1
|
Czechowicz P, Więch-Walów A, Sławski J, Collawn JF, Bartoszewski R. Old drugs, new challenges: reassigning drugs for cancer therapies. Cell Mol Biol Lett 2025; 30:27. [PMID: 40038587 DOI: 10.1186/s11658-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The "War on Cancer" began with the National Cancer Act of 1971 and despite more than 50 years of effort and numerous successes, there still remains much more work to be done. The major challenge remains the complexity and intrinsic polygenicity of neoplastic diseases. Furthermore, the safety of the antitumor therapies still remains a concern given their often off-target effects. Although the amount of money invested in research and development required to introduce a novel FDA-approved drug has continuously increased, the likelihood for a new cancer drug's approval remains limited. One interesting alternative approach, however, is the idea of repurposing of old drugs, which is both faster and less costly than developing new drugs. Repurposed drugs have the potential to address the shortage of new drugs with the added benefit that the safety concerns are already established. That being said, their interactions with other new drugs in combination therapies, however, should be tested. In this review, we discuss the history of repurposed drugs, some successes and failures, as well as the multiple challenges and obstacles that need to be addressed in order to enhance repurposed drugs' potential for new cancer therapies.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Anna Więch-Walów
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland.
| |
Collapse
|
2
|
Khanyile R, Chipiti T, Hull R, Dlamini Z. Radiogenomic Landscape of Metastatic Endocrine-Positive Breast Cancer Resistant to Aromatase Inhibitors. Cancers (Basel) 2025; 17:808. [PMID: 40075655 PMCID: PMC11899325 DOI: 10.3390/cancers17050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer poses a significant global health challenge and includes various subtypes, such as endocrine-positive, HER2-positive, and triple-negative. Endocrine-positive breast cancer, characterized by estrogen and progesterone receptors, is commonly treated with aromatase inhibitors. However, resistance to these inhibitors can hinder patient outcomes due to genetic and epigenetic alterations, mutations in the estrogen receptor 1 gene, and changes in signaling pathways. Radiogenomics combines imaging techniques like MRI and CT scans with genomic profiling methods to identify radiographic biomarkers associated with resistance. This approach enhances our understanding of resistance mechanisms and metastasis patterns, linking them to specific genomic profiles and common metastasis sites like the bone and brain. By integrating radiogenomic data, personalized treatment strategies can be developed, improving predictive and prognostic capabilities. Advancements in imaging and genomic technologies offer promising avenues for enhancing radiogenomic research. A thorough understanding of resistance mechanisms is crucial for developing effective treatment strategies, making radiogenomics a valuable integrative approach in personalized medicine that aims to improve clinical outcomes for patients with metastatic endocrine-positive breast cancer.
Collapse
Affiliation(s)
- Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Talent Chipiti
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (R.K.); (T.C.); (R.H.)
| |
Collapse
|
3
|
Liu Z, Li Y, Wang S, Wang Y, Sui M, Liu J, Chen P, Wang J, Zhang Y, Dang C, Hou P. Genome-wide CRISPR screening identifies PHF8 as an effective therapeutic target for KRAS- or BRAF-mutant colorectal cancers. J Exp Clin Cancer Res 2025; 44:70. [PMID: 40001243 PMCID: PMC11853609 DOI: 10.1186/s13046-025-03338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Mutations in KRAS and BRAF genes are prevalent in colorectal cancer (CRC), which strikingly promote tumorigenesis and lead to poor response to a variety of treatments including immunotherapy by activating the MAPK/ERK pathway. Thus, there is an urgent need to discover effective therapeutic targets and strategies. METHODS CRISPR-Cas9 lentiviral knockout library was used to screen the suppressors of anti-PD1 immunotherapy. Bioinformatic analysis was used to analyze the correlation between PHF8 expression and immune indicators in CRC. In vitro and in vivo experiments were utilized to determine the effects of PHF8 on the immune indexes and malignant phenotypes of CRC cells. qRT-PCR, western blotting, immunohistochemical (IHC) staining, and chromatin immunoprecipitation (ChIP)-qPCR assays were used to determine the regulatory effects of PHF8 on PD-L1, KRAS, BRAF, and c-Myc and the regulatory effect c-Myc/miR-22-3p signaling axis on PHF8 expression in CRC cells. RESULTS This study identified histone lysine demethylase PHF8 as a negative regulator for the efficacy of anti-PD1 therapy and found that it was highly expressed in CRCs and strongly associated with poor patient survival. Functional studies showed that PHF8 played an oncogenic role in KRAS- or BRAF-mutant CRC cells, but not in wild-type ones. Mechanistically, PHF8 up-regulated the expression of PD-L1, KRAS, BRAF, and c-Myc by increasing the levels of transcriptional activation marks H3K4me3 and H3K27ac and decreasing the levels of transcriptional repression mark H3K9me2 within their promoter regions, promoting immune escape and tumor progression. Besides, our data also demonstrated that PHF8 was up-regulated by the c-Myc/miR-22-3p signaling axis to form a positive feedback loop. Targeting PHF8 substantially improved the efficacy of anti-PD1 therapy and inhibited the malignant phenotypes of KRAS- or BRAF-mutant CRC cells. CONCLUSION Our data demonstrate that PHF8 may be an effective therapeutic target for KRAS- or BRAF-mutant CRCs.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yiqi Li
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P.R. China
| | - Simeng Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yubo Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mengjun Sui
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiaxin Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jianling Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuchen Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
4
|
Vural BE, Yandım C. Effects of F53 hotspot mutations on the molecular dynamics of MEK1 protein and the binding of its FDA-approved inhibitors. Int J Biol Macromol 2025:141329. [PMID: 39986525 DOI: 10.1016/j.ijbiomac.2025.141329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
MEK1 (MAP2K1) could emerge as an oncogenic protein in the presence of certain mutations, and could be inhibited by FDA-approved drugs (trametinib, cobimetinib, binimetinib and selumetinib). However, how the mutations on MEK1's hotspot residue F53 affect the bindings of these therapeutic molecules remained largely unexplored. We performed molecular dynamics (MD) simulations with wild-type and mutated (F53L/V/C/I/Y) MEK1 structures in the presence and absence of these drugs and observed changes on the motion of MEK1. A longer duration in the lowest energy state conformation was observed during the simulations in the presence of F53 mutations. This was complemented by cross-correlated motions of amino acids of MEK1. More importantly, the binding affinities of inhibitors were affected. There was a marked reduction in the calculated binding affinity of trametinib in the presence of F53C mutation. On the other hand, the binding affinities of cobimetinib and selumetinib could overcome F53 mutations on MEK1. Binimetinib interestingly exhibited an increased binding affinity when F53C/I mutations were present. Taken together, our results provide a comprehensive perspective on the structural and drug-binding effects of observed mutations on the hotspot residue F53 within MEK1; warranting further research in stratifying F53 hotspot mutations for effective drug binding.
Collapse
Affiliation(s)
- Berkin Ersin Vural
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330 Balçova, İzmir, Turkey
| | - Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330 Balçova, İzmir, Turkey; İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340 İnciraltı, İzmir, Turkey.
