1
|
Xiao X, Wang QW, Zhou ZY, Wang LS, Huang P. Precision treatment for human epidermal growth factor receptor 2-amplified advanced rectal cancer: A case report. World J Gastrointest Oncol 2025; 17:102690. [DOI: 10.4251/wjgo.v17.i4.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Although targeted therapy provides survival benefits for patients with metastatic colorectal cancer, some patients develop resistance to these treatments. Human epidermal growth factor receptor 2 (HER2) is overexpressed in a subset of patients with colorectal cancer and has been established as a therapeutic target.
CASE SUMMARY This case report describes a Chinese patient with HER2-amplified advanced rectal cancer who showed no response to chemotherapy and targeted therapies against epidermal growth factor receptor and vascular endothelial growth factor but achieved a remarkable response following treatment with immune checkpoint inhibitors (ICIs) in combination with pyrotinib. The combination of oxaliplatin and ICIs with pyrotinib demonstrates synergistic effects after late-stage disease progression.
CONCLUSION ICIs and pyrotinib may be effective in treating HER2-amplified advanced rectal cancer. Chemotherapy following disease progression could enhance efficacy synergistically.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Oncology, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Qing-Wen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zheng-Yang Zhou
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Lei-Sheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Pei Huang
- Department of Oncology, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| |
Collapse
|
2
|
Pu H, Huang J, Gui B, Chen Y, Guo Y, Lian Y, Pan J, Hu Y, Jiang N, Deng Q, Zhou Q. Ultrasound-Responsive Nanobubbles for Breast Cancer: Synergistic Sonodynamic, Chemotherapy, and Immune Activation through the cGAS-STING Pathway. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40126217 DOI: 10.1021/acsami.4c21493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Breast cancer remains the leading cause of cancer-related deaths among women worldwide, necessitating more effective treatment strategies. Chemotherapy combined with immunotherapy is the first-line treatment for breast cancer, but it still suffers from limited therapeutic efficiency and serious side effects, which are usually due to the poor delivery efficiency, drug resistance of tumor cells, and immunosuppressive tumor microenvironment. This study explores the development of ultrasound-responsive nanobubbles (Ce6/PTX Nbs) for targeted imaging and sonoimmunotherapy in breast cancer treatment. By integrating sonodynamic therapy (SDT), chemotherapy, and immunotherapy, the nanobubbles aim to address challenges such as poor drug delivery, systemic toxicity, and immune suppression in conventional therapies. The nanobubbles, composed of sonosensitizer chlorin e6 (Ce6)-modified phospholipid and loaded with the chemotherapeutic agent paclitaxel (PTX) enhancing drug-loading capacity, are designed to precisely target tumor sites via cyclic-RGD peptides. Upon ultrasound activation, Ce6 induces reactive oxygen species (ROS), promoting immunogenic cell death (ICD), while PTX disrupts tumor cell mitosis, enhancing the immune response. The nanobubbles' ultrasound responsiveness facilitates real-time imaging and controlled drug release, maximizing therapeutic efficacy while minimizing side effects. Key findings demonstrate that Ce6/PTX Nbs significantly reduced tumor growth in a 4T1 breast cancer model, enhanced immune activation via the cGAS-STING pathway, and increased the infiltration of CD8+ T cells in both primary and distant tumors. In combination with anti-PD-L1 checkpoint inhibitors, the treatment achieved a substantial suppression of tumor metastasis. This innovative approach offers a highly targeted, effective, and minimally toxic breast cancer treatment with potential for clinical translation due to its dual imaging and therapeutic capabilities.
Collapse
Affiliation(s)
- Huan Pu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jia Huang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Bin Gui
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yueying Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yuxin Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yingtao Lian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Juhong Pan
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yugang Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| |
Collapse
|
3
|
Mckiver BD, Herz SM, Patel S, Bryan T, Mann J, Poklis JL, Bigbee JW, Windle JJ, Salem AK, Sarkar D, Damaj MI. Astrocyte elevated gene-1 (AEG-1) in myeloid cells is a key driver for the development of chemotherapy-induced peripheral neuropathy. Brain Behav Immun 2025; 127:329-340. [PMID: 40101807 DOI: 10.1016/j.bbi.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of chemotherapy treatment, often resulting in the discontinuation of treatment. Paclitaxel activates peripheral macrophages, generating a neuroinflammatory response that contributes to CIPN development and maintenance. Astrocyte Elevated Gene-1 (AEG-1), also known as Metadherin or LYRIC, is a multifunctional protein that modulates macrophage activity and regulates inflammation through direct interaction with NF-κB, a transcriptional regulator of proinflammatory cytokine/chemokine (PIC) expression. We aimed to determine whether AEG-1 contributes to the development and maintenance of CIPN pathologies by using both global (AEG-1 KO) and myelocyte-specific knockout (AEG-1ΔMAC) transgenic mouse strains in an animal model of CIPN that replicates specific human clinical phenotypes. We hypothesized that inhibition of AEG1 expression in myeloid cells, such as monocytes and macrophages, would prevent the development and maintenance of CIPN. Our results showed that global AEG-1 deletion prevented the development of CIPN pathologies induced by PAC, as well as oxaliplatin (OHP). PAC treatment was found to increase AEG-1 and PIC expression in the DRGs of WT mice and in peritoneal macrophages isolated from C57BL/6J mice. However, in the absence of AEG-1 expression, PAC-induced neuroinflammation was completely halted in the DRGs of AEG-1 KO mice. This preventative phenotype and PIC expression profile was mirrored in AEG-1ΔMAC mice, which also displayed reduced NF-κB protein levels and F4/80+ macrophages trafficked to the lumbar DRGs following PAC treatment. In summary, our results are the first to demonstrate the biological role AEG-1, particularly in myeloid cells, in development of CIPN.
Collapse
Affiliation(s)
- Bryan D Mckiver
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara M Herz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shivani Patel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tayla Bryan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jared Mann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Li X, Yuan K, Yin Y, Tian Y, Guo Z, Qin Z, Zeng X. Docetaxel-Loaded Electrospun Nanofibrous Mats for Local Chemotherapy Targeting Positive Surgical Margins in Prostate Cancer. Mol Pharm 2025. [PMID: 40073383 DOI: 10.1021/acs.molpharmaceut.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery. In vitro experiments demonstrated that these implantable drug-loaded nanofibrous mats effectively inhibited prostate cancer cell growth, induced cell cycle arrest, and promoted apoptosis. In animal models, these drug-loaded nanofibrous mats exhibited prominent therapeutic effects on positive surgical margins postoperatively. Importantly, docetaxel-loaded nanofibrous mats modulated the tumor immune microenvironment by suppressing M2-like macrophages, increasing the ratio between M1- and M2-like macrophages, and enhancing CD8+ T-cell infiltration. Local administration significantly reduced systemic toxicity compared to systemic chemotherapy. In summary, we developed an implantable electrospun drug-loaded nanofibrous mat for localized docetaxel delivery, which offers a prospective strategy for managing positive surgical margins after surgery.
Collapse
Affiliation(s)
- Xing Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yuan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Yin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqun Tian
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zihao Guo
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenliang Qin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyong Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Al-Omar A, Asadi M, Mert U, Muftuoglu C, Karakus HS, Goksel T, Caner A. Effects of Vinorelbine on M2 Macrophages in Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:2252. [PMID: 40076874 PMCID: PMC11900078 DOI: 10.3390/ijms26052252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) significantly influence tumor progression and patient responses to conventional chemotherapy. However, the interplay between anti-cancer drugs, immune responses in the tumor microenvironment, and their implications for cancer treatment remains poorly understood. This study investigates the effects of vinorelbine on M2 macrophages in lung cancer and its capacity to modulate TAMs toward an M1 phenotype. Peripheral blood mononuclear cells (PBMCs) were polarized into M2 macrophages, and subsequent phenotype alterations upon vinorelbine treatment were assessed. Additionally, we evaluated vinorelbine's impact on gene and protein expression associated with cancer progression and cell invasion in non-small-cell lung cancer (NSCLC) cells indirectly co-cultured with M2 macrophages. Notably, vinorelbine, particularly at low concentrations, reprogrammed M2 macrophages to exhibit M1-like characteristics. While M2 macrophages enhanced cancer cell invasion, vinorelbine significantly mitigated this effect. M2 macrophages led to the overexpression of numerous genes linked to tumor growth, angiogenesis, invasion, and immune suppression in NSCLC cells, increasing the BCL2/BAX ratio and promoting cellular resistance to apoptosis. The anti-tumor efficacy of vinorelbine appears to be partly attributed to the reprogramming of M2 macrophages to the M1 phenotype, suggesting that low-dose vinorelbine may optimize therapeutic outcomes while minimizing toxicity in cancer patients.
Collapse
Affiliation(s)
- Ahmed Al-Omar
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Milad Asadi
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Ufuk Mert
- Atatürk Health Care Vocational School, Ege University, Bornova 35100, Izmir, Turkey;
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
| | - Can Muftuoglu
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Haydar Soydaner Karakus
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Ayse Caner
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| |
Collapse
|
6
|
Teng F, Wei H, Che D, Miao K, Dong X. Identifying macrophage-associated subtypes in patients with serous ovarian cancer and exploring potential personalized therapeutic drugs using combined single-cell and bulk RNA sequencing omics. Heliyon 2025; 11:e42429. [PMID: 40028569 PMCID: PMC11870195 DOI: 10.1016/j.heliyon.2025.e42429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose We aimed to analyze the sensitivity of patients to chemotherapy drugs and actively explore potential new intervention targets, providing an essential reference for personalized treatment. Methods Candidate markers with significant differential expression in macrophages were identified by analyzing gene expression at the single-cell level. A weighted gene co-expression network (WGCN) was constructed on the GSE26712 dataset to explore the modules most relevant to macrophages. Differentially expressed genes for specific markers were identified. A multi-factor regulatory network was constructed based on single-cell dataset markers screening, differentially expressed genes, and genes commonly present in WGCNA modules. Different macrophage subtypes were identified using this network. Machine learning was used to filter and predict the markers' drug sensitivity, and the potential therapeutic compounds for specific markers were screened. Results We identified 14 and 17 of M1 and M2 macrophage candidate markers, respectively. In the multi-factor regulatory network of M1 macrophages, 6 out of 14 markers recognized 159 transcription factors (TFs) and 48 micro RNAs (miRNAs), whereas 13 of 17 markers recognized 191 TFs and 182 miRNAs in the multi-factor regulatory network of M2 macrophages. Filtering of the identified differentially expressed genes using random forests yielded 15 M1 and M2 macrophage-specific markers. Drug sensitivity prediction analysis and in vitro experiments revealed the close association of these markers with common chemotherapy drug sensitivity. Conclusion We identified specific M1 and M2 macrophage markers and found potential therapeutic compounds (dasatinib and afatinib) in these specific markers. These potential therapeutic compounds provide insight into the underlying mechanisms of serous ovarian cancer (OC) and inspire more effective treatment methods.
Collapse
Affiliation(s)
- Fei Teng
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dehong Che
- Ultrasound Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuo Miao
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wu F, Feng X, Gao W, Zeng L, Xu B, Chen Z, Zheng C, Hu X, Xu S, Song H, Zhou X, Liu Z. Engineering a Self-Delivery Nanoplatform for Chemo-Photodynamic-Immune Synergistic Therapies against Aggressive Melanoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11634-11652. [PMID: 39960055 DOI: 10.1021/acsami.4c18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The effectiveness of immunotherapy in killing melanoma is hindered by a T-cell deficiency and the lack of tumor immunogenicity. Consequently, there is an urgent need for a platform that can further activate the immune system and boost the immune response of the host to tumors. Compared with monotherapy, combination therapy shows promise in improving treatment efficacy and response rates. This study introduces the pioneering use of a rationally designed active targeting nanoplatform to bind axitinib, paclitaxel, and verteporfin to human serum albumin (APV@HSA NPs). APV@HSA NPs have demonstrated the capability to induce dual-induced apoptosis in tumor cells through chemo- and photodynamic effects, while also enhancing immunogenic cell death and promoting dendritic cell maturation. Additionally, the platform promoted the production of CD8+ T cells and memory T cells and inhibited vascular endothelial growth factor via axitinib, facilitating the infiltration of immune effector cells and optimizing chemo-photodynamic immunotherapy. Hence, amplified chemo-photodynamic-immunological nanomedicines with excellent biocompatibility have been redesigned to inhibit the tumor microenvironment and combat the growth of primary tumor and lung metastasis. This approach initiates a series of immune responses, presenting a promising therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fei Wu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xianquan Feng
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Wenhao Gao
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Bingbing Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhenzhen Chen
- Department of Clinical Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province 350025, China
| | - Changqing Zheng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Shiying Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Hongtao Song
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhihong Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| |
Collapse
|
8
|
Kuhl GC, Tangney M. Bacterial-Mediated In Situ Engineering of Tumour-Associated Macrophages for Cancer Immunotherapy. Cancers (Basel) 2025; 17:723. [PMID: 40075571 PMCID: PMC11899205 DOI: 10.3390/cancers17050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumour-associated macrophages (TAMs) are critical components of the tumour microenvironment (TME), significantly influencing cancer progression and treatment resistance. This review aims to explore the innovative use of engineered bacteria to reprogram TAMs, enhancing their anti-tumour functions and improving therapeutic outcomes. METHODS We conducted a systematic review following a predefined protocol. Multiple databases were searched to identify relevant studies on TAMs, their phenotypic plasticity, and the use of engineered bacteria for reprogramming. Inclusion and exclusion criteria were applied to select studies, and data were extracted using standardised forms. Data synthesis was performed to summarise the findings, focusing on the mechanisms and therapeutic benefits of using non-pathogenic bacteria to modify TAMs. RESULTS The review summarises the findings that engineered bacteria can selectively target TAMs, promoting a shift from the tumour-promoting M2 phenotype to the tumour-fighting M1 phenotype. This reprogramming enhances pro-inflammatory responses and anti-tumour activity within the TME. Evidence from various studies indicates significant tumour regression and improved immune responses following bacterial therapy. CONCLUSIONS Reprogramming TAMs using engineered bacteria presents a promising strategy for cancer therapy. This approach leverages the natural targeting abilities of bacteria to modify TAMs directly within the tumour, potentially improving patient outcomes and offering new insights into immune-based cancer treatments. Further research is needed to optimise these methods and assess their clinical applicability.
