1
|
Pan D, Li X, Qiao X, Wang Q. Immunosuppressive tumor microenvironment in pancreatic cancer: mechanisms and therapeutic targets. Front Immunol 2025; 16:1582305. [PMID: 40443678 PMCID: PMC12119487 DOI: 10.3389/fimmu.2025.1582305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025] Open
Abstract
Pancreatic cancer is projected to become the second leading cause of cancer-related death by 2030. Conventional interventions including surgery, radiotherapy, and chemotherapy provide only modest survival benefits, underscoring an urgent need for more effective therapies. Although immunotherapy has revolutionized the management of several solid tumors, its clinical benefit in pancreatic cancer has so far been disappointing. Mounting evidence indicates that a highly immunosuppressive tumor microenvironment (TME), dominated by tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), drives immune evasion, tumor progression, metastasis, and chemoresistance through complex cytokine and chemokine networks. This review summarizes current knowledge of these immunosuppressive mechanisms and provides emerging strategies aimed at re-educating or depleting these cellular constituents to enhance the efficacy of immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Da Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Li
- First College for Clinical Medicine, Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Xiao Qiao
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Qiqi Wang
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Zhou X, Ba Y, Xu N, Xu H, Zhang Y, Liu L, Weng S, Liu S, Xing Z, Chen S, Luo P, Wang L, Han X. Pharmacogenomics-based subtype decoded implications for risk stratification and immunotherapy in pancreatic adenocarcinoma. Mol Med 2025; 31:62. [PMID: 39972282 PMCID: PMC11837470 DOI: 10.1186/s10020-024-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/16/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND With fatal malignant peculiarities and poor survival rate, outcomes of pancreatic adenocarcinoma (PAAD) were frustrated by non-response and even resistance to therapy due to heterogeneity across clinical patients. Nevertheless, pharmacogenomics has been developed for individualized-treatment and still maintains obscure in PAAD. METHODS A total of 964 samples from 10 independent multi-center cohorts were enrolled in our study. With drug response data from the profiling of relative inhibition simultaneously in mixtures (PRISM) and genomics of drug sensitivity in cancer (GDSC) databases, we established and validated multidimensionally three pharmacogenomics-classified subtypes using non-negative matrix factorization (NMF) and nearest template prediction (NTP) algorithms, separately. The heterogenous biological characteristics and precision medicine strategies among subtypes were further investigated. RESULTS Three pharmacogenomics-classified subtypes after stable and reproducible validation, distinguished in six aspects of prognosis, biological peculiarities, immune landscapes, genomic variations, immunotherapy and individualized management strategies. Subtype 2 was close to immunocompetent phenotype and projected to immunotherapy; Subtype 3 held most favorable outcomes and metabolic pathways distinctively, promising to be treated with first-line agents. Subtype 1 with worst prognosis, was anticipated to chromosome instability (CIN) phenotype and resistant to chemotherapeutic agents. In addition, ITGB6 contributed to subtype 1 resistance to 5-fluorouracil, and knockdown of ITGB6 enhanced sensitivity to 5-fluorouracil in in vitro experiments. Ultimately, appropriate clinical stratified treatments were assigned to corresponding subtypes according to pharmacogenomic transcripts. Some limitations were not taken into account, thus needs to be supported by more research. CONCLUSION A span-new molecular subtype exploited for PAAD uncovered an insight into precise medication on ground of pharmacogenomics, and highly refined multiple clinical management strategies for specific patients.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nuo Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Li H, Zhang Z, Shi Z, Zhou S, Nie S, Yu Y, Zhang L, Sun Y, Fang C, Hu J, Niu Y, Schuck K, Wang L, Jiang K, Lu Z, Kahlert C, Roth S, Loos M, Herr I, Sunami Y, Kleeff J, Friess H, Reichert M, Dantes Z, Zou X, Michalski CW, Shen S, Kong B. Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy. Cell Rep Med 2025; 6:101927. [PMID: 39914384 PMCID: PMC11866503 DOI: 10.1016/j.xcrm.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Hongzhen Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Zhiheng Zhang
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhao Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shuang Nie
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lingling Zhang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yifeng Sun
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Chao Fang
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany; Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Kathleen Schuck
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Zahra Dantes
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Christoph W Michalski
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bo Kong
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Li Y, Zheng Y, Huang J, Nie RC, Wu QN, Zuo Z, Yuan S, Yu K, Liang CC, Pan YQ, Zhao BW, Xu Y, Zhang Q, Zheng Y, Chen J, Zeng ZL, Wei W, Liu ZX, Xu RH, Luo HY. CAF-macrophage crosstalk in tumour microenvironments governs the response to immune checkpoint blockade in gastric cancer peritoneal metastases. Gut 2025; 74:350-363. [PMID: 39537239 PMCID: PMC11874311 DOI: 10.1136/gutjnl-2024-333617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM. Stratification of best responders and elucidation of resistance mechanisms of ICB therapies are highly important and remain major clinical challenges. DESIGN We performed a phase II trial involving patients with GCPM treated with ICB (sintilimab) combined with chemotherapy. The samples of primary tumours, GCPMs and peripheral blood from patients were collected for single-cell sequencing to comprehensively interpret the tumour microenvironment of GCPM and its impacts on immunotherapy efficacy. RESULTS The GCPM ecosystem coordinates a unique immunosuppressive pattern distinct from that of primary GC, which is dominated by a stroma-myeloid niche composed of SPP1+tumour-associated macrophages (TAMs) and Thrombospondin 2 (THBS2)+matrix cancer-associated fibroblasts (mCAFs). Consequently, this stroma-myeloid crosstalk is the major mediator of ICB resistance in patients with GCPM. Mechanistically, the accumulated THBS2+mCAFs facilitate the recruitment of peritoneum-specific tissue-resident macrophages and their transformation into SPP1+TAMs via the complement C3 and its receptor C3a receptor 1 (C3AR1), thereby forming a protumoral stroma-myeloid niche. Blocking the C3-C3AR1 axis disrupts the stroma-myeloid crosstalk and thereby significantly improves the benefits of ICB in in vivo models. CONCLUSION Our findings provide a new molecular portrait of cell compositions associated with ICB resistance in patients with GCPM and aid in the prioritisation of therapeutic candidates to potentiate immunotherapy.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiaqian Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijun Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuqiang Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng-Cai Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi-Qian Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bai-Wei Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuhong Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qihua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yashang Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junquan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Porter G, Norris MD, Apte M, Merlot AM. Spatial profiling of endoplasmic reticulum stress markers in tumor associated cells predicts patient outcomes in pancreatic cancer. Neoplasia 2025; 60:101115. [PMID: 39818177 PMCID: PMC11786694 DOI: 10.1016/j.neo.