1
|
Li Y, Liu W, Liu C, Wang G, Zhou X. LncRNA SNHG25 facilitates colorectal cancer progression by upregulating PPP2R2D expression through sponging miR-329-3p. Cytotechnology 2025; 77:89. [PMID: 40256259 PMCID: PMC12008101 DOI: 10.1007/s10616-025-00753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have been evidenced to function as pivotal modulators in tumorigenesis. LncRNA SNHG25 is highly expressed in colorectal cancer (CRC), but its specific function in CRC has not been elucidated yet. The expression of SNHG25, miR-329-3p, and PPP2R2D was determined using qRT-PCR analysis and western blot analysis. The influence of the SNHG25/miR-329-3p/PPP2R2D axis on CRC progression was explored through in vitro assays including CCK-8, colony formation, wound healing, Transwell assays and in vivo orthotopic xenografts assay. The interaction between miR-329-3p and SNHG25 or PPP2R2D was examined by RNA pull-down, RIP, and luciferase reporter assays. SNHG25 presented high expression in CRC cell lines. Silencing of SNHG25 suppressed the malignant phenotypes of CRC cells in vitro and tumor growth in vivo. MiR-329-3p, which displayed low expression in CRC cells, was sponged by SNHG25. Downregulation of miR-329-3p reversed the inhibitory effects of SNHG25 silencing on CRC cell malignant behaviors. Additionally, PPP2R2D served as a miR-329-3p downstream target, whose expression was downregulated by overexpressing miR-329-3p. Importantly, overexpression of PPP2R2D rescued SNHG25 silencing-induced repression on CRC cell malignancy. SNHG25 plays a carcinogenic role in CRC via regulation of the miR-329-3p/PPP2R2D axis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00753-3.
Collapse
Affiliation(s)
- Yuanqiang Li
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, No. 183 Yiling Road, Wujiagang District, Yichang City, Hubei Province China
| | - Weipeng Liu
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, No. 183 Yiling Road, Wujiagang District, Yichang City, Hubei Province China
| | - Chao Liu
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, No. 183 Yiling Road, Wujiagang District, Yichang City, Hubei Province China
| | - Guangsheng Wang
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, No. 183 Yiling Road, Wujiagang District, Yichang City, Hubei Province China
| | - Xin Zhou
- Department of Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, No. 183 Yiling Road, Wujiagang District, Yichang City, Hubei Province China
| |
Collapse
|
2
|
Zhao S, Liu Y, Wang H, Wang J, Zhang J, Liu Y, Ma D. Mechanisms and progress of LncRNAs in prostate cancer development and diagnostic therapy. Int Urol Nephrol 2025:10.1007/s11255-025-04497-z. [PMID: 40266504 DOI: 10.1007/s11255-025-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men worldwide. Despite advancements in diagnosis and treatment, challenges such as late-stage detection, therapeutic resistance, and the complexity of castration-resistant prostate cancer (CRPC) persist. Long non-coding RNAs (LncRNAs) play critical roles in PCa progression through epigenetic regulation, transcriptional and post-transcriptional modulation, and immune response regulation. This review highlights the molecular mechanisms by which LncRNAs influence PCa development, treatment resistance, and immune regulation, emphasizing their potential as biomarkers and therapeutic targets. We also discuss future research directions to advance precision medicine in PCa.
Collapse
Affiliation(s)
- Shihan Zhao
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Han Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jiayi Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jihong Zhang
- The Pathology Department of Affiliated Hospital, Beihua University, Jilin, 132013, China
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China.
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Luo R, Li S, Yang C, Tang B, Li L, Luo C. Curcumin Inhibits the Development of Pancreatic Cancer by Targeting the circ_0079440/miR-522-3p/EIF4A1 Pathway. Cell Biochem Biophys 2025; 83:377-390. [PMID: 39102088 DOI: 10.1007/s12013-024-01466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Pancreatic cancer (PC) is a common gastrointestinal cancer with high invasiveness and high mortality. Curcumin is a natural polyphenol with anti-tumor activity against different cancers, including PC. Curcumin has been verified to mediate the expression of circular RNAs (circRNAs) to inhibit tumor development. This study aimed to explore the function and regulatory mechanism of curcumin on circ_0079440 in PC. PC cells were treated with different concentrations of curcumin (0, 5, 10 or 15 μM) for 24 h. Gene expression in PC cells and tissues was detected using RT-qPCR. Cell malignant phenotypes were determined by functional assays. The levels of EMT-related proteins were tested using western blot. RNA interaction was determined using RNA pulldown assay, luciferase reporter assay and RIP assay. The results showed that curcumin suppressed cell proliferative, migratory, and invasive capabilities, and weakened epithelial-mesenchymal transition (EMT) in a concentration-dependent way. Circ_0079440 was expressed at a high level in PC and its level was reduced via curcumin administration in PC cells. Rescue assays showed that circ_0079440 overexpression reversed the suppressive effects of curcumin on PC cell malignant phenotypes. Furthermore, in the xenograft mouse models, curcumin treatment inhibited tumor growth and metastasis, and circ_0079440 upregulation reversed the function of curcumin. Additionally, circ_0079440 was revealed to bind to miR-522-3p to upregulate eukaryotic initiation factor 4A1 (EIF4A1) expression in PC cells. EIF4A1 expression was also downregulated by curcumin, and EIF4A1 overexpression abolished the suppressive functions of curcumin. Moreover, EIF4A overexpression or miR-522-3p inhibition counteracted the anti-tumor effects of circ_0079440 depletion on PC development. To sum up, curcumin suppresses PC development by targeting the circ_0079440/miR-522-3p/EIF4A1 pathway, which might provide novel therapeutic targets for treatment of PC.
Collapse
Affiliation(s)
- Ruiying Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Shuang Li
- Department of respiratory medicine, The Third People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Chi Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Baoyuan Tang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Long Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Lv Y, Wang L, Zhang Y, Wei D, Hu Y. circDENND4C serves as a sponge for miR-200b to drive non-small cell lung cancer advancement by regulating MMP-9 expression. Front Oncol 2025; 15:1441384. [PMID: 40034591 PMCID: PMC11872906 DOI: 10.3389/fonc.2025.1441384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Lung cancer has a higher incidence and mortality rate than other cancers, especially non-small cell lung cancer (NSCLC), accounting for 85% of the cases. The role of the circDENND4C/miR-200b/matrix metalloproteinase-9 (MMP-9) regulatory axis in NSCLC remains largely unknown. Methods NSCLC cell lines were used to examine the expression of circDENND4C, miR-200b, and MMP-9 via qRT-PCR or Western blot. The target relationship of circDENND4C, miR-200b, and MMP-9 was examined by RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence (IF), dual-luciferase reporter system, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Then, a cell count kit-8 (CCK-8) experiment, flow cytometry, and migration/invasion assays were performed to assess the biological function of circDENND4C, miR-200b, and MMP-9 by transfecting with their overexpression or knockout plasmids in A549 cells. Finally, the proteins related to cell adhesion and tight junction were further tested by Western blot and IF. Results circDENND4C and MMP-9 were found to be highly expressed in NSCLC cell lines, while miR-200b was lowly expressed in NSCLC cell lines. Moreover, circDENND4C could sponge miR-200b to target MMP-9. Subsequently, it was observed that knockdown of circDENND4C and MMP-9 or the upregulation of miR-200b repressed cell proliferation and cell cycle progression, increased cell apoptosis, and hindered cell migration and invasion. Finally, it was also found that the circDENND4C/miR-200b/MMP-9 regulatory axis might be involved with cell adhesion and tight junction to influence tumor metastasis. Conclusions Altogether, our study reveals a novel regulatory loop in which the circDENND4C/miR-200b/MMP-9 axis may modulate NSCLC progression, indicating potential biomarkers for the diagnosis or treatment of NSCLC.