Collapse
Affiliation(s)
- Gabriela Christina Kuhl
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mark Tangney
- Cancer Research @UCC, College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
9
|
Huang X, Li Z, Huang Y, Zhang Q, Cui Y, Shi X, Jiu Y. Vimentin intermediate filaments coordinate actin stress fibers and podosomes to determine the extracellular matrix degradation by macrophages. Dev Cell 2025:S1534-5807(25)00036-X. [PMID: 39952241 DOI: 10.1016/j.devcel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Macrophages possess the capacity to degrade extracellular matrix (ECM), but the specific roles of different cytoskeletal structures in controlling this process are incompletely understood. Here, we report that the inward flow of actin stress fibers delivers endocytosed ECM for lysosomal elimination, replenishing the pool of enzymes for extracellular ECM hydrolysis in actin-rich podosomes. Vimentin deficiency disrupted the balance between stress fibers and podosomes, impairing ECM degradation through integrin CD11b in THP-1 macrophages. In lung adenocarcinoma patient samples, M2-type macrophages exhibit a tighter podosome organization, surrounded by compact vimentin filaments, than M1-type. In vitro experiments verified that the invasion ability of A549 lung carcinoma cells was enhanced when accompanied by wild type, but not vimentin knockout M2-type THP-1, macrophages. Subcutaneous injections of macrophages and tumor cells in nude mice showed that vimentin in macrophages can reduce tumor collagen fibers. Together, our findings provide insights into the cytoskeletal dynamics governing macrophage ECM degradation.
Collapse
Affiliation(s)
- Xinyi Huang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifang Li
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhan Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanqin Cui
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuemeng Shi
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
10
|
Wu H, Sun X, Li K, Li J, Jiang H, Yan D, Lin Y, Ding Y, Lu Y, Zhu X, Chen X, Li X, Liang G, Xu H. Pyruvate Kinase M2-Responsive Release of Paclitaxel and Indoleamine 2,3-Dioxygenase Inhibitor for Immuno-Chemotherapy of Nonsmall Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409790. [PMID: 39716923 PMCID: PMC11831488 DOI: 10.1002/advs.202409790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC) but it can induce indoleamine 2,3-dioxygenase (IDO) activation, which severely lowers down its immuno-chemotherapeutic effect. To address this issue, a smart peptide hydrogelator Nap-Phe-Phe-Phe-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-T), which co-assembles with PTX and an IDO inhibitor GDC0919 to form a hydrogel GP@Gel Nap-T, is rationally designed. Upon specific phosphorylation by pyruvate kinase M2 (PKM2), an overexpressed biomarker of NSCLC, Nap-T is gradually converted to Nap-Phe-Phe-Phe-Lys-Ser-Thr(H2PO3)-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-Tp), leading to dehydrogelation and sustained release of PTX and GDC0919 within NSCLC tissues. The released PTX exerts chemotherapy on NSCLC cells as well as immunogenic cell death induction, while GDC0919 promotes the immuno-chemotherapeutic effect of PTX through IDO inhibition. We find that GP@Gel Nap-T enhances the infiltration of tumor-infiltrating immune cells and reduces the number of immunosuppressive cells in either tumor tissues or tumor-draining lymph nodes, thus enhancing the immuno-chemotherapy of PTX toward NSCLC. With this PKM2-responsive drug release strategy, the smart peptide hydrogel platform might be applied for NSCLC treatment in clinic in near future.
Collapse
Affiliation(s)
- Haisi Wu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Kaiming Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Jinyu Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Hui Jiang
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Dan Yan
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Ya Lin
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yan Ding
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yawen Lu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Xiaole Zhu
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xufeng Chen
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xiaolin Li
- Department of Geriatric GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Huae Xu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
11
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
12
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Miroshnichenko E, Kosyreva A, Fatkhudinov T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers (Basel) 2025; 17:342. [PMID: 39941714 PMCID: PMC11815841 DOI: 10.3390/cancers17030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In solid tumors, tumor-associated macrophages (TAMs) are one of the most numerous populations and play an important role in the processes of tumor cell invasion, metastasis, and angiogenesis. Therefore, TAMs are considered promising diagnostic and prognostic biomarkers of tumors, and many attempts have been made to influence these cells as part of antitumor therapy. There are several key principles of action on ТАМs: the inhibition of monocyte/macrophage transition; the destruction of macrophages; the reprogramming of macrophage phenotypes (polarization of M2 macrophages to M1); the stimulation of phagocytic activity of macrophages and CAR-M therapy. Despite the large number of studies in this area, to date, there are no adequate approaches using antitumor therapy based on alterations in TAM functioning that would show high efficacy when administered in a mono-regimen for the treatment of malignant neoplasms. Studies devoted to the evaluation of the efficacy of drugs acting on TAMs are characterized by a small sample and the large heterogeneity of patient groups; in addition, in such studies, chemotherapy or immunotherapy is used, which significantly complicates the evaluation of the effectiveness of the agent acting on TAMs. In this review, we attempted to systematize the evidence on attempts to influence TAMs in malignancies such as lung cancer, breast cancer, colorectal cancer, cervical cancer, prostate cancer, gastric cancer, head and neck squamous cell cancer, and soft tissue sarcomas.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
14
|
Freitas BFA, Verchere CB, Levings MK. Advances in Engineering Myeloid Cells for Cell Therapy Applications. ACS Synth Biol 2025; 14:10-20. [PMID: 39722478 DOI: 10.1021/acssynbio.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Myeloid cells, including macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, play crucial roles in the innate immune system, contributing to immune defense, tissue homeostasis, and organ development. They have tremendous potential as therapeutic tools for diseases such as cancer and autoimmune disorders, but harnessing cell engineering strategies to enhance potency and expand applications is challenging. Recent advancements in stem cell research have made it possible to differentiate human embryonic stem cells and induce pluripotent stem cells into various cell types, including myeloid cells, offering a promising new approach to generate myeloid cells for cell therapy. In this review, we explore the latest techniques for the genetic engineering of myeloid cells, discussing both established and emerging methodologies. We examine the challenges faced in this field and the therapeutic potential of engineered myeloid cells. We also describe examples of engineered macrophages, neutrophils, and dendritic cells in various disease contexts. By providing a detailed overview of the current state and future directions, we aim to highlight progress and ongoing efforts toward harnessing the full therapeutic potential of genetically engineered myeloid cells.
