1
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2025; 62:6998-7021. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Joldes C, Jimbu L, Mesaros O, Zdrenghea M, Fetica B. Tumor-Associated Macrophages as Key Modulators of Disease Progression in Diffuse Large B-Cell Lymphoma. Biomedicines 2025; 13:1099. [PMID: 40426926 PMCID: PMC12108958 DOI: 10.3390/biomedicines13051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
With the advent of new therapeutic approaches, there is hope that anticancer treatment will eventually be possible without the use of chemotherapy. Efficient immunotherapeutic options have recently emerged in many cancers, offering a less aggressive approach, with overall better tolerance, making them also suitable for frail patients. Response to immunotherapy relies on the availability, functionality, and efficacy of the host's immune effector mechanisms. One of the key factors determining the efficacy of immunotherapy is the tumor microenvironment, which encompasses various immune effectors, including macrophages, which play a crucial role in regulating immune responses through phagocytosis and antigen presentation. Macrophages are prototypically divided, according to their polarization, into either the pro-inflammatory M1 type or the anti-inflammatory M2 type. In the tumor microenvironment, M2-polarized macrophages, known as tumor-associated macrophages (TAMs), are the predominant phenotype and are associated with tumor progression. The M1/M2 paradigm contributes to the understanding of tumor progression. Due to the variable microenvironment, the mechanisms regulating TAMs can vary across different cancers. Variations in TAM polarization may account for the different treatment responses in patients with similar diseases. This paper investigates the connection between TAMs, disease progression, and treatment responses in the most frequent solid hematologic cancer, diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012 Cluj-Napoca, Romania; (L.J.); (O.M.); (M.Z.)
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012 Cluj-Napoca, Romania; (L.J.); (O.M.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012 Cluj-Napoca, Romania; (L.J.); (O.M.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012 Cluj-Napoca, Romania; (L.J.); (O.M.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Bogdan Fetica
- Department of Pathology, Ion Chiricuta Oncology Institute, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
4
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
5
|
Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ballal S, Sharma R, Debnath S, Sinha A, Rekha A, Khan NH, Alrashoud MM, Kamal M, Imran M. Pathological interplay of NF-κB and M1 macrophages in chronic inflammatory lung diseases. Pathol Res Pract 2025; 269:155903. [PMID: 40081284 DOI: 10.1016/j.prp.2025.155903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis depend on the pathology of the nuclear factor kappa B (NF-κB) signalling pathway and M1 macrophage polarization. This review discusses the intimate molecular interactions and processes that modulate NF-κB's promotion of M1 macrophages and chronic inflammation/tissue damage within the confines of this review. NF-κB activation in macrophages produces pro-inflammatory mediators (cytokines - TNFα, IL6, IL1β, and reactive oxygen species (ROS), further increasing airway remodeling and fibrosis. MAPK, JAK-STAT, and PI3K-Akt signalling systems cross-talked with the pathway, amplifying its effect on lung disease progression. Therapeutic strategies focused on inhibiting this axis, including inhibition of NF-κB and small molecule/modulation of macrophage polarization, represent potential ways to attenuate inflammation and promote tissue repair. The potential of precision medicine is illustrated by natural compounds such as curcumin and resveratrol and innovative RNA-based and nanoparticle delivery systems. Despite these challenges, specificity, minimizing systemic side effects, and optimized delivery methods remain difficult. To develop targeted therapies, more research must be conducted to refine targeted approaches, including immune profiling and single-cell analysis. This review aims to advance the management of hard-to-treat inflammatory lung diseases by addressing these complexities.
Collapse
Affiliation(s)
- Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Sourav Debnath
- Chandigarh pharmacy college, Chandigarh Group of colleges, Jhanjeri, Mohali 140307, Punjab, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - A Rekha
- Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | | | - Muhanad Mubarak Alrashoud
- Department of Inpatient Pharmacy, Dr. Sulaiman Alhabib Hospital, Alhamra Branch, Riyadh 13333, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
6
|
Zhuo H, Zhang S, Wang H, Deng J, Zhang X. Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss. Colloids Surf B Biointerfaces 2025; 248:114466. [PMID: 39729702 DOI: 10.1016/j.colsurfb.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVES Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed. METHODS Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos. The swelling and degradation rates of GelMA@MP196/exos were evaluated. Cell proliferation, antibacterial ability and cellular uptake and intracellular internalization of exos were assessed in the study. Efferocytosis and M2 polarization of macrophages was estimated and the effects of GelMA@MP196/exos were proved in vivo. RESULTS GelMA@MP196/exos upregulated the expression of genes and proteins related to neutrophil apoptosis and promoted neutrophil apoptosis, macrophage M2 polarization, and efferocytosis. Furthermore, GelMA@MP196/exos exhibited significant antibacterial activity against Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis. GelMA@MP196/exos alleviated periodontitis and reduced alveolar bone loss in vivo in rat models. CONCLUSIONS GelMA@MP196/exos can serve as a potential strategy for the treatment of periodontitis. