1
|
Sukhadia SS, Sadee C, Gevaert O, Nagaraj SH. Machine Learning Enabled Prediction of Biologically Relevant Gene Expression Using CT-Based Radiomic Features in Non-Small Cell Lung Cancer. Cancer Med 2024; 13:e70509. [PMID: 39718015 PMCID: PMC11667219 DOI: 10.1002/cam4.70509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) remains a global health challenge, driving morbidity and mortality. The emerging field of radiogenomics utilizes statistical methods to correlate radiographic tumor features with genomic characteristics from biopsy samples. Radiomic techniques automate the precise extraction of imaging features from tumor regions in radiographic scans, which are subjected to machine learning (ML) to predict genomic attributes. METHODS In a retrospective study of two NSCLC patient cohorts separated by 5 years, we performed a radiogenomic analysis of previously disseminated data from 2018 (n = 116) and newly acquired data from 2023 (n = 44) using RNA sequencing and lung CT images. Combining the data from two cohorts post binarization (of gene expression) or batch normalization (of radiomic features) in each cohort proved to be a better approach as compared to training the model on one cohort and validating on the other. RESULTS Our ML-based radiogenomic modeling identified specific imaging features-wavelet, three-dimensional local binary patterns, and logarithmic sigma of gray-level variance-as predictive indicators for high (1) vs. low (0) gene expression of pivotal NSCLC-related genes: SLC35C1, BCL2L1, and MAPK1. These genes have recognized implications in a variety of biological pathways and mechanisms of drug resistance pertinent to NSCLC. CONCLUSION The successful integration of heterogeneous radiogenomic datasets underscores the potential of imaging biomarkers in uncovering NSCLC biological processes through gene expression profiles.
Collapse
Affiliation(s)
- Shrey S. Sukhadia
- Centre for Genomics and Personalized Health and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
- Department of Pathology and Laboratory MedicineDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Christopher Sadee
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data ScienceStanford UniversityCaliforniaUSA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data ScienceStanford UniversityCaliforniaUSA
- Department of Biomedical Data ScienceStanford UniversityCaliforniaUSA
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalized Health and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Becker JH, Metropulos AE, Spaulding C, Marinelarena AM, Shields MA, Principe DR, Pham TD, Munshi HG. Targeting BCL2 with Venetoclax Enhances the Efficacy of the KRASG12D Inhibitor MRTX1133 in Pancreatic Cancer. Cancer Res 2024; 84:3629-3639. [PMID: 39137400 PMCID: PMC11532783 DOI: 10.1158/0008-5472.can-23-3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
MRTX1133 is currently being evaluated in patients with pancreatic ductal adenocarcinoma (PDAC) tumors harboring a KRASG12D mutation. Combination strategies have the potential to enhance the efficacy of MRTX1133 to further promote cell death and tumor regression. In this study, we demonstrated that MRTX1133 increased the levels of the proapoptotic protein BIM in PDAC cells and conferred sensitivity to the FDA-approved BCL2 inhibitor venetoclax. Combined treatment with MRTX1133 and venetoclax resulted in cell death and growth suppression in 3D cultures. BIM was required for apoptosis induced by the combination treatment. Consistently, BIM was induced in tumors treated with MRTX1133, and venetoclax enhanced the efficacy of MRTX1133 in vivo. Venetoclax could also resensitize MRTX1133-resistant PDAC cells to MRTX1133 in 3D cultures, and tumors established from resistant cells responded to the combination of MRTX1133 and venetoclax. These results provide a rationale for the clinical testing of MRTX1133 and venetoclax in patients with PDAC. Significance: The combination of MRTX1133 and the FDA-approved drug venetoclax promotes cancer cell death and tumor regression in pancreatic ductal adenocarcinoma, providing rationale for testing venetoclax with KRASG12D inhibitors in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey H. Becker
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | | | - Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel R. Principe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thao D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
3
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Bararia A, Das A, Mitra S, Banerjee S, Chatterjee A, Sikdar N. Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways. World J Gastrointest Oncol 2023; 15:1505-1519. [PMID: 37746645 PMCID: PMC10514732 DOI: 10.4251/wjgo.v15.i9.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall survival at advanced stages, with immediate requirement of new and effective treatment options. Besides genetic mutations, epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients. Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies. Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance. Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions, and novel pharmacological strategies that target these components could potentially lead to breakthroughs. We aim to highlight the possibilities that exist and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal 741235, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Kolkata 700160, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
6
|
Tate T, Plumber SA, Al-Ahmadie H, Chen X, Choi W, Lu C, Viny A, Batourina E, Gartensson K, Alija B, Molotkov A, Wiessner G, McKiernan J, McConkey D, Dinney C, Czerniak B, Mendelsohn CL. Combined Mek inhibition and Pparg activation Eradicates Muscle Invasive Bladder cancer in a Mouse Model of BBN-induced Carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553961. [PMID: 37662238 PMCID: PMC10473651 DOI: 10.1101/2023.08.19.553961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. Pparg is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a Pparg agonist, in a mouse model of BBN-induced muscle invasive BC. Rosiglitazone activated Pparg signaling in suprabasal epithelial layers of tumors but not in basal-most layers containing highly proliferative invasive cells, reducing proliferation but not affecting tumor survival. Addition of trametinib, a MEK inhibitor, induced Pparg signaling throughout all tumor layers, and eradicated 91% of tumors within 7-days of treatment. The 2-drug combination also activated a luminal differentiation program, reversing squamous metaplasia in the urothelium of tumor-bearing mice. Paired ATAC-RNA-seq analysis revealed that tumor apoptosis was most likely linked to down-regulation of Bcl-2 and other pro-survival genes, while the shift from BASQ to luminal differentiation was associated with activation of the retinoic acid pathway and upregulation of Kdm6a, a lysine demethylase that facilitates retinoid-signaling. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients. That muscle invasive tumors are populated by basal and suprabasal cell types with different responsiveness to PPARG agonists will be an important consideration when designing new treatments.
Collapse
|
7
|
Jaber S, Warnier M, Leers C, Vernier M, Goehrig D, Médard JJ, Vindrieux D, Ziegler DV, Bernard D. Targeting chemoresistant senescent pancreatic cancer cells improves conventional treatment efficacy. MOLECULAR BIOMEDICINE 2023; 4:4. [PMID: 36739330 PMCID: PMC9899302 DOI: 10.1186/s43556-023-00116-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest cancers owing to its late diagnosis and of the strong resistance to available treatments. Despite a better understanding of the disease in the last two decades, no significant improvement in patient care has been made. Senescent cells are characterized by a stable proliferation arrest and some resistance to cell death. Increasing evidence suggests that multiple lines of antitumor therapy can induce a senescent-like phenotype in cancer cells, which may participate in treatment resistance. In this study, we describe that gemcitabine, a clinically-used drug against pancreatic cancer, induces a senescent-like phenotype in highly chemoresistant pancreatic cancer cells in vitro and in xenografted tumors in vivo. The use of ABT-263, a well-described senolytic compound targeting Bcl2 anti-apoptotic proteins, killed pancreatic gemcitabine-treated senescent-like cancer cells in vitro. In vivo, the combination of gemcitabine and ABT-263 decreased tumor growth, whereas their individual administration had no effect. Together these data highlight the possibility of improving the efficacy of conventional chemotherapies against pancreatic cancer by eliminating senescent-like cancer cells through senolytic intervention. Further studies testing different senolytics or their combination with available treatments will be necessary to optimize preclinical data in mouse models before transferring these findings to clinical trials.
Collapse
Affiliation(s)
- Sara Jaber
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Marine Warnier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Christopher Leers
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Mathieu Vernier
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Jean-Jacques Médard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - David Vindrieux
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Dorian V. Ziegler
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,grid.9851.50000 0001 2165 4204Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - David Bernard
- grid.25697.3f0000 0001 2172 4233Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France ,Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| |
Collapse
|
8
|
Eleveld TF, Vernooij L, Schild L, Koopmans B, Alles LK, Ebus ME, Dandis R, van Tinteren H, Caron HN, Koster J, van Noesel MM, Tytgat GAM, Eising S, Versteeg R, Dolman MEM, Molenaar JJ. MEK inhibition causes BIM stabilization and increased sensitivity to BCL-2 family member inhibitors in RAS-MAPK-mutated neuroblastoma. Front Oncol 2023; 13:1130034. [PMID: 36895472 PMCID: PMC9990464 DOI: 10.3389/fonc.2023.1130034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction Mutations affecting the RAS-MAPK pathway occur frequently in relapsed neuroblastoma tumors and are associated with response to MEK inhibition in vitro. However, these inhibitors alone do not lead to tumor regression in vivo, indicating the need for combination therapy. Methods and results Via high-throughput combination screening, we identified that the MEK inhibitor trametinib can be combined with BCL-2 family member inhibitors, to efficiently inhibit growth of neuroblastoma cell lines with RAS-MAPK mutations. Suppressing the RAS-MAPK pathway with trametinib led to an increase in pro-apoptotic BIM, resulting in more BIM binding to anti-apoptotic BCL-2 family members. By favoring the formation of these complexes, trametinib treatment enhances sensitivity to compounds targeting anti-apoptotic BCL-2 family members. In vitro validation studies confirmed that this sensitizing effect is dependent on an active RAS-MAPK pathway. In vivo combination of trametinib with BCL-2 inhibitors led to tumor inhibition in NRAS-mutant and NF1-deleted xenografts. Conclusion Together, these results show that combining MEK inhibition with BCL-2 family member inhibition could potentially improve therapeutic outcomes for RAS-MAPK-mutated neuroblastoma patients.