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION The impact of endoplasmic reticulum (ER) stress in tumor-associated cells, such as cancer associated fibroblasts (CAFs), immune cells and endothelial cells, on patient outcomes in clinical specimens have not been examined. For the first time, we characterized the expression and spatial locations of ER stress markers, BiP and CHOP, in tumor-associated cells and assessed their prognostic significance in a panel of pancreatic ductal adenocarcinoma (PDAC) patient samples. METHODS Multiplex immunofluorescence was performed on tumor microarrays and images were analyzed using HALO AI software. RESULTS BiP and CHOP were upregulated in CAFs and endothelial cells in PDAC sections relative to non-neoplastic pancreas sections. High BiP expression in CAFs and endothelial cells was associated with greater vascular invasion and in immune cells was correlated with increased tumor size. High CHOP expression in immune cells correlated with poor patient survival. CAFs and immune cells were more likely to express BiP or CHOP when located close (< 20 μm) to tumor cells. High expression of CHOP in CAFs close to tumor cells correlated with improved patient survival. CONCLUSION For the first time, this study demonstrated that ER stress occurs in CAFs and immune cells predominantly in proximity to tumor cells in PDAC patient tissue. The correlation of high ER stress in immune cells with poor patient survival highlights the importance of the TME and the use of spatial analysis for the identification of novel biomarkers.
Collapse
Affiliation(s)
- Georgia Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, Faculty of Medicine and Health, UNSW Sydney, NSW 2052, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Angelica M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
6
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
7
|
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J, Alrabiah NA, Hashash A. Leveraging Single-Cell Multi-Omics to Decode Tumor Microenvironment Diversity and Therapeutic Resistance. Pharmaceuticals (Basel) 2025; 18:75. [PMID: 39861138 PMCID: PMC11768313 DOI: 10.3390/ph18010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior. In-depth studies have uncovered immune evasion mechanisms, including the exhaustion of T cells and metabolic reprogramming in response to hypoxia from cancer cells. Single-cell multi-omics also revealed resistance mechanisms, such as stromal cell-secreted factors and physical barriers in the extracellular matrix. Future studies examining specific metabolic pathways and targeting approaches to reduce the heterogeneity in the TME will likely lead to better outcomes with immunotherapies, drug delivery, etc., for cancer treatments. Future studies will incorporate multi-omics data, spatial relationships in tumor micro-environments, and their translation into personalized cancer therapies. This review emphasizes how single-cell multi-omics can provide insights into the cellular and molecular heterogeneity of the TME, revealing immune evasion mechanisms, metabolic reprogramming, and stromal cell influences. These insights aim to guide the development of personalized and targeted cancer therapies, highlighting the role of TME diversity in shaping tumor behavior and treatment outcomes.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Aysha Ghazy
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtesam S. Al-Dhuayan
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Noof A. Alrabiah
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Ahmed Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
9
|
He X, Zhong L, Wang N, Zhao B, Wang Y, Wu X, Zheng C, Ruan Y, Hou J, Luo Y, Yin Y, He Y, Xiang AP, Wang J. Gastric Cancer Actively Remodels Mechanical Microenvironment to Promote Chemotherapy Resistance via MSCs-Mediated Mitochondrial Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404994. [PMID: 39392399 DOI: 10.1002/advs.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Chemotherapy resistance is the main reason of treatment failure in gastric cancer (GC). However, the mechanism of oxaliplatin (OXA) resistance remains unclear. Here, we demonstrate that extracellular mechanical signaling plays crucial roles in OXA resistance within GC. We selected OXA-resistant GC patients and analyzed tumor tissues by single-cell sequencing, and found that the mitochondrial content of GC cells increased in a biosynthesis-independent manner. Moreover, we found that the increased mitochondria of GC cells were mainly derived from mesenchymal stromal cells (MSCs), which could repair the mitochondrial function and reduce the levels of mitophagy in GC cells, thus leading to OXA resistance. Furthermore, we investigated the underlying mechanism and found that mitochondrial transfer was mediated by mechanical signals of the extracellular matrix (ECM). After OXA administration, GC cells actively secreted ECM in the tumor microenvironment (TEM), increasing matrix stiffness of the tumor tissues, which promoted mitochondria to transfer from MSCs to GC cells via microvesicles (MVs). Meanwhile, inhibiting the mechanical-related RhoA/ROCK1 pathway could alleviate OXA resistance in GC cells. In summary, these results indicate that matrix stiffness could be used as an indicator to identify chemotherapy resistance, and targeting mechanical-related pathway could effectively alleviate OXA resistance and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Xin He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Zhong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Nan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yannan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinxiang Wu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changyu Zheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yueheng Ruan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuehan Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
10
|
Siciliano AC, Forciniti S, Onesto V, Iuele H, Cave DD, Carnevali F, Gigli G, Lonardo E, Del Mercato LL. A 3D Pancreatic Cancer Model with Integrated Optical Sensors for Noninvasive Metabolism Monitoring and Drug Screening. Adv Healthc Mater 2024; 13:e2401138. [PMID: 38978424 DOI: 10.1002/adhm.202401138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Indexed: 07/10/2024]
Abstract
A distinct feature of pancreatic ductal adenocarcinoma (PDAC) is a prominent tumor microenvironment (TME) with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. The dynamic crosstalk between cancer cells and the dense stromal compartment leads to spatially and temporally heterogeneous metabolic alterations, such as acidic pH that contributes to drug resistance in PDAC. Thus, monitoring the extracellular pH metabolic fluctuations within the TME is crucial to predict and to quantify anticancer drug efficacy. Here, a simple and reliable alginate-based 3D PDAC model embedding ratiometric optical pH sensors and cocultures of tumor (AsPC-1) and stromal cells for simultaneously monitoring metabolic pH variations and quantify drug response is presented. By means of time-lapse confocal laser scanning microscopy (CLSM) coupled with a fully automated computational analysis, the extracellular pH metabolic variations are monitored and quantified over time during drug testing with gemcitabine, folfirinox, and paclitaxel, commonly used in PDAC therapy. In particular, the extracellular acidification is more pronounced after drugs treatment, resulting in increased antitumor effect correlated with apoptotic cell death. These findings highlight the importance of studying the influence of cellular metabolic mechanisms on tumor response to therapy in 3D tumor models, this being crucial for the development of personalized medicine approaches.