| |
Collapse
|
5
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Simhadri S, Carrick JN, Murphy S, Kothari OA, Al-Hraishami H, Kulkarni A, Jalloul N, Stefanik K, Bandari M, Chettur K, Yao M, Ginjala V, Groisberg R, Hochster H, Mehnert J, Riedlinger G, Khiabanian H, Verzi MP, Tong K, Ganesan S. Evolution of Rapid Clonal Dynamics and Non-Cross-Resistance in Response to Alternating Targeted Therapy and Chemotherapy in BRAF-V600E-Mutant Colon Cancer. JCO Precis Oncol 2024; 8:e2300260. [PMID: 39626159 PMCID: PMC11627326 DOI: 10.1200/po.23.00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2024] [Accepted: 09/27/2024] [Indexed: 12/11/2024] Open
Abstract
PURPOSE Combined BRAF, MEK, and EGFR inhibition can induce clinical responses in BRAF-V600E-mutant colon cancer, but rapid resistance often occurs. METHODS We use serial monitoring of circulating tumor DNA cell-free plasma DNA (cfDNA) in a patient case study in addition to organoids derived from mouse models of BRAF-V600E-mutant intestinal cancer, which emulated the patient's mutational profile to assess drug treatment efficacy. RESULTS We demonstrate dynamic evolution of resistance to combined EGFR/BRAF/MEK inhibition in a pediatric patient with metastatic BRAF-V600E-mutant, mismatch repair-stable colon cancer. Initial resistance to targeted therapy was associated with development of MET amplification. Sequential treatment with chemotherapy and targeted therapy resulted in clearing of the resistant MET-amplified clone. Rechallenge with combined BRAF/EGFR inhibition resulted in clinical and radiographic response, demonstrating these treatments may be non-cross-resistant. Tumor organoids were used to model clinical findings and demonstrated effectiveness of combined targeted therapy and chemotherapy. CONCLUSION These findings suggest rational strategies for combining sequential chemotherapy and BRAF-/EGFR-directed therapy in BRAF-V600E-mutant colon cancer to prevent resistance and improve outcome. The data demonstrate rapid clonal dynamics in response to effective therapies in BRAF-V600E-mutant colon cancer that can be monitored by serial cfDNA analysis. Moreover, in mismatch repair-proficient BRAF-V600E-mutant colon cancers, combined EGFR and BRAF/MEK therapy is not cross-resistant with standard chemotherapy, suggesting new rational combination treatment strategies.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Jillian N. Carrick
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Susan Murphy
- Department of Medicine, Pediatric Hematology/Oncology Program, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Om A. Kothari
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
| | - Husam Al-Hraishami
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Atul Kulkarni
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Nahed Jalloul
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Katarina Stefanik
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Department of Biology, The College of New Jersey, Ewing, NJ
| | - Manisha Bandari
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Kavya Chettur
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
- Tenafly High School, Tenafly, NJ
| | - Ming Yao
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Vasudeva Ginjala
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Roman Groisberg
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Howard Hochster
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Janice Mehnert
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Gregory Riedlinger
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Hossein Khiabanian
- Department of Pathology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
| | - Kevin Tong
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway Township, NJ
- Department of Biology, The College of New Jersey, Ewing, NJ
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, NJ
| | - Shridar Ganesan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
7
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
8
|
Kopetz S, Murphy DA, Pu J, Ciardiello F, Desai J, Van Cutsem E, Wasan HS, Yoshino T, Saffari H, Zhang X, Hamilton P, Xie T, Yaeger R, Tabernero J. Molecular profiling of BRAF-V600E-mutant metastatic colorectal cancer in the phase 3 BEACON CRC trial. Nat Med 2024; 30:3261-3271. [PMID: 39313594 PMCID: PMC11564101 DOI: 10.1038/s41591-024-03235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
The BEACON CRC study demonstrated that encorafenib (Enco)+cetuximab (Cetux)±binimetinib (Bini) significantly improved overall survival (OS) versus Cetux + chemotherapy in previously treated patients with BRAF-V600E-mutant mCRC, providing the basis for the approval of the Enco+Cetux regimen in the United States and the European Union. A greater understanding of biomarkers predictive of response to Enco+Cetux±Bini treatment is of clinical relevance. In this prespecified, exploratory biomarker analysis of the BEACON CRC study, we characterize genomic and transcriptomic correlates of clinical outcomes and acquired resistance mechanisms through integrated clinical and molecular analysis, including whole-exome and -transcriptome tissue sequencing and circulating tumor DNA genomic profiling. Tumors with higher immune signatures showed a trend towards increased OS benefit with Enco+Bini+Cetux. RAS, MAP2K1 and MET alterations were most commonly acquired with Enco+Cetux±Bini, and more frequent in patients with a high baseline cell-cycle gene signature; baseline TP53 mutation was associated with acquired MET amplification. Acquired mutations were subclonal and polyclonal, with evidence of increased tumor mutation rate with Enco+Cetux±Bini and mutational signatures (SBS17a/b). These findings support treatment with Enco+Cetux±Bini for patients with BRAF-V600E-mutant mCRC and provide insights into the biology of response and resistance to MAPK-pathway-targeted therapy. ClinicalTrials.gov registration: NCT02928224.
Collapse
Affiliation(s)
- Scott Kopetz
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Jie Pu
- Pfizer, New York, NY, USA
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), University of Vic-Central University of Catalonia, Barcelona, Spain
| |
Collapse
|
9
|
Wang J, Wang H, Zhou W, Luo X, Wang H, Meng Q, Chen J, Chen X, Liu Y, Chan DW, Ju Z, Song Z. MOGAT3-mediated DAG accumulation drives acquired resistance to anti-BRAF/anti-EGFR therapy in BRAFV600E-mutant metastatic colorectal cancer. J Clin Invest 2024; 134:e182217. [PMID: 39436710 PMCID: PMC11645146 DOI: 10.1172/jci182217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BRAFV600E-mutant metastatic colorectal cancer (mCRC) is associated with poor prognosis. The combination of anti-BRAF/anti-EGFR (encorafenib/cetuximab) treatment for patients with BRAFV600E-mutant mCRC improves clinical benefits; unfortunately, inevitable acquired resistance limits the treatment outcome, and the mechanism has not been validated. Here, we discovered that monoacylglycerol O-acyltransferase 3-mediated (MOGAT3-mediated) diacylglycerol (DAG) accumulation contributed to acquired resistance to encorafenib/cetuximab by dissecting a BRAFV600E-mutant mCRC patient-derived xenograft (PDX) model exposed to encorafenib/cetuximab administration. Mechanistically, the upregulated MOGAT3 promoted DAG synthesis and reduced fatty acid oxidation-promoting DAG accumulation and activated PKCα/CRAF/MEK/ERK signaling, driving acquired resistance. Resistance-induced hypoxia promoted MOGAT3 transcriptional elevation; simultaneously, MOGAT3-mediated DAG accumulation increased HIF1A expression at the translation level through PKCα/CRAF/eIF4E activation, strengthening the resistance status. Intriguingly, reducing intratumoral DAG with fenofibrate or PF-06471553 restored the antitumor efficacy of encorafenib/cetuximab in resistant BRAFV600E-mutant mCRC, which interrupted PKCα/CRAF/MEK/ERK signaling. These findings reveal the critical role of the metabolite DAG as a modulator of encorafenib/cetuximab efficacy in BRAFV600E-mutant mCRC, suggesting that fenofibrate might prove beneficial for resistant BRAFV600E-mutant mCRC patients.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Xin Luo
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Yingqiang Liu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - David W. Chan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Wang W, Liu Y, Wang Z, Tan X, Jian X, Zhang Z. Exploring and validating the necroptotic gene regulation and related lncRNA mechanisms in colon adenocarcinoma based on multi-dimensional data. Sci Rep 2024; 14:22251. [PMID: 39333335 PMCID: PMC11437100 DOI: 10.1038/s41598-024-73168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Necroptosis is intimately associated with the initiation and progression of colon adenocarcinoma (COAD). However, studies on necroptosis-related genes (NRGs) and the regulating long non-coding RNAs (NRGlncRNAs) in the context of COAD are limited. We retrieved the cancer genome atlas (TCGA) to collect datasets of NRGs and NRGlncRNAs on COAD patients. The risk model constructed using Cox and least absolute shrinkage and selection operator (LASSO) regression was then employed to identify NRGs and NRGlncRNAs with prognostic significance. Subsequently, we validated the results using gene expression omnibus (GEO) datasets from different populations, conducted Mendelian randomization (MR) analysis to explore the potential causal relationships between prognostic NRGs and COAD, and conducted cell experiments to verify the expression of prognostic NRGlncRNAs in COAD. Furthermore, we explored potential pathways and regulatory mechanisms of these prognostic NRGlncRNAs and NRGs in COAD through enrichment analysis, immune cell correlation analysis, tumor microenvironment analysis, immune checkpoint analysis, tumor sample clustering, and so on. We identified eight NRGlncRNAs (AC245100.5, AP001619.1, LINC01614, AC010463.3, AL162595.1, ITGB1-DT, LINC01857, and LINC00513) used for constructing the prognostic model and nine prognostic NRGs (AXL, BACH2, CFLAR, CYLD, IPMK, MAP3K7, ATRX, BRAF, and OTULIN) with regulatory relationships with them, and their validation was performed using GEO and GWAS datasets, as well as cell experiments, which showed largely consistent results. These prognostic NRGlncRNAs and NRGs modulate various biological functions, including immune inflammatory response, oxidative stress, immune escape, telomere regulation, and cytokine response, influencing the development of COAD. Additionally, stratified analysis of the high-risk and low-risk groups based on the prognostic model revealed elevated expression of immune cells, increased expression of tumor microenvironment cells, and upregulation of immune checkpoint gene expression in the high-risk group. Finally, through cluster analysis, we identified tumor subtypes, and the results of cluster analysis were essentially consistent with the analysis between risk groups. The prognostic NGRlncRNAs and NRGs identified in our study serve as prognostic indicators and potential therapeutic targets for COAD, providing a theoretical basis for the clinical diagnosis and treatment of COAD and offering guidance for further research.