Collapse
Affiliation(s)
- Yaming Lv
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lan Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Dong Wei
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yajie Hu
- Department of Respiratory Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Respiratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
7
|
Su K, Cui X, Zhou J, Yi Q, Liu O. Construction of an interactome network among circRNA-miRNA-mRNA reveals new biomarkers in hBMSCs osteogenic differentiation. Sci Rep 2024; 14:24507. [PMID: 39424659 PMCID: PMC11489463 DOI: 10.1038/s41598-024-76136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) are adult stem cells residing in the bone marrow, characterized by their capacity for multi-directional differentiation, self-renewal, migration, and engraftment. Serving as seed cells, BMSCs play a pivotal role in the regeneration of bone defects. Hence, investigating the transcription factors and signaling pathways involved in the regulation of osteogenic differentiation in BMSCs holds significant importance. Recent research has unveiled that certain circular RNAs (circRNAs) can function as molecular sponges, influencing the osteogenic differentiation process of mesenchymal stem cells. However, many circRNAs remain undiscovered, and their precise mechanisms remain elusive. Therefore, the objective of this study is to construct an osteogenic differentiation-related circRNA-miRNA-mRNA network in hBMSCs. Subsequently, through bioinformatics analysis, we constructed a ceRNA network related to the osteogenic differentiation ability of hBMSCs, comprising 22 circRNAs, 17 miRNAs, and 15 mRNAs. The potential circRNA-miRNA-mRNA axes, including the role of hsa_circ_0001600 in promoting the osteogenic differentiation of hBMSCs through the targeted regulation of hsa-miR-542-3p, were validated through in vitro experiments.
Collapse
Affiliation(s)
- Kaixin Su
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Xinyan Cui
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Zhou L, Li Y, Li J, Yao H, Huang J, Li C, Wang L. Multi-omics analysis to identify CBR3-AS1-hsa-miR-145-5p-MAP3K5 pathway as a ferroptosis-related ceRNA network in benign prostatic hyperplasia. Genes Dis 2024; 11:101184. [PMID: 38882013 PMCID: PMC11176642 DOI: 10.1016/j.gendis.2023.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/19/2023] [Indexed: 06/18/2024] Open
Affiliation(s)
- Liang Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Hanyu Yao
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jin Huang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
10
|
Lyu P, Li F, Deng R, Wei Q, Lin B, Cheng L, Zhao B, Lu Z. Lnc-PIK3R1, transcriptionally suppressed by YY1, inhibits hepatocellular carcinoma progression via the Lnc-PIK3R1/miR-1286/GSK3β axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167233. [PMID: 38744342 DOI: 10.1016/j.bbadis.2024.167233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Hepatocellular carcinoma (HCC) poses a significant threat due to its highly aggressive and high recurrence characteristics, necessitating urgent advances in diagnostic and therapeutic approaches. Long non-coding RNAs exert vital roles in HCC tumorigenesis, however the mechanisms of their expression regulation and functions are not fully elucidated yet. Herein, we identify that a novel tumor suppressor 'lnc-PIK3R1' was significantly downregulated in HCC tissues, which was correlated with poor prognosis. Functionally, lnc-PIK3R1 played tumor suppressor roles to inhibit the proliferation and mobility of HCC cells, and to impede the distant implantation of xenograft in mice. Mechanistic studies revealed that lnc-PIK3R1 interacted with miR-1286 and alleviated the repression on GSK3B by miR-1286. Notably, pharmacological inhibition of GSK3β compromised the tumor suppression effect by lnc-PIK3R1, confirming their functional relevance. Moreover, we identified that oncogenic YY1 acts as a specific transcriptional repressor to downregulate the expression of lnc-PIK3R1 in HCC. In summary, this study highlights the tumor-suppressive effect of lnc-PIK3R1, and provides new insights into the regulation of GSK3β expression in HCC, which would benefit the development of innovative intervention strategies for HCC.
Collapse
Affiliation(s)
- Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Fengyue Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Runzhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bingkai Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Lei Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology, Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
11
|
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 2024; 15:322. [PMID: 39085703 PMCID: PMC11291832 DOI: 10.1007/s12672-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
12
|
Zhang J, Zhao C, Yao M, Qi J, Tan Y, Shi K, Wang J, Zhou S, Li Z. Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:663-681. [PMID: 39165737 PMCID: PMC11331363 DOI: 10.5187/jast.2023.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 08/22/2024]
Abstract
Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Chunping Zhao
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Min Yao
- Inspection and Testing Department, Guizhou
Testing Center for Livestock and Poultry Germplasm, Guiyang
550002, China
| | - Jing Qi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Ya Tan
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Kaizhi Shi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Jing Wang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Sixuan Zhou
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Zhixin Li
- College of Animal Science, Guizhou
University, Guiyang 550002, China
| |
Collapse
|
13
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
14
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
15
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
16
|
Wang D, Shi W, Qiu C. Construction of a TP53 mutation-associated ceRNA network as prognostic biomarkers in hepatocellular carcinoma. Heliyon 2024; 10:e30066. [PMID: 38737272 PMCID: PMC11088256 DOI: 10.1016/j.heliyon.2024.e30066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) continues to endanger human health worldwide. Regulatory networks of competing endogenous RNAs (ceRNAs) play important roles in HCC. TP53 is the second most often altered gene in HCC and has a significant role in regulating target genes such as miRNAs and lncRNAs. Methods Data from patients with TP53 mutation were collected through the cBioPortal database and differential analysis was performed to screen RNAs related to TP53 mutation. The lncRNA-miRNA-mRNA relationship was predicted by the miRcode, miRDB, and TargetScan databases. The ceRNA networks were screened and visualized by Cytoscape. Core ceRNA networks were generated by differential analysis, coexpression analysis, prognostic analysis and subcellular localization. Finally, methylation, mutation, PPI, GSEA, immunity and drug sensitivity analyses of MEX3A were performed to determine the role of MEX3A in HCC. Results We identified 1508 DEmRNAs, 85 DEmiRNAs and 931 DElncRNAs and obtained a ceRNA network including 28 lncRNAs, 4 miRNAs and 31 mRNAs. Twenty hub DERNAs in the TP53-altered-related ceRNA network were screened out by Cytoscape and the core ceRNA network (LINC00491/TCL6-hsa-miR-139-5p-MEX3A) was obtained by multiple analyses. In addition, we discovered that the methylation level of MEX3A was decreased and the mutation frequency was raised in HCC. Furthermore, elevated MEX3A expression was associated with alterations in the HCC immunological microenvironment. Conclusion We successfully constructed a reciprocal ceRNA network, which could provide new ideas for exploring HCC mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou 213000, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou 213000, China
| |
Collapse
|
17
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
18
|
Cheng K, Pan J, Liu Q, Ji Y, Liu L, Guo X, Wang Q, Li S, Sun J, Gong M, Zhang Y, Yuan Y. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene 2024; 43:1341-1352. [PMID: 38454138 DOI: 10.1038/s41388-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Qiang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinyue Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Ying Zhang
- Sixth Department of liver disease, Dalian Public Health Clinical Center, Dalian, 116044, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
Pengjie Y, Rong J, Pengfei N. miR-378a-5p exerts tumor-suppressive effects on esophageal squamous cell carcinoma after neoadjuvant immunotherapy by downregulating APOC1/CEP55. Sci Rep 2024; 14:305. [PMID: 38172247 PMCID: PMC10764758 DOI: 10.1038/s41598-023-50938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic assessment of tumors following neoadjuvant immunotherapy helps identifying targets that mediate anti-tumor immunity. In this study, we explored dysregulated RNAs in esophageal squamous cell carcinoma samples after neoadjuvant immunotherapy using deep sequencing and high-throughput screening. We identified 584 differentially expressed messenger RNAs (mRNAs), 67 differentially expressed microRNAs (miRNAs), and 1,047 differentially expressed long non-coding RNAs (lncRNAs) using differential expression analysis. Competing endogenous RNAs closely related to esophageal squamous cell carcinoma were selected via a combined Pearson's correlation test and weighted correlation network analysis. After validation using survival analysis and dry-lab and wet-lab-based studies, we identified the I-miR-378-5p-APOC1/CEP55 as a critical pathway for esophageal squamous cell carcinoma progression after neoadjuvant immunotherapy. Tumor immune infiltration analysis showed that APOC1 and CEP55 expression is associated with immune regulatory pathways and the function of multiple infiltrating immune cells. We investigated the mechanism of esophageal squamous carcinoma progression after neoadjuvant immunotherapy from the perspective of the mRNA-miRNA-lncRNA network. Furthermore, we identified accurate novel therapeutic targets and prognostic biomarkers, introduced novel perspectives to immunotherapy studies, and laid the foundation for the clinical treatment of patients with esophageal squamous carcinoma.