Collapse
Affiliation(s)
- Anna Chiara Siciliano
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council (Cnr-IGB), Naples, 80131, Italy
| | - Federica Carnevali
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council (Cnr-IGB), Naples, 80131, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
11
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
12
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Freeman P, Bellomo G, Ireland L, Abudula M, Luckett T, Oberst M, Stafferton R, Ghaneh P, Halloran C, Schmid MC, Mielgo A. Inhibition of insulin-like growth factors increases production of CXCL9/10 by macrophages and fibroblasts and facilitates CD8 + cytotoxic T cell recruitment to pancreatic tumours. Front Immunol 2024; 15:1382538. [PMID: 39165364 PMCID: PMC11334161 DOI: 10.3389/fimmu.2024.1382538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.
Collapse
Affiliation(s)
- Patrick Freeman
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael Oberst
- Department of Oncology Research, AstraZeneca, One Medimmune Way, Gaithersburg, MD, United States
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
15
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
16
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
17
|
Nakamura H, Watanabe M, Takada K, Sato T, Hikage F, Umetsu A, Muramatsu J, Furuhashi M, Ohguro H. Modulation of Epithelial-Mesenchymal Transition Is a Possible Underlying Mechanism for Inducing Chemoresistance in MIA PaCa-2 Cells against Gemcitabine and Paclitaxel. Biomedicines 2024; 12:1011. [PMID: 38790973 PMCID: PMC11118094 DOI: 10.3390/biomedicines12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.
Collapse
Affiliation(s)
- Hajime Nakamura
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Kohichi Takada
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Joji Muramatsu
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| |
Collapse
|
18
|
Xue C, Zhou Q, Zhang B, Ke X, Zhang P, Liu X, Li S, Deng J, Zhou J. Vasari-Based Features Nomogram to Predict the Tumor-Infiltrating CD8+ T Cell Levels in Glioblastoma. Acad Radiol 2024; 31:2050-2060. [PMID: 37985291 DOI: 10.1016/j.acra.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
RATIONALE AND OBJECTIVES Tumor-infiltrating CD8 + T cells play a key role in glioblastoma (GB) development, malignant progression, and recurrence. The aim of the study was to establish nomograms based on the Visually AcceSAble Rembrandt Images (VASARI) features of multiparametric magnetic resonance imaging (MRI) to determine the expression levels of tumor-infiltrating CD8 + T cells in patients with GB. MATERIALS AND METHODS Pathological and imaging data of 140 patients with GB confirmed by surgery and pathology were retrospectively analyzed. The levels of tumor-infiltrating CD8 + T cells in tumor tissue samples obtained from patients were quantified using immunohistochemical staining. Patients were divided into high and low CD8 expression groups. The MRI images of patients with GB were analyzed by two radiologists using the VASARI scoring system. RESULTS A total of 25 MRI-based VASARI imaging features were evaluated by two neuroradiologists. The features with the greatest predictive power for CD8 expression levels were, cystic (OR, 3.063; 95% CI: 1.387, 6.766; P = 0.006), hemorrhage (OR, 2.980; 95% CI: 1.172, 7.575; P = 0.022), and ependymal extension (OR, 0.257; 95% CI: 0.114 0.581; P = 0.001). A logistic regression model based on these three features showed better sample predictive performance (AUC=0.745; 95% CI: 0.665, 0.825; Sensitivity=0.527; Specificity=0.857). CONCLUSION The VASARI feature-based nomogram model can show promise to predict the level of infiltrative CD8 expression in GB tumors non-invasively for earlier tissue diagnosis and more aggressive treatment.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
19
|
Jia X, Li Z, Zhou R, Feng W, Yi L, Zhang H, Chen B, Li Q, Huang S, Zhu X. Single cell and bulk RNA sequencing identifies tumor microenvironment subtypes and chemoresistance-related IGF1 + cancer-associated fibroblast in gastric cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167123. [PMID: 38484940 DOI: 10.1016/j.bbadis.2024.167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) significantly influences prognosis and drug resistance in various tumors, yet its heterogeneity and the mechanisms affecting therapeutic response remain unclear in gastric cancer (GC). METHODS The heterogenous TME were explored with single-cell RNA-sequencing (scRNA-seq) data of 50 primary GC samples. We then identified four GC TME subtypes with nonnegative matrix factorization (NMF) and constructed a pearson nearest-centroid classifier based on subtype-specific upregulated genes. Genomic features and clinical significance of four subtypes were comprehensively evaluated. We reclustered fibroblasts to identify cancer-associated fibroblast (CAF) subtype associated with poor clinical outcomes. RT-qPCR and double immunofluorescence staining were applied to validate the findings. Cellchat analysis elucidated potential molecular mechanisms of the CAF subtype in GC disease progression and chemotherapy resistance. FINDINGS The GC TME exhibited high heterogeneity, influencing chemo-sensitivity. Four TME-based subtypes predicting response to immunotherapy and chemotherapy were identified and validated in 1406 GC patients. Among which, ISG1 subtype displayed higher fibroblasts infiltration and heightened oncogenic pathways, and inferior response to chemotherapy with unfavorable prognosis. Microsatellite instability-high (MSI-H) GCs within four TME subtypes showed immunological heterogeneity. We then reported an IGF1-overexpressing CAF was associated with chemo-resistance and GC recurrence. Cell communication analysis revealed IGF1+ CAF may induce drug-resistant phenotypes in tumor cells through IGF1-α6β4 integrin ligand-receptor binding and activation of EMT biological process. INTERPRETATION We identified four TME-based subtypes with different clinical outcomes and IGF1+ CAFs contributing to poor clinical outcomes in GC, which might provide guidance for individualized treatment and facilitate the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixia Yi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
21
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8:31. [PMID: 38341519 DOI: 10.1038/s41698-024-00522-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shujing Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamin Luo
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
23
|
Abudukelimu S, de Miranda NFCC, Hawinkels LJAC. Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression. Cell Mol Gastroenterol Hepatol 2024; 17:821-826. [PMID: 38307492 PMCID: PMC10966773 DOI: 10.1016/j.jcmgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
Collapse
Affiliation(s)
- Subinuer Abudukelimu
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