Collapse
Affiliation(s)
- Weili Wang
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziqi Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoning Tan
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Xiaolan Jian
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Zhen Zhang
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| |
Collapse
|
11
|
Choi DH, Jang HL, Lim SH, Kim ST, Hong JY, Park SH, Park JO, Kim DG, Kim KM, Lee J. Prevalence of KRAS amplification in patients with metastatic cancer: Real-world next-generation sequencing analysis. Pathol Res Pract 2024; 261:155473. [PMID: 39106591 DOI: 10.1016/j.prp.2024.155473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND The Kirsten rat sarcoma virus (KRAS) is a prominent proto-oncogene. Several treatments for KRAS mutations have been developed. However, KRAS amplification, a KRAS alteration, is poorly understood, and there is currently no appropriate treatment other than conventional chemotherapy. This study aimed to elucidate the role of KRAS amplification in different types of cancers. METHODS From October 2019 to June 2023, we performed next-generation sequencing using Trusight Oncology 500 on 3895 patients with 37 different cancer types at the Samsung Medical Center. We analyzed the distribution of KRAS amplification according to cancer type and its correlation with tumor mutation burden (TMB). Concomitant KRAS mutations were also identified. RESULTS Of the total 3895 patients, 99 (2.5 %) had KRAS amplification. The highest frequency of KRAS amplification was detected in 2 % (27/1350) of patients with colorectal cancer, followed by 3.48 % (32/920) of patients with gastric cancer and 3.88 % (9/232) patients with of pancreatic cancer. MSI-High was not detected in patients with KRAS amplification. There was no correlation between KRAS copy number variation and TMB status. Among patients with KRAS amplification, 27.3 % (27/99) had a concomitant KRAS mutation. More than 50 % of patients had G12D or G12V mutations. In gastric cancer, patients with both KRAS amplification and mutation were extremely rare at 3.1 % (1/32); however, in colorectal cancer, more than half of the patients had KRAS amplification and mutation (51.9 %, 14/27). KRAS amplification and mutations are associated with mutations in tumor suppressor genes TP53, BRCA2, ARID1B, and PTCH1. CONCLUSIONS Of the 3895 patients with metastatic solid tumors, 99 (2.5 %) had KRAS amplification, and next-generation sequencing analysis provided a deeper understanding of KRAS amplification.
Collapse
Affiliation(s)
- Dae-Ho Choi
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye-Lim Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Deok Geun Kim
- Department of Clinical Genomic Center, Samsung Medical Center, Seoul 06351, South Korea; Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Piercey O, Tie J, Hollande F, Wong HL, Mariadason J, Desai J. BRAF V600E-Mutant Metastatic Colorectal Cancer: Current Evidence, Future Directions, and Research Priorities. Clin Colorectal Cancer 2024; 23:215-229. [PMID: 38816264 DOI: 10.1016/j.clcc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BRAFV600E-mutant metastatic colorectal cancer represents a distinct molecular phenotype known for its aggressive biological behavior, resistance to standard therapies, and poor survival rates. Improved understanding of the biology of the BRAF oncogene has led to the development of targeted therapies that have paved the way for a paradigm shift in managing this disease. However, despite significant recent advancements, responses to targeted therapies are short-lived, and several challenges remain. In this review, we discuss how progress in treating BRAFV600E-mutant metastatic colorectal cancer has been made through a better understanding of its unique biological and clinical features. We provide an overview of the evidence to support current treatment approaches and discuss critical areas of need and future research strategies that hold the potential to refine clinical practice further. We also discuss some challenging aspects of managing this disease, particularly the complexity of acquired resistance mechanisms that develop under the selective pressure of targeted therapies and rational strategies being investigated to overcome them.
Collapse
Affiliation(s)
- Oliver Piercey
- Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia.
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Frederic Hollande
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Australia
| | - Hui-Li Wong
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - John Mariadason
- Olivia Newton John Cancer Wellness and Research Centre, Heidelberg, Australia; School of Medicine, La Trobe University, Melbourne, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Lin H, Cao XX. Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim-Chester Disease. Target Oncol 2024; 19:691-703. [PMID: 38990463 DOI: 10.1007/s11523-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key driver in many histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD). This has led to successful and promising treatment with targeted therapies, including BRAF inhibitors and MEK inhibitors. Additional novel inhibitors have also demonstrated encouraging results. Nevertheless, there are several problems concerning targeted therapy that need to be addressed. These include, among others, incomplete responsiveness and the emergence of resistance to BRAF inhibition as observed in other BRAF-mutant malignancies. Drug resistance and relapse after treatment interruption remain problems with current targeted therapies. Targeted therapy does not seem to eradicate the mutated clone, leading to inevitable relapes, which is a huge challenge for the future. More fundamental research and clinical trials are needed to address these issues and to develop improved targeted therapies that can overcome resistance and achieve long-lasting remissions.
Collapse
Affiliation(s)
- He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
14
|
Kroll MR, Au C, Slostad J, Christ TN, Papas SG, Tan A. Case report: Metastatic BRAF V600E-mutated adult Wilms' tumor with robust response to BRAF/MEK inhibitor therapy. Front Oncol 2024; 14:1376270. [PMID: 39234402 PMCID: PMC11373342 DOI: 10.3389/fonc.2024.1376270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024] Open
Abstract
Nephroblastoma or Wilms' tumor (WT) is the most common pediatric renal malignancy but rare in adults. Treatment protocols for adults are typically extrapolated from pediatric guidelines, but there are no standard guidelines for adults due to the rarity of the disease. However, next-generation sequencing has led to new therapeutic options for adult WT patients. We present the first case to our knowledge of a recurrent adult WT treated with dual BRAF/MEK-targeted therapy, which showed initial robust clinical response and was well tolerated.
Collapse
Affiliation(s)
- Matthew R. Kroll
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Cherry Au
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Jessica Slostad
- Division of Hematology, Oncology, and Cellular Therapies, Rush University Medical Center, Chicago, IL, United States
| | - Trevor N. Christ
- Department of Pharmacy, Rush University Medical Center, Chicago, IL, United States
| | - Sam G. Papas
- Division of Surgical Oncology, Rush University Medical Center, Chicago, IL, United States
| | - Alan Tan
- Division of Hematology, Oncology, and Cellular Therapies, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
15
|
Ryan MB, Quade B, Schenk N, Fang Z, Zingg M, Cohen SE, Swalm BM, Li C, Özen A, Ye C, Ritorto MS, Huang X, Dar AC, Han Y, Hoeflich KP, Hale M, Hagel M. The Pan-RAF-MEK Nondegrading Molecular Glue NST-628 Is a Potent and Brain-Penetrant Inhibitor of the RAS-MAPK Pathway with Activity across Diverse RAS- and RAF-Driven Cancers. Cancer Discov 2024; 14:1190-1205. [PMID: 38588399 PMCID: PMC11215411 DOI: 10.1158/2159-8290.cd-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.
Collapse
Affiliation(s)
| | | | | | - Zhong Fang
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | | - Chun Li
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Chaoyang Ye
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Xin Huang
- Nested Therapeutics, Cambridge, Massachusetts.
| | - Arvin C. Dar
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Yongxin Han
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | |
Collapse
|
16
|
Shigeyasu K, Yamamoto H, Takahashi T, Moriwake K, Kayano M, Takeda S, Matsumi Y, Umeda Y, Kondo Y, Teraishi F, Yasui K, Fuji T, Kagawa S, Fujiwara T. BRAF-mutant microsatellite-stable rectal cancer with acquired KRAS mutation leading to drug resistance in liver metastasis. Int Cancer Conf J 2024; 13:189-192. [PMID: 38962037 PMCID: PMC11217247 DOI: 10.1007/s13691-024-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 07/05/2024] Open
Abstract
BRAF-mutant microsatellite-stable colorectal cancer (CRC), metastasized to distant sites, is associated with a poor prognosis. However, the BEACON CRC regimen, comprising a BRAF inhibitor, MEK inhibitor, and anti-EGFR antibody, offered a prolonged prognosis. Nonetheless, resistance to this regimen may occur, as observed in our reported case of CRC, where a KRAS mutation was identified in addition to the BRAF V600E mutation. Here, we present a case of 74-year-old woman with rectal cancer (pT4bN1bM0 Stage IIIc) harboring the BRAF V600E mutation. After resection of the primary tumor and during adjuvant chemotherapy using CAPOX (capecitabine and oxaliplatin), liver and lung metastases became apparent, and a companion diagnosis test revealed the presence of a BRAF V600E mutation. The new lesions were deemed resistant to the CAPOX regimen, and we decided to introduce encorafenib and cetuximab. After resection of liver metastases, encorafenib and cetuximab were reintroduced, but a new lesion appeared in hepatic S7, indicating resistance to the encorafenib and cetuximab regimen. The resistant liver metastasis was subsequently resected. To elucidate the resistance mechanism, we conducted a comprehensive analysis using the FoundationOne CDx cancer gene panel test, revealing the presence of a KRAS Q61H mutation alongside the BRAF V600E mutation. Subsequent liquid biopsy after liver recurrence confirmed the persistence of the KRAS Q61H mutation. Our results highlight the significance of cancer genome profiling tests (CGP tests) and liquid biopsies in guiding treatment strategies for BRAF-mutant colorectal cancer. Therefore, CGP testing offers valuable information for treatment, even if it does not lead to new drug administrations.