Collapse
Affiliation(s)
- Thomas F Eleveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Oncogenomics, Amsterdam UMC, Amsterdam, Netherlands
| | - Lindy Vernooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lindy K Alles
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marli E Ebus
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rana Dandis
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, Amsterdam, Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Amsterdam UMC, Amsterdam, Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pharmaceutical sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
LC-MS/MS bioanalytical method for quantification of binimetinib and venetoclax, and their pharmacokinetic interaction. Bioanalysis 2021; 14:75-86. [PMID: 34841894 DOI: 10.4155/bio-2021-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Because of several prospective benefits, binimetinib (BMT)-venetoclax (VTC) combination can be a better therapeutic strategy to treat cancer. Results: An LC-MS/MS method for simultaneous quantification of BMT and VTC in rat plasma has been developed and validated. Specificity, accuracy, precision and stability results met the acceptance criteria for validation. Accuracy and precisions at all quality control levels were <15%. The study revealed that co-administration of BMT and VTC has no significant effect on their pharmacokinetics. Conclusion: The developed method can provide accurate results for quantification of BMT and VTC over the range of 5-500 ng/ml. The reported pharmacokinetic interaction study results will be useful for future consideration of the combined treatment of BMT and VTC in anticancer chemotherapy regimens.
Collapse
|
10
|
ElHarouni D, Berker Y, Peterziel H, Gopisetty A, Turunen L, Kreth S, Stainczyk SA, Oehme I, Pietiäinen V, Jäger N, Witt O, Schlesner M, Oppermann S. iTReX: Interactive exploration of mono- and combination therapy dose response profiling data. Pharmacol Res 2021; 175:105996. [PMID: 34848323 DOI: 10.1016/j.phrs.2021.105996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.
Collapse
Affiliation(s)
- Dina ElHarouni
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Yannick Berker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Apurva Gopisetty
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sina Kreth
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sabine A Stainczyk
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Oppermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
11
|
Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin KM, Meyer LH, Samitier J, Montero J. MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:695225. [PMID: 34568318 PMCID: PMC8458912 DOI: 10.3389/fcell.2021.695225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple targeted therapies are currently explored for pediatric and young adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment. However, this new armamentarium of therapies faces an old problem: choosing the right treatment for each patient. The lack of predictive biomarkers is particularly worrying for pediatric patients since it impairs the implementation of new treatments in the clinic. In this study, we used the functional assay dynamic BH3 profiling (DBP) to evaluate two new treatments for BCP-ALL that could improve clinical outcome, especially for relapsed patients. We found that the MEK inhibitor trametinib and the multi-target tyrosine kinase inhibitor sunitinib exquisitely increased apoptotic priming in an NRAS-mutant and in a KMT2A-rearranged cell line presenting a high expression of FLT3, respectively. Following these observations, we sought to study potential adaptations to these treatments. Indeed, we identified with DBP anti-apoptotic changes in the BCL-2 family after treatment, particularly involving MCL-1 - a pro-survival strategy previously observed in adult cancers. To overcome this adaptation, we employed the BH3 mimetic S63845, a specific MCL-1 inhibitor, and evaluated its sequential addition to both kinase inhibitors to overcome resistance. We observed that the metronomic combination of both drugs with S63845 was synergistic and showed an increased efficacy compared to single agents. Similar observations were made in BCP-ALL KMT2A-rearranged PDX cells in response to sunitinib, showing an analogous DBP profile to the SEM cell line. These findings demonstrate that rational sequences of targeted agents with BH3 mimetics, now extensively explored in clinical trials, may improve treatment effectiveness by overcoming anti-apoptotic adaptations in BCP-ALL.
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy, Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Niño Jesús University Children’s Hospital, Madrid, Spain
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H. Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
12
|
KRASG12C inhibitor: combing for combination. Biochem Soc Trans 2021; 48:2691-2701. [PMID: 33242077 DOI: 10.1042/bst20200473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Oncogenic mutation in KRAS is one of the most common alterations in human cancer. After decades of extensive research and unsuccessful drug discovery programs, therapeutic targeting of KRAS mutant tumour is at an exciting juncture. The discovery of mutation-specific inhibitors of KRASG12C and early positive findings from clinical trials has raised the hope of finally having a drug to treat a significant segment of KRAS mutant cancer patients. Crucially, it has also re-energized the RAS field to look beyond G12C mutation and find new innovative targeting opportunities. However, the early clinical trial data also indicates that there is significant variation in response among patients and that monotherapy treatment with KRASG12C inhibitors (G12Ci) alone is unlikely to be sufficient to elicit a sustained response. Understanding the molecular mechanism of variation in patient response and identifying possible combination opportunities, which could be exploited to achieve durable and significant responses and delay emergence of resistance, is central to the success of G12Ci therapy. Given the specificity of G12Ci, toxicity is expected to be minimal. Therefore, it might be possible to combine G12Ci with other targeted agents which have previously been explored to tackle KRAS mutant cancer but deemed too toxic, e.g. MEK inhibitor. Ongoing clinical trials will shed light on clinical resistance to G12C inhibitors, however extensive work is already ongoing to identify the best combination partners. This review provides an update on combination opportunities which could be explored to maximize the benefit of this new exciting drug.
Collapse
|
13
|
Pikman Y, Tasian SK, Sulis ML, Stevenson K, Blonquist TM, Apsel Winger B, Cooper TM, Pauly M, Maloney KW, Burke MJ, Brown PA, Gossai N, McNeer JL, Shukla NN, Cole PD, Kahn JM, Chen J, Barth MJ, Magee JA, Gennarini L, Adhav AA, Clinton CM, Ocasio-Martinez N, Gotti G, Li Y, Lin S, Imamovic A, Tognon CE, Patel T, Faust HL, Contreras CF, Cremer A, Cortopassi WA, Garrido Ruiz D, Jacobson MP, Dharia NV, Su A, Robichaud AL, Saur Conway A, Tarlock K, Stieglitz E, Place AE, Puissant A, Hunger SP, Kim AS, Lindeman NI, Gore L, Janeway KA, Silverman LB, Tyner JW, Harris MH, Loh ML, Stegmaier K. Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discov 2021; 11:1424-1439. [PMID: 33563661 DOI: 10.1158/2159-8290.cd-20-0564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Despite a remarkable increase in the genomic profiling of cancer, integration of genomic discoveries into clinical care has lagged behind. We report the feasibility of rapid identification of targetable mutations in 153 pediatric patients with relapsed/refractory or high-risk leukemias enrolled on a prospective clinical trial conducted by the LEAP Consortium. Eighteen percent of patients had a high confidence Tier 1 or 2 recommendation. We describe clinical responses in the 14% of patients with relapsed/refractory leukemia who received the matched targeted therapy. Further, in order to inform future targeted therapy for patients, we validated variants of uncertain significance, performed ex vivo drug-sensitivity testing in patient leukemia samples, and identified new combinations of targeted therapies in cell lines and patient-derived xenograft models. These data and our collaborative approach should inform the design of future precision medicine trials. SIGNIFICANCE: Patients with relapsed/refractory leukemias face limited treatment options. Systematic integration of precision medicine efforts can inform therapy. We report the feasibility of identifying targetable mutations in children with leukemia and describe correlative biology studies validating therapeutic hypotheses and novel mutations.See related commentary by Bornhauser and Bourquin, p. 1322.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Luisa Sulis
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Traci M Blonquist
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Beth Apsel Winger
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Todd M Cooper
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, Washington
| | - Melinda Pauly
- Division of Hematology/Oncology, Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Kelly W Maloney
- Children's Hospital Colorado, University of Colorado Cancer Center, Aurora, Colorado
| | - Michael J Burke
- Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | | | - Nathan Gossai
- Center for Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | | | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter D Cole
- Children's Hospital at Montefiore, Bronx, New York
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Justine M Kahn
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
| | - Jing Chen
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
- Children's Cancer Institute, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey
| | | | - Jeffrey A Magee
- Division of Pediatric Hematology/Oncology, Washington University/St. Louis Children's Hospital, St. Louis, Missouri
| | | | - Asmani A Adhav
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Giacomo Gotti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuting Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alma Imamovic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Cristina E Tognon
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Tasleema Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Haley L Faust
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cristina F Contreras
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anjali Cremer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University Hospital Frankfurt, Department of Hematology/Oncology, Frankfurt/Main, Germany
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Angela Su
- INSERM UMR 944, IRSL, St Louis Hospital, Paris, France
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine Tarlock
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, Washington
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Andrew E Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lia Gore
- Children's Hospital Colorado, University of Colorado Cancer Center, Aurora, Colorado
| | - Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Mignon L Loh
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
14
|
Kun E, Tsang YTM, Ng CW, Gershenson DM, Wong KK. MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treat Rev 2020; 92:102137. [PMID: 33340965 DOI: 10.1016/j.ctrv.2020.102137] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway plays a vital role in cellular processes such as gene expression, cell proliferation, cell survival, and apoptosis. Also known as the RAS-RAF-MEK-ERK pathway, the MAPK pathway has been implicated in approximately one-third of all cancers. Mutations in RAS or RAF genes such as KRAS and BRAF are common, and these mutations typically promote malignancies by over-activating MEK and ERK downstream, which drives sustained cell proliferation and uninhibited cell growth. Development of drugs targeting this pathway has been a research area of great interest, especially drugs targeting the inhibition of MEK. In vitro and clinical studies have shown promise for certain MEK inhibitors (MEKi) , and MEKi have become the first treatment option for certain cancers. Despite promising results, not all patients have a response to MEKi, and mechanisms of resistance typically arise in patients who do have a positive initial response. This paper summarizes recent developments regarding MEKi, the mechanisms of adaptive resistance to MEKi, and the potential solutions to the issue of adaptive MEKi resistance.