25
|
Ganju V, Marx G, Pattison S, Amaro-Mugridge NB, Zhao JT, Williams BRG, MacDiarmid JA, Brahmbhatt H. Phase I/IIa Trial in Advanced Pancreatic Ductal Adenocarcinoma Treated with Cytotoxic Drug-Packaged, EGFR-Targeted Nanocells and Glycolipid-Packaged Nanocells. Clin Cancer Res 2024; 30:304-314. [PMID: 37976042 DOI: 10.1158/1078-0432.ccr-23-1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE We assessed the safety and efficacy of an EGFR-targeted, super-cytotoxic drug, PNU-159682-packaged nanocells with α-galactosyl ceramide-packaged nanocells (E-EDV-D682/GC) in patients with advanced pancreatic ductal adenocarcinoma (PDAC) who had exhausted all treatment options. PATIENTS AND METHODS ENG9 was a first-in-man, single-arm, open-label, phase I/IIa, dose-escalation clinical trial. Eligible patients had advanced PDAC, Eastern Cooperative Oncology Group status 0 to 1, and failed all treatments. Primary endpoints were safety and overall survival (OS). RESULTS Of 25 enrolled patients, seven were withdrawn due to rapidly progressive disease and one patient withdrew consent. All 25 patients were assessed for toxicity, 24 patients were assessed for OS, which was also assessed for 17 patients completing one treatment cycle [evaluable subset (ES)]. Nineteen patients (76.0%) experienced at least one treatment-related adverse event (graded 1 to 2) resolving within hours. There were no safety concerns, dose reductions, patient withdrawal, or treatment-related deaths. Median OS (mOS) was 4.4 months; however, mOS of the 17 ES patients was 6.9 months [208 days; range, 83-591 days; 95.0% confidence interval (CI), 5.6-10.3 months] and mOS of seven patients who did not complete one cycle was 1.8 months (54 days; range, 21-72; 95.0% CI, 1.2-2.2 months). Of the ES, 47.1% achieved stable disease and one partial response. Ten subjects in the ES survived over 6 months, the longest 19.7 months. During treatments, 82.0% of the ES maintained stable weight. CONCLUSIONS E-EDV-D682/GC provided significant OS, minimal side effects, and weight stabilization in patients with advanced PDAC. Advanced PDAC can be safely treated with super-cytotoxic drugs via EnGeneIC Dream Vectors to overcome multidrug resistance.
Collapse
Affiliation(s)
- Vinod Ganju
- Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
- Peninsula and Southeast Oncology (PASO), Frankston Private Hospital, Frankston, Australia
| | - Gavin Marx
- Sydney Adventist Hospital, Sydney, New South Wales, Australia
| | | | | | | | - Bryan R G Williams
- Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | | | | |
Collapse
|
26
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
27
|
Zhang T, Gu Z, Ni R, Wang X, Jiang Q, Tao R. An Update on Gemcitabine-Based Chemosensitization Strategies in Pancreatic Ductal Adenocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:361. [PMID: 38179740 DOI: 10.31083/j.fbl2812361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 01/06/2024]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths, and chemotherapy is one of the most important treatments for pancreatic cancer. Unfortunately, pancreatic cancer cells can block chemotherapy drugs from entering the tumor. This is owing to interactions between the tumor's environment and the cancer cells. Here, we review the latest research on the mechanisms by which pancreatic cancer cells block the chemotherapy drug, gemcitabine. The results of our review can help identify potential therapeutic targets for the blocking of gemcitabine by pancreatic cancer cells and may provide new strategies to help chemotherapy drugs penetrate tumors.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Zongting Gu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Ran Ni
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Xiao Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Qitao Jiang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Zhou J, Lyu N, Wang Q, Yang M, Kimchi ET, Cheng K, Joshi T, Tukuli AR, Staveley-O'Carroll KF, Li G. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance. Cancer Lett 2023; 578:216457. [PMID: 37865162 DOI: 10.1016/j.canlet.2023.216457] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Nan Lyu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA; Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA; Department of Health Management and Informatics and MU Institute of Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Adama R Tukuli
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
29
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
30
|
Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother 2023; 166:115425. [PMID: 37660643 DOI: 10.1016/j.biopha.2023.115425] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
31
|
Sahni S, Nahm C, Ahadi MS, Sioson L, Byeon S, Chou A, Maloney S, Moon E, Pavlakis N, Gill AJ, Samra J, Mittal A. Gene expression profiling of pancreatic ductal adenocarcinomas in response to neoadjuvant chemotherapy. Cancer Med 2023; 12:18050-18061. [PMID: 37533202 PMCID: PMC10523964 DOI: 10.1002/cam4.6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Chemotherapy is the mainstay systemic therapy for PDAC, and chemoresistance is a major clinical problem leading to therapeutic failure. This study aimed to identify key differences in gene expression profile in tumors from chemoresponsive and chemoresistant patients. METHODS Archived formalin-fixed paraffin-embedded tumor tissue samples from patients treated with neoadjuvant chemotherapy were obtained during surgical resection. Specimens were macrodissected and gene expression analysis was performed. Multi- and univariate statistical analysis was performed to identify differential gene expression profile of tumors from good (0%-30% residual viable tumor [RVT]) and poor (>30% RVT) chemotherapy-responders. RESULTS Initially, unsupervised multivariate modeling was performed by principal component analysis, which demonstrated a distinct gene expression profile between good- and poor-chemotherapy responders. There were 396 genes that were significantly (p < 0.05) downregulated (200 genes) or upregulated (196 genes) in tumors from good responders compared to poor responders. Further supervised multivariate analysis of significant genes by partial least square (PLS) demonstrated a highly distinct gene expression profile between good- and poor responders. A gene biomarker of panel (IL18, SPA17, CD58, PTTG1, MTBP, ABL1, SFRP1, CHRDL1, IGF1, and CFD) was selected based on PLS model, and univariate regression analysis of individual genes was performed. The identified biomarker panel demonstrated a very high ability to diagnose good-responding PDAC patients (AUROC: 0.977, sensitivity: 82.4%; specificity: 87.0%). CONCLUSION A distinct tumor biological profile between PDAC patients who either respond or not respond to chemotherapy was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