Collapse
Affiliation(s)
- Yang Pengjie
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
- Thoracic Surgery Department, Peking University Cancer Hospital Inner Mongolia Hospital (Cancer Hospital Affiliated to Inner Mongolia Medical University), Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Jia Rong
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ning Pengfei
- Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
20
|
Banerjee S, Sarkar R, Mukherjee A, Mitra S, Gope A, Chawla-Sarkar M. Rotavirus-induced lncRNA SLC7A11-AS1 promotes ferroptosis by targeting cystine/glutamate antiporter xCT (SLC7A11) to facilitate virus infection. Virus Res 2024; 339:199261. [PMID: 37923170 PMCID: PMC10684390 DOI: 10.1016/j.virusres.2023.199261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Rotavirus (RV) is the primary etiological agent of virus-associated gastroenteritis in infants, causing 200,000 childhood death annually. Despite the availability of vaccines, rotaviral diarrhea continues to be a severe issue in underdeveloped nations in Asia and Africa. The situation demands continual studies on host-rotavirus interactions to understand disease pathogenesis and develop effective antiviral therapeutics. Long non-coding RNAs (lncRNAs), which are a subset of non-coding RNAs of more than 200 nucleotides in length, are reported to play a regulatory function in numerous viral infections. Virus infection often alters the host transcriptome including lncRNA that are differentially expressed either to play an antiviral role or to be advantageous towards virus propagation. In the current study, qPCR array-based expression profiling of host lncRNAs was performed in rotavirus-infected HT-29 cells that identified the lncRNA SLC7A11-AS1 to be upregulated during RV infection. Knockdown of SLC7A11-AS1 conspicuously reduced RV titers implying its pro-viral significance. RV-induced SLC7A11-AS1 downregulates the gene SLC7A11/xCT that encodes the light chain subunit of the system XC- cystine-glutamate exchange transporter, leading to decrease in intracellular glutathione level and increase in lipid peroxidation, which are signature features of ferroptotic pathway. Ectopic expression of xCT also abrogated RV infection by reversing the virus optimized levels of intracellular GSH and lipid ROS levels. Cumulatively, the study reveals that RV infection triggers ferroptotic cell death via SLC7A11-AS1/xCT axis to facilitate its own propagation.
Collapse
Affiliation(s)
- Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Animesh Gope
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal 700010, India.
| |
Collapse
|
21
|
Alizamir A, Amini MA, Karbasi A, Beyrami M. MiR-4492, a New Potential MicroRNA for Cancer Diagnosis and Treatment: A Mini Review. Chonnam Med J 2024; 60:21-26. [PMID: 38304137 PMCID: PMC10828084 DOI: 10.4068/cmj.2024.60.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
There is no doubt that the incidence of cancer sufferers is rising in the world, and it is estimated that in the next several decades, the number of people suffering from malignancies or the cancer rate will double. Diagnostic and therapeutic targeting of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represent an excellent approach for cancer diagnosis and treatment, as well as many other diseases. One of the latest miRNAs is miR-4492, upregulating some genes in tumor tissues including ROMO1, HLA-G, NKIRAS2, FOXK1, and UBE2C. It represents an attractant example of a miRNA acting at multiple levels to affect the same malignancy hallmark. Based on the studies, miR-4492 plays a key role in several cancers such as, breast cancer, bladder cancer, osteosarcoma, glioblastoma multiforme, hepatocellular carcinoma, colorectal cancer, and ovarian cancer. Putting it all together, identifying the precise mechanisms of miR-4492 in the pathogenesis of cancer, could pave the way to find better diagnostic and therapeutic strategies for cancer sufferers. For this reason, it might be a novel potential diagnostic biomarker and therapeutic target for neoplasms.
Collapse
Affiliation(s)
- Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Beyrami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
23
|
Pan J, Xie X, Sheng J, Ju C, Sun S, Cui F, Zhai W, Ming L. Construction and identification of lncRNA/circRNA-coregulated ceRNA networks in gemcitabine-resistant bladder carcinoma. Carcinogenesis 2023; 44:847-858. [PMID: 37787763 DOI: 10.1093/carcin/bgad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES To explore the regulatory networks that underlie the development of chemoresistance in bladder cancer. METHODS We analyzed profiles of differentially expressed long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) in gemcitabine-resistant/sensitive bladder cancer cells using next-generation sequencing data. RESULTS Hundreds of differentially expressed lncRNAs and miRNAs and thousands of circRNAs and mRNAs were identified. Bioinformatics analysis revealed the chromosomal localizations, classification and coexpression of mRNAs, as well as candidates for cis and trans regulation by lncRNAs. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed mRNAs and circRNAs indicated important functional roles of coregulated RNAs, thus establishing competing endogenous RNA (ceRNA) and protein-protein interactions networks that may underlie chemoresistance in bladder cancer. We demonstrated that lncRNA LINP1 can act as a ceRNA by inhibiting miR-193a-5p to increase TP73 expression; and that lncRNA ESRG and hsa_circ_0075881 can simultaneously bind miR-324-3p to increase ST6GAL1 expression. Modulation of ceRNA network components using ablation and overexpression approaches contributed to gemcitabine resistance in bladder cancer cells. CONCLUSIONS These results elucidate mechanisms by which lncRNAs and circRNAs coregulate the development of bladder cancer cell resistance to gemcitabine, thus laying the foundation for future research to identify biomarkers and disease targets.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiaojuan Xie
- Shaanxi Center for Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jinxiu Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Chenxi Ju
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Shuaijie Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Fangfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Wen Zhai
- Department of Medical Genetics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
24
|
Li H, Zhou C, Zhang M, Yuan N, Huang X, Xiang J, Wang L, Shi L. Transcriptomics yields valuable information regarding the response mechanisms of Chinese Min pigs infected with PEDV. Front Vet Sci 2023; 10:1295723. [PMID: 38192721 PMCID: PMC10773921 DOI: 10.3389/fvets.2023.1295723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes porcine epidemic diarrhea (PED), a highly infectious disease, which has resulted in huge economic losses for the pig industry. To date, the pathogenic and immune response mechanism was not particularly clear. The purpose of this study was to investigate the pathogenic and immune responses of pigs infected with PEDV.In this study, 12 Min pigs were randomly selected without taking colostrum. At 3 days old, eight piglets were infected with 1 mL of PEDV solution (10 TCID50/ml), and the remaining four piglets were handled by 1 mL of 0.9% normal saline. Within the age of 7 days old, four piglets died and were considered as the death group. Correspondingly, four alive individuals were classified into the resistance group. Tissues of the duodenum, jejunum, ileum, colon, cecum, and rectum of piglets in the three groups were collected to measure the PEDV content. Additionally, the jejunum was used for the measurements and analyses of Hematoxylin-eosinstaining (HE), immunohistochemical sections, and transcriptomics. The phenotypes of Min piglets infected with PEDV showed that the viral copy numbers and jejunal damage had significant differences between the death and resistance groups. We also observed the transcriptome of the jejunum, and the differentially expressed (DE) analysis observed 6,585 DE protein-coding genes (PCGs), 3,188 DE long non-coding RNAs (lncRNAs), and 350 DE microRNAs (miRNAs), which were mainly involved in immune response and metabolic pathways. Furthermore, the specific expressed molecules for each group were identified, and 97 PCGs,108 lncRNAs, and 51 miRNAs were included in the ceRNA-regulated networks. By weighted gene co-expression network analysis (WGCNA) and transcription factor (TF) prediction, 27 significant modules and 32 significant motifs (E-value < 0.05) annotated with 519 TFs were detected. Of these TFs, 53 were DE PCGs. In summary, the promising key PCGs, lncRNAs, and miRNAs related to the pathogenic and immunological response of pigs infected with PEDV were detected and provided new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Huihui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiang Zhou