Collapse
Affiliation(s)
- Bruno F A Freitas
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| |
Collapse
|
15
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Lanickova T, Hensler M, Kasikova L, Vosahlikova S, Angelidou A, Pasulka J, Griebler H, Drozenova J, Mojzisova K, Vankerckhoven A, Laco J, Ryska A, Dundr P, Kocian R, Cibula D, Brtnicky T, Skapa P, Jacob F, Kovar M, Praznovec I, McNeish IA, Halaska MJ, Rob L, Coosemans A, Orsulic S, Galluzzi L, Spisek R, Fucikova J. Chemotherapy Drives Tertiary Lymphoid Structures That Correlate with ICI-Responsive TCF1+CD8+ T Cells in Metastatic Ovarian Cancer. Clin Cancer Res 2025; 31:164-180. [PMID: 39163092 PMCID: PMC11701433 DOI: 10.1158/1078-0432.ccr-24-1594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication. EXPERIMENTAL DESIGN We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts. RESULTS We found NACT-driven endoplasmic reticulum stress and calreticulin exposure in metastatic HGSOC lesions culminates with the establishment of a dense immune infiltrate including follicular T cells (TFH cells), a prerequisite for mature tertiary lymphoid structure (TLS) formation. In this context, TLS maturation was associated with an increased intratumoral density of ICI-sensitive TCF1+PD1+ CD8+ T cells over their ICI-insensitive TIM-3+PD1+ counterparts. Consistent with this notion, chemotherapy coupled with a PD1-targeting ICI provided a significant survival benefit over either therapeutic approach in syngeneic models of HGSOC bearing high (but not low) tumor mutational burden. CONCLUSIONS Altogether, our findings suggest that NACT promotes TLS formation and maturation in HGSOC lesions, de facto preserving an intratumoral ICI-sensitive T-cell phenotype. These observations emphasize the role of rational design, especially relative to the administration schedule, for clinical trials testing chemotherapy plus ICIs in patients with HGSOC. See related commentary by Bravo Melgar and Laoui, p. 10.
Collapse
Affiliation(s)
- Tereza Lanickova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | - Jana Drozenova
- Department of Pathology, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | | | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Kocian
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Cibula
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Brtnicky
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Petr Skapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivan Praznovec
- Department of Gynecology and Obstetrics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Iain A. McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Michal J. Halaska
- Department of Gynecology and Obstetrics, Charles University, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Charles University, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, California
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
17
|
Ouyang M, Sun H, Liu X, Wu H, Deng F, Shen E, Peng G, Wu H, Zhao Y, Xiong H, Liu B, He S, Hu Y, Liu P. The efficacy and safety of a taxane-based chemotherapy regimen combined with a PD-1 inhibitor in HNSCC: a multicenter real-world study. World J Surg Oncol 2025; 23:6. [PMID: 39754263 PMCID: PMC11699790 DOI: 10.1186/s12957-024-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE This study aims to elucidate the therapeutic efficacy and safety of a taxane-based chemotherapy in combination with immune checkpoint inhibitors regimen in patients diagnosed with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). METHODS We retrospectively collected clinical data from 154 patients who received at least two cycles of PD-1 inhibitors in combination with a taxane-based chemotherapy as first-line treatment in seven hospitals in Hunan Province, between December 2018 and December 2023. These patients were subjected to long-term follow-up. RESULTS The study included 154 eligible patients, with a median follow-up period of 21.5 months. The median PFS was 8.7 months, while the median OS was 16.7 months. The 12-month PFS rate was 43.6%, and the 12-month OS rate was 60.1%. At 24 months, the PFS rate was 34.4%, and the OS rate was 36.9%. With 26 complete responses (16.9%) and 52 partial responses (33.8%), the ORR was 50.6%. Stable disease was observed in 54 patients (35.1%), resulting in a disease control rate of 85.7%, while 22 patients showed progressive disease. In the univariate analysis, the distant organ metastasis had a statistically significant impact on both PFS and OS. Subsequent radiotherapy following this protocol also showed a statistically significant effect on PFS and OS. However, radiotherapy before recurrent metastasis did not significantly affect PFS, though it did have a significant impact on OS. Other factors analyzed did not show a statistically significant effect on PFS and OS. Multivariate analysis indicated that the distant organ metastasis and subsequent radiotherapy following this protocol were independent prognostic factors for PFS in patients with R/M HNSCC, and the latter was also an independent prognostic factor for OS in these patients. Regarding safety, during treatment anemia was observed in 97 patients, leukopenia in 64, neutropenia in 33, thrombocytopenia in 28, transaminase elevation in 46, hypothyroidism in 46 patients, and one patient stopped taking the medication due to a serious adverse reaction. No treatment-related deaths occurred. CONCLUSION The combination of PD-1 inhibitors with a a taxane-based chemotherapy regimen as a first-line treatment for R/M HNSCC patients demonstrates good therapeutic efficacy and acceptable safety profiles.
Collapse
Affiliation(s)
- Min Ouyang
- Department of Gerontology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hanquan Sun
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyu Liu
- Department of Oncology, Loudi City Central Hospital, Loudi, China
| | - Haijun Wu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Feilong Deng
- Department of Oncology, Liling Traditional Chinese Medicine Hospital, Liling, China
| | - Erdong Shen
- Department of Oncology, Yueyang Central Hospital, Yueyang, China
| | - Guozheng Peng
- Department of Oncology, Hengyang Central Hospital, Hengyang, China
| | - Hanbing Wu
- Department of Oncology, Hunan University of Medicine General Hospital, Changsha, China
| | - Yinshan Zhao
- Department of Oncology, The Fifth People's Hospital of Huaihua, Huaihua, China
| | - Hui Xiong
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
18
|
Ma H, Hong Y, Xu Z, Weng Z, Yang Y, Jin D, Chen Z, Zhou X, Xu Z, Fei F, Song W, Li J. ALKBH5 acts a tumor-suppressive biomarker and is associated with immunotherapy response in hepatocellular carcinoma. Sci Rep 2025; 15:55. [PMID: 39747943 PMCID: PMC11696456 DOI: 10.1038/s41598-024-84050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that m6A methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the m6A demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues. The biological function of ALKBH5 was analyzed in vitro and in vivo. The HCC molecular subtypes were identified based on key ALKBH5-regulated methylation-related genes (MRGs). The differences in survival, clinical features, TIME and immunotherapy response between these two subtypes were then evaluated. The regulation of ALKBH5 on TIM3 was detected by qPCR, western blotting and MeRIP. ALKBH5 was downregulated in HCC and associated with worse prognosis. ALKBH5 inhibited the proliferation and migration activities of HCC cells in vitro and in vivo. The HCC subtype with high expression of key MRGs was characterized by immunosuppression phenotypes and a worse response to ICIs. Moreover, TIM3 was identified as a target of ALKBH5. Upregulated TIM3 level was negatively correlated with survival in HCC. The results of this study suggest that ALKBH5 is an important regulator in HCC progression. ALKBH5 exerts its influence on the TIME and immunotherapy response by targeting TIM3 in HCC. This work provides new insight into the correlation between m6A modification and ICI response, which may help provide therapeutic benefits to HCC patients.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Immunotherapy/methods
- Male
- Animals
- Female
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Mice
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Tumor Microenvironment/immunology
- Cell Proliferation
- Prognosis
- Middle Aged
- Cell Movement
Collapse
Affiliation(s)
- Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Hong
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Dandan Jin
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiyou Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
19
|