| | - Christopher Nahm
- Western Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Mahsa S. Ahadi
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sooin Byeon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Sydney Cancer Center, Royal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Cancer InstituteSt LeonardsNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- The University of Notre Dame AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
32
|
Lintern N, Smith AM, Jayne DG, Khaled YS. Photodynamic Stromal Depletion in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4135. [PMID: 37627163 PMCID: PMC10453210 DOI: 10.3390/cancers15164135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid malignancies, with a five-year survival of less than 10%. The resistance of the disease and the associated lack of therapeutic response is attributed primarily to its dense, fibrotic stroma, which acts as a barrier to drug perfusion and permits tumour survival and invasion. As clinical trials of chemotherapy (CT), radiotherapy (RT), and targeted agents have not been successful, improving the survival rate in unresectable PDAC remains an urgent clinical need. Photodynamic stromal depletion (PSD) is a recent approach that uses visible or near-infrared light to destroy the desmoplastic tissue. Preclinical evidence suggests this can resensitise tumour cells to subsequent therapies whilst averting the tumorigenic effects of tumour-stromal cell interactions. So far, the pre-clinical studies have suggested that PDT can successfully mediate the destruction of various stromal elements without increasing the aggressiveness of the tumour. However, the complexity of this interplay, including the combined tumour promoting and suppressing effects, poses unknowns for the clinical application of photodynamic stromal depletion in PDAC.
Collapse
Affiliation(s)
- Nicole Lintern
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew M. Smith
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David G. Jayne
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
33
|
Fan YC, Fong YC, Kuo CT, Li CW, Chen WY, Lin JD, Bürtin F, Linnebacher M, Bui QT, Lee KD, Tsai YC. Tumor-derived interleukin-1 receptor antagonist exhibits immunosuppressive functions and promotes pancreatic cancer. Cell Biosci 2023; 13:147. [PMID: 37563620 PMCID: PMC10416534 DOI: 10.1186/s13578-023-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a pernicious disease characterized by an immunosuppressive milieu that is unresponsive to current immunotherapies. Interleukin-1 receptor antagonist (IL-1Ra) is a natural anti-inflammatory cytokine; however, its contribution to cancer pathogenesis and immunosuppression remains elusive. In this research, we investigated the role and mechanism of IL-1Ra in malignant progression of PDA. RESULTS Through analyzing clinical dataset and examining the pathological tumor tissues and serum samples, we have demonstrated that IL-1Ra expression is elevated in human PDA and positively associated with malignant progression of PDA. To study the biological function of IL-1Ra in tumors, we generated a set of mouse pancreatic cancer cell lines with a knockout (KO) of the Il1rn gene, encoding IL-1Ra, and compared the tumor growth rates in immune-competent and immune-deficient mice. We found that the Il1rn KO cells exhibited greater tumor inhibition in immune-competent mice, highlighting the crucial role of a functional immune system in Il1rn KO-mediated anti-tumor response. Consistently, we found an increase in CD8+ T cells and a decrease in CD11b+Ly6G- immunosuppressive mononuclear population in the tumor microenvironment of Il1rn KO-derived tumors. To monitor the inhibitory effects of IL-1Ra on immune cells, we utilized a luciferase-based reporter CD4+ T cell line and splenocytes, which were derived from transgenic mice expressing ovalbumin-specific T cell receptors in CD8+ T cells, and mice immunized with ovalbumin. We showed that IL-1Ra suppressed T cell receptor signaling and inhibited antigen-specific interferon-γ (IFN-γ) secretion and cytolytic activity in splenocytes. CONCLUSIONS Our findings illustrate the immunosuppressive properties of the natural anti-inflammatory cytokine IL-1Ra, and provide a rationale for considering IL-1Ra-targeted therapies in the treatment of PDA.
Collapse
Affiliation(s)
- Yu-Ching Fan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Yu-Cin Fong
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, 10617, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City, 10617, Taiwan
| | - Florian Bürtin
- Clinic of General Surgery, University Medical Center Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Quoc Thang Bui
- International Ph.D. Program for Cell Therapy and Regeneration Medicine (IPCTRM), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Der Lee
- International Ph.D. Program for Cell Therapy and Regeneration Medicine (IPCTRM), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, Natioanl Chung Hsing University, Taichung, Taiwan
- Cell Therapy and Regenerative Medicine Center and Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Wang Y, Ge W, Xue S, Cui J, Zhang X, Mao T, Xu H, Li S, Ma J, Yue M, Shentu D, Wang L. Cuproptosis-related lncRNAs are correlated with tumour metabolism and immune microenvironment and predict prognosis in pancreatic cancer patients. IET Syst Biol 2023; 17:174-186. [PMID: 37341253 PMCID: PMC10439495 DOI: 10.1049/syb2.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cuproptosis is a novel cell death pathway, and the regulatory mechanism in pancreatic cancer (PC) is unclear. The authors aimed to figure out whether cuproptosis-related lncRNAs (CRLs) could predict prognosis in PC and the underlying mechanism. First, the prognostic model based on seven CRLs screened by the least absolute shrinkage and selection operator Cox analysis was constructed. Following this, the risk score was calculated for pancreatic cancer patients and divided patients into high and low-risk groups. In our prognostic model, PC patients with higher risk scores had poorer outcomes. Based on several prognostic features, a predictive nomogram was established. Furthermore, the functional enrichment analysis of differentially expressed genes between risk groups was performed, indicating that endocrine and metabolic pathways were potential regulatory pathways between risk groups. TP53, KRAS, CDKN2A, and SMAD4 were dominant mutated genes in the high-risk group and tumour mutational burden was positively correlated with the risk score. Finally, the tumour immune landscape indicated patients in the high-risk group were more immunosuppressive than that in the low-risk group, with lower infiltration of CD8+ T cells and higher M2 macrophages. Above all, CRLs can be applied to predict PC prognosis, which is closely correlated with the tumour metabolism and immune microenvironment.