- Huanghe Science and Technology University, Zhengzhou, China
| | - Meimei Zhang
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Na Yuan
- Beijing Vica Biotechnology Co., LTD, Beijing, China
| | - Xiaoyu Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaojiao Xiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Fang R, Yue PL, Li HL, Ding XF, Jia YX, Liu ZC, Zhou HG, Song XD. Transcriptome sequencing and microRNA-mRNA regulatory network construction in the lens from a Na 2SeO 3-induced Sprague Dawley rat cataract model. BMC Ophthalmol 2023; 23:461. [PMID: 37974089 PMCID: PMC10652440 DOI: 10.1186/s12886-023-03202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND A sight-threatening, cataract is a common degenerative disease of the ocular lens. This study aimed to explore the regulatory mechanism of age-related cataract (ARC) formation and progression. METHODS Cataracts in Sprague Dawley rats were induced by adopting the method that injected selenite subcutaneously in the nape. We performed high-throughput RNA sequencing technology to identify the mRNA and microRNA(miRNA) expression profiles of the capsular membrane of the lens from Na2SeO3-induced and saline-injected Sprague Dawley rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out to forecast the regulatory and functional role of mRNAs in cataracts by DAVID and Metascape. The protein-protein interaction(PPI) network of differentially expressed mRNA(DEmRNAs) was built via the STRING. Target miRNAs of hub genes were predicted by miRBD and TargetScan. Furthermore, differentially expressed miRNA(DEmiRNAs) were selected as hub genes' targets, validated by quantitative real-time polymerase chain reaction(qRT-PCR), and a DEmiRNA-DEmRNA regulatory network was constructed via Cytoscape. RESULT In total, 329 DEmRNAs including 40 upregulated and 289 downregulated genes were identified. Forty seven DEmiRNAs including 29 upregulated and 18 downregulated miRNAs were detected. The DEmRNAs are involved in lens development, visual perception, and aging-related biological processes. A protein-protein interaction network including 274 node genes was constructed to explore the interactions of DEmRNAs. Furthermore, a DEmiRNA-DEmRNA regulatory network related to cataracts was constructed, including 8 hub DEmRNAs, and 8 key DEmiRNAs which were confirmed by qRT-PCR analysis. CONCLUSION We identified several differentially expressed genes and established a miRNA-mRNA-regulated network in a Na2SeO3-induced Sprague Dawley rat cataract model. These results may provide novel insights into the clinical treatment of cataracts, and the hub DEmRNAs and key DEmiRNAs could be potential therapeutic targets for ARC.
Collapse
Affiliation(s)
- Rui Fang
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Pei-Lin Yue
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Hai-Long Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, China
| | - Xue-Fei Ding
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Yu-Xuan Jia
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Zhao-Chuan Liu
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
- Beijing Tongren Eye Center, Beijing, China
- Beijing, Ophthalmology&Visual Sciences Key Lab, Beijing, China
| | - Hong-Gang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, China.
| | - Xu-Dong Song
- Beijing Tongren Hospital, Beijing, 100730, China.
- Capital Medical University, Beijing, 100730, China.
- Beijing Tongren Eye Center, Beijing, China.
- Beijing, Ophthalmology&Visual Sciences Key Lab, Beijing, China.
| |
Collapse
|
26
|
Guan X, Pavani KC, Chunduru J, Broeckx BJG, Van Soom A, Peelman L. Hsa-miR-665 Is a Promising Biomarker in Cancer Prognosis. Cancers (Basel) 2023; 15:4915. [PMID: 37894282 PMCID: PMC10605552 DOI: 10.3390/cancers15204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Jayendra Chunduru
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (K.C.P.); (A.V.S.)
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; (X.G.); (B.J.G.B.)
| |
Collapse
|
27
|
Guo R, Wang S, Guo S, Fan X, Zang H, Gao X, Jing X, Liu Z, Na Z, Zou P, Chen D. Regulatory Roles of Long Non-Coding RNAs Relevant to Antioxidant Enzymes and Immune Responses of Apis cerana Larvae Following Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:14175. [PMID: 37762477 PMCID: PMC10532054 DOI: 10.3390/ijms241814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.
Collapse
Affiliation(s)
- Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xin Jing
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhitan Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Wołowiec A, Wołowiec Ł, Grześk G, Jaśniak A, Osiak J, Husejko J, Kozakiewicz M. The Role of Selected Epigenetic Pathways in Cardiovascular Diseases as a Potential Therapeutic Target. Int J Mol Sci 2023; 24:13723. [PMID: 37762023 PMCID: PMC10531432 DOI: 10.3390/ijms241813723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetics is a rapidly developing science that has gained a lot of interest in recent years due to the correlation between characteristic epigenetic marks and cardiovascular diseases (CVDs). Epigenetic modifications contribute to a change in gene expression while maintaining the DNA sequence. The analysis of these modifications provides a thorough insight into the cardiovascular system from its development to its further functioning. Epigenetics is strongly influenced by environmental factors, including known cardiovascular risk factors such as smoking, obesity, and low physical activity. Similarly, conditions affecting the local microenvironment of cells, such as chronic inflammation, worsen the prognosis in cardiovascular diseases and additionally induce further epigenetic modifications leading to the consolidation of unfavorable cardiovascular changes. A deeper understanding of epigenetics may provide an answer to the continuing strong clinical impact of cardiovascular diseases by improving diagnostic capabilities, personalized medical approaches and the development of targeted therapeutic interventions. The aim of the study was to present selected epigenetic pathways, their significance in cardiovascular diseases, and their potential as a therapeutic target in specific medical conditions.
Collapse
Affiliation(s)
- Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Jakub Husejko
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
29
|
Tong S, Mo M, Hu X, Wu L, Chen M, Zhao C. MIR663AHG as a competitive endogenous RNA regulating TGF-β-induced epithelial proliferation and epithelial-mesenchymal transition in benign prostate hyperplasia. J Biochem Mol Toxicol 2023; 37:e23391. [PMID: 37518988 DOI: 10.1002/jbt.23391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/01/2023] [Accepted: 05/17/2023] [Indexed: 08/01/2023]
Abstract
Benign prostate hyperplasia (BPH) is the most commonly seen disease among aging males. Transforming growth factor(TGF)-β-mediated epithelial-mesenchymal transition (EMT) and epithelial overproliferation might be central events in BPH etiology and pathophysiology. In the present study, long noncoding RNA MIR663AHG, miR-765, and FOXK1 formed a competing endogenous RNAs network, modulating TGF-β-mediated EMT and epithelial overproliferation in BPH-1 cells. miR-765 expression was downregulated in TGF-β-stimulated BPH-1 cells; miR-765 overexpression ameliorated TGF-β-mediated EMT and epithelial overproliferation in BPH-1 cells. MIR663AHG directly targeted miR-765 and negatively regulated miR-765; MIR663AHG knockdown also attenuated TGF-β-induced EMT and epithelial overproliferation in BPH-1 cells, whereas miR-765 inhibition attenuated MIR663AHG knockdown effects on TGF-β-stimulated BPH-1 cells. miR-765 directly targeted FOXK1 and negatively regulated FOXK1. FOXK1 knockdown attenuated TGF-β-induced EMT and epithelial overproliferation and promoted autophagy in BPH-1 cells, and partially attenuated miR-765 inhibition effects on TGF-β-stimulated BPH-1 cells. In conclusion, this study provides a MIR663AHG/miR-765/FOXK1 axis modulating TGF-β-induced epithelial proliferation and EMT, which might exert an underlying effect on BPH development and act as therapeutic targets for BPH treatment regimens.