Kim SH, Han RT, Han HS, Kim YM. Immune-modulative nano-gel-nano system for patient-favorable cancer therapy. Bioact Mater 2025; 43:67-81. [PMID: 39328776 PMCID: PMC11424977 DOI: 10.1016/j.bioactmat.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Current cancer immunotherapies exhibit low response rates attributed to suppressive tumor immune microenvironments (TIMEs). To address these unfavorable TIMEs, supplementation with tumor-associated antigens and stimulation of immune cells at target sites are indispensable for eliciting anti-tumoral immune responses. Previous research has explored the induction of immunotherapy through multiple injections and implants; however, these approaches lack consideration for patient convenience and the implementation of finely tunable immune response control systems to mitigate the side effects of over-inflammatory responses, such as cytokine storms. In this context, we describe a patient-centric nano-gel-nano system capable of sustained generation of tumor-associated antigens and release of adjuvants. This is achieved through the specific delivery of drugs to cancer cells and antigens/adjuvants to immune cells over the long term, maintaining proper concentrations within the tumor site with a single injection. This system demonstrates local immunity against tumors with a single injection, enhances the therapeutic efficacy of immune checkpoint blockades, and induces systemic and memory T cell responses, thus minimizing systemic side effects.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rafael T Han
- Chemical and Biomedical Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
20
|
Zhang R, Cui NP, He Y, Wang T, Feng D, Wang Y, Bao T, Su C, Qin Y, Shi JH, Li JH. Pirarubicin combined with TLR3 or TLR4 agonists enhances anti-tumor efficiency. Int Immunopharmacol 2024; 142:113068. [PMID: 39241516 DOI: 10.1016/j.intimp.2024.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is prone to relapse due to the lack of effective therapeutic targets. Macrophages are the most abundant immune cells in the tumor microenvironment (TME) of breast cancer. Targeting the cross-talk between macrophages and cancer cells provides a more efficient strategy for anti-tumor therapy. Toll-like receptors (TLRs) are important players involved in macrophage activation, and TLR agonists are known to play roles in cancer therapy. However, the combination strategy of TLR agonists with chemotherapy drugs is still not well characterized. METHODS RT-PCR and Western blot were used to detect the expression of TLRs. The communication between breast cancer cells and macrophages were determined by co-culture in vitro. Tumor cells proliferation and migration were investigated by MTT assay and scratch wound assay. The effects of drug combinations and toxic side effects were assessed by immunohistochemistry and Hematoxylin & Eosin staining. RESULTS Expression of TLR3 and TLR4 were lower in breast tumor tissues compared with adjacent normal tissues. Patients with higher TLR3 or TLR4 expression levels had a better prognosis than those with lower expression levels. TLR3/4 expression was significantly inhibited when breast cancer cells MDA-MB-231 and E0771 were conditioned-cultured with macrophages in vitro and was also inhibited by pirarubicin (THP). However, the combination of TLR agonists and THP could reverse this response and inhibit the proliferation and migration of breast cancer cells. Additionally, this combination significantly reduced the tumor volume and weight in the murine model, increased the expression of TLR3/4 in mouse breast tumors. CONCLUSIONS Our results provide new ideas for the combination strategy of THP with TLR agonists which improves prognosis of breast cancer.
Collapse
Affiliation(s)
- Ruobing Zhang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Nai-Peng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000 Hebei, China.
| | - Yanqiu He
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Tingting Wang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Decheng Feng
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Yaqiong Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Affiliated Hospital of Chongqing Medical University, Changshou People's Hospital, Changshou, 401220 Chongqing, China
| | - Tong Bao
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Chenghan Su
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Yan Qin
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China.
| | - Jing-Hua Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of General Surgery for Digital Medicine, Baoding, 071000 Hebei, China.
| |
Collapse
|
21
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
23
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
24
|
Elorbany S, Berlato C, Carnevalli LS, Maniati E, Barry ST, Wang J, Manchanda R, Kzhyshkowska J, Balkwill F. Immunotherapy that improves response to chemotherapy in high-grade serous ovarian cancer. Nat Commun 2024; 15:10144. [PMID: 39578450 PMCID: PMC11584700 DOI: 10.1038/s41467-024-54295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) of tumour-infiltrating immune cells in high-grade serous ovarian cancer (HGSOC) omental biopsies reveals potential targets that could enhance response to neo-adjuvant chemotherapy (NACT). Analysis of 64,097 cells identifies NACT-induced overexpression of stabilin-1 (clever-1) on macrophages and FOXP3 in Tregs that is confirmed at the protein level. STAB1 inhibition in vitro induces anti-tumour macrophages. FOXP3 anti-sense oligonucleotide (FOXP3-ASO), repolarises Tregs to an effector T cell phenotype. ScRNAseq on 69,781 cells from an HGSOC syngeneic mouse model recapitulates the patients' data. Combining chemotherapy with anti-stabilin1 antibody and/or Foxp3-ASO significantly increases survival of mice with established peritoneal disease in two HGSOC syngeneic models and progression-free survival in a third model. Long-term survivors (300 days + ) are resistant to tumour rechallenge. Anti-stabilin1 antibody enriches the tumours with CXCL9+ macrophages and Foxp3-ASO increases TBET cell infiltration. Our results suggest that targeting these molecules in immune cells may improve chemotherapy response in patients.
Collapse
MESH Headings
- Female
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Animals
- Humans
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Immunotherapy/methods
- Cell Line, Tumor
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/immunology
- Macrophages/immunology
- Macrophages/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/pathology
- Neoadjuvant Therapy/methods
- Chemokine CXCL9/metabolism
- Chemokine CXCL9/genetics
- Single-Cell Analysis
Collapse
Affiliation(s)
- Samar Elorbany
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| | - Chiara Berlato
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
25
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
26
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Balahura Stămat LR, Dinescu S. Inhibition of NLRP3 inflammasome contributes to paclitaxel efficacy in triple negative breast cancer treatment. Sci Rep 2024; 14:24753. [PMID: 39433537 PMCID: PMC11494052 DOI: 10.1038/s41598-024-75805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Chronic inflammation and NLRP3 inflammasome activation are among the determining factors of breast malignancies. Paclitaxel (PTX) is a drug used in breast cancer treatment which sustains prolonged inflammation, reducing the effectiveness of chemotherapy. Considering the impact of inflammatory processes in cancer progression, there is a strong concern to develop therapeutic strategy targeting NLRP3 inflammasome for triple-negative breast cancer (TNBC) treatment. Therefore, the aim of this study was to evaluate the potential of PTX and NLRP3 inflammasome modulation to counterbalance TNBC by inducing programmed cell death and inhibiting the activity of pro-inflammatory cytokines. The obtained results suggested the strong interaction between NLRP3 inflammasome and TNBC and revealed that pharmacological inhibition, using NLRP3-specific inhibitor MCC950, and genetic silencing of NLRP3 inflammasome using specific small interfering RNA, reduced inflammatory responses and facilitated PTX-determined tumor cell death. Thus, NLRP3 inflammasome manipulation in combination with anti-tumor drugs opens up new therapeutic perspectives for TNBC therapy.
Collapse
Affiliation(s)
- Liliana-Roxana Balahura Stămat
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.
- Research Institute of the University of Bucharest, Bucharest, 050663, Romania.
| |
Collapse
|
28
|
Patni H, Chaudhary R, Kumar A. Unleashing nanotechnology to redefine tumor-associated macrophage dynamics and non-coding RNA crosstalk in breast cancer. NANOSCALE 2024; 16:18274-18294. [PMID: 39292162 DOI: 10.1039/d4nr02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Breast cancer is a significant global health issue. Tumor-associated macrophages (TAMs) are crucial in influencing the tumor microenvironment and the progression of the disease. TAMs exhibit remarkable plasticity in adopting distinct phenotypes ranging from pro-inflammatory and anti-tumorigenic (M1-like) to immunosuppressive and tumor-promoting (M2-like). This review elucidates the multifaceted roles of TAMs in driving breast tumor growth, angiogenesis, invasion, and metastatic dissemination. Significantly, it highlights the intricate crosstalk between TAMs and non-coding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, as a crucial regulatory mechanism modulating TAM polarization and functional dynamics that present potential therapeutic targets. Nanotechnology-based strategies are explored as a promising approach to reprogramming TAMs toward an anti-tumor phenotype. Various nanoparticle delivery systems have shown potential for modulating TAM polarization and inhibiting tumor-promoting effects. Notably, nanoparticles can deliver ncRNA therapeutics to TAMs, offering unique opportunities to modulate their polarization and activity.