Collapse
Affiliation(s)
- Yanling Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiyu Ge
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shengbai Xue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiujie Cui
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Zhang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Tiebo Mao
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyan Xu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shumin Li
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyu Ma
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Yue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Daiyuan Shentu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Liwei Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
35
|
Huang J, Tsang WY, Li ZH, Guan XY. The Origin, Differentiation, and Functions of Cancer-Associated Fibroblasts in Gastrointestinal Cancer. Cell Mol Gastroenterol Hepatol 2023; 16:503-511. [PMID: 37451403 PMCID: PMC10462789 DOI: 10.1016/j.jcmgh.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence has shown the importance of the tumor microenvironment in tumorigenesis and progression. Cancer-associated fibroblasts (CAFs) are one of the most infiltrated stroma cells of the tumor microenvironment in gastrointestinal tumors. CAFs play crucial roles in tumor development and therapeutic response by biologically secreting soluble factors or structurally remodeling the extracellular matrix. Conceivably, CAFs may become excellent targets for tumor prevention and treatment. However, the limited knowledge of the heterogeneity of CAFs represents a huge challenge for clinically targeting CAFs. In this review, we summarize the newest understanding of gastrointestinal CAFs, with a special focus on their origin, differentiation, and function. We also discuss the current understanding of CAF subpopulations as shown by single-cell technologies.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Ying Tsang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhi-Hong Li
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| |
Collapse
|
36
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
38
|
Fu D, Yan J, Zhang Z, Liu Y, Ma X, Ding J, Yang S, Zhao R, Chang A, Gao C, Liu J, Zhao T, Wang X, Huang C, Gao S, Ma Y, Tang B, Feng Y, Wang H, Hao J. Nuclear PLD1 combined with NPM1 induces gemcitabine resistance through tumorigenic IL7R in pancreatic adenocarcinoma. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0039. [PMID: 37381714 PMCID: PMC10476466 DOI: 10.20892/j.issn.2095-3941.2023.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%. Of PDAC patients, 15%-20% are eligible for radical surgery. Gemcitabine is an important chemotherapeutic agent for patients with PDAC; however, the efficacy of gemcitabine is limited due to resistance. Therefore, reducing gemcitabine resistance is essential for improving survival of patients with PDAC. Identifying the key target that determines gemcitabine resistance in PDAC and reversing gemcitabine resistance using target inhibitors in combination with gemcitabine are crucial steps in the quest to improve survival prognosis in patients with PDAC. METHODS We constructed a human genome-wide CRISPRa/dCas 9 overexpression library in PDAC cell lines to screen key targets of drug resistance based on sgRNA abundance and enrichment. Then, co-IP, ChIP, ChIP-seq, transcriptome sequencing, and qPCR were used to determine the specific mechanism by which phospholipase D1 (PLD1) confers resistance to gemcitabine. RESULTS PLD1 combines with nucleophosmin 1 (NPM1) and triggers NPM1 nuclear translocation, where NPM1 acts as a transcription factor to upregulate interleukin 7 receptor (IL7R) expression. Upon interleukin 7 (IL-7) binding, IL7R activates the JAK1/STAT5 signaling pathway to increase the expression of the anti-apoptotic protein, BCL-2, and induce gemcitabine resistance. The PLD1 inhibitor, Vu0155069, targets PLD1 to induce apoptosis in gemcitabine-resistant PDAC cells. CONCLUSIONS PLD1 is an enzyme that has a critical role in PDAC-associated gemcitabine resistance through a non-enzymatic interaction with NPM1, further promoting the downstream JAK1/STAT5/Bcl-2 pathway. Inhibiting any of the participants of this pathway can increase gemcitabine sensitivity.