Collapse
Affiliation(s)
- Shiyu Tong
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Miao Mo
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiheng Hu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Longxiang Wu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Minfeng Chen
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Cheng Zhao
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
30
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Bhattacharjee R, Prabhakar N, Kumar L, Bhattacharjee A, Kar S, Malik S, Kumar D, Ruokolainen J, Negi A, Jha NK, Kesari KK. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell Oncol (Dordr) 2023; 46:885-908. [PMID: 37245177 PMCID: PMC10356678 DOI: 10.1007/s13402-023-00806-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 05/29/2023] Open
Abstract
miRNAs and lncRNAs play a central role in cancer-associated gene regulations. The dysregulated expression of lncRNAs has been reported as a hallmark of cancer progression, acting as an independent prediction marker for an individual cancer patient. The interplay of miRNA and lncRNA decides the variation of tumorigenesis that could be mediated by acting as sponges for endogenous RNAs, regulating miRNA decay, mediating intra-chromosomal interactions, and modulating epigenetic components. This paper focuses on the influence of crosstalk between lncRNA and miRNA on cancer hallmarks such as epithelial-mesenchymal transition, hijacking cell death, metastasis, and invasion. Other cellular roles of crosstalks, such as neovascularization, vascular mimicry, and angiogenesis were also discussed. Additionally, we reviewed crosstalk mechanism with specific host immune responses and targeting interplay (between lncRNA and miRNA) in cancer diagnosis and management.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Neeraj Prabhakar
- Centre for Structural System Biology, Department of Physics, University of Hamburg, c/o DESY, Building 15, Notkestr. 852267, Hamburg, Germany
- Pharmacy, Abo Akademi University, Tykistökatu 6A, Turku, Finland
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Arkadyuti Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 00076, Finland.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Biocentre 3, Helsinki, Finland.
| |
Collapse
|
32
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
33
|
Yi K, Yan W, Li X, Yang S, Li J, Yin Y, Yuan F, Wang H, Kang Z, Han D, Zeng Q. Identification of Long Intergenic Noncoding RNAs in Rhizoctonia cerealis following Inoculation of Wheat. Microbiol Spectr 2023; 11:e0344922. [PMID: 37036374 PMCID: PMC10269763 DOI: 10.1128/spectrum.03449-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023] Open
Abstract
Wheat sharp eyespot caused by Rhizoctonia cerealis is primarily a severe threat to worldwide wheat production. Currently, there are no resistant wheat cultivars, and the use of fungicides is the primary method for controlling this disease. Elucidating the mechanisms of R. cerealis pathogenicity can accelerate the pace of the control of this disease. Long intergenic noncoding RNAs (lincRNAs) that function in plant-pathogen interactions might provide a new perspective. We systematically analyzed lincRNAs and identified a total of 1,319 lincRNAs in R. cerealis. We found that lincRNAs are involved in various biological processes, as shown by differential expression analysis and weighted correlation network analysis (WGCNA). Next, one of nine hub lincRNAs in the blue module that was related to infection and growth processes, MSTRG.4380.1, was verified to reduce R. cerealis virulence on wheat by a host-induced gene silencing (HIGS) assay. Following that, RNA sequencing (RNA-Seq) analysis revealed that the significantly downregulated genes in the MSTRG.4380.1 knockdown lines were associated mainly with infection-related processes, including hydrolase, transmembrane transporter, and energy metabolism activities. Additionally, 23 novel microRNAs (miRNAs) were discovered during small RNA (sRNA) sequencing (sRNA-Seq) analysis of MSTRG.4380.1 knockdown, and target prediction of miRNAs suggested that MSTRG.4380.1 does not act as a competitive endogenous RNA (ceRNA). This study performed the first genome-wide identification of R. cerealis lincRNAs and miRNAs. It confirmed the involvement of a lincRNA in the infection process, providing new insights into the mechanism of R. cerealis infection and offering a new approach for protecting wheat from R. cerealis. IMPORTANCE Rhizoctonia cerealis, the primary causal agent of wheat sharp eyespot, has caused significant losses in worldwide wheat production. Since no resistant wheat cultivars exist, chemical control is the primary method. However, this approach is environmentally unfriendly and costly. RNA interference (RNAi)-mediated pathogenicity gene silencing has been proven to reduce the growth of Rhizoctonia and provides a new perspective for disease control. Recent studies have shown that lincRNAs are involved in various biological processes across species, such as biotic and abiotic stresses. Therefore, verifying the function of lincRNAs in R. cerealis is beneficial for understanding the infection mechanism. In this study, we reveal that lincRNAs could contribute to the virulence of R. cerealis, which provides new insights into controlling this pathogen.
Collapse
Affiliation(s)
- Ke Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Wołowiec Ł, Mędlewska M, Osiak J, Wołowiec A, Grześk E, Jaśniak A, Grześk G. MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. Int J Mol Sci 2023; 24:9735. [PMID: 37298685 PMCID: PMC10253568 DOI: 10.3390/ijms24119735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by a progressive increase in pulmonary arterial pressure and pulmonary vascular resistance. In a short time, it leads to right ventricular failure and, consequently, to death. The most common causes of PH include left heart disease and lung disease. Despite the significant development of medicine and related sciences observed in recent years, we still suffer from a lack of effective treatment that would significantly influence the prognosis and prolong life expectancy of patients with PH. One type of PH is pulmonary arterial hypertension (PAH). The pathophysiology of PAH is based on increased cell proliferation and resistance to apoptosis in the small pulmonary arteries, leading to pulmonary vascular remodeling. However, studies conducted in recent years have shown that epigenetic changes may also lie behind the pathogenesis of PAH. Epigenetics is the study of changes in gene expression that are not related to changes in the sequence of nucleotides in DNA. In addition to DNA methylation or histone modification, epigenetic research focuses on non-coding RNAs, which include microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Preliminary research results give hope that targeting epigenetic regulators may lead to new, potential therapeutic possibilities in the treatment of PAH.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Martyna Mędlewska
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Elżbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| |
Collapse
|
35
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
36
|
Yao H, Jiang R, Chen D, Li Y, Song M, Sun Z, Long G, Wu L, Hu W. Whole-Transcriptome Sequencing of Antler Tissue Reveals That circRNA2829 Regulates Chondrocyte Proliferation and Differentiation via the miR-4286-R+1/FOXO4 Axis. Int J Mol Sci 2023; 24:ijms24087204. [PMID: 37108365 PMCID: PMC10139046 DOI: 10.3390/ijms24087204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The antler is the unique mammalian organ found to be able to regenerate completely and periodically after loss, and the continuous proliferation and differentiation of mesenchymal cells and chondrocytes together complete the regeneration of the antler. Circular non-coding RNAs (circRNAs) are considered to be important non-coding RNAs that regulate body development and growth. However, there are no reports on circRNAs regulating the antler regeneration process. In this study, full-transcriptome high-throughput sequencing was performed on sika deer antler interstitial and cartilage tissues, and the sequencing results were verified and analyzed. The competing endogenous RNA (ceRNA) network related to antler growth and regeneration was further constructed, and the differentially expressed circRNA2829 was screened out from the network to study its effect on chondrocyte proliferation and differentiation. The results indicated that circRNA2829 promoted cell proliferation and increased the level of intracellular ALP. The analysis of RT-qPCR and Western blot demonstrated that the mRNA and protein expression levels of genes involved in differentiation rose. These data revealed that circRNAs play a crucial regulatory role in deer antler regeneration and development. CircRNA2829 might regulate the antler regeneration process through miR-4286-R+1/FOXO4.