Collapse
Affiliation(s)
- E Kun
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y T M Tsang
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C W Ng
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D M Gershenson
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K K Wong
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
15
|
Carbon Monoxide-Releasing Molecule-3 Ameliorates Acute Lung Injury in a Model of Hemorrhagic Shock and Resuscitation: Roles of p38MAPK Signaling Pathway. Shock 2020; 55:816-826. [PMID: 33105439 DOI: 10.1097/shk.0000000000001684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE It was reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorates the HSR-induced acute lung injury (ALI); however, the specific mechanism of the protective effects against HSR-induced ALI remains unclear. METHODS To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mm Hg for 45 min and then resuscitated with shed blood via the left vein. CORM-3 (4 mg/kg or 8 mg/kg) was respectively administrated after HSR. Twelve hours post-HSR, lung injury was assessed by wet/dry (W/D) ratio, hematoxylin-eosin staining staining, and lung ultrasound; the apoptotic and pyroptotic macrophages were measured by immunofluorescence staining; and the expression of phosphorylated p38 mitogen activated protein kinase (p-p38MAPK) and total p38MAPK was measured by western blotting. SB203580 (5 mg/kg), a special inhibitor of p-p38MAPK, was administrated by abdominal cavity to assess the roles of p38MAPK in HSR-induced ALI. RESULTS Increased B-line score, lung injury score, and W/D ratio indicated the fact of ALI after HSR. Twelve hours post-HSR, CORM-3 administration significantly decreased the B-line score, lung injury score, W/D ratio, apoptotic and pyroptotic macrophages, and the expressions of p-p38MAPK. Further, SB203580 not only reduced HSR-induced ALI, but also enhanced the protective effects of CORM-3 against ALI. CONCLUSION We identified the protective effects of CORM-3 against HSR-induced ALI. The mechanism might be related to the inhibition of p38MAPK signaling pathway in lung macrophages.
Collapse
|
16
|
Gašperšič J, Videtič Paska A. Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumour cells in clinical practice. Biochem Med (Zagreb) 2020; 30:030504. [PMID: 32774122 PMCID: PMC7394254 DOI: 10.11613/bm.2020.030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Personalized medicine is a developing field of medicine that has gained in importance in recent decades. New diagnostic tests based on the analysis of circulating cell-free DNA (cfDNA) were developed as a tool of diagnosing different cancer types. By detecting the subpopulation of mutated DNA from cancer cells, it is possible to detect the presence of a specific tumour in early stages of the disease. Mutation analysis is performed by quantitative polymerase chain reaction (qPCR) or the next generation sequencing (NGS), however, cfDNA protocols need to be modified carefully in preanalytical, analytical, and postanalytical stages. To further improve treatment of cancer the Food and Drug Administration approved more than 20 companion diagnostic tests that combine cancer drugs with highly efficient genetic diagnostic tools. Tools detect mutations in the DNA originating from cancer cells directly through the subpopulation of cfDNA, the circular tumour DNA (ctDNA) analysis or with visualization of cells through intracellular DNA probes. A large number of ctDNA tests in clinical studies demonstrate the importance of new findings in the field of cancer diagnosis. We describe the innovations in personalized medicine: techniques for detecting ctDNA and genomic DNA (gDNA) mutations approved Food and Drug Administration companion genetic diagnostics, candidate genes for assembling the cancer NGS panels, and a brief mention of the multitude of cfDNA currently in clinical trials. Additionally, an overview of the development steps of the diagnostic tools will refresh and expand the knowledge of clinics and geneticists for research opportunities beyond the development phases.
Collapse
Affiliation(s)
- Jernej Gašperšič
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
18
|
Sun Y, Bandi M, Lofton T, Smith M, Bristow CA, Carugo A, Rogers N, Leonard P, Chang Q, Mullinax R, Han J, Shi X, Seth S, Meyers BA, Miller M, Miao L, Ma X, Feng N, Giuliani V, Geck Do M, Czako B, Palmer WS, Mseeh F, Asara JM, Jiang Y, Morlacchi P, Zhao S, Peoples M, Tieu TN, Warmoes MO, Lorenzi PL, Muller FL, DePinho RA, Draetta GF, Toniatti C, Jones P, Heffernan TP, Marszalek JR. Functional Genomics Reveals Synthetic Lethality between Phosphogluconate Dehydrogenase and Oxidative Phosphorylation. Cell Rep 2020; 26:469-482.e5. [PMID: 30625329 DOI: 10.1016/j.celrep.2018.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023] Open
Abstract
The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo. Mechanistically, PGD inhibition blocks glycolysis, suppresses reductive carboxylation of glutamine, and increases the NADP+/NADPH ratio to disrupt redox homeostasis. Furthermore, in the OXPHOS-proficient context, blocking OXPHOS using the small-molecule inhibitor IACS-010759 enhances sensitivity to PGD inhibition in vitro and in vivo. Together, our study reveals a dependency on PGD in OXPHOS-deficient tumors that might inform therapeutic intervention in specific patient populations.
Collapse
Affiliation(s)
- Yuting Sun
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Madhavi Bandi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy Lofton
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda Smith
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher A Bristow
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Norma Rogers
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Leonard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Chang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Mullinax
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Han
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahil Seth
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brooke A Meyers
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meredith Miller
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lili Miao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyan Ma
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ningping Feng
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Virginia Giuliani
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Czako
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Faika Mseeh
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yongying Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pietro Morlacchi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuping Zhao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Peoples
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc O Warmoes
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Eduati F, Jaaks P, Wappler J, Cramer T, Merten CA, Garnett MJ, Saez‐Rodriguez J. Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol 2020; 16:e8664. [PMID: 32073727 PMCID: PMC7029724 DOI: 10.15252/msb.20188664] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating such models for patients, in particular for solid malignancies, is challenging. A major hurdle to build these models is the limited material available that precludes the generation of large-scale perturbation data. Here, we present an approach that couples ex vivo high-throughput screenings of cancer biopsies using microfluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We used the resulting models to investigate heterogeneity in pancreatic cancer patients, showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters reflected well the different tumor stages. Finally, we used our dynamic models to efficaciously predict new personalized combinatorial treatments. Our results suggest that our combination of microfluidic experiments and mathematical model can be a novel tool toward cancer precision medicine.
Collapse
Affiliation(s)
- Federica Eduati
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Jessica Wappler
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
| | - Thorsten Cramer
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
| | | | - Julio Saez‐Rodriguez
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Institute for Computational BiomedicineFaculty of MedicineBIOQUANT‐CenterHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
20
|
Jin XY, Chen H, Li DD, Li AL, Wang WY, Gu W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib Med Chem 2019; 34:955-972. [PMID: 31072147 PMCID: PMC6522941 DOI: 10.1080/14756366.2019.1605364] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, a series of novel quinoline derivatives of ursolic acid (UA) bearing hydrazide, oxadiazole, or thiadiazole moieties were designed, synthesised, and screened for their in vitro antiproliferative activities against three cancer cell lines (MDA-MB-231, HeLa, and SMMC-7721). A number of compounds showed significant activity against at least one cell line. Among them, compound 4d exhibited the most potent activity against three cancer cell lines with IC50 values of 0.12 ± 0.01, 0.08 ± 0.01, and 0.34 ± 0.03 μM, respectively. In particular, compound 4d could induce the apoptosis of HeLa cells, arrest cell cycle at the G0/G1 phase, elevate intracellular reactive oxygen species level, and decrease mitochondrial membrane potential. In addition, compound 4d could significantly inhibit MEK1 kinase activity and impede Ras/Raf/MEK/ERK transduction pathway. Therefore, compound 4d may be a potential anticancer agent and a promising lead worthy of further investigation.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Dong-Dong Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
21
|
Tsubaki M, Takeda T, Noguchi M, Jinushi M, Seki S, Morii Y, Shimomura K, Imano M, Satou T, Nishida S. Overactivation of Akt Contributes to MEK Inhibitor Primary and Acquired Resistance in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11121866. [PMID: 31769426 PMCID: PMC6966459 DOI: 10.3390/cancers11121866] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
RAS and BRAF-mutated colorectal cancers are associated with resistance to chemotherapy and poor prognosis, highlighting the need for new therapeutic strategies. Although these cancers sometimes respond to mitogen activated protein kinase kinase (MEK) inhibitor treatment, they often acquire resistance via mechanisms, which are poorly understood. Here, we investigated the mechanism of MEK inhibitor resistance in primary- and acquired-resistant cells. Cell viability was examined using the trypan blue dye exclusion assay. Protein expression was analyzed by western blotting. Somatic mutations in colorectal cancer cells were investigated using the polymerase chain reaction array. PD0325901 and trametinib induced cell death in LoVo and Colo-205 cells but not in DLD-1 and HT-29 cells, which have a PIK3CA mutation constitutively activating Akt and NF-κB. Treatment with PD0325901 and trametinib suppressed ERK1/2 activation in all four cell lines but only induced Akt and NF-κB activation in DLD-1 and HT-29 cells. Inhibition of Akt but not NF-κB, overcame MEK inhibitor resistance in DLD-1 and HT-29 cells. Acquired-resistant LoVo/PR, Colo-205/PR and LoVo/TR cells have constitutively active Akt due to a M1043V mutation in the kinase activation loop of PIK3CA and Akt inhibitor resensitized these cells to MEK inhibitor. These results demonstrate that the overactivation of Akt plays a critical role in MEK inhibitor primary and acquired resistance and implicate combined Akt/MEK inhibition as a potentially useful treatment for RAS/BRAF-mutated colorectal cancer.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Masaki Noguchi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Minami Jinushi
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Shiori Seki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
| | - Yuusuke Morii
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Kazunori Shimomura
- Department of Phamacy, Municipal Ikeda Hospital, Ikeda, Osaka 563-8510, Japan;
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan;
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-0014, Japan.;
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan; (M.T.); (T.T.); (M.N.); (M.J.); (S.S.); (Y.M.)