Collapse
Affiliation(s)
- Hardik Patni
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ramesh Chaudhary
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
29
|
Cai L, Chen A, Tang D. A new strategy for immunotherapy of microsatellite-stable (MSS)-type advanced colorectal cancer: Multi-pathway combination therapy with PD-1/PD-L1 inhibitors. Immunology 2024; 173:209-226. [PMID: 38517066 DOI: 10.1111/imm.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Colorectal cancer (CRC) is a frequent gastrointestinal malignancy with high rates of morbidity and mortality; 85% of these tumours are proficient mismatch repair (pMMR)-microsatellite instability-low (MSI-L)/microsatellite stable (MSS) CRC known as 'cold' tumours that are resistant to immunosuppressive drugs. Monotherapy with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors is ineffective for treating MSS CRC, making immunotherapy for MSS CRC a bottleneck. Recent studies have found that the multi-pathway regimens combined with PD-1/PD-L1 inhibitors can enhance the efficacy of anti-PD-1/PD-L1 in MSS CRC by increasing the number of CD8+ T cells, upregulating PD-L1 expression and improving the tumour microenvironment. This paper reviews the research progress of PD-1/PD-L1 inhibitors in combination with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors, oncolytic virus, intestinal flora, antiangiogenic agents, chemotherapy, radiotherapy and epigenetic drugs for the treatment of pMMR-MSI-L/MSS CRC.
Collapse
Affiliation(s)
- Lingli Cai
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Anqi Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
30
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
31
|
Porter LH, Harrison SG, Risbridger GP, Lister N, Taylor RA. Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies. J Steroid Biochem Mol Biol 2024; 243:106571. [PMID: 38909866 DOI: 10.1016/j.jsbmb.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.
Collapse
Affiliation(s)
- L H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - S G Harrison
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - G P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia
| | - Natalie Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - R A Taylor
- Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia; Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
32
|
Song J, Ke B, Fang X. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5674711. [PMID: 39328595 PMCID: PMC11424844 DOI: 10.1155/2024/5674711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in uremic patients and to seek new strategies to slow down the progression of renal fibrosis. Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes (DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2 macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of candidate genes obtained from uremic patients in M2 macrophage. Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20 biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation, M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular, adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages from uremic patients than those in healthy individuals. Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
Collapse
Affiliation(s)
- Jianling Song
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Ben Ke
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Xiangdong Fang
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
33
|
Chen T, Wang M, Chen Y, Cao Y, Liu Y. Advances in predictive biomarkers associated with immunotherapy in extensive-stage small cell lung cancer. Cell Biosci 2024; 14:117. [PMID: 39267195 PMCID: PMC11391723 DOI: 10.1186/s13578-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
Small cell lung cancer (SCLC) is a highly malignant and poor-prognosis cancer, with most cases diagnosed at the extensive stage (ES). Amidst a landscape marked by limited progress in treatment modalities for ES-SCLC over the past few decades, the integration of immune checkpoint inhibitors (ICIs) with platinum-based chemotherapy has provided a milestone approach for improving prognosis, emerging as the new standard for initial therapy in ES-SCLC. However, only a minority of SCLC patients can benefit from ICIs, which frequently come with varying degrees of immune-related adverse events (irAEs). Therefore, it is crucial to investigate predictive biomarkers to screen potential beneficiaries of ICIs, mitigate the risk of side effects, and improve treatment precision. This review summarized potential biomarkers for predicting ICI response in ES-SCLC, with a primary focus on markers sourced from tumor tissue or peripheral blood samples. The former mainly included PD-L1 expression, tumor mutational burden (TMB), along with cellular or molecular components related to the tumor microenvironment (TME) and antigen presentation machinery (APM), molecular subtypes of SCLC, and inflammatory gene expression profiles. Circulating biomarkers predominantly comprised circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), cytokines, plasma autoantibodies, inflammation-related parameters, and blood TMB. We synthesized and analyzed the research progress of these potential markers. Notably, investigations into PD-L1 expression and TMB have been the most extensive, exhibiting preliminary predictive efficacy in salvage immunotherapy; however, consistent conclusions have yet to be reached across studies. Additionally, novel predictive markers developed based on TME composition, APM, transcriptomic and genomic features provide promising tools for precision immunotherapy. Circulating biomarkers offer the advantages of convenience, non-invasiveness, and a comprehensive reflection of tumor molecular characteristics. They may serve as alternative options for predicting immunotherapy efficacy in SCLC. However, there is a scarcity of studies, and the significant heterogeneity in research findings warrants attention.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yang Cao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
34
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
35
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
36
|
Zhou W, Yang F, Zhang X. Roles of M1 Macrophages and Their Extracellular Vesicles in Cancer Therapy. Cells 2024; 13:1428. [PMID: 39273000 PMCID: PMC11394047 DOI: 10.3390/cells13171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are inflammatory cells that are important components of the tumor microenvironment. TAMs are functionally heterogeneous and divided into two main subpopulations with distinct and opposite functions: M1 and M2 macrophages. The secretory function of TAMs is essential for combating infections, regulating immune responses, and promoting tissue repair. Extracellular vesicles (EVs) are nanovesicles that are secreted by cells. They play a crucial role in mediating intercellular information transfer between cells. EVs can be secreted by almost all types of cells, and they contain proteins, microRNAs, mRNAs, and even long non-coding RNAs (lncRNAs) that have been retained from the parental cell through the process of biogenesis. EVs can influence the function and behavior of target cells by delivering their contents, thus reflecting, to some extent, the characteristics of their parental cells. Here, we provide an overview of the role of M1 macrophages and their EVs in cancer therapy by exploring the impact of M1 macrophage-derived EVs (M1-EVs) on tumors by transferring small microRNAs. Additionally, we discuss the potential of M1-EVs as drug carriers and the possibility of reprogramming M2 macrophages into M1 macrophages for disease treatment. We propose that M1-EVs play a crucial role in cancer therapy by transferring microRNAs and loading them with drugs. Reprogramming M2 macrophages into M1 macrophages holds great promise in the treatment of cancers.