Collapse
Affiliation(s)
- Haibo Yao
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Renfeng Jiang
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Danyang Chen
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Yanjun Li
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Mengmeng Song
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Zitong Sun
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
37
|
Xu C, Li J, Wang H, Liu H, Yu Z, Zhao Z. Whole-Transcriptome Sequencing Reveals a ceRNA Regulatory Network Associated with the Process of Periodic Albinism under Low Temperature in Baiye No. 1 ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24087162. [PMID: 37108322 PMCID: PMC10138444 DOI: 10.3390/ijms24087162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The young shoots of the tea plant Baiye No. 1 display an albino phenotype in the early spring under low environmental temperatures, and the leaves re-green like those of common tea cultivars during the warm season. Periodic albinism is precisely regulated by a complex gene network that leads to metabolic differences and enhances the nutritional value of tea leaves. Here, we identified messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) to construct competing endogenous RNA (ceRNA) regulatory networks. We performed whole-transcriptome sequencing of 12 samples from four periods (Bud, leaves not expanded; Alb, albino leaves; Med, re-greening leaves; and Gre, green leaves) and identified a total of 6325 differentially expressed mRNAs (DEmRNAs), 667 differentially expressed miRNAs (DEmiRNAs), 1702 differentially expressed lncRNAs (DElncRNAs), and 122 differentially expressed circRNAs (DEcircRNAs). Furthermore, we constructed ceRNA networks on the basis of co-differential expression analyses which comprised 112, 35, 38, and 15 DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs, respectively. Based on the regulatory networks, we identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs during periodic albinism, including the ceRNA regulatory network centered on miR5021x, the GAMYB-miR159-lncRNA regulatory network, and the NAC035-miR319x-circRNA regulatory network. These regulatory networks might be involved in the response to cold stress, photosynthesis, chlorophyll synthesis, amino acid synthesis, and flavonoid accumulation. Our findings provide novel insights into ceRNA regulatory mechanisms involved in Baiye No. 1 during periodic albinism and will aid future studies of the molecular mechanisms underlying albinism mutants.
Collapse
Affiliation(s)
- Cunbin Xu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Hualei Wang
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| | - Zhihai Yu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Guizhou University, Guiyang 550025, China
| |
Collapse
|
38
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
39
|
Lu S, Lu P. Comprehensive LncRNA and Potential Molecular Mechanism Analysis in Noninfectious Uveitis. Transl Vis Sci Technol 2023; 12:2. [PMID: 36857067 PMCID: PMC9987169 DOI: 10.1167/tvst.12.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Purpose Long noncoding RNA (lncRNA) is noncoding RNA and have played a key role or be treated as a biomarker in a variety of diseases such as tumors. However, extensive lncRNA analysis for uveitis has not been explored completely. In this study, we analyzed the lncRNAs with altered expression in peripheral blood comprehensively for three major autoimmune diseases (ankylosing spondylitis [AS], Behҫet's disease [BD], and sarcoidosis) to search potential hub gene and molecular mechanism for noninfectious uveitis. Methods In total, we included 18 patients with AS and 12 patients with sarcoidosis versus 25 controls for GSE18781; we also included 15 patients with BD versus 14 controls for GSE17114 in this study. The lncRNA and messenger RNA (mRNA) expression levels were determined by microarray using serum samples from patients and healthy controls. Results Twenty-one lncRNAs and 1073 mRNAs were detected in patients with AS, 4 lncRNAs and 62 mRNAs in patients with BD, and 196 lncRNAs and 5376 mRNAs in patients with sarcoidosis. Thus, we suspected lncRNA XIST and MIAT, mRNA FCGBP, CD247, CTSW, AES, NCR3, TIGIT, CASP5, DUSP2, and TBX21 may be the most possible hub genes for AS, BD, and sarcoidosis. These RNAs were involved in the mitogen-activated protein kinase signaling pathway and inflammatory cytokine pathways. Conclusions In this study, comprehensive bioinformatics analysis identified lncRNAs with altered expression in three major autoimmune diseases that may combine with noninfectious uveitis. This study provides novel insights into the molecular pathogenetic mechanisms and key information toward developing new diagnostic biomarkers and special therapeutic targets for noninfectious uveitis in AS, BD, and sarcoidosis. Translational Relevance LncRNAs and their potential mechanisms provide new strategies for prevention and treatment for noninfectious uveitis in patients with AS, BD, and sarcoidosis.
Collapse
Affiliation(s)
- Shiheng Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Yang F, Wang M, Shi J, Xu G. IncRNA MALAT1 Regulates the Proliferation, Apoptosis, Migration, and Invasion of Osteosarcoma Cells by Targeting miR-873-5p/ROCK1. Crit Rev Eukaryot Gene Expr 2023; 33:67-79. [PMID: 36734858 DOI: 10.1615/critreveukaryotgeneexpr.2022044747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The malignant bone tumor osteosarcoma (OS) was one of the most aggressive tumors. Despite breakthroughs in treatment options for OS recently, the survival rate of patients with metastasis or reoccurring disease has remained unchanged over the last 25 years, at around 20%. lncRNA expression dysregulation is linked to carcinogenesis, advancement, and metastasis. Additionally, the fundamental mechanism of lncRNAs in regulating OS cell biological activity and progression is still being investigated. The expression of miR-873-5p and MALAT1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in OS. The relationship between the expression level of MALAT1 and the survival rate of OS individuals was evaluated by the Kaplan-Meier plotter. The tumor cell's capability of proliferation was determined using the CCK-8. Transwell was used to test the migratory and invasive properties of tumor cells. ROCK1 protein expression was analyzed by western blot, while qRT-PCR was used to detect ROCK1 mRNA expression. Targeted genes of MALAT1 or miR-873-5p were predicted by StarBase2.0. The target association among miR-873-5p and MALAT1 or ROCK1 was confirmed using the luciferase assay. The relationship between ROCK1 and MALAT1 or miR-873-5p expression in OS was investigated using Spearman's correlation analysis. MALAT1 was up-regulated and was linked to a lower survival rate of patients in OS. The malignant behaviors of cells were inhibited by down-regulated MALAT1 in vitro. Dual-luciferase gene experiments confirmed the presence of MALAT1/miR-873-5p/ROCK1 axis. The up-regulated miR-873-5p blocked the promoted effects of MALAT1 on cell behaviors. Over-expressed MALAT1 promoted the malignant behaviors of cells by miR-873-5p/ROCK1 axis in OS.