- Correspondence:
| |
Collapse
|
22
|
Chen F, Alphonse MP, Liu Y, Liu Q. Targeting Mutant KRAS for Anticancer Therapy. Curr Top Med Chem 2019; 19:2098-2113. [DOI: 10.2174/1568026619666190902151307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
:Over the past decades, designing therapeutic strategies to target KRAS-mutant cancers, which is one of the most frequent mutant oncogenes among all cancer types, have proven unsuccessful regardless of many concerted attempts. There are key challenges for KRAS-mutant anticancer therapy, as the complex cellular processes involved in KRAS signaling has present. Herein, we highlight the emerging therapeutic approaches for inhibiting KRAS signaling and blocking KRAS functions, in hope to serve as a more effective guideline for future development of therapeutics.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79416, United States
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States
| | - Yan Liu
- Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States
| |
Collapse
|
23
|
High-throughput sequencing of circRNAs reveals novel insights into mechanisms of nigericin in pancreatic cancer. BMC Genomics 2019; 20:716. [PMID: 31533620 PMCID: PMC6749718 DOI: 10.1186/s12864-019-6032-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our previous study had proved that nigericin could reduce colorectal cancer cell proliferation in dose- and time-dependent manners by targeting Wnt/β-catenin signaling. To better elucidate its potential anti-cancer mechanism, two pancreatic cancer (PC) cell lines were exposed to increasing concentrations of nigericin for different time periods, and the high-throughput sequencing was performed to explore the circRNA expression profiles after nigericin exposure on pancreatic cancer (PC) cells. RESULTS In this study, a total of 183 common differentially expressed circRNAs were identified, and the reliability and validity of the sequencing data were verified by the PCR analysis. According to the parental genes of circRNAs, the GO analysis was performed to predict the most enriched terms in the biological process, cellular components and molecular functions. The KEGG analysis and pathway-pathway network exhibited the potential signal pathways and their regulatory relationships. Meanwhile, a potential competing endogenous RNA (ceRNA) mechanism through a circRNA-miRNA-mRNA network was applied to annotate potential functions of these common differentially expressed circRNAs, and these predicted miRNAs or mRNAs might be involved in nigericin damage. CONCLUSIONS By the bioinformatics method, our data will facilitate the understanding of nigericin in PC cells, and provide new insight into the molecular mechanism of nigericin toward cancer cells. This is the first report that discusses the potential functions of nigericin in cancers through the bioinformatics method. Our data will facilitate the understanding of nigericin-mediated anti-cancer mechanisms in PC.
Collapse
|
24
|
Saliani M, Jalal R, Ahmadian MR. From basic researches to new achievements in therapeutic strategies of KRAS-driven cancers. Cancer Biol Med 2019; 16:435-461. [PMID: 31565476 PMCID: PMC6743616 DOI: 10.20892/j.issn.2095-3941.2018.0530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Among the numerous oncogenes involved in human cancers, KRAS represents the most studied and best characterized cancer-related genes. Several therapeutic strategies targeting oncogenic KRAS (KRAS onc ) signaling pathways have been suggested, including the inhibition of synthetic lethal interactions, direct inhibition of KRAS onc itself, blockade of downstream KRAS onc effectors, prevention of post-translational KRAS onc modifications, inhibition of the induced stem cell-like program, targeting of metabolic peculiarities, stimulation of the immune system, inhibition of inflammation, blockade of upstream signaling pathways, targeted RNA replacement, and oncogene-induced senescence. Despite intensive and continuous efforts, KRAS onc remains an elusive target for cancer therapy. To highlight the progress to date, this review covers a collection of studies on therapeutic strategies for KRAS published from 1995 to date. An overview of the path of progress from earlier to more recent insights highlight novel opportunities for clinical development towards KRASonc-signaling targeted therapeutics.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Research Cell and Molecular Biology, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Zoeller JJ, Vagodny A, Taneja K, Tan BY, O'Brien N, Slamon DJ, Sampath D, Leverson JD, Bronson RT, Dillon DA, Brugge JS. Neutralization of BCL-2/X L Enhances the Cytotoxicity of T-DM1 In Vivo. Mol Cancer Ther 2019; 18:1115-1126. [PMID: 30962322 PMCID: PMC6758547 DOI: 10.1158/1535-7163.mct-18-0743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/08/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
One of the most recent advances in the treatment of HER2+ breast cancer is the development of the antibody-drug conjugate, T-DM1. T-DM1 has proven clinical benefits for patients with advanced and/or metastatic breast cancer who have progressed on prior HER2-targeted therapies. However, T-DM1 resistance ultimately occurs and represents a major obstacle in the effective treatment of this disease. Because anti-apoptotic BCL-2 family proteins can affect the threshold for induction of apoptosis and thus limit the effectiveness of the chemotherapeutic payload, we examined whether inhibition of BCL-2/XL would enhance the efficacy of T-DM1 in five HER2-expressing patient-derived breast cancer xenograft models. Inhibition of BCL-2/XL via navitoclax/ABT-263 significantly enhanced the cytotoxicity of T-DM1 in two of three models derived from advanced and treatment-exposed metastatic breast tumors. No additive effects of combined treatment were observed in the third metastatic tumor model, which was highly sensitive to T-DM1, as well as a primary treatment-exposed tumor, which was refractory to T-DM1. A fifth model, derived from a treatment naïve primary breast tumor, was sensitive to T-DM1 but markedly benefited from combination treatment. Notably, both PDXs that were highly responsive to the combination therapy expressed low HER2 protein levels and lacked ERBB2 amplification, suggesting that BCL-2/XL inhibition can enhance sensitivity of tumors with low HER2 expression. Toxicities associated with combined treatments were significantly ameliorated with intermittent ABT-263 dosing. Taken together, these studies provide evidence that T-DM1 cytotoxicity could be significantly enhanced via BCL-2/XL blockade and support clinical investigation of this combination beyond ERBB2-amplified and/or HER2-overexpressed tumors.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Aleksandr Vagodny
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Krishan Taneja
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Benjamin Y Tan
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Dennis J Slamon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Deepak Sampath
- Translational Oncology, Genentech, San Francisco, California
| | | | | | - Deborah A Dillon
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Joan S Brugge
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Iavarone C, Zervantonakis IK, Selfors LM, Palakurthi S, Liu JF, Drapkin R, Matulonis UA, Hallberg D, Velculescu VE, Leverson JD, Sampath D, Mills GB, Brugge JS. Combined MEK and BCL-2/X L Inhibition Is Effective in High-Grade Serous Ovarian Cancer Patient-Derived Xenograft Models and BIM Levels Are Predictive of Responsiveness. Mol Cancer Ther 2019; 18:642-655. [PMID: 30679390 PMCID: PMC6399746 DOI: 10.1158/1535-7163.mct-18-0413] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
Most patients with late-stage high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy but inevitably relapse and develop resistance, highlighting the need for novel therapies to improve patient outcomes. The MEK/ERK pathway is activated in a large subset of HGSOC, making it an attractive therapeutic target. Here, we systematically evaluated the extent of MEK/ERK pathway activation and efficacy of pathway inhibition in a large panel of well-annotated HGSOC patient-derived xenograft models. The vast majority of models were nonresponsive to the MEK inhibitor cobimetinib (GDC-0973) despite effective pathway inhibition. Proteomic analyses of adaptive responses to GDC-0973 revealed that GDC-0973 upregulated the proapoptotic protein BIM, thus priming the cells for apoptosis regulated by BCL2-family proteins. Indeed, combination of both MEK inhibitor and dual BCL-2/XL inhibitor (ABT-263) significantly reduced cell number, increased cell death, and displayed synergy in vitro in most models. In vivo, GDC-0973 and ABT-263 combination was well tolerated and resulted in greater tumor growth inhibition than single agents. Detailed proteomic and correlation analyses identified two subsets of responsive models-those with high BIM at baseline that was increased with MEK inhibition and those with low basal BIM and high pERK levels. Models with low BIM and low pERK were nonresponsive. Our findings demonstrate that combined MEK and BCL-2/XL inhibition has therapeutic activity in HGSOC models and provide a mechanistic rationale for the clinical evaluation of this drug combination as well as the assessment of the extent to which BIM and/or pERK levels predict drug combination effectiveness in chemoresistant HGSOC.