Collapse
Affiliation(s)
- Danqi Fu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jingrui Yan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zhaoyu Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yang Liu
- Department of General Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Xiaoqing Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jinsheng Ding
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Ran Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ying Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
39
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
40
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, Dong Y, Pan Y, Ke H, Liang L, Zhou Z, Xiao J, Wong CC, Wu WK, Cheng AS, Ma BB, Yu J, Lo KW, Kang W. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol 2023; 259:205-219. [PMID: 36373776 DOI: 10.1002/path.6033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The tumor microenvironment exerts crucial effects in driving CRC progression. Cancer-associated fibroblasts (CAFs) serve as one of the most important tumor microenvironment components promoting CRC progression. This study aimed to elucidate the novel molecular mechanisms of CAF-secreted insulin-like growth factor (IGF) 2 in colorectal carcinogenesis. Our results indicated that IGF2 was a prominent factor upregulated in CAFs compared with normal fibroblasts. CAF-derived conditioned media (CM) promoted tumor growth, migration, and invasion of HCT 116 and DLD-1 cells. IGF1R expression is significantly increased in CRC, serving as a potent receptor in response to IGF2 stimulation and predicting unfavorable outcomes for CRC patients. Apart from the PI3K-AKT pathway, RNA-seq analysis revealed that the YAP1-target signature serves as a prominent downstream effector to mediate the oncogenic signaling of IGF2-IGF1R. By single-cell RNA sequencing (scRNA-seq) and immunohistochemical validation, IGF2 was found to be predominantly secreted by CAFs, whereas IGF1R was expressed mainly by cancer cells. IGF2 triggers the nuclear accumulation of YAP1 and upregulates YAP1 target signatures; however, these effects were abolished by either IGF1R knockdown or inhibition with picropodophyllin (PPP), an IGF1R inhibitor. Using CRC organoid and in vivo studies, we found that cotargeting IGF1R and YAP1 with PPP and verteporfin (VP), a YAP1 inhibitor, enhanced antitumor effects compared with PPP treatment alone. In conclusion, this study revealed a novel molecular mechanism by which CAFs promote CRC progression. The findings highlight the translational potential of the IGF2-IGF1R-YAP1 axis as a prognostic biomarker and therapeutic target for CRC. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aden Ky Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alvin Hk Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, China National Center of Gerontology, Bejing Hospital, Beijing, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, PR China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianyong Xiao
- Department of Biochemistry, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Brigette By Ma
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | -
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
42
|
Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023; 324:C540-C552. [PMID: 36571444 PMCID: PMC9925166 DOI: 10.1152/ajpcell.00331.2022] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
43
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
44
|
Liu C, Li C, Liu Y. The role of metabolic reprogramming in pancreatic cancer chemoresistance. Front Pharmacol 2023; 13:1108776. [PMID: 36699061 PMCID: PMC9868425 DOI: 10.3389/fphar.2022.1108776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is characterized by hidden onset, high malignancy, and early metastasis. Although a few cases meet the surgical indications, chemotherapy remains the primary treatment, and the resulting chemoresistance has become an urgent clinical problem that needs to be solved. In recent years, the importance of metabolic reprogramming as one of the hallmarks of cancers in tumorigenesis has been validated. Metabolic reprogramming involves glucose, lipid, and amino acid metabolism and interacts with oncogenes to affect the expression of key enzymes and signaling pathways, modifying the tumor microenvironment and contributing to the occurrence of drug tolerance. Meanwhile, the mitochondria are hubs of the three major nutrients and energy metabolisms, which are also involved in the development of drug resistance. In this review, we summarized the characteristic changes in metabolism during the progression of pancreatic cancer and their impact on chemoresistance, outlined the role of the mitochondria, and summarized current studies on metabolic inhibitors.
Collapse
|
45
|
Piro G, Carbone C, Agostini A, Esposito A, De Pizzol M, Novelli R, Allegretti M, Aramini A, Caggiano A, Granitto A, De Sanctis F, Ugel S, Corbo V, Martini M, Lawlor RT, Scarpa A, Tortora G. CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and promotes immunotherapy response in pancreatic cancer. Br J Cancer 2023; 128:331-341. [PMID: 36385556 PMCID: PMC9902528 DOI: 10.1038/s41416-022-02028-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with few therapeutic options available. Despite immunotherapy has revolutionised cancer treatment, the results obtained in PDAC are still disappointing. Emerging evidence suggests that chemokines/CXCRs-axis plays a pivotal role in immune tumour microenvironment modulation, which may influence immunotherapy responsiveness. Here, we evaluated the effectiveness of CXCR1/2 inhibitor ladarixin, alone or in combination with anti-PD-1, against immunosuppression in PDAC. METHODS A set of preclinical models was obtained by engrafting mouse PDAC-derived cells into syngeneic immune-competent mice, as well as by orthotopically transplanting patient-derived PDAC tumour into human immune-system-reconstituted (HIR) mice (HuCD34-NSG-mice). Tumour-bearing mice were randomly assigned to receive vehicles, ladarixin, anti-PD-1 or drugs combination. RESULTS CXCR1/2 inhibition by ladarixin reverted in vitro tumour-mediated M2 macrophages polarisation and migration. Ladarixin as single agent reduced tumour burden in cancer-derived graft (CDG) models with high-immunogenic potential and increased the efficacy of ICI in non-immunogenic CDG-resistant models. In a HIR mouse model bearing the immunogenic subtype of human PDAC, ladarixin showed high efficacy increasing the antitumor effect of anti-PD-1. CONCLUSION Ladarixin in combination with anti-PD-1 might represent an extremely effective approach for the treatment of immunotherapy refractory PDAC, allowing pro-tumoral to immune-permissive microenvironment conversion.