Collapse
Affiliation(s)
- Fan Yang
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Mao Wang
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Junlong Shi
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Gang Xu
- Department of Bone and Soft-Tissue Tumor, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| |
Collapse
|
41
|
Zhou L, Li Y, Li J, Yao H, Huang J, Li C, Wang L. Decoding ceRNA regulatory network and autophagy-related genes in benign prostatic hyperplasia. Int J Biol Macromol 2023; 225:997-1009. [PMID: 36403772 DOI: 10.1016/j.ijbiomac.2022.11.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males. We obtained BPH transcriptional signatures by high-throughput RNA sequencing analysis. Accordingly, we determined the differentially expressed RNAs (DERNAs) between BPH tissues and normal prostate tissues. WebGestalt and R package (clusterprofiler) was used to enrichment analysis. Clinical correlations were analyzed using Spearman's coefficient. TargetScan, ENCORI, miRNet, and miRDB databases were used to predict targets' relationships in ceRNA networks. Immunofluorescence staining and qRT-PCR analyses were performed to validate the findings. Microarray analysis of the datasets showed 369 DElncRNAs, 122 DEpseudogenes, 6 DEmiRNAs and 1358 DEmRNAs. DEmRNAs were particularly enriched in the autophagy-related pathways. Following the screening of DEmRNAs and autophagy-related genes (ARGs), 50 DEARGs were selected. MCODE analysis on Cytoscape was performed for the 50 DEARGs, and 3 hub genes (ATF4, XBP1, and PPP1R15A) were obtained. Spearman's correlation analysis showed that the mRNA expression of XBP1 correlated positively with age, total score, and storage score, but negatively with the maximum flow rate. Subsequently, the pseudogene/lncRNA- hsa-miR-222-3p-XBP1 pathway was identified. Our findings elucidate that the pseudogene/lncRNA-hsa-miR-222-3p-XBP1 pathway may play a regulatory role in the occurrence of BPH through autophagy.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hanyu Yao
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jin Huang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
42
|
Yu L, Wang L, Wang L, Yan S, Chen S, Xu Q, Su D, Wang X. Identification and validation of immune cells and hub genes alterations in recurrent implantation failure: A GEO data mining study. Front Genet 2023; 13:1094978. [PMID: 36699469 PMCID: PMC9868458 DOI: 10.3389/fgene.2022.1094978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: Recurrent implantation failure (RIF) is a distressing problem in assisted reproductive technology (ART). Immunity plays a vital role in recurrent implantation failure (RIF) occurrence and development, but its underlying mechanism still needs to be fully elucidated. Through bioinformatics analysis, this study aims to identify the RIF-associated immune cell types and immune-related genes. Methods: The differentially expressed genes (DEGs) were screened based on RIF-associated Gene Expression Omnibus (GEO) datasets. Then, the enrichment analysis and protein-protein interaction (PPI) analysis were conducted with the DEGs. The RIF-associated immune cell types were clarified by combining single sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Differentially expressed immune cell types-related modules were identified by weighted gene co-expression network analysis (WGCNA) and local maximal quasi-clique merger (lmQCM) analysis. The overlapping genes between DEGs and genes contained by modules mentioned above were delineated as candidate hub genes and validated in another two external datasets. Finally, the microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that interacted with hub genes were predicted, and the competing endogenous RNA (ceRNA) regulatory network was structured. Results: In the present study, we collected 324 DEGs between RIF and the control group, which functions were mainly enriched in immune-related signaling pathways. Regarding differential cell types, the RIF group had a higher proportion of activated memory CD4 T cells and a lower proportion of γδ T cells in the endometrial tissue. Finally, three immune-related hub genes (ALOX5AP, SLC7A7, and PTGS2) were identified and verified to effectively discriminate RIF from control individuals with a specificity rate of 90.8% and a sensitivity rate of 90.8%. In addition, we constructed a key ceRNA network that is expected to mediate molecular mechanisms in RIF. Conclusion: Our study identified the intricate correlation between immune cell types and RIF and provided new immune-related hub genes that offer promising diagnostic and therapeutic targets for RIF.
Collapse
Affiliation(s)
- Liangcheng Yu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lu Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lijin Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Danjie Su
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, China,*Correspondence: Xiaohong Wang,
| |
Collapse
|
43
|
Jia H, Wu Z, Tan J, Wu S, Yang C, Raza SHA, Wang M, Song G, Shi Y, Zan L, Yang W. Lnc-TRTMFS promotes milk fat synthesis via the miR-132x/RAI14/mTOR pathway in BMECs. J Anim Sci 2023; 101:skad218. [PMID: 37367933 PMCID: PMC10414145 DOI: 10.1093/jas/skad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
As an important index to evaluate the quality of milk, milk fat content directly determines the nutrition and flavor of milk. Recently, growing evidence has suggested that long noncoding RNAs (lncRNAs) play important roles in bovine lactation, but little is known about the roles of lncRNAs in milk fat synthesis, particularly the underlying molecular processes. Therefore, the purpose of this study was to explore the regulatory mechanism of lncRNAs in milk fat synthesis. Based on our previous lncRNA-seq data and bioinformatics analysis, we found that Lnc-TRTMFS (transcripts related to milk fat synthesis) was upregulated in the lactation period compared to the dry period. In this study, we found that knockdown of Lnc-TRTMFS significantly inhibited milk fat synthesis, resulting in a smaller amount of lipid droplets and lower cellular triacylglycerol levels, and significantly decreased the expression of genes related to adipogenesis. In contrast, overexpression of Lnc-TRTMFS significantly promoted milk fat synthesis in bovine mammary epithelial cells (BMECs). In addition, Bibiserv2 analysis showed that Lnc-TRTMFS could act as a molecular sponge for miR-132x, and retinoic acid induced protein 14 (RAI14) was a potential target of miR-132x, which was further confirmed by dual-luciferase reporter assays, quantitative reverse transcription PCR, and western blots. We also found that miR-132x significantly inhibited milk fat synthesis. Finally, rescue experiments showed that Lnc-TRTMFS could weaken the inhibitory effect of miR-132x on milk fat synthesis and rescue the expression of RAI14. Taken together, these results revealed that Lnc-TRTMFS regulated milk fat synthesis in BMECs via the miR-132x/RAI14/mTOR pathway.
Collapse
Affiliation(s)
- Hongru Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Silin Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guibing Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Comprehensive Profiling of ceRNA (circRNA-miRNA-mRNA) Networks in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Int J Mol Sci 2023; 24:ijms24010888. [PMID: 36614329 PMCID: PMC9821774 DOI: 10.3390/ijms24010888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Heat stress (HS) is directly correlated with mammary gland dysfunction and the hypothalamic-pituitary-mammary gland (HPM) axis is involved in regulating stress responses and lactation in dairy cows. Circular RNAs (circRNAs) play major roles in regulating transcription and post-transcription but their expression in the HPM axis of dairy cows under HS is still unclear. In the present study, we performed RNA sequencing to identify diferentially expressed (DE) circRNAs, DE microRNAs(miRNAs) and DEmRNAs, and performed bioinformatics analysis on those in HPM axis-related tissues of heat-stressed and normal cows. A total of 1680, 1112 and 521 DEcircRNAs, 120, 493 and 108 DEmiRNAs, 274, 6475 and 3134 DEmRNAs were identified in the hypothalamic, pituitary, and mammary gland tissues, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses indicated that the MAPK signaling pathway is potentially a key pathway. Competitive endogenous RNA (ceRNA) networks related to HS response and lactation regulation were established in three tissues. In conclusion, our results indicate that HS induces differential circRNA expression profiles in HPM axis-related tissues, and the predicted ceRNA network provides a molecular basis for regulating the stress response and lactation regulation in heat-stressed dairy cows.