Collapse
Affiliation(s)
- Claudia Iavarone
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Laura M Selfors
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Institute for Applied Cancer Res, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ronny Drapkin
- Penn Ovarian Cancer Res Center, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Deepak Sampath
- Translational Oncology, Genentech, South San Francisco, California
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Liu J, Wang S, Tian S, He Y, Lou H, Yang Z, Kong Y, Cao X. Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr Res 2018; 62:1323. [PMID: 30574046 PMCID: PMC6294833 DOI: 10.29219/fnr.v62.1323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Breast cancer is one of the most commonly diagnosed cancers in women, with a high mortality rate. OBJECTIVE In the present study, we evaluated the anticancer effect of nobiletin, a flavone glycoside, on the breast cancer cell line MCF-7. RESULT Cell viability and proliferation decreased and cell morphology changed from diamond to round after being treated with nobiletin. Nobiletin induced apoptosis of breast cancer MCF-7 cells via regulating the protein expression of Bax, Bcl-2, cleaved caspase-3, and p53. The expression of Bcl-2 decreased, while the expression of Bax and p53 increased in MCF-7 cells treated with nobiletin. Meanwhile, nobiletin inhibited cell migration by downregulating the protein expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, phosphorylation of p38 was increased, and the translocation of p65 and nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus was decreased, which suggested that the anticancer effects of nobiletin might at least partially rely on mediating the p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and Nrf2 pathways in MCF-7 breast cancer cells. CONCLUSION AND RECOMMENDATION Our data showed that nobiletin was a potential antitumor drug, and it provided some experimental basis for the clinical application of tumor therapy.
Collapse
Affiliation(s)
- Jianli Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Shuai Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Siqi Tian
- School of Life Science, Liaoning University, Shenyang, China
| | - Yin He
- School of Life Science, Liaoning University, Shenyang, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhijun Yang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yuchi Kong
- School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
28
|
Clinical update on K-Ras targeted therapy in gastrointestinal cancers. Crit Rev Oncol Hematol 2018; 130:78-91. [DOI: 10.1016/j.critrevonc.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
|
29
|
Burmi RS, Maginn EN, Gabra H, Stronach EA, Wasan HS. Combined inhibition of the PI3K/mTOR/MEK pathway induces Bim/Mcl-1-regulated apoptosis in pancreatic cancer cells. Cancer Biol Ther 2018; 20:21-30. [PMID: 30261145 PMCID: PMC6343713 DOI: 10.1080/15384047.2018.1504718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) progression and chemotherapy insensitivity have been associated with aberrant PI3K/mTOR/MEK signalling. However, cell death responses activated by inhibitors of these pathways can differ – contextually varying with tumour genetic background. Here, we demonstrate that combining the dual PI3K/mTOR inhibitor PF5212384 (PF384) and MEK inhibitor PD325901 (PD901) more effectively induces apoptosis compared with either agent alone, independent of KRAS mutational status in PDAC cell lines. Additionally, a non-caspase dependent decrease in cell viability upon PF384 treatment was observed, and may be attributed to autophagy and G0/G1 cell cycle arrest. Using reverse phase protein arrays, we identify key molecular events associated with the conversion of cytostatic responses (elicited by single inhibitor treatments) into a complete cell death response when PF384 and PD901 are combined. This response was also independent of KRAS mutation, occurring in both BxPC3 (KRAS wildtype) and MIA-PaCa-2 (KRASG12C mutated) cells. In both cell lines, Bim expression increased in response to PF384/PD901 treatment (by 60% and 48%, respectively), while siRNA-mediated silencing of Bim attenuated the apoptosis induced by combination treatment. In parallel, Mcl-1 levels decreased by 36% in BxPC3, and 30% in MIA-PaCa-2 cells. This is consistent with a functional role for Mcl-1, and siRNA-mediated silencing enhanced apoptosis in PF384/PD901-treated MIA-PaCa-2 cells, whilst Mcl-1 overexpression decreased apoptosis induction by 24%. Moreover, a novel role was identified for PDCD4 loss in driving the apoptotic response to PF384/PD901 in BxPC3 and MIA-PaCa-2 cell lines. Overall, our data indicates PF384/PD901 co-treatment activates the same apoptotic mechanism in wild-type or KRAS mutant PDAC cells.
Collapse
Affiliation(s)
- Rajpal S Burmi
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Elaina N Maginn
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Hani Gabra
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom.,b Clinical Discovery Unit , Early Clinical Development, AstraZeneca , Cambridge , United Kingdom
| | - Euan A Stronach
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Harpreet S Wasan
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| |
Collapse
|
30
|
Nangia V, Siddiqui FM, Caenepeel S, Timonina D, Bilton SJ, Phan N, Gomez-Caraballo M, Archibald HL, Li C, Fraser C, Rigas D, Vajda K, Ferris LA, Lanuti M, Wright CD, Raskin KA, Cahill DP, Shin JH, Keyes C, Sequist LV, Piotrowska Z, Farago AF, Azzoli CG, Gainor JF, Sarosiek KA, Brown SP, Coxon A, Benes CH, Hughes PE, Hata AN. Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Discov 2018; 8:1598-1613. [PMID: 30254092 DOI: 10.1158/2159-8290.cd-18-0277] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Varuna Nangia
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Faria M Siddiqui
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Sean Caenepeel
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Daria Timonina
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Samantha J Bilton
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Nicole Phan
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | | | - Hannah L Archibald
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Chendi Li
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diamanda Rigas
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Kristof Vajda
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Lorin A Ferris
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Cameron D Wright
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin A Raskin
- Department of Orthopaedics, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Colleen Keyes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lecia V Sequist
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Zofia Piotrowska
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anna F Farago
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Christopher G Azzoli
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Justin F Gainor
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sean P Brown
- Department of Medicinal Chemistry, Amgen, Thousand Oaks, California
| | - Angela Coxon
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Paul E Hughes
- Department of Oncology Research, Amgen, Thousand Oaks, California
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts. .,Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 2018; 24:3834-3848. [PMID: 30228778 PMCID: PMC6141340 DOI: 10.3748/wjg.v24.i34.3834] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo- and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo- and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibody-drug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.
Collapse
Affiliation(s)
- Kevin Van der Jeught
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Yu-Jing Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiong-Bin Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
32
|
Dompe N, Klijn C, Watson SA, Leng K, Port J, Cuellar T, Watanabe C, Haley B, Neve R, Evangelista M, Stokoe D. A CRISPR screen identifies MAPK7 as a target for combination with MEK inhibition in KRAS mutant NSCLC. PLoS One 2018; 13:e0199264. [PMID: 29912950 PMCID: PMC6005515 DOI: 10.1371/journal.pone.0199264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Mutant KRAS represents one of the most frequently observed oncogenes in NSCLC, yet no therapies are approved for tumors that express activated KRAS variants. While there is strong rationale for the use of MEK inhibitors to treat tumors with activated RAS/MAPK signaling, these have proven ineffective clinically. We therefore implemented a CRISPR screening approach to identify novel agents to sensitize KRAS mutant NSCLC cells to MEK inhibitor treatment. This approach identified multiple components of the canonical RAS/MAPK pathway consistent with previous studies. In addition, we identified MAPK7 as a novel, strong hit and validated this finding using multiple orthogonal approaches including knockdown and pharmacological inhibition. We show that MAPK7 inhibition attenuates the re-activation of MAPK signaling occurring following long-term MEK inhibition, thereby illustrating that MAPK7 mediates pathway reactivation in the face of MEK inhibition. Finally, genetic knockdown of MAPK7 combined with the MEK inhibitor cobimetinib in a mutant KRAS NSCLC xenograft model to mediate improved tumor growth inhibition. These data highlight that MAPK7 represents a promising target for combination treatment with MEK inhibition in KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Nicholas Dompe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States of America
| | - Sara A. Watson
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Katherine Leng
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Jenna Port
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Colin Watanabe
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States of America
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, United States of America
| | - Richard Neve
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - Marie Evangelista
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
| | - David Stokoe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras. Oncotarget 2018; 7:69804-69815. [PMID: 27634878 PMCID: PMC5340114 DOI: 10.18632/oncotarget.12001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated activation of the mitogen-activated protein kinase (MAPK) pathway in a series of romidepsin-selected T-cell lymphoma cell lines as a mechanism of resistance to the histone deacetylase inhibitor (HDI), romidepsin. As Ras mutation leads to activation of both the MAPK and the phosphoinositide 3-kinase (PI3K) pathway, we examined whether combining romidepsin with small molecule pathway inhibitors would lead to increased apoptosis in cancers harboring Ras mutations. We treated 18 Ras mutant or wild-type cell lines with romidepsin in the presence of a MEK inhibitor (PD-0325901) and/or an AKT inhibitor (MK-2206) and examined apoptosis by flow cytometry. A short-term treatment schedule of romidepsin (25 ng/ml for 6 h) was used to more closely model clinical administration. Romidepsin in combination with a MEK and an AKT inhibitor induced apoptosis preferentially in cells harboring mutant versus wild-type Ras (69.1% vs. 21.1%, p < 0.0001). Similar results were found in a subset of cell lines when belinostat was combined with the MEK and AKT inhibitors and when romidepsin was combined with the dual extracellular signaling-related kinase (ERK)/PI3K inhibitor, D-87503, which inhibited both the MAPK and PI3K pathways at 5–10 μM. The observed apoptosis was caspase-dependent and required Bak and Bax expression. Cells with wild-type or mutant Ras treated with romidepsin alone or in combination with the MEK inhibitor displayed increased expression of proapoptotic Bim. We thus conclude that cancers bearing Ras mutations, such as pancreatic cancer, can be targeted by the combination of an HDI and a dual inhibitor of the MAPK and PI3K pathways.