Collapse
Affiliation(s)
- Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Moriwake
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Kayano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Matsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomokazu Fuji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Harrold E, Keane F, Walch H, Chou JF, Sinopoli J, Palladino S, Al-Rawi DH, Chadalavada K, Manca P, Chalasani S, Yang J, Cercek A, Shia J, Capanu M, Bakhoum SF, Schultz N, Chatila WK, Yaeger R. Molecular and Clinical Determinants of Acquired Resistance and Treatment Duration for Targeted Therapies in Colorectal Cancer. Clin Cancer Res 2024; 30:2672-2683. [PMID: 38502113 PMCID: PMC11176917 DOI: 10.1158/1078-0432.ccr-23-4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Targeted therapies have improved outcomes for patients with metastatic colorectal cancer, but their impact is limited by rapid emergence of resistance. We hypothesized that an understanding of the underlying genetic mechanisms and intrinsic tumor features that mediate resistance to therapy will guide new therapeutic strategies and ultimately allow the prevention of resistance. EXPERIMENTAL DESIGN We assembled a series of 52 patients with paired pretreatment and progression samples who received therapy targeting EGFR (n = 17), BRAF V600E (n = 17), KRAS G12C (n = 15), or amplified HER2 (n = 3) to identify molecular and clinical factors associated with time on treatment (TOT). RESULTS All patients stopped treatment for progression and TOT did not vary by oncogenic driver (P = 0.5). Baseline disease burden (≥3 vs. <3 sites, P = 0.02), the presence of hepatic metastases (P = 0.02), and gene amplification on baseline tissue (P = 0.03) were each associated with shorter TOT. We found evidence of chromosomal instability (CIN) at progression in patients with baseline MAPK pathway amplifications and those with acquired gene amplifications. At resistance, copy-number changes (P = 0.008) and high number (≥5) of acquired alterations (P = 0.04) were associated with shorter TOT. Patients with hepatic metastases demonstrated both higher number of emergent alterations at resistance and enrichment of mutations involving receptor tyrosine kinases. CONCLUSIONS Our genomic analysis suggests that high baseline CIN or effective induction of enhanced mutagenesis on targeted therapy underlies rapid progression. Longer response appears to result from a progressive acquisition of genomic or chromosomal instability in the underlying cancer or from the chance event of a new resistance alteration.
Collapse
Affiliation(s)
- Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F. Chou
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Sinopoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Palladino
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Duaa H. Al-Rawi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Manca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sree Chalasani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jessica Yang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
18
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
19
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
21
|
Varkaris A, Fece de la Cruz F, Martin EE, Norden BL, Chevalier N, Kehlmann AM, Leshchiner I, Barnes H, Ehnstrom S, Stavridi AM, Yuan X, Kim JS, Ellis H, Papatheodoridi A, Gunaydin H, Danysh BP, Parida L, Sanidas I, Ji Y, Lau K, Wulf GM, Bardia A, Spring LM, Isakoff SJ, Lennerz JK, Del Vecchio K, Pierce L, Pazolli E, Getz G, Corcoran RB, Juric D. Allosteric PI3Kα Inhibition Overcomes On-target Resistance to Orthosteric Inhibitors Mediated by Secondary PIK3CA Mutations. Cancer Discov 2024; 14:227-239. [PMID: 37916958 PMCID: PMC10850944 DOI: 10.1158/2159-8290.cd-23-0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Andreas Varkaris
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Bryanna L. Norden
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nicholas Chevalier
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Allison M. Kehlmann
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Haley Barnes
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sara Ehnstrom
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Xin Yuan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Janice S. Kim
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Haley Ellis
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Brian P. Danysh
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Ioannis Sanidas
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yongli Ji
- Hematology-Oncology, Exeter Hospital, New Haven
| | - Kayao Lau
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gerburg M. Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aditya Bardia
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Laura M. Spring
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Isakoff
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jochen K. Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Levi Pierce
- Relay Therapeutics, Cambridge, Massachusetts
| | | | - Gad Getz
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan B. Corcoran
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dejan Juric
- Mass General Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Kuboki Y, Fakih M, Strickler J, Yaeger R, Masuishi T, Kim EJ, Bestvina CM, Kopetz S, Falchook GS, Langer C, Krauss J, Puri S, Cardona P, Chan E, Varrieur T, Mukundan L, Anderson A, Tran Q, Hong DS. Sotorasib with panitumumab in chemotherapy-refractory KRAS G12C-mutated colorectal cancer: a phase 1b trial. Nat Med 2024; 30:265-270. [PMID: 38177853 PMCID: PMC11135132 DOI: 10.1038/s41591-023-02717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
The current third-line (and beyond) treatment options for RAS-mutant metastatic colorectal cancer have yielded limited efficacy. At the time of study start, the combination of sotorasib, a KRAS (Kirsten rat sarcoma viral oncogene homolog)-G12C inhibitor, and panitumumab, an epidermal growth factor receptor (EGFR) inhibitor, was hypothesized to overcome treatment-induced resistance. This phase 1b substudy of the CodeBreaK 101 master protocol evaluated sotorasib plus panitumumab in patients with chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. Here, we report the results in a dose-exploration cohort and a dose-expansion cohort. Patients received sotorasib (960 mg, once daily) plus panitumumab (6 mg kg-1, once every 2 weeks). The primary endpoints were safety and tolerability. Secondary endpoints included efficacy and pharmacokinetics. Exploratory biomarkers at baseline were assessed. Forty-eight patients (dose-exploration cohort, n = 8; dose-expansion cohort, n = 40) were treated. Treatment-related adverse events of any grade and grade ≥3 occurred in 45 (94%) and 13 (27%) patients, respectively. In the dose-expansion cohort, the confirmed objective response rate was 30.0% (95% confidence interval (CI) 16.6%, 46.5%). Median progression-free survival was 5.7 months (95% CI 4.2, 7.7 months). Median overall survival was 15.2 months (95% CI 12.5 months, not estimable). Prevalent genomic coalterations included APC (84%), TP53 (74%), SMAD4 (33%), PIK3CA (28%) and EGFR (26%). Sotorasib-panitumumab demonstrated acceptable safety with promising efficacy in chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. ClinicalTrials.gov identifier: NCT04185883 .
Collapse
Affiliation(s)
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Edward J Kim
- UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Corey Langer
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | | | | | - Qui Tran
- Amgen Inc., Thousand Oaks, CA, USA
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Chapdelaine AG, Ku GC, Sun G, Ayrapetov MK. The Targeted Degradation of BRAF V600E Reveals the Mechanisms of Resistance to BRAF-Targeted Treatments in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:5805. [PMID: 38136350 PMCID: PMC10741866 DOI: 10.3390/cancers15245805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The BRAF V600E mutation is frequently found in cancer. It activates the MAPK pathway and promotes cancer cell proliferation, making BRAF an excellent target for anti-cancer therapy. While BRAF-targeted therapy is highly effective for melanoma, it is often ineffective against other cancers harboring the BRAF mutation. In this study, we evaluate the effectiveness of a proteolysis targeting chimera (PROTAC), SJF-0628, in directing the degradation of mutated BRAF across a diverse panel of cancer cells and determine how these cells respond to the degradation. SJF-0628 treatment results in the degradation of BRAF V600E and a decrease in Mek activation in all cell lines tested, but the effects of the treatment on cell signaling and cell proliferation are cell-line-specific. First, BRAF degradation killed DU-4475 and Colo-205 cells via apoptosis but only partially inhibited the proliferation of other cancer cell lines. Second, SJF-0628 treatment resulted in co-degradation of MEK in Colo-205 cells but did not have the same effect in other cell lines. Finally, cell lines partially inhibited by BRAF degradation also contain other oncogenic drivers, making them multi-driver cancer cells. These results demonstrate the utility of a PROTAC to direct BRAF degradation and reveal that multi-driver oncogenesis renders some colorectal cancer cells resistant to BRAF-targeted treatment.
Collapse
Affiliation(s)
| | | | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (A.G.C.); (G.C.K.)
| | | |
Collapse
|
24
|
Vasta JD, Michaud A, Zimprich CA, Beck MT, Swiatnicki MR, Zegzouti H, Thomas MR, Wilkinson J, Crapster JA, Robers MB. Protomer selectivity of type II RAF inhibitors within the RAS/RAF complex. Cell Chem Biol 2023; 30:1354-1365.e6. [PMID: 37643616 DOI: 10.1016/j.chembiol.2023.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.