Collapse
|
45
|
Seelan RS, Greene RM, Pisano MM. Role of lncRNAs and circRNAs in Orofacial Clefts. Microrna 2023; 12:171-176. [PMID: 38009000 DOI: 10.2174/2211536612666230524153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 11/28/2023]
Abstract
Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
46
|
Liu G, Yang ZF, Sun J, Sun BY, Zhou PY, Zhou C, Guan RY, Wang ZT, Yi Y, Qiu SJ. The LINC00152/miR-205-5p/CXCL11 axis in hepatocellular carcinoma cancer-associated fibroblasts affects cancer cell phenotypes and tumor growth. Cell Oncol (Dordr) 2022; 45:1435-1449. [PMID: 36435866 PMCID: PMC9747837 DOI: 10.1007/s13402-022-00730-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND CXCL11 has been reported to be up-regulated in hepatocellular carcinoma (HCC) tissues and cancer-associated fibroblasts (CAFs), and CAF-secreted CXCL11 has been found to promote HCC cell proliferation and migration. Knowledge on how CAFs promote HCC progression is imperative for the future design of anti-tumor drugs addressing the high rates of disease recurrence. Herein, we propose a mechanism by which LINC00152 positively regulates CXCL11 expression and, subsequently, HCC cell phenotypes and growth characteristics via miR-205-5p in CAFs. METHODS The expression of LINC00152, miR-205-5p in HCC/non-cancerous tissues, CAFs/NFs and HCC cell lines was determined by RT-qPCR. The CXCL11 expression and secretion were determined by westernblot and ELISA. Different expressions of LINC00152, CXCL11 and miR-205-5p in CAFs were achieved by transfection with corresponding overexpression/knockdown vectors or mimics/inhibitor. The interactions among LINC00152, miR-205-5p and CXCL11 were confirmed by FISH, luciferase, AGO2 and RNA-pulldown assays. Transwell, colony formation and MTT assays were performed to assess the role of CAFs conditioned medium (CM) in HCC cell phenotype. BALB/c nude mice xenografts were used to determine the role of CAFs on HCC growth in vivo. RESULTS We found that in vitro, CM from CAFs transfected with sh-LINC00152 dramatically suppressed HCC cell viability, colony formation and migration, and that CM from CAFs transfected with miR-205-5p inhibitor (CAF-CM (miR-205-5p inhibitor)) exerted opposite effects on HCC cell phenotypes. Exogenous overexpression of CXCL11 in CAFs or CAF-CM (miR-205-5p inhibitor) could partially attenuate the effects of LINC00152 knockdown. In contrast, CM from CAFs transfected with LINC00152 dramatically increased HCC cell viability, colony formation and migration, and CM from CAFs transfected with miR-205-5p mimics (CAF-CM (miR-205-5p mimics)) exerted opposite effects on HCC cell phenotypes. Knockdown of CXCL11 in CAFs or CAF-CM (miR-205-5p mimics) could partially attenuate the effects of LINC00152 overexpression. In vivo, LINC00152 knockdown in CAFs inhibited tumor growth in a mouse model, which could be reversed by CXCL11 overexpression in CAFs. Mechanistically, we found that LINC00152 could act as a ceRNA to counteract miR-205-5p-mediated suppression on CXCL11 by directly binding to miR-205-5p and the 3'UTR of CXCL11. CONCLUSION Our data indicate that a LINC00152/miR-205-5p/CXCL11 axis in HCC CAFs can affect the proliferative and migrative abilities of HCC cells in vitro and HCC tumor growth in vivo.
Collapse
Affiliation(s)
- Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Jian Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Ruo-Yu Guan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032 Shanghai, People’s Republic of China
| |
Collapse
|
47
|
A Computationally Constructed lncRNA-Associated Competing Triplet Network in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:8928282. [DOI: 10.1155/2022/8928282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed “RNA language.” However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found between normal renal tissues and ccRCC (fold
and false discovery
). A ceRNA network that comprised of 46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients’ clinical characteristics and overall survival (log-rank
), indicating their potential important roles in ccRCC. HOTTIP may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and prognosis biomarkers for ccRCC.
Collapse
|
48
|
Fu D, Huang Y, Wang S, Liu J, Li C. HAGLROS
knockdown restrained cell proliferation, migration and invasion and facilitated apoptosis in laryngeal cancer via
miR
‐138‐5p/
CLN5
axis. J Clin Lab Anal 2022; 36:e24712. [DOI: 10.1002/jcla.24712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Dehui Fu
- The Second Hospital of Tianjin Medical University ENT department Tianjin China
| | - Yongwang Huang
- The Second Hospital of Tianjin Medical University ENT department Tianjin China
| | - Shanshan Wang
- The Second Hospital of Tianjin Medical University ENT department Tianjin China
| | - Jing Liu
- The Second Hospital of Tianjin Medical University ENT department Tianjin China
| | - Chao Li
- The Second Hospital of Tianjin Medical University ENT department Tianjin China
| |
Collapse
|
49
|
Zhang X, Han Y, Hu X, Wang H, Tian Z, Zhang Y, Wang X. Competing endogenous RNA networks related to prognosis in chronic lymphocytic leukemia: comprehensive analyses and construction of a novel risk score model. Biomark Res 2022; 10:75. [PMID: 36271413 PMCID: PMC9585723 DOI: 10.1186/s40364-022-00423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell malignancy that lacks specific biomarkers and drug targets. Competing endogenous RNAs (ceRNAs) play vital roles in oncogenesis and tumor progression by sponging microRNAs (miRNAs). Nevertheless, the regulatory mechanisms of survival-related ceRNA networks in CLL remain to be uncovered. METHODS We included 865 de novo CLL patients to investigate RNA expression profiles and Illumina sequencing was performed on four CLL patients, two CLL cell lines and six healthy donors in our center. According to univariate Cox regression, LASSO regression as well as multivariate Cox regression analyses, we established a novel risk score model in CLL patients. Immune signatures were compared between the low- and high-risk groups with CIBERSORT and ESTIMATE program. Afterwards, we analyzed the relationship between differentially expressed miRNAs (DEmiRNAs) and IGHV mutational status, p53 mutation status and del17p. Based on the survival analyses and differentially expressed RNAs with targeting relationships, the lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed. In addition, the circRNA circ_0002078/miR-185-3p/TCF7L1 axis was verified and their interrelations were delineated by dual-luciferase reporter gene assay. RESULTS Totally, 57 differentially expressed mRNAs (DEmRNAs) and 335 DEmiRNAs were identified between CLL patient specimens and normal B cells. A novel risk score model consisting of HTN3, IL3RA and NCK1 was established and validated. The concordance indexes of the model were 0.825, 0.719 and 0.773 in the training, test and total sets, respectively. The high-risk group was related to del(13q14) as well as shorter overall survival (OS). Moreover, we identified DEmiRNAs that related to cytogenetic abnormality of CLL patients, which revealed that miR-324-3p was associated with IGHV mutation, p53 mutation and del17p. The survival-related lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed to further facilitate the development of potential predictive biomarkers. Besides, the expression of circ_0002078 and TCF7L1 were significantly elevated and miR-185-3p was obviously decreased in CLL patients. Circ_0002078 regulated TCF7L1 expression by competing with TCF7L1 for miR-185-3p. CONCLUSIONS The comprehensive analyses of RNA expression profiles provide pioneering insights into the molecular mechanisms of CLL. The novel risk score model and survival-related ceRNA networks promote the development of prognostic biomarkers and potential therapeutic vulnerabilities for CLL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Zheng Tian
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
50
|
Li S, Si H, Xu J, Liu Y, Shen B. The therapeutic effect and mechanism of melatonin on osteoarthritis: From the perspective of non-coding RNAs. Front Genet 2022; 13:968919. [PMID: 36267400 PMCID: PMC9576930 DOI: 10.3389/fgene.2022.968919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a slowly progressing and irreversible joint disease. The existing non-surgical treatment can only delay its progress, making the early treatment of OA a research hotspot in recent years. Melatonin, a neurohormone mainly secreted by the pineal gland, has a variety of regulatory functions in different organs, and numerous studies have confirmed its therapeutic effect on OA. Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome. Various ncRNAs show significant differentially expressed between healthy people and OA patients. ncRNAs play diverse roles in many cellular processes and have been implicated in many pathological conditions, especially OA. Interestingly, the latest research found a close interaction between ncRNAs and melatonin in regulating the pathogenesis of OA. This review discusses the current understanding of the melatonin-mediated modulation of ncRNAs in the early stage of OA. We also delineate the potential link between rhythm genes and ncRNAs in chondrocytes. This review will serve as a solid foundation to formulate ideas for future mechanistic studies on the therapeutic potential of melatonin and ncRNAs in OA and better explore the emerging functions of the ncRNAs.
Collapse
|