Collapse
|
34
|
Lu C, Yang D, Sabbatini ME, Colby AH, Grinstaff MW, Oberlies NH, Pearce C, Liu K. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18:149. [PMID: 29409480 PMCID: PMC5801751 DOI: 10.1186/s12885-018-4061-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/29/2018] [Indexed: 01/18/2023] Open
Abstract
Background Pancreas ductal adenocarcinoma (PDAC) has the most dismal prognosis among all human cancers since it is highly resistant to chemotherapy, radiotherapy and immunotherapy. The anticipated consequence of all therapies is induction of tumor apoptosis. The highly resistance nature of PDACs to all therapies suggests that the intrinsic tumor cell factors, likely the deregulated apoptosis pathway, are key mechanisms underlying PDAC non-response to these therapies, rather than the therapeutic agents themselves. The aim of this study is to test the hypothesis that epigenetic dysregulation of apoptosis mediators underlies PDAC resistance to gemcitabine, the standard chemotherapy for human PDAC. Methods PDAC cells were analyzed for apoptosis sensitivity in the presence of a selective epigenetic inhibitor. The epigenetic regulation of apoptosis regulators was determined by Western Blotting and quantitative PCR. The specific epigenetic modification of apoptosis regulator promoter chromatin was determined by chromatin immunoprecipitation in PDAC cells. Results Inhibition of histone methyltransferase (HMTase) by a selective HMTase inhibitor, verticillin A, significantly increased human PDAC cell sensitivity to gemcitabine-induced growth suppression. Verticillin A treatment decreased FLIP, Mcl-1, Bcl-x and increased Bak, Bax and Bim protein level in the tumor cells, resulting in activation of caspases, elevated cytochrome C release and increased apoptosis as determined by upregulated PARP cleavage in tumor cells. Analysis of human PDAC specimens indicated that the expression levels of anti-apoptotic mediators Bcl-x, Mcl-1, and FLIP were significantly higher, whereas the expression levels of pro-apoptotic mediators Bim, Bak and Bax were dramatically lower in human PDAC tissues as compared to normal pancreas. Verticillin A downregulated H3K4me3 levels at the BCL2L1, CFLAR and MCL-1 promoter to decrease Bcl-x, FLIP and Mcl-1 expression level, and inhibited H3K9me3 levels at the BAK1, BAX and BCL2L11 promoter to upregulate Bak, Bax and Bim expression level. Conclusion We determined that PDAC cells use H3K4me3 to activate Bcl-x, FLIP and Mcl-1, and H3K9me3 to silence Bak, Bax and Bim to acquire an apoptosis-resistant phenotype. Therefore, selective inhibition of H3K4me3 and H3K9me3 is potentially an effective approach to overcome PDAC cells resistance to gemcitabine.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA. .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, 30904, USA
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| |
Collapse
|
35
|
Leonard JT, Rowley JSJ, Eide CA, Traer E, Hayes-Lattin B, Loriaux M, Spurgeon SE, Druker BJ, Tyner JW, Chang BH. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med 2017; 8:354ra114. [PMID: 27582059 DOI: 10.1126/scitranslmed.aaf5309] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) remains a challenge. Although the addition of targeted tyrosine kinase inhibitors (TKIs) to standard cytotoxic therapy has greatly improved upfront treatment, treatment-related morbidity and mortality remain high. TKI monotherapy provides only temporary responses and renders patients susceptible to the development of TKI resistance. Thus, identifying agents that could enhance the activity of TKIs is urgently needed. Recently, a selective inhibitor of B cell lymphoma 2 (BCL-2), ABT-199 (venetoclax), has shown impressive activity against hematologic malignancies. We demonstrate that the combination of TKIs with venetoclax is highly synergistic in vitro, decreasing cell viability and inducing apoptosis in Ph(+)ALL. Furthermore, the multikinase inhibitors dasatinib and ponatinib appear to have the added advantage of inducing Lck/Yes novel tyrosine kinase (LYN)-mediated proapoptotic BCL-2-like protein 11 (BIM) expression and inhibiting up-regulation of antiapoptotic myeloid cell leukemia 1 (MCL-1), thereby potentially overcoming the development of venetoclax resistance. Evaluation of the dasatinib-venetoclax combination for the treatment of primary Ph(+)ALL patient samples in xenografted immunodeficient mice confirmed the tolerability of this drug combination and demonstrated its superior antileukemic efficacy compared to either agent alone. These data suggest that the combination of dasatinib and venetoclax has the potential to improve the treatment of Ph(+)ALL and should be further evaluated for patient care.
Collapse
Affiliation(s)
- Jessica T Leonard
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joelle S J Rowley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Spurgeon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Division of Pediatric Hematology and Oncology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
36
|
Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, Huang S, Sinicrope FA. Targeting CDK1 and MEK/ERK Overcomes Apoptotic Resistance in BRAF-Mutant Human Colorectal Cancer. Mol Cancer Res 2017; 16:378-389. [PMID: 29233910 DOI: 10.1158/1541-7786.mcr-17-0404] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
Abstract
The BRAFV600E mutation occurs in approximately 8% of human colorectal cancers and is associated with therapeutic resistance that is due, in part, to reactivation of MEK/ERK signaling cascade. Recently, pathway analysis identified cyclin-dependent kinase 1 (CDK1) upregulation in a subset of human BRAFV600E colorectal cancers. Therefore, it was determined whether CDK1 antagonism enhances the efficacy of MEK inhibition in BRAFV600E colorectal cancer cells. BRAFV600E colorectal cancer cell lines expressing CDK1 were sensitized to apoptosis upon siRNA knockdown or small-molecule inhibition with RO-3306 (CDK1 inhibitor) or dinaciclib (CDK1, 2, 5, 9 inhibitors). Combination of RO-3306 or dinaciclib with cobimetinib (MEK inhibitor) cooperatively enhanced apoptosis and reduced clonogenic survival versus monotherapy. Cells isogenic or ectopic for BRAFV600E displayed resistance to CDK1 inhibitors, as did cells with ectopic expression of constitutively active MEK CDK1 inhibitors induced a CASP8-dependent apoptosis shown by caspase-8 restoration in deficient NB7 cells that enhanced dinaciclib-induced CASP3 cleavage. CDK inhibitors suppressed pro-CASP8 phosphorylation at S387, as shown by drug withdrawal, which restored p-S387 and increased mitosis. In a colorectal cancer xenograft model, dinaciclib plus cobimetinib produced significantly greater tumor growth inhibition in association with a caspase-dependent apoptosis versus either drug alone. The Cancer Genome Atlas (TCGA) transcriptomic dataset revealed overexpression of CDK1 in human colorectal cancers versus normal colon. Together, these data establish CDK1 as a novel mediator of apoptosis resistance in BRAFV600E colorectal cancers whose combined targeting with a MEK/ERK inhibitor represents an effective therapeutic strategy.Implications: CDK1 is a novel mediator of apoptosis resistance in BRAFV600E colorectal cancers whose dual targeting with a MEK inhibitor may be therapeutically effective. Mol Cancer Res; 16(3); 378-89. ©2017 AACR.