Collapse
|
25
|
Pranteda A, Piastra V, Serra M, Bernardini R, Lo Sardo F, Carpano S, Diodoro MG, Bartolazzi A, Milella M, Blandino G, Bossi G. Activated MKK3/MYC crosstalk impairs dabrafenib response in BRAFV600E colorectal cancer leading to resistance. Biomed Pharmacother 2023; 167:115480. [PMID: 37713993 DOI: 10.1016/j.biopha.2023.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Colorectal cancer (CRC) patients with BRAF mutations develop resistance to BRAF inhibitors at a very early stage. Understanding the molecular mechanisms involved in BRAF inhibitor resistance is critical for the development of novel therapeutic opportunities for this subtype of CRC patients. CRC cells bearing BRAF mutations are mostly sensitive to the abrogation of Mitogen-Activated Protein Kinase Kinase 3 (MKK3), a specific activator of p38MAPKs signaling, suggesting that BRAF alterations might addict CRC cells to the MKK3/p38MAPK signaling. Interestingly, publicly available gene expression profiling data show significantly higher MKK3 transcript levels in CRC lines with acquired resistance to BRAF inhibitors. Herein, we investigated the roles of MKK3 in the response to BRAF targeting (dabrafenib) with COLO205 and HT29 BRAFV600E CRC lines and derived dabrafenib-resistant (DABR) sublines. Dabrafenib treatments reduce MKK3 activation by inducing autophagy in parental but not DABR cells. The MKK3 knockdown induces cell death in DABR cells, whereas ectopic MKK3 expression reduces dabrafenib sensitivity in parental cells. Mechanistically, activated MKK3 interacts and co-localizes with c-Myc oncoprotein (MYC), sustaining MYC protein stability and thus preventing the dabrafenib induced effects in CRC DABR cells both in vitro and in vivo. Overall, we identify a novel molecular mechanism beyond the dabrafenib resistance, shedding light on an uncovered vulnerability for the development of novel therapeutic opportunities in BRAFV600E CRC.
Collapse
Affiliation(s)
- Angelina Pranteda
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; Department of Science, University Roma TRE, Viale G. Marconi, 446 I, 00146 Rome, Italy
| | - Valentina Piastra
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; Department of Science, University Roma TRE, Viale G. Marconi, 446 I, 00146 Rome, Italy
| | - Martina Serra
- Interdepartmental Centre for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Centre for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; Center for Research and Services "Preclinical Experimentation and Animal Welfare" (SPBA), University of Rome "La Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Federica Lo Sardo
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, Sant'Andrea University Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Michele Milella
- UOC of Oncology, Verona University and Hospital Trust (Azienda Ospedaliera Universitaria Integrata-AOUI-Verona), Piazzale Aristide Stefani, 1, 37126 Verona, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Gianluca Bossi
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
26
|
Ravindran Menon D, Hammerlindl H, Gimenez G, Hammerlindl S, Zuegner E, Torrano J, Bordag N, Emran AA, Giam M, Denil S, Pavelka N, Tan AC, Sturm RA, Haass NK, Rancati G, Herlyn M, Magnes C, Eccles MR, Fujita M, Schaider H. H3K4me3 remodeling induced acquired resistance through O-GlcNAc transferase. Drug Resist Updat 2023; 71:100993. [PMID: 37639774 PMCID: PMC10719180 DOI: 10.1016/j.drup.2023.100993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
AIMS Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.
Collapse
Affiliation(s)
- Dinoop Ravindran Menon
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Department of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sabrina Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Elmar Zuegner
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Joachim Torrano
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Natalie Bordag
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Abdullah Al Emran
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maybelline Giam
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Simon Denil
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Norman Pavelka
- SIgN, the Singapore Institute for Immunology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard A Sturm
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | | | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Denver VA Medical Center, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
| |
Collapse
|
27
|
Guerrero P, Albarrán V, San Román M, González-Merino C, García de Quevedo C, Moreno J, Calvo JC, González G, Orejana I, Chamorro J, Martínez-Delfrade Í, Morón B, de Frutos B, Ferreiro MR. BRAF Inhibitors in Metastatic Colorectal Cancer and Mechanisms of Resistance: A Review of the Literature. Cancers (Basel) 2023; 15:5243. [PMID: 37958416 PMCID: PMC10649848 DOI: 10.3390/cancers15215243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Metastatic colorectal cancer (mCRC) with mutated BRAF exhibits distinct biological and molecular features that set it apart from other subtypes of CRC. Current standard treatment for these tumors involves a combination of chemotherapy (CT) and VEGF inhibitors. Recently, targeted therapy against BRAF and immunotherapy (IT) for cases with microsatellite instability (MSI) have been integrated into clinical practice. While targeted therapy has shown promising results, resistance to treatment eventually develops in a significant portion of responsive patients. This article aims to review the available literature on mechanisms of resistance to BRAF inhibitors (BRAFis) and potential therapeutic strategies to overcome them.
Collapse
Affiliation(s)
- Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (V.A.); (M.S.R.); (C.G.-M.); (C.G.d.Q.); (J.M.); (J.C.C.); (G.G.); (I.O.); (J.C.); (Í.M.-D.); (B.M.); (B.d.F.); (M.R.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
29
|
Pham H, Dixon E. Integration of Next-Generation Sequencing in the Surgical Management of Colorectal Liver Metastasis. Ann Surg Oncol 2023; 30:6815-6823. [PMID: 37316745 DOI: 10.1245/s10434-023-13750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Hepatic resection remains the treatment of choice for colorectal liver metastases. The advancement of surgical technique and use of perioperative systemic therapy has expanded the number and complexity of patients eligible for surgical resection. In recent years, investigation into gene mutations, such as RAS/RAF pathway, have led to targeted therapies that have significantly improved outcomes. Next-generation sequencing allows analysis of large number of genes that may have potential prognostic relevance in the clinical setting. This review summarizes the current applications of next-generation sequencing technology in metastatic colorectal cancer, focusing on its prognostic implications on patient management.
Collapse
Affiliation(s)
- Helen Pham
- Department of Surgery, Faculty of Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada.
| | - Elijah Dixon
- Department of Surgery, Faculty of Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
30
|
Xu M, Lin J, Yang S, Yao J, Chen M, Feng J, Zhang L, Zhou L, Zhang J, Qin Q. Epstein-Barr virus-encoded miR-BART11-3p modulates the DUSP6-MAPK axis to promote gastric cancer cell proliferation and metastasis. J Virol 2023; 97:e0088123. [PMID: 37681959 PMCID: PMC10537804 DOI: 10.1128/jvi.00881-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023] Open
Abstract
Epstein-Barr virus (EBV)-encoded miRNAs within the BamHI-A rightward transcript (BART) region are abundantly expressed in EBV-associated gastric cancer (EBVaGC), suggesting that they play roles in tumorigenesis. However, how these viral miRNAs contribute to the development of EBVaGC remains largely obscure. In this study, we found that EBV-encoded miR-BART11-3p targets 3' -UTR of dual-specificity phosphatase 6 (DUSP6) mRNA to upregulate ERK phosphorylation and downregulate JNK and p38 phosphorylation. By doing so, miR-BART11-3p promotes gastric cancer (GC) cell proliferation, migration, and invasion in vitro, and facilitates tumor growth in vivo. Restoration of DUSP6 expression reverses the tumor-promoting activity of miR-BART11-3p in AGS GC cells. Consistently, knockdown of DUSP6 ablates the antitumor effects of miR-BART11-3p inhibitors in EBV-positive GC cells. Furthermore, blocking ERK phosphorylation with trametinib inhibited the proliferation, migration, and invasion of miR-BART11-3p-expressing AGS cells. Administration of a miR-BART11-3p antagomir reduced the growth of EBV-positive xenograft tumors. Together, these findings reveal a novel mechanism by which EBV dysregulates MAPK pathways through an EBV-encoded microRNA to promote the development and progression of EBVaGC, which may be harnessed to develop new therapeutics to treat EBVaGC. IMPORTANCE The Epstein-Barr virus (EBV) is the first human tumor virus found to encode miRNAs, which within the BART region have been detected abundantly in EBV-associated gastric cancer (EBVaGC) and play various roles in promoting tumorigenesis. In our study, we observed that EBV-miR-BART11-3p promotes cell proliferation and induces migration and invasion in GC. Interestingly, we showed that miR-BART11-3p upregulates p-ERK and downregulates p-JNK and p-p38 by directly targeting 3'-UTR of dual-specificity phosphatase 6 (DUSP6). Restoration of DUSP6 rescues the effects generated by miR-BART11-3p in GC cells, and blocking ERK phosphorylation with Trametinib augments JNK and p38 phosphorylation and inhibits the effects of miR-BART11-3p-expressing AGS cells, suggesting that miR-BART11-3p promotes cell proliferation, migration, and invasion by modulating DUSP6-MAPK axis in EBVaGC. The findings presented in this study provide new mechanisms into the tumorigenesis in EBVaGC and new avenues for the development of therapeutic strategies to combat EBVaGC targeting miR-BART11-3p or phospho-ERK.