Collapse
Affiliation(s)
- Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Annachiara Esposito
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | | | - Rubina Novelli
- Dompé Farmaceutici S.p.A., Via Santa Lucia 6, Milan, Italy
| | | | - Andrea Aramini
- Dompé Farmaceutici S.p.A., Via Santa Lucia 6, Milan, Italy
| | - Alessia Caggiano
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Alessia Granitto
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Rita Teresa Lawlor
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
46
|
Li L, Yu XJ, Gao L, Cheng L, Sun B, Wang G. Diabetic Ferroptosis and Pancreatic Cancer: Foe or Friend? Antioxid Redox Signal 2022; 37:1206-1221. [PMID: 35996983 DOI: 10.1089/ars.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Pancreatic cancer and diabetes have a reciprocal causation relationship. As a potential risk factor, diabetes increases morbidity and promotes pancreatic cancer progression. The main mechanisms include islet dysfunction-induced systemic metabolic disorder, pancreatic stellate cell activation, and immunosuppression. Ferroptosis is regarded as regulated cell death, which participates in chemotherapy resistance and is refractory to radiation therapy and immunotherapy. Diabetes-induced ferroptosis causes many complications, but the underlying mechanism of diabetes-related ferroptosis in pancreatic cancer has not been discussed. Recent Advances: Ferroptosis alleviates pancreatic intraepithelial neoplasia (PanIN) progression by activating chronic inflammation. The specific drugs that cause ferroptosis achieve tumor suppression by inducing lipid peroxidation. Ferroptosis plays pro and con roles in cancer. Both the ferroptosis inhibitor and inducer exhibit antitumor effects through killing cancer cells or directly affecting tumor growth. Diabetes-induced ferroptosis contributes to tumor cell death by different components, including tumor cells, fibroblasts, immune cells, and adipocytes. A better understanding of its role in modulating the tumor microenvironment will reveal diabetes-associated ferroptotic features in cancer development, which can be used to figure out possible treatment strategies for cancer patients with hyperglycemia. Critical Issues: We demonstrate the potential roles of diabetes-related ferroptosis in pancreatic cancer progression and discuss ferroptosis-related antitumor effects and therapeutics for pancreatic cancer treatment. Future Directions: Further studies are required to highlight mechanisms of diabetes-mediated ferroptosis in pancreatic cancer tumorigenesis and progression. The antitumor effects of ferroptosis regulators combined with chemotherapy, targeted therapy, or immunotherapy in diabetic patients should be investigated. We hope that pancreatic cancer patients with diabetes will benefit from ferroptosis-related therapies. Antioxid. Redox Signal. 37, 1206-1221.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Jia Yu
- Department of Centric Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery and The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
48
|
Zhao T, Xiao D, Jin F, Sun X, Yu J, Wang H, Liu J, Cai W, Huang C, Wang X, Gao S, Liu Z, Yang S, Gao C, Hao J. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br J Cancer 2022; 127:1461-1472. [PMID: 35986089 PMCID: PMC9553871 DOI: 10.1038/s41416-022-01927-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Desmoplastic stroma, a feature of pancreatic ductal adenocarcinoma (PDAC), contains abundant activated pancreatic stellate cells (PSCs). How PSCs promote PDAC progression remains incompletely understood. METHODS Effect of epithelium-specific E-twenty six factor 3 (ESE3)-positive PSCs on PDAC fibrosis and chemoresistance was examined by western blot, RT-PCR, immunofluorescence, flow cytometry assay, chromatin immunoprecipitation, luciferase assay, immunohistochemistry and subcutaneous pancreatic cancer mouse model. RESULTS ESE3 expression increased in PSCs in PDAC tissues compared with those in normal PSCs. Clinical data showed that ESE3 upregulation in PSCs was positively correlated with tumour size, pTNM stage, CA19-9, carcinoembryonic antigen and serum CA242 level. ESE3 overexpression in PSCs was an independent negative prognostic factor for disease-free survival and overall survival amongst patients with PDAC. Mechanistically, the conditional medium from the loss and gain of ESE3-expressing PSCs influenced PDAC chemoresistance and tumour growth. ESE3 directly induced the transcription of α-SMA, collagen-I and IL-1β by binding to ESE3-binding sites on their promoters to activate PSCs. IL-1β upregulated ESE3 in PSCs through NF-κB activation, and ESE3 was required for PSC activation by tumour cell-derived IL-1β. CONCLUSION Inhibiting the IL-1β/ESE3 (PSCs)/IL-1β-positive feedback loop is a promising therapeutic strategy to reduce tumour fibrosis and increase chemotherapeutic efficacy in PDAC.
Collapse
Affiliation(s)
- Tiansuo Zhao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Di Xiao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Fanjie Jin
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xugang Sun
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jie Yu
- grid.452461.00000 0004 1762 8478Hepatopancreatobiliary Surgery Department, First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Hongwei Wang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jing Liu
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Wenrun Cai
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Chongbiao Huang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xiuchao Wang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Song Gao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Zhe Liu
- grid.265021.20000 0000 9792 1228Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, PR China
| | - Shengyu Yang
- grid.240473.60000 0004 0543 9901Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA USA
| | - Chuntao Gao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jihui Hao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| |
Collapse
|
49
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
50
|
Schuth S, Le Blanc S, Krieger TG, Jabs J, Schenk M, Giese NA, Büchler MW, Eils R, Conrad C, Strobel O. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:312. [PMID: 36273171 PMCID: PMC9588250 DOI: 10.1186/s13046-022-02519-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are considered to play a fundamental role in pancreatic ductal adenocarcinoma (PDAC) progression and chemoresistance. Patient-derived organoids have demonstrated great potential as tumor avatars for drug response prediction in PDAC, yet they disregard the influence of stromal components on chemosensitivity. METHODS We established direct three-dimensional (3D) co-cultures of primary PDAC organoids and patient-matched CAFs to investigate the effect of the fibroblastic compartment on sensitivity to gemcitabine, 5-fluorouracil and paclitaxel treatments using an image-based drug assay. Single-cell RNA sequencing was performed for three organoid/CAF pairs in mono- and co-culture to uncover transcriptional changes induced by tumor-stroma interaction. RESULTS Upon co-culture with CAFs, we observed increased proliferation and reduced chemotherapy-induced cell death of PDAC organoids. Single-cell RNA sequencing data evidenced induction of a pro-inflammatory phenotype in CAFs in co-cultures. Organoids showed increased expression of genes associated with epithelial-to-mesenchymal transition (EMT) in co-cultures and several potential receptor-ligand interactions related to EMT were identified, supporting a key role of CAF-driven induction of EMT in PDAC chemoresistance. CONCLUSIONS Our results demonstrate the potential of personalized PDAC co-cultures models not only for drug response profiling but also for unraveling the molecular mechanisms involved in the chemoresistance-supporting role of the tumor stroma.
Collapse
Affiliation(s)
- Sebastian Schuth
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Solange Le Blanc
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365NCT partner site Heidelberg, a clinical-translational cancer research partnership between University Hospital Heidelberg and DKFZ, Heidelberg, Germany ,grid.22937.3d0000 0000 9259 8492Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Teresa G. Krieger
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Julia Jabs
- grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,Present Address: Merck Healthcare KGaA, Global Research, Darmstadt, Germany
| | - Miriam Schenk
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A. Giese
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus W. Büchler
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Eils
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany ,grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Conrad
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany ,grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Strobel
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany ,grid.461742.20000 0000 8855 0365NCT partner site Heidelberg, a clinical-translational cancer research partnership between University Hospital Heidelberg and DKFZ, Heidelberg, Germany ,grid.22937.3d0000 0000 9259 8492Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|