Collapse
Affiliation(s)
- Peng Zhang
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Hisato Kawakami
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengbing Huang
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Frank A Sinicrope
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota. .,Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
37
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
38
|
Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, Klein M, Held MA, Lee JW, Koo JS, Hatzis C, Hochster HS, Stern DF. Combinatorial Screening of Pancreatic Adenocarcinoma Reveals Sensitivity to Drug Combinations Including Bromodomain Inhibitor Plus Neddylation Inhibitor. Mol Cancer Ther 2017; 16:1041-1053. [PMID: 28292938 PMCID: PMC5457712 DOI: 10.1158/1535-7163.mct-16-0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating KRAS mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein. Instead, inhibition of downstream signaling and other targets will be necessary to effectively manage PDAC. Here, we describe a tiered single-agent and combination compound screen to identify targeted agents that impair growth of a panel of PDAC cell lines. Several of the combinations identified from the screen were further validated for efficacy and mechanism. Combination of the bromodomain inhibitor JQ1 and the neddylation inhibitor MLN4294 altered the production of reactive oxygen species in PDAC cells, ultimately leading to defects in the DNA damage response. Dual bromodomain/neddylation blockade inhibited in vivo growth of PDAC cell line xenografts. Overall, this work revealed novel combinatorial regimens, including JQ1 plus MLN4294, which show promise for the treatment of RAS-driven PDAC. Mol Cancer Ther; 16(6); 1041-53. ©2017 AACR.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - James T Platt
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Means
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Pinar Iyidogan
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Michael Klein
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Matthew A Held
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jong Woo Lee
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Christos Hatzis
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Howard S Hochster
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
39
|
Kasai S, Sasaki T, Watanabe A, Nishiya M, Yasuhira S, Shibazaki M, Maesawa C. Bcl-2/Bcl-x L inhibitor ABT-737 sensitizes pancreatic ductal adenocarcinoma to paclitaxel-induced cell death. Oncol Lett 2017; 14:903-908. [PMID: 28693250 DOI: 10.3892/ol.2017.6211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignant disease that is resistant to various chemotherapeutic agents and commonly relapses. Efficient elimination of metastasized PDA is critical for a positive post-surgical treatment outcome. The present study analyzed the effect of the B-cell lymphoma-2 (Bcl-2)/B-cell lymphoma extra-large (Bcl-xL) inhibitor, ABT-737, on paclitaxel-induced PDA cell death. A total of 8 PDA cell lines were subjected to immunoblotting to compare the expression of Bcl-2/Bcl-xL and other factors associated with taxane resistance, including myeloid cell leukemia 1 and βIII-tubulin (TUBB3). The viability of PDA cells was analyzed following treatment with paclitaxel alone or a combination treatment with ABT-737 and paclitaxel. Treatment with the ABT-737/paclitaxel combination induced PDA cell death at a lower concentration of paclitaxel compared with paclitaxel alone. In addition, the viable cell population at the saturation point of paclitaxel was also decreased by co-treatment with ABT-737. ABT-737 lowered the half maximal inhibitory concentration (IC50) by >2-fold in PDA cells with high Bcl-2/Bcl-xL expression, but not in PDA cells with low Bcl-2/Bcl-xL expression and high TUBB3 expression. Knockdown of Bcl-xL lowered the IC50 of paclitaxel, but knockdown of TUBB3 did not. ABT-737 sensitized PDA to paclitaxel-induced cell death, and Bcl-xL expression was a key determinant of its sensitivity. ABT-737 is potential candidate for combination chemotherapy of PDA with high Bcl-xL expression levels.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Takuya Sasaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.,Department of Pharmacy, Iwate Medical University Hospital, Morioka, Iwate 020-0029, Japan
| | - Ayano Watanabe
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Masao Nishiya
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
40
|
Yokoyama T, Kohn EC, Brill E, Lee JM. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol 2017; 50:1064-1074. [PMID: 28350129 PMCID: PMC5363883 DOI: 10.3892/ijo.2017.3914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of our study was to evaluate possible synergistic cytotoxic effects of the combination treatment with the BH3-mimetic ABT-263 and the PARP inhibitor BMN 673 in high-grade serous ovarian cancer (HGSOC) cells using clinically achievable concentrations of each drug. In vitro cytotoxic effects of ABT-263 and BMN 673 were assessed by XTT assay in three HGSOC cell lines: OVCAR3, OVCAR8, and OV90 cells. Combination index values and synergy/antagonism volumes were used to determine synergy. The drug effects on DNA damage accumulation, cell cycle progression, apoptosis induction, and expression levels of Bcl-2 family proteins were examined to dissect molecular mechanisms. The combination treatment synergistically decreased cell viability in a concentration- and time-dependent manner in all cell lines; combination index values were <0.9 and synergy/antagonism volumes were >100 after 72 h of treatment. Clinically achievable concentrations of ABT-263 2 µM and BMN 673 25 nM were used to investigate mechanisms. No increase in γ-H2AX foci formation was observed with addition of ABT-263 to BMN 673 treatment. The combination treatment increased the sub-G1 and Annexin V-positive cell populations after 48 h compared with the control and each monotherapy. It also induced greater caspase-3/7 activity and PARP cleavage. ABT-263 alone and in combination with BMN 673 induced expression levels of Bim, a pro-apoptotic protein. In conclusion, the ABT-263 and BMN 673 combination resulted in synergistic cytotoxic effects against HGSOC cells through greater induction of apoptosis. This may be a novel therapeutic strategy for HGSOC.
Collapse
Affiliation(s)
- Takuhei Yokoyama
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Elise C. Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
41
|
Pétigny-Lechartier C, Duboc C, Jebahi A, Louis MH, Abeilard E, Denoyelle C, Gauduchon P, Poulain L, Villedieu M. The mTORC1/2 Inhibitor AZD8055 Strengthens the Efficiency of the MEK Inhibitor Trametinib to Reduce the Mcl-1/[Bim and Puma] ratio and to Sensitize Ovarian Carcinoma Cells to ABT-737. Mol Cancer Ther 2016; 16:102-115. [DOI: 10.1158/1535-7163.mct-16-0342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 11/16/2022]
|
42
|
Li C, Li N, Liu X, Zhang EY, Sun Y, Masuda K, Li J, Sun J, Morrison T, Li X, Chen Y, Wang J, Karim NA, Zhang Y, Blenis J, Reginato MJ, Henske EP, Yu JJ. Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis. JCI Insight 2016; 1:e86629. [PMID: 27882343 PMCID: PMC5111508 DOI: 10.1172/jci.insight.86629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient-derived cells' resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient-derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient-derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM.
Collapse
Affiliation(s)
- Chenggang Li
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Na Li
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
- The First Affiliated Hospital of Zhengzhou University, Department of Oncology, Zhengzhou, Henan, China
| | - Xiaolei Liu
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Erik Y. Zhang
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Yang Sun
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Kouhei Masuda
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Jing Li
- Harvard Medical School, Department of Cell Biology, Boston, Massachusetts, USA
| | - Julia Sun
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
| | - Tasha Morrison
- Boston University School of Medicine, Department Molecular and Translational Medicine, Boston, Massachusetts, USA
| | - Xiangke Li
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
- The First Affiliated Hospital of Zhengzhou University, Department of Oncology, Zhengzhou, Henan, China
| | - Yuanguang Chen
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
- The First Affiliated Hospital of Guangzhou Medical University, Department of Gastrointestinal Surgery, Guangzhou, China
| | - Jiang Wang
- University of Cincinnati College of Medicine, Department of Pathology and Lab Medicine, Cincinnati, OH, USA
| | - Nagla A. Karim
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, Cincinnati, Ohio, USA
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Biotherapy Center and Department of Oncology, Zhengzhou, Henan, China
| | - John Blenis
- Harvard Medical School, Department of Cell Biology, Boston, Massachusetts, USA
- Weill Cornell Medicine Sandra and Edward Meyer Cancer Center, New York, New York, USA
| | - Mauricio J. Reginato
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Elizabeth P. Henske
- Brigham and Women’s Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Jane J. Yu
- University of Cincinnati College of Medicine, Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Cincinnati, Ohio, USA
- The First Affiliated Hospital of Zhengzhou University, Department of Oncology, Zhengzhou, Henan, China
| |
Collapse
|
43
|
Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MVD, Egan DA, Bernards R, Clevers H, Bos JL, Snippert HJ. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife 2016; 5. [PMID: 27845624 PMCID: PMC5127645 DOI: 10.7554/elife.18489] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) organoids can be derived from almost all CRC patients and therefore capture the genetic diversity of this disease. We assembled a panel of CRC organoids carrying either wild-type or mutant RAS, as well as normal organoids and tumor organoids with a CRISPR-introduced oncogenic KRAS mutation. Using this panel, we evaluated RAS pathway inhibitors and drug combinations that are currently in clinical trial for RAS mutant cancers. Presence of mutant RAS correlated strongly with resistance to these targeted therapies. This was observed in tumorigenic as well as in normal organoids. Moreover, dual inhibition of the EGFR-MEK-ERK pathway in RAS mutant organoids induced a transient cell-cycle arrest rather than cell death. In vivo drug response of xenotransplanted RAS mutant organoids confirmed this growth arrest upon pan-HER/MEK combination therapy. Altogether, our studies demonstrate the potential of patient-derived CRC organoid libraries in evaluating inhibitors and drug combinations in a preclinical setting.
Collapse
Affiliation(s)
- Carla S Verissimo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - René M Overmeer
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Bas Ponsioen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Jarno Drost
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Mertens
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Bastiaan van Gerwen
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke van der Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marc van de Wetering
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - David A Egan
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Bernards
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Clevers
- Cancer Genomics Netherlands, Utrecht, Netherlands.,Hubrecht Institute - KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes L Bos
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| | - Hugo J Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Cancer Genomics Netherlands, Utrecht, Netherlands
| |
Collapse
|
44
|
Potter DS, Letai A. To Prime, or Not to Prime: That Is the Question. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:131-140. [PMID: 27811212 DOI: 10.1101/sqb.2016.81.030841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial priming is regulated by the B-cell lymphoma 2 (BCL-2) family of proteins and determines a cell's "readiness" for apoptosis. A highly primed cell will undergo apoptosis more easily than an unprimed cell in response to apoptotic stimuli via the intrinsic apoptotic pathway. Priming can be measured via BH3 profiling, which uses BH3 peptides derived from the BH3 domain of pro-apoptotic BH3-only BCL-2 family members to provoke a response from viable mitochondria. BH3 profiling can be performed on tumor cells and can identify mechanisms a cell uses to evade apoptosis and anti-apoptotic dependency to the anti-apoptotic BCL-2 family members. Priming correlates with chemosensitivity of patients in multiple cancers. Therapeutics that enhances priming of patient tumor cells ex vivo could be used to aid therapeutic decisions for patients in the future.
