oh J, Shin S, Lee S, Kim J, Lee SE, Yang Y, Kim D, Lee S, Jung HR, Oh Y, Kim K, Lee HS, An J, Cho S. RNA N 6-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-γ Signaling in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410806. [PMID: 39587835 PMCID: PMC11744580 DOI: 10.1002/advs.202410806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Immunotherapy holds potential as a treatment for gastric cancer (GC), though immune checkpoint inhibitor (ICI) resistance remains an obstacle. One resistance mechanism involves defects in interferon-γ (IFN-γ) signaling, in which IFN-γ is linked to improved responsiveness to ICIs. Herein, the roles of RNA N6-methyladenosine (m6A) modifications in regulation of IFN-γ signaling and the responsiveness to ICIs are unveiled. The m6A-binding protein YTH N6-methyladenosine RNA-binding protein F1 (YTHDF1) is overexpressed in GC tissues, correlating with the suppression of cancer immunity and poorer survival rates. YTHDF1 overexpression impaired the responsiveness to IFN-γ in GC cells, and knockdown studies indicated the redundant effects of YTHDF2 and YTHDF3 with YTHDF1 in IFN-γ responsiveness. RNA immunoprecipitation sequencing revealed YTHDFs directly target interferon regulatory factor 1 (IRF1) mRNA, a master regulator of IFN-γ signaling, leading to reduced RNA stability and consequent downregulation of IFN-γ signaling. Furthermore, in mouse syngeneic tumor models, Ythdf1 depletion in cancer cells resulted in reduced tumor growth and increased tumor-infiltrating lymphocytes, which are attributed to the augmentation of IFN-γ signaling. Collectively, these findings highlight how YTHDFs modulate cancer immunity by influencing IFN-γ signaling through IRF1 regulation, suggesting their viability as therapeutic targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Dongjun Jang
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Chanwoong Hwa
- L‐HOPE Program for Community‐Based Total Learning Health SystemsKorea UniversitySeoul02841South Korea
- Department of Integrated Biomedical and Life ScienceKorea UniversitySeoul02841South Korea
| | - Seoyeon Kim
- L‐HOPE Program for Community‐Based Total Learning Health SystemsKorea UniversitySeoul02841South Korea
- Department of Integrated Biomedical and Life ScienceKorea UniversitySeoul02841South Korea
| | - Jaeik Oh
- Department of Translational MedicineSeoul National University College of MedicineSeoul03080South Korea
| | - Seungjae Shin
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Soo‐Jin Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Jiwon Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Sang Eun Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Yoojin Yang
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Dohee Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Seoho Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Hae Rim Jung
- Medical Research Center, Genomic Medicine InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Yumi Oh
- Medical Research Center, Genomic Medicine InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Kyunggon Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoul05505South Korea
| | - Hye Seung Lee
- Department of PathologySeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| | - Joon‐Yong An
- L‐HOPE Program for Community‐Based Total Learning Health SystemsKorea UniversitySeoul02841South Korea
- Department of Integrated Biomedical and Life ScienceKorea UniversitySeoul02841South Korea
- School of Biosystem and Biomedical ScienceCollege of Health ScienceKorea UniversitySeoul02841South Korea
| | - Sung‐Yup Cho
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
- Department of Translational MedicineSeoul National University College of MedicineSeoul03080South Korea
- Medical Research Center, Genomic Medicine InstituteSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| |
Collapse
|
47
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310308. [PMID: 39482885 PMCID: PMC11714253 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haiqi Zhu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Zhuolong Zhou
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Samantha Sharma
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Ka Man So
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Naresh Singh
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Jia Wang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Computer ScienceIndiana UniversityBloomingtonIN47405USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Division of Hematology/Oncology, Department of MedicineIndiana University School of MedicineIndianapolisIN46202USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIN46202USA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Chi Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIN46202USA
- Department of Biomedical Engineering and Knight Cancer InstituteOregon Health & Science UniversityPortlandOR97239USA
| | - Xinna Zhang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
- Melvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| |
Collapse
|
48
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
49
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
50
|
Nie Y, Schalper KA, Chiang A. Mechanisms of immunotherapy resistance in small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:55. [PMID: 39802951 PMCID: PMC11724353 DOI: 10.20517/cdr.2024.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a poor prognosis. Although the addition of immunotherapy to chemotherapy has modestly improved outcomes, most patients rapidly develop resistance. Resistance to immunotherapy can be broadly categorized into primary resistance and acquired resistance, as proposed by the Society for Immunotherapy of Cancer (SITC) consensus definition. Primary resistance occurs in the setting of failure to respond to immune checkpoint inhibitors (ICIs), while acquired resistance develops after initial response. The mechanisms of acquired and primary resistance to ICI are not well understood in SCLC, denoting an area of critical unmet need. Both intrinsic and extrinsic mechanisms play significant roles in immunotherapy resistance. Intrinsic mechanisms include defects in antigen presentation, mutations in key genes, reduced tumor immunogenicity, and epigenetic alterations. Extrinsic mechanisms involve the tumor microenvironment (TME), which is a complex interplay of both tumor- and immunosuppressive immune cells, vasculature, and microbiome. An understanding of these resistance mechanisms is crucial for developing novel therapeutic strategies to advance effective immunotherapy in patients with SCLC, a critical area of unmet need.
Collapse
Affiliation(s)
- Yunan Nie
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kurt A. Schalper
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne Chiang
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|