Collapse
Affiliation(s)
| | | | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China (F.Y.)
| |
Collapse
|
37
|
Gong W, Kuang M, Chen H, Luo Y, You K, Zhang B, Liu Y. Single-sample gene set enrichment analysis reveals the clinical implications of immune-related genes in ovarian cancer. Front Mol Biosci 2024; 11:1426274. [PMID: 39161779 PMCID: PMC11330791 DOI: 10.3389/fmolb.2024.1426274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Ovarian cancer (OC) is a common gynecological malignancy with poor prognosis and substantial tumor heterogeneity. Due to the complex tumor immune microenvironment (TIME) among ovarian cancer, only a few patients have an immune response to immunotherapy. To investigate the differences in immune function and identify potential biomarkers in OC, we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify critical prognostic IRG signatures. Methods Single-sample gene set enrichment analysis (ssGSEA) was used to investigate the infiltration of various immune cells in 372 OC patients. Then, COX regression analysis and Lasso regression analysis were used to screen IRGs and construct PRSM. Next, the immunotherapy sensitivity of different risk groups regarding the immune checkpoint expression and tumor mutation burden was evaluated. Finally, a nomogram was created to guide the clinical evaluation of the patient prognosis. Results In this study, 320 immune-related genes (IRGs) were identified, 13 of which were selectively incorporated into a Prognostic Risk Scoring Model (PRSM). This model revealed that the patients in the high-risk group were characterized as having poorer prognosis, lower expression of immune checkpoints, and decreased tumor mutation load levels compared with those in the low-risk group. The nomogram based on the risk score can distinguish the risk subtypes and individual prognosis of patients with OC. Additionally, M1 macrophages may be the critical target for immunotherapy in OC patients. Conclusion With the in-depth analysis of the immune microenvironment of OC, the PRSM was constructed to predict the OC patient prognosis and identify the subgroup of the patients benefiting from immunotherapy.
Collapse
Affiliation(s)
- Weiwei Gong
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqin Kuang
- Gynecology and Oncology Department of Ganzhou Cancer Hospital, Ganzhou, Jiangxi, China
| | - Hongxi Chen
- Department of Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiheng Luo
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Keli You
- Department of Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yueyang Liu
- Department of Gynecology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Hong CE, Lyu SY. Modulation of Breast Cancer Cell Apoptosis and Macrophage Polarization by Mistletoe Lectin in 2D and 3D Models. Int J Mol Sci 2024; 25:8459. [PMID: 39126027 PMCID: PMC11313472 DOI: 10.3390/ijms25158459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Korean mistletoe (Viscum album L. var. coloratum) is renowned for its medicinal properties, including anti-cancer and immunoadjuvant effects. This study aimed to elucidate the mechanisms by which Korean mistletoe lectin (V. album L. var. coloratum agglutinin; VCA) modulates breast cancer cell apoptosis and macrophage polarization. The specific objectives were to (1) investigate the direct effects of VCA on MCF-7 breast cancer cells and THP-1-derived M1/M2 macrophages; (2) analyze the impact of VCA on the paracrine interactions between these cell types; and (3) compare the efficacy of VCA in 2D vs. 3D co-culture models to bridge the gap between in vitro and in vivo studies. We employed both 2D and 3D models, co-culturing human M1/M2 macrophages with human MCF-7 breast cancer cells in a Transwell system. Our research demonstrated that M1 and M2 macrophages significantly influenced the immune and apoptotic responses of breast cancer cells when exposed to VCA. M1 macrophages exhibited cytotoxic characteristics and enhanced VCA-induced apoptosis in both 2D and 3D co-culture models. Conversely, M2 macrophages initially displayed a protective effect by reducing apoptosis in breast cancer cells, but this protective effect was reversed upon exposure to VCA. Furthermore, our findings illustrate VCA's ability to modulate M1 and M2 polarization in breast cancer cells. Finally, the use of magnetic 3D cell cultures suggests their potential to yield results comparable to conventional 2D cultures, bridging the gap between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Chang-Eui Hong
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea;
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea;
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
39
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Zhao Q, Shao H, Zhang T. Single-cell RNA sequencing in ovarian cancer: revealing new perspectives in the tumor microenvironment. Am J Transl Res 2024; 16:3338-3354. [PMID: 39114691 PMCID: PMC11301471 DOI: 10.62347/smsg9047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Single-cell sequencing technology has emerged as a pivotal tool for unraveling the complexities of the ovarian tumor microenvironment (TME), which is characterized by its cellular heterogeneity and intricate cell-to-cell interactions. Ovarian cancer (OC), known for its high lethality among gynecologic malignancies, presents significant challenges in treatment and diagnosis, partly due to the complexity of its TME. The application of single-cell sequencing in ovarian cancer research has enabled the detailed characterization of gene expression profiles at the single-cell level, shedding light on the diverse cell populations within the TME, including cancer cells, stromal cells, and immune cells. This high-resolution mapping has been instrumental in understanding the roles of these cells in tumor progression, invasion, metastasis, and drug resistance. By providing insight into the signaling pathways and cell-to-cell communication mechanisms, single-cell sequencing facilitates the identification of novel therapeutic targets and the development of personalized medicine approaches. This review summarizes the advancement and application of single-cell sequencing in studying the stromal components and the broader TME in OC, highlighting its implications for improving diagnosis, treatment strategies, and understanding of the disease's underlying biology.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Clinical Laboratory, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| | - Huaming Shao
- Department of Medical Laboratory, Qingdao West Coast Second HospitalQingdao 266500, Shandong, P. R. China
| | - Tianmei Zhang
- Department of Gynecology, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| |
Collapse
|
41
|
Song Y, Fu Y, Wang J, Tang J, Yin J, Zhang Z, Song Q, Zhang B. Complement C1q induces the M2-polarization of tumor-associated macrophages in lung adenocarcinoma. Genes Dis 2024; 11:101093. [PMID: 38510481 PMCID: PMC10951452 DOI: 10.1016/j.gendis.2023.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 03/22/2024] Open
Affiliation(s)
- Yuxiao Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| | - Yang Fu
- Department of Oncology, Xiangyang Hospital, Hubei University of Chinese Medicine, Xiangyang, Hubei 441100, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jiazhuo Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| | - Jiaxin Yin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| | - Zhimin Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430061, China
| |
Collapse
|
42
|
Yang L, Hu Q, Huang T. Breast Cancer Treatment Strategies Targeting the Tumor Microenvironment: How to Convert "Cold" Tumors to "Hot" Tumors. Int J Mol Sci 2024; 25:7208. [PMID: 39000314 PMCID: PMC11241188 DOI: 10.3390/ijms25137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer characterized as "cold tumors" exhibit low levels of immune cell infiltration, which limits the efficacy of conventional immunotherapy. Recent studies have focused on strategies using nanotechnology combined with tumor microenvironment modulation to transform "cold tumors" into "hot tumors". This approach involves the use of functionalized nanoparticles that target and modify the tumor microenvironment to promote the infiltration and activation of antitumor immune cells. By delivering immune activators or blocking immunosuppressive signals, these nanoparticles activate otherwise dormant immune responses, enhancing tumor immunogenicity and the therapeutic response. These strategies not only promise to increase the response rate of breast cancer patients to existing immunotherapies but also may pave new therapeutic avenues, providing a new direction for the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Liucui Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
43
|
Yang M, Cui M, Sun Y, Liu S, Jiang W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun Signal 2024; 22:338. [PMID: 38898505 PMCID: PMC11186190 DOI: 10.1186/s12964-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-programmed death 1/programmed death ligand 1 (anti-PD-1/PD-L1) antibodies exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. However, the emergence of drug resistance causes most patients to respond poorly to these immune checkpoint inhibitors (ICIs). Studies have shown that insufficient T-cell infiltration, lack of PD-1 expression, deficient interferon signaling, loss of tumor antigen presentation, and abnormal lipid metabolism are all considered to be closely associated with immunotherapy resistance. To address drug resistance in tumor immunotherapy, a lot of research has concentrated on developing combination therapy strategies. Currently, ICIs such as anti-PD-1 /PD-L1 antibody combined with chemotherapy and targeted therapy have been approved for clinical treatment. In this review, we analyze the mechanisms of resistance to anti-PD-1/PD-L1 therapy in terms of the tumor microenvironment, gut microbiota, epigenetic regulation, and co-inhibitory immune checkpoint receptors. We also discuss various promising combination therapeutic strategies to address resistance to anti-PD-1/PD-L1 drugs, including combining these therapies with traditional Chinese medicine, non-coding RNAs, targeted therapy, other ICIs, and personalized cancer vaccines. Moreover, we focus on biomarkers that predict resistance to anti-PD-1/PD-L1 therapy as well as combination therapy efficacy. Finally, we suggest ways to further expand the application of immunotherapy through personalized combination strategies using biomarker systems.