Collapse
Affiliation(s)
- Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiarui Lin
- Department of Gastrointestinal Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiahu Yao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Meiyang Chen
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jinfu Feng
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liang Zhang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, China
- International Science and Technology Collaboration Center for Emerging Infectious Diseases, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
31
|
Lauinger M, Christen D, Klar RF, Roubaty C, Heilig CE, Stumpe M, Knox JJ, Radulovich N, Tamblyn L, Xie IY, Horak P, Forschner A, Bitzer M, Wittel UA, Boerries M, Ball CR, Heining C, Glimm H, Fröhlich M, Hübschmann D, Gallinger S, Fritsch R, Fröhling S, O’Kane GM, Dengjel J, Brummer T. BRAF Δβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. SCIENCE ADVANCES 2023; 9:eade7486. [PMID: 37656784 PMCID: PMC11804575 DOI: 10.1126/sciadv.ade7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔβ3-αC oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔβ3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔβ3-αC oncoproteins. We show that BRAFΔβ3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔβ3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔβ3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.
Collapse
Affiliation(s)
- Manuel Lauinger
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rhena F. U. Klar
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christoph E. Heilig
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jennifer J. Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Tamblyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Irene Y. Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
- Center for Personalized Medicine Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, 79106 Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia R. Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Heining
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ralph Fritsch
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Department of Medical Oncology and Haematology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Grainne M. O’Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Zhang J, Yang T, Han M, Wang X, Yang W, Guo N, Ren Y, Cui W, Li S, Zhao Y, Zhai X, Jia L, Yang J, Wu C, Wang L. Gain-of-function mutations in the catalytic domain of DOT1L promote lung cancer malignant phenotypes via the MAPK/ERK signaling pathway. SCIENCE ADVANCES 2023; 9:eadc9273. [PMID: 37256945 PMCID: PMC10413674 DOI: 10.1126/sciadv.adc9273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ting Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xiaoxuan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shangxiao Li
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
33
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
34
|
Tan L, Tran B, Tie J, Markman B, Ananda S, Tebbutt NC, Michael M, Link E, Wong SQ, Chandrashekar S, Guinto J, Ritchie D, Koldej R, Solomon BJ, McArthur GA, Hicks RJ, Gibbs P, Dawson SJ, Desai J. A Phase Ib/II Trial of Combined BRAF and EGFR Inhibition in BRAF V600E Positive Metastatic Colorectal Cancer and Other Cancers: The EVICT (Erlotinib and Vemurafenib In Combination Trial) Study. Clin Cancer Res 2023; 29:1017-1030. [PMID: 36638198 PMCID: PMC10011885 DOI: 10.1158/1078-0432.ccr-22-3094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE BRAF V600E mutant metastatic colorectal cancer represents a significant clinical problem, with combination approaches being developed clinically with oral BRAF inhibitors combined with EGFR-targeting antibodies. While compelling preclinical data have highlighted the effectiveness of combination therapy with vemurafenib and small-molecule EGFR inhibitors, gefitinib or erlotinib, in colorectal cancer, this therapeutic strategy has not been investigated in clinical studies. PATIENTS AND METHODS We conducted a phase Ib/II dose-escalation/expansion trial investigating the safety/efficacy of the BRAF inhibitor vemurafenib and EGFR inhibitor erlotinib. RESULTS Thirty-two patients with BRAF V600E positive metastatic colorectal cancer (mCRC) and 7 patients with other cancers were enrolled. No dose-limiting toxicities were observed in escalation, with vemurafenib 960 mg twice daily with erlotinib 150 mg daily selected as the recommended phase II dose. Among 31 evaluable patients with mCRC and 7 with other cancers, overall response rates were 32% [10/31, 16% (5/31) confirmed] and 43% (3/7), respectively, with clinical benefit rates of 65% and 100%. Early ctDNA dynamics were predictive of treatment efficacy, and serial ctDNA monitoring revealed distinct patterns of convergent genomic evolution associated with acquired treatment resistance, with frequent emergence of MAPK pathway alterations, including polyclonal KRAS, NRAS, and MAP2K1 mutations, and MET amplification. CONCLUSIONS The Erlotinib and Vemurafenib In Combination Trial study demonstrated a safe and novel combination of two oral inhibitors targeting BRAF and EGFR. The dynamic assessment of serial ctDNA was a useful measure of underlying genomic changes in response to this combination and in understanding potential mechanisms of resistance.
Collapse
Affiliation(s)
- Lavinia Tan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Tran
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ben Markman
- Monash Health, Melbourne, Victoria, Australia
| | - Sumi Ananda
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Niall C Tebbutt
- Olivia Newton John Cancer Wellness and Research Centre, Melbourne, Victoria, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Link
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Jerick Guinto
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Division of Personalized Oncology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Wang P, Jia X, Lu B, Huang H, Liu J, Liu X, Wu Q, Hu Y, Li P, Wei H, Liu T, Zhao D, Zhang L, Tian X, Jiang Y, Qiao Y, Nie W, Ma X, Bai R, Peng C, Dong Z, Liu K. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Signal Transduct Target Ther 2023; 8:96. [PMID: 36872366 PMCID: PMC9986241 DOI: 10.1038/s41392-023-01329-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Abstract
Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Han Huang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Jialin Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Qiong Wu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yamei Hu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Huifang Wei
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Tingting Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Dengyun Zhao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Lingwei Zhang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Ruihua Bai
- The Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Zigang Dong
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Takano K, Munehira Y, Hatanaka M, Murakami R, Shibata Y, Shida T, Takeuchi K, Takechi S, Tabata T, Shimada T, Kishikawa S, Matsui Y, Ubukata O, Seki T, Kaneta Y. Discovery of a Novel ATP-Competitive MEK Inhibitor DS03090629 that Overcomes Resistance Conferred by BRAF Overexpression in BRAF-Mutated Melanoma. Mol Cancer Ther 2023; 22:317-332. [PMID: 36622773 DOI: 10.1158/1535-7163.mct-22-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Patients with melanoma with activating BRAF mutations (BRAF V600E/K) initially respond to combination therapy of BRAF and MEK inhibitors. However, their clinical efficacy is limited by acquired resistance, in some cases driven by amplification of the mutant BRAF gene and subsequent reactivation of the MAPK pathway. DS03090629 is a novel and orally available MEK inhibitor that inhibits MEK in an ATP-competitive manner. In both in vitro and in vivo settings, potent inhibition of MEK by DS03090629 or its combination with the BRAF inhibitor dabrafenib was demonstrated in a mutant BRAF-overexpressing melanoma cell line model that exhibited a higher MEK phosphorylation level than the parental cell line and then became resistant to dabrafenib and the MEK inhibitor trametinib. DS03090629 also exhibited superior efficacy against a melanoma cell line-expressing mutant MEK1 protein compared with dabrafenib and trametinib. Biophysical analysis revealed that DS03090629 retained its affinity for the MEK protein regardless of its phosphorylation status, whereas the affinity of trametinib declined when the MEK protein was phosphorylated. These results suggest that DS03090629 may be a novel therapeutic option for patients who acquire resistance to the current BRAF- and MEK-targeting therapies.
Collapse
Affiliation(s)
- Kohei Takano
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoichi Munehira
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Mana Hatanaka
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryo Murakami
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshihiro Shibata
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takeshi Shida
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kosuke Takeuchi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Sho Takechi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiki Tabata
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takashi Shimada
- Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Shuhei Kishikawa
- Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Yumi Matsui
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Osamu Ubukata
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Takahiko Seki
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yasuyuki Kaneta
- Oncology Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
37
|
Tian J, Chen JH, Chao SX, Pelka K, Giannakis M, Hess J, Burke K, Jorgji V, Sindurakar P, Braverman J, Mehta A, Oka T, Huang M, Lieb D, Spurrell M, Allen JN, Abrams TA, Clark JW, Enzinger AC, Enzinger PC, Klempner SJ, McCleary NJ, Meyerhardt JA, Ryan DP, Yurgelun MB, Kanter K, Van Seventer EE, Baiev I, Chi G, Jarnagin J, Bradford WB, Wong E, Michel AG, Fetter IJ, Siravegna G, Gemma AJ, Sharpe A, Demehri S, Leary R, Campbell CD, Yilmaz O, Getz GA, Parikh AR, Hacohen N, Corcoran RB. Combined PD-1, BRAF and MEK inhibition in BRAF V600E colorectal cancer: a phase 2 trial. Nat Med 2023; 29:458-466. [PMID: 36702949 PMCID: PMC9941044 DOI: 10.1038/s41591-022-02181-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.