Collapse
Affiliation(s)
- Danielle S Potter
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| | - Anthony Letai
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
45
|
Werner K, Lademann F, Thepkaysone ML, Jahnke B, Aust DE, Kahlert C, Weber G, Weitz J, Grützmann R, Pilarsky C. Simultaneous gene silencing of KRAS and anti-apoptotic genes as a multitarget therapy. Oncotarget 2016; 7:3984-92. [PMID: 26716649 PMCID: PMC4826184 DOI: 10.18632/oncotarget.6766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is one of the most lethal tumor types worldwide and an effective therapy is still elusive. Targeted therapy focused against a specific alteration is by definition unable to attack broad pathway signaling modification. Tumor heterogeneity will render targeted therapies ineffective based on the regrowth of cancer cell sub-clones. Therefore multimodal therapy strategies, targeting signaling pathways simultaneously should improve treatment. SiRNAs against KRAS and the apoptosis associated genes BCLXL, FLIP, MCL1L, SURVIVIN and XIAP were transfected into human and murine pancreatic cancer cell lines. Induction of apoptosis was measured by Caspase 3/7 activation, subG1 FACS analysis and PARP cleavage. The therapeutic approach was tested in a subcutaneous allograft model with a murine cancer cell line. By using siRNAs as a systematic approach to remodel signal transduction in pancreatic cancer the results showed increasing inhibition of proliferation and apoptosis induction in vitro and in vivo. Thus, siRNAs are suitable to model multimodal therapy against signaling pathways in pancreatic cancer. Improvements in in vivo delivery of siRNAs against a multitude of targets might therefore be a potential therapeutic approach.
Collapse
Affiliation(s)
- Kristin Werner
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Franziska Lademann
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Beatrix Jahnke
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Daniela E Aust
- Institute of Pathology, TU Dresden, 01307 Dresden, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Georg Weber
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Visceral, Thoracic and Vascular Surgery, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
46
|
Kim HS, Kim SJ, Bae J, Wang Y, Park SY, Min YS, Je HD, Sohn UD. The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:595-603. [PMID: 27847436 PMCID: PMC5106393 DOI: 10.4196/kjpp.2016.20.6.595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
Abstract
Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.
Collapse
Affiliation(s)
- Han Sang Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Su-Jin Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jinhyung Bae
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yiyi Wang
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sun Young Park
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Young Sil Min
- Department of Medicinal Plant Science, College of Science and Engineering, Jungwon University, Chungbuk 28024, Korea
| | - Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Daegu 38430, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
47
|
Molecular Changes During Acute Myeloid Leukemia (AML) Evolution and Identification of Novel Treatment Strategies Through Molecular Stratification. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:383-436. [PMID: 27865463 DOI: 10.1016/bs.pmbts.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by impaired differentiation and uncontrollable proliferation of myeloid progenitor cells. Due to high relapse rates, overall survival for this rapidly progressing disease is poor. The significant challenge in AML treatment is disease heterogeneity stemming from variability in maturation state of leukemic cells of origin, genetic aberrations among patients, and existence of multiple disease clones within a single patient. Disease heterogeneity and the lack of biomarkers for drug sensitivity lie at the root of treatment failure as well as selective efficacy of AML chemotherapies and the emergence of drug resistance. Furthermore, standard-of-care treatment is aggressive, presenting significant tolerability concerns to the commonly advanced-age AML patient. In this review, we examine the concept and potential of molecular stratification, particularly with biologically relevant drug responses, in identifying low-toxicity precision therapeutic combinations and clinically relevant biomarkers for AML patient care as a way to overcome these challenges in AML treatment.
Collapse
|
48
|
Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways. Br J Cancer 2016; 115:203-11. [PMID: 27336608 PMCID: PMC4947704 DOI: 10.1038/bjc.2016.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Focal adhesion kinase (FAK) is overexpressed in many types of tumours, including lung cancer. Y15, a small molecule which inhibits Y397 FAK autophosphorylation, decreases growth of human neuroblastoma, breast and pancreatic cancers. In this study, we investigated the in vitro and in vivo effects of Y15, and the underlying mechanism on non-small cell lung cancer cells. Methods: The cytotoxic effects of Y15 targeting FAK signalling were evaluated. Gene-knockdown experiments were performed to determine the anti-cancer mechanism. Xenografts with RAS or EGFR mutations were selected for in vivo Y15 treatment. Results: Y15 blocked autophosphorylation of FAK in a time- and dose-dependent manner. It caused dose-dependent decrease of lung cancer cell viability and clonogenicity. Y15 inhibited tumour growth of RAS-mutant (A549 with KRAS mutation and H1299 with NRAS mutation), as well as epidermal growth factor receptor (EGFR) mutant (H1650 and H1975) lung cancer xenografts. JNK activation is a mechanism underlying Y15-induced Bcl-2 and Mcl-1 downregulation. Moreover, knockdown of Bcl-2 or Bcl-xL potentiated the effects of Y15. The combination of various inhibitors of the Bcl-2 family of proteins with FAK inhibitors demonstrated synergy in multiple lung cancer cell lines in vitro. Conclusions: FAK inhibition demonstrated efficacy both in vitro and in vivo in lung cancers with either oncogenic RAS or EGFR mutations. In addition, FAK inhibition in combination with inhibitors of Bcl-2 family of anti-apoptotic proteins has synergistic activity in these MAPK-activated non-small cell lung cancer cell line models.
Collapse
|
49
|
Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM, Belvin M, Mellman I. MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 2016; 44:609-621. [PMID: 26944201 DOI: 10.1016/j.immuni.2016.01.024] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) can induce regression of tumors bearing activating mutations in the Ras pathway but rarely leads to tumor eradication. Although combining MEK inhibition with T-cell-directed immunotherapy might lead to more durable efficacy, T cell responses are themselves at least partially dependent on MEK activity. We show here that MEK inhibition did profoundly block naive CD8(+) T cell priming in tumor-bearing mice, but actually increased the number of effector-phenotype antigen-specific CD8(+) T cells within the tumor. MEK inhibition protected tumor-infiltrating CD8(+) T cells from death driven by chronic TCR stimulation while sparing cytotoxic activity. Combining MEK inhibition with anti-programmed death-ligand 1 (PD-L1) resulted in synergistic and durable tumor regression even where either agent alone was only modestly effective. Thus, despite the central importance of the MAP kinase pathway in some aspects of T cell function, MEK-targeted agents can be compatible with T-cell-dependent immunotherapy.
Collapse
Affiliation(s)
| | - Jeanne Cheung
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yagai Yang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin McNamara
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rebecca Hong
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | - Bryan A Irving
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeong M Kim
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Marcia Belvin
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ira Mellman
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
García-García C, Rivas MA, Ibrahim YH, Calvo MT, Gris-Oliver A, Rodríguez O, Grueso J, Antón P, Guzmán M, Aura C, Nuciforo P, Jessen K, Argilés G, Dienstmann R, Bertotti A, Trusolino L, Matito J, Vivancos A, Chicote I, Palmer HG, Tabernero J, Scaltriti M, Baselga J, Serra V. MEK plus PI3K/mTORC1/2 Therapeutic Efficacy Is Impacted by TP53 Mutation in Preclinical Models of Colorectal Cancer. Clin Cancer Res 2015; 21:5499-5510. [PMID: 26272063 DOI: 10.1158/1078-0432.ccr-14-3091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE PI3K pathway activation occurs in concomitance with RAS/BRAF mutations in colorectal cancer, limiting the sensitivity to targeted therapies. Several clinical studies are being conducted to test the tolerability and clinical activity of dual MEK and PI3K pathway blockade in solid tumors. EXPERIMENTAL DESIGN In the present study, we explored the efficacy of dual pathway blockade in colorectal cancer preclinical models harboring concomitant activation of the ERK and PI3K pathways. Moreover, we investigated if TP53 mutation affects the response to this therapy. RESULTS Dual MEK and mTORC1/2 blockade resulted in synergistic antiproliferative effects in cell lines bearing alterations in KRAS/BRAF and PIK3CA/PTEN. Although the on-treatment cell-cycle effects were not affected by the TP53 status, a marked proapoptotic response to therapy was observed exclusively in wild-type TP53 colorectal cancer models. We further interrogated two independent panels of KRAS/BRAF- and PIK3CA/PTEN-altered cell line- and patient-derived tumor xenografts for the antitumor response toward this combination of agents. A combination response that resulted in substantial antitumor activity was exclusively observed among the wild-type TP53 models (two out of five, 40%), but there was no such response across the eight mutant TP53 models (0%). Interestingly, within a cohort of 14 patients with colorectal cancer treated with these agents for their metastatic disease, two patients with long-lasting responses (32 weeks) had TP53 wild-type tumors. CONCLUSIONS Our data support that, in wild-type TP53 colorectal cancer cells with ERK and PI3K pathway alterations, MEK blockade results in potent p21 induction, preventing apoptosis to occur. In turn, mTORC1/2 inhibition blocks MEK inhibitor-mediated p21 induction, unleashing apoptosis. Clin Cancer Res; 21(24); 5499-510. ©2015 AACR.
Collapse
Affiliation(s)
- Celina García-García
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Martín A Rivas
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Yasir H Ibrahim
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - María Teresa Calvo
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Albert Gris-Oliver
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Pilar Antón
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Claudia Aura
- Molecular Pathology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Pathology Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | | | - Guillem Argilés
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rodrigo Dienstmann
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Andrea Bertotti
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Judit Matito
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| | - Josep Tabernero
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain.,Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - José Baselga
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065.,Breast Medicine Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Violeta Serra
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035-Barcelona, Spain
| |
Collapse
|