Collapse
Affiliation(s)
- Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Sun
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
44
|
Zheng C, Zhang W, Gong X, Xiong F, Jiang L, Zhou L, Zhang Y, Zhu HH, Wang H, Li Y, Zhang P. Chemical conjugation mitigates immunotoxicity of chemotherapy via reducing receptor-mediated drug leakage from lipid nanoparticles. SCIENCE ADVANCES 2024; 10:eadk9996. [PMID: 38838152 DOI: 10.1126/sciadv.adk9996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wen Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xiang Gong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
45
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Toledo Martins Pereira M, Sardou Charret T, Freimann Wermelinger G, Soares Ribeiro Nogueira T, Kaufmann Robbs B, Carvalho Castiglione R, Loureiro Simões R, Dantas Machado RL, Curcino Vieira IJ, Abreu LS, D'Avila Bitencourt Pascoal V, Rheder Fagundes Pascoal AC. Evaluation of the Antiproliferative Potential of Yellow Jaboticaba (Myrciaria glazioviana) Extracts Against Human Cervical Cancer (HeLa cells line) and the Analysis of Their Chemical Composition by HPLC-HRESIMS. Chem Biodivers 2024; 21:e202301467. [PMID: 38471006 DOI: 10.1002/cbdv.202301467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cervical cancer is a specific type of cancer that affects women around the world, with an incidence of 604 thousand new cases per year and 341 thousand deaths. There is a high demand for new effective antineoplastic drugs with few side effects. In this sense, recent research highlights the potential of compounds of natural origin in treating and preventing different types of cancer. Myrciaria glazioviana is a Brazilian native species belonging to the Myrtaceae family, which has previously described biological activities such as antimicrobial, anti-inflammatory, and antioxidant properties. This study aims to evaluate the anticancer activity of the dichloromethane extract (MGD) and ethyl acetate extract (MGA) of M. glazioviana leaves against human cervical cancer cell line (HeLa), as well as to identify their bioactive compounds. Using HPLC-HRESIMS technique, ten compounds were characterized in both samples: quinic acid, ellagic acid, Tri-O-methyl ellagic acid, two derivatives of Tetra-O-methyl flavellagic acid, quercetrin, Di-O-methyl ellagic acid, and three derivatives of pentamethyl coruleoellagic acid. Through MTT assays using HeLa cells and NIH/3T3 cells, it was observed that MGD and MGA were selective against tumor cells, with IC50 values of 24.31 and 12.62 μg/mL, respectively. The samples induced the tumor cell death by apoptosis, as evidenced by the activation of caspases 3/7, cell shrinkage, and pyknotic nuclei. Both samples were also able to inhibit the migration of HeLa cells after 24 hours of treatment, indicating a potential antimetastatic effect. Therefore, the present research highlights the antiproliferative and antimigratory potential of this species against HeLa cells.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Thiago Sardou Charret
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | | | | | - Bruno Kaufmann Robbs
- Multiuser Biomedical Research Laboratory, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Raquel Carvalho Castiglione
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Loureiro Simões
- Laboratory for Cellular and Molecular Pharmacology, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Luiz Dantas Machado
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Department of Microbiology and Parasitology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
| | - Ivo José Curcino Vieira
- Laboratory of Chemical Sciences, Center for Exact Sciences and Technology, UENF, Campos dos Goytacazes, Brazil
| | - Lucas Silva Abreu
- Natural Products Chemistry Laboratory, Institute of Chemistry, UFF, Niterói, Rio de Janeiro, Brazil
| | - Vinicius D'Avila Bitencourt Pascoal
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
- Multiuser Biomedical Research Laboratory, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Graduate Program in Science and Biotechnology, Institute of Biology, UFF, Niterói, Rio de Janeiro, Brazil
- Research Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo Health Institute, UFF, Nova Friburgo, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
48
|
Liu Q, Xu R, Shen J, Tao Y, Shao J, Ke Y, Liu B. In situ chemoimmunotherapy hydrogel elicits immunogenic cell death and evokes efficient antitumor immune response. J Transl Med 2024; 22:341. [PMID: 38594751 PMCID: PMC11005214 DOI: 10.1186/s12967-024-05102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.
Collapse
Affiliation(s)
- Qin Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rui Xu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingwen Shen
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaping Tao
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingyi Shao
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaohua Ke
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
49
|
Chen JY, Lin PY, Hong WZ, Yang PC, Chiang SF, Chang HY, Ke TW, Liang JA, Chen WTL, Chao KSC, Huang KCY. Activation of STING by the novel liposomal TLC388 enhances the therapeutic response to anti-PD-1 antibodies in combination with radiotherapy. Cancer Immunol Immunother 2024; 73:92. [PMID: 38564022 PMCID: PMC10987363 DOI: 10.1007/s00262-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.
Collapse
Affiliation(s)
- Jhen-Yu Chen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Po-Yu Lin
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Wei-Ze Hong
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Hsin-Yu Chang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan R.O.C..
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
50
|
Deng Z, Qishan S, Zhang Q, Wang J, Yue Y, Geng L, Wu N. Low molecular weight fucoidan LF2 improves the immunosuppressive tumor microenvironment and enhances the anti-pancreatic cancer activity of oxaliplatin. Biomed Pharmacother 2024; 173:116360. [PMID: 38422657 DOI: 10.1016/j.biopha.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Chemotherapy remains the cornerstone of pancreatic cancer treatment. However, the dense interstitial and immunosuppressive microenvironment frequently render the ineffective anti-tumor activity of chemotherapeutic agents. Macrophages play a key role in the tumor immunomodulation. In this study, we found that low molecular weight of fucoidan (LF2) directly regulated the differentiation of mononuclear macrophages into the CD86+ M1 phenotype. LF2 significantly upregulated the expressions of M1 macrophage-specific cytokines, including iNOS, IL-6, TNFα and IL-12. LF2 modulated macrophage phenotypic transformation through activation of TLR4-NFκB pathway. Furthermore, we observed that LF2 enhanced the pro-apoptotic activity of oxaliplatin (OXA) in vitro by converting macrophages to a tumoricidal M1 phenotype. Meanwhile, LF2 increased intratumoral M1 macrophage infiltration and ameliorated the immunosuppressed tumor microenvironment, which in turn enhanced the anti-pancreatic ductal adenocarcinoma (PDAC) activity of OXA in vivo. Taken together, our results suggested that LF2 could act as a TLR4 agonist targeting macrophages and has a synergistic effect against PDAC when combined with OXA.
Collapse
Affiliation(s)
- Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suo Qishan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine drugs and biological products, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|