Collapse
Affiliation(s)
- Jun Tian
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sherry X Chao
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Marios Giannakis
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Julian Hess
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kelly Burke
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Vjola Jorgji
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Princy Sindurakar
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan Braverman
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnav Mehta
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Tomonori Oka
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Mei Huang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - David Lieb
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Maxwell Spurrell
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jill N Allen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Thomas A Abrams
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Andrea C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Samuel J Klempner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nadine J McCleary
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - David P Ryan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Matthew B Yurgelun
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Katie Kanter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Islam Baiev
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Gary Chi
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Joy Jarnagin
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - William B Bradford
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Alexa G Michel
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Isobel J Fetter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Angelo J Gemma
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Arlene Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Rebecca Leary
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Omer Yilmaz
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gad A Getz
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Aparna R Parikh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Wang X, Xie Q, Ji Y, Yang J, Shen J, Peng F, Zhang Y, Jiang F, Kong X, Ma W, Liu D, Zheng L, Qing C, Lang JY. Targeting KRAS-mutant stomach/colorectal tumors by disrupting the ERK2-p53 complex. Cell Rep 2023; 42:111972. [PMID: 36641751 DOI: 10.1016/j.celrep.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/22/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
KRAS is widely mutated in human cancers, resulting in unchecked tumor proliferation and metastasis, which makes identifying KRAS-targeting therapies a priority. Herein, we observe that mutant KRAS specifically promotes the formation of the ERK2-p53 complex in stomach/colorectal tumor cells. Disruption of this complex by applying MEK1/2 and ERK2 inhibitors elicits strong apoptotic responses in a p53-dependent manner, validated by genome-wide knockout screening. Mechanistically, p53 physically associates with phosphorylated ERK2 through a hydrophobic interaction in the presence of mutant KRAS, which suppresses p53 activation by preventing the recruitment of p300/CBP; trametinib disrupts the ERK2-p53 complex by reducing ERK2 phosphorylation, allowing the acetylation of p53 protein by recruiting p300/CBP; acetylated p53 activates PUMA transcription and thereby kills KRAS-mutant tumors. Our study shows an important role for the ERK2-p53 complex and provides a potential therapeutic strategy for treating KRAS-mutant cancer.
Collapse
Affiliation(s)
- Xiang Wang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Qing Xie
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yan Ji
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Jiaxin Yang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Jiayan Shen
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Fangfei Peng
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yongfeng Zhang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Feng Jiang
- Department of Radiation Oncology, The Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Xiangyin Kong
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Dandan Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P.R. China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P.R. China
| | - Jing-Yu Lang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
39
|
Pressete CG, Viegas FPD, Campos TG, Caixeta ES, Hanemann JAC, Ferreira-Silva GÁ, Zavan B, Aissa AF, Miyazawa M, Viegas-Jr C, Ionta M. Piperine-Chlorogenic Acid Hybrid Inhibits the Proliferation of the SK-MEL-147 Melanoma Cells by Modulating Mitotic Kinases. Pharmaceuticals (Basel) 2023; 16:145. [PMID: 37259298 PMCID: PMC9965075 DOI: 10.3390/ph16020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
| | - Flávia Pereira Dias Viegas
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Thâmara Gaspar Campos
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | | | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Claudio Viegas-Jr
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| |
Collapse
|
40
|
Wong AHN, Ma B, Lui RN. New developments in targeted therapy for metastatic colorectal cancer. Ther Adv Med Oncol 2023; 15:17588359221148540. [PMID: 36687386 PMCID: PMC9846305 DOI: 10.1177/17588359221148540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is the second most lethal cancer worldwide and the prognosis of metastatic CRC (mCRC) remains poor. Recent advancements in translational research have led to the identification of several new therapeutic targets and improved the treatment outcome of patients with tumours harbouring BRAF V600E mutation, (HER2) ErBB2 alterations, NTRK gene fusions and KRAS(G12C) mutation. Improved understanding towards the mechanism of resistance to targeted therapy such as anti-epidermal growth factor receptor antibodies and the evolving role of therapeutic monitoring with circulating tumour DNA (ctDNA) has enabled the longitudinal tracking of clonal evolution during treatment and the individualization of subsequent treatments. To broaden the community-based implementation of precision oncology in directing targeted therapies for patients with gastrointestinal cancers including mCRC, the feasibility of 'Master Protocols' that utilizes ctDNA-based genotyping platforms is currently being evaluated. Such protocols encompass both observational and interventional clinical trials of novel targeted therapies conducted within a large clinical trial network. In this review, we will discuss the latest developments in targeted therapies, and therapeutic strategies for overcoming acquired drug resistance in patients with mCRC.
Collapse
Affiliation(s)
- Ambrose H. N. Wong
- Faculty of Medicine, The Chinese University of
Hong Kong, Hong Kong SAR, China
| | - Brigette Ma
- State Key Laboratory of Translational Oncology,
Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong
Cancer Institute, Hong Kong SAR, China
| | - Rashid N. Lui
- Department of Clinical Oncology, and Division
of Gastroenterology and Hepatology, Department of Medicine and Therapeutics,
Institute of Digestive Disease, The Chinese University of Hong Kong, 9/F,
Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| |
Collapse
|
41
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|
42
|
Wei AZ, Maniar AB, Carvajal RD. New targeted and epigenetic therapeutic strategies for the treatment of uveal melanoma. Cancer Gene Ther 2022; 29:1819-1826. [PMID: 35236928 DOI: 10.1038/s41417-022-00443-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Uveal melanoma (UM) is a rare, genetically bland ocular malignancy with excellent local treatment options, but no disease-specific therapies are approved for use in the metastatic setting by the Food and Drug Administration. Metastatic UM (mUM) confers a prognosis of ~15 months. Unlike cutaneous melanoma, UM is poorly responsive to checkpoint inhibitors and cytotoxic chemotherapy highlighting the importance of clarifying vulnerable disease-specific mechanisms, such as cell cycle or metabolic pathways necessary for tumor growth and survival. The elucidation of signaling pathways downstream of the frequently mutated GNA GTPase such as PKC/MAPK/ERK/MEK, PI3K/AKT, and YAP-Hippo have offered potential targets. Potentially druggable epigenetic targets due to BAP1-mutated UM have also been identified, including proteins involved with histone deacetylation and DNA splicing. This review describes the preclinical rationale for the development of targeted therapies and current strategies currently being studied in clinical trials or will be in the near future.
Collapse
Affiliation(s)
- Alexander Z Wei
- Columbia University Irving Medical Center, New York, New York, USA
| | - Ashray B Maniar
- Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
43
|
Morante M, Pandiella A, Crespo P, Herrero A. Immune Checkpoint Inhibitors and RAS-ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022; 12:1562. [PMID: 36358912 PMCID: PMC9687808 DOI: 10.3390/biom12111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.
Collapse
Affiliation(s)
- Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| |
Collapse
|
44
|
Jin Y, Han Y, Yang S, Cao J, Jiang M, Liang J. Endoplasmic reticulum-resident protein Sec62 drives colorectal cancer metastasis via MAPK/ATF2/UCA1 axis. Cell Prolif 2022; 55:e13253. [PMID: 36200182 DOI: 10.1111/cpr.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Metastasis is responsible for the poor prognosis of patients with colorectal cancer (CRC), and the role of aberrant expression of endoplasmic reticulum (ER) receptors in tumour metastasis has not been fully elucidated. The aim of the study is to ensure the role of ER-resident protein Sec62 in CRC metastasis and illuminate associated molecular mechanisms. MATERIALS AND METHODS Bioinformatics analysis, qRT-PCR, western blot and immunohistochemistry assays were performed to evaluate the expression level and clinical significance of Sec62 in CRC. The specific role of Sec62 in CRC was identified by a series of functional experiments. We conducted RNA sequencing and rescue experiments to analyse the differentially expressed genes and identified UCA1 as a novel pro-metastasis target of Sec62 in CRC. Besides, the efficacy of MAPK/JNK inhibitor or agonist on Sec62-mediated CRC metastasis was evaluated by trans-well and wound healing assays. Finally, luciferase reporter and ChIP assay were employed to further explore the potential mechanisms. RESULTS The abnormally elevated expression of Sec62 predicted poor prognosis of CRC patients and facilitated malignant metastasis of CRC cells. Mechanistically, Sec62 enhanced UCA1 expression through activating MAPK/JNK signalling pathway. And the p-JNK activating ATF2 could transcriptionally regulate UCA1 expression. Furthermore, blocking or activating MAPK/JNK signalling with JNK inhibitor or agonist potently suppressed or enhanced Sec62 mediated CRC metastatic process. CONCLUSIONS Our study reports for the first time that the Sec62/MAPK/ATF2 /UCA1 axis exists in CRC metastatic process, which could be a potential treatment target of metastatic CRC.
Collapse
Affiliation(s)
- Yirong Jin
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Yuying Han
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Suzhen Yang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Jiayi Cao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Mingzuo Jiang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Liang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| |
Collapse
|
45
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
46
|
Elez E, Ros J, Fernández J, Villacampa G, Moreno-Cárdenas AB, Arenillas C, Bernatowicz K, Comas R, Li S, Kodack DP, Fasani R, Garcia A, Gonzalo-Ruiz J, Piris-Gimenez A, Nuciforo P, Kerr G, Intini R, Montagna A, Germani MM, Randon G, Vivancos A, Smits R, Graus D, Perez-Lopez R, Cremolini C, Lonardi S, Pietrantonio F, Dienstmann R, Tabernero J, Toledo RA. RNF43 mutations predict response to anti-BRAF/EGFR combinatory therapies in BRAF V600E metastatic colorectal cancer. Nat Med 2022; 28:2162-2170. [PMID: 36097219 PMCID: PMC9556333 DOI: 10.1038/s41591-022-01976-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Anti-BRAF/EGFR therapy was recently approved for the treatment of metastatic BRAFV600E colorectal cancer (mCRCBRAF-V600E). However, a large fraction of patients do not respond, underscoring the need to identify molecular determinants of treatment response. Using whole-exome sequencing in a discovery cohort of patients with mCRCBRAF-V600E treated with anti-BRAF/EGFR therapy, we found that inactivating mutations in RNF43, a negative regulator of WNT, predict improved response rates and survival outcomes in patients with microsatellite-stable (MSS) tumors. Analysis of an independent validation cohort confirmed the relevance of RNF43 mutations to predicting clinical benefit (72.7% versus 30.8%; P = 0.03), as well as longer progression-free survival (hazard ratio (HR), 0.30; 95% confidence interval (CI), 0.12–0.75; P = 0.01) and overall survival (HR, 0.26; 95% CI, 0.10–0.71; P = 0.008), in patients with MSS-RNF43mutated versus MSS-RNF43wild-type tumors. Microsatellite-instable tumors invariably carried a wild-type-like RNF43 genotype encoding p.G659fs and presented an intermediate response profile. We found no association of RNF43 mutations with patient outcomes in a control cohort of patients with MSS-mCRCBRAF-V600E tumors not exposed to anti-BRAF targeted therapies. Overall, our findings suggest a cross-talk between the MAPK and WNT pathways that may modulate the antitumor activity of anti-BRAF/EGFR therapy and uncover predictive biomarkers to optimize the clinical management of these patients. The presence of inactivating mutations in RNF43, a negative regulator of WNT, in tumor cells predicts improved response rates and survival outcomes in patients with metastatic BRAFV600E colorectal cancer treated with anti-BRAF/EGFR therapy.
Collapse
Affiliation(s)
- Elena Elez
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. .,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Jose Fernández
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Guillermo Villacampa
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Belén Moreno-Cárdenas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlota Arenillas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Kinga Bernatowicz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Comas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ariadna Garcia
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Gonzalo-Ruiz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Piris-Gimenez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Grainne Kerr
- Oncology Department, Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
| | - Rossana Intini
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Aldo Montagna
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Trans-lational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Diana Graus
- Oncology Department, Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland.,Ridgeline Discovery, Basel, Switzerland
| | - Raquel Perez-Lopez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Chiara Cremolini
- Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Trans-lational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IRCCS, Padova, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rodrigo Dienstmann
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain.,UVic-UCC, IOB-Quirón, Barcelona, Spain
| | - Rodrigo A Toledo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
47
|
Ye LF, Huang ZY, Chen XX, Chen ZG, Wu SX, Ren C, Hu MT, Bao H, Jin Y, Wang F, Wang FH, Du ZM, Wu X, Ju HQ, Shao Y, Li YH, Xu RH, Wang DS. Monitoring tumour resistance to the BRAF inhibitor combination regimen in colorectal cancer patients via circulating tumour DNA. Drug Resist Updat 2022; 65:100883. [DOI: 10.1016/j.drup.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
|
48
|
Xu T, Wang X, Wang Z, Deng T, Qi C, Liu D, Li Y, Ji C, Li J, Shen L. Molecular mechanisms underlying the resistance of BRAF V600E-mutant metastatic colorectal cancer to EGFR/BRAF inhibitors. Ther Adv Med Oncol 2022; 14:17588359221105022. [PMID: 35747165 PMCID: PMC9210093 DOI: 10.1177/17588359221105022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Combinatorial inhibition of epidermal growth factor receptor (EGFR) and BRAF shows remarkable clinical benefits in patients with BRAF V600E-mutant metastatic colorectal cancer (mCRC). However, the tumor may inevitably develop resistance to the targeted therapy, thereby limiting the response rate and durability. This study aimed to determine the genetic alterations associated with intrinsic and acquired resistance to EGFR/BRAF inhibitors in BRAF V600E-mutant mCRC. Methods Targeted sequencing of 520 cancer-related genes was performed in tumor tissues and in plasma samples collected from patients with BRAF V600E-mutant mCRC, who were treated with EGFR/BRAF ± MEK inhibitors, before and after the targeted treatment. Clinical benefit was defined as an objective response or a stable disease lasting longer than the median progression-free survival (PFS). Results In all, 25 patients with BRAF V600E-mutant mCRC were included in this study. Those with RNF43 mutations (n = 8) were more likely to achieve clinical benefit from EGFR/BRAF inhibitors than those with wild-type RNF43 (87.5% versus 37.5%, p = 0.034). Genetic alterations in receptor tyrosine kinase genes (n = 6) were associated with worse PFS (p = 0.005). Among the 23 patients whose disease progressed after the EGFR/BRAF-targeted therapy, at least one acquired resistance-related mutation was detected in 12 patients. Acquired mutations were most frequently observed in the mitogen-activated protein kinase pathway-related genes (n = 9), including KRAS (G12D and Q61H/R), NRAS (Q61L/R/K and amplification), BRAF (amplification), and MEK1 (K57T). MET amplification and PIK3R1 Q579fs mutation emerged in three patients and one patient, respectively, after disease progression. Conclusion Multiple genetic alterations are associated with clinical benefits and resistance to EGFR/BRAF inhibitors in BRAF V600E-mutant mCRC. Our findings provide novel insights into strategies for overcoming resistance to EGFR/BRAF inhibitors in patients with BRAF V600E-mutant mCRC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Deng
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Congcong Ji
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| |
Collapse
|
49
|
Dahmani C, Corre E, Dandou S, Mangé A, Radulescu O, Coopman PJ, Cuq P, Larive RM. La résistance aux inhibiteurs de BRAF. Med Sci (Paris) 2022; 38:570-578. [DOI: 10.1051/medsci/2022083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La voie de signalisation MAPK/ERK est une voie centrale de la signalisation intracellulaire. Sa dérégulation participe à la transformation et la progression tumorales. Dans plusieurs cancers, la découverte de mutations activatrices de BRAF, à l’origine de l’activation de cette voie, a ouvert de nouvelles perspectives thérapeutiques avec le développement d’inhibiteurs spécifiques de la protéine. Selon les cancers, ces inhibiteurs ont cependant montré soit une efficacité insuffisante, due à la résistance primaire des cellules tumorales, soit une efficacité transitoire, due à l’apparition d’une résistance acquise. Dans cette revue, nous revenons sur les découvertes qui ont conduit au développement de ces inhibiteurs de BRAF. Nous détaillons également les mécanismes moléculaires et cellulaires de la résistance à ces inhibiteurs observée dans différents types de cancers. Comprendre ces mécanismes est en effet primordial pour développer des stratégies thérapeutiques qui soient plus efficaces.
Collapse
|
50
|
Chen Q, Liu Z, Tan Y, Pan S, An W, Xu H. Characterization of RNA modifications in gastric cancer to identify prognosis-relevant gene signatures. Cancer Med 2022; 12:879-897. [PMID: 35635121 PMCID: PMC9844604 DOI: 10.1002/cam4.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most human genes have diverse transcript isoforms, which mainly arise from alternative cleavage and polyadenylation (APA) at 3' ends. N7-methylguanosine (m7 G) is also an essential epigenetic modification at the 5' end. However, the contribution of these two RNA modifications to the development, prognosis, regulation mechanisms, and drug sensitivity of gastric cancer (GC) is unclear. METHODS The expression data of 2412 patients were extracted from 12 cohorts and the RNA modification patterns of 20 marker genes were systematically identified into phenotypic clusters using the unsupervised clustering approach. Following that, we developed an RNA modification model (RMscore) to quantify each GC patient's RNA modification index. Finally, we examined the correlation between RMscore and clinical features such as survival outcomes, molecular subtypes identified by the Asian Cancer Research Group (ACRG), posttranscriptional regulation, and chemotherapeutic sensitivity in GC. RESULTS The samples were categorized into two groups on the basis of their RMscore: high and low. The group with a low RMscore had a bad prognosis. Moreover, the low RMscore was associated with KRAS, Hedgehog, EMT, and TGF-β signaling, whereas a high RMscore was related to abnormal cell cycle signaling pathway activation. The findings also revealed that the RMscore contributes to the regulation of the miRNA-mRNA network. Drug sensitivity analysis revealed that RMscore is associated with the response to some anticancer drugs. CONCLUSIONS The RMscore model has the potential to be a useful tool for prognosis prediction in patients with GC. A comprehensive investigation of APA-RNA and m7 G-RNA modifications may reveal novel insights into the epigenetics of GC and aid in the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Qingchuan Chen
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhouyang Liu
- Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuen Tan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Siwei Pan
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Wen An
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Huimian Xu
- Department of Surgical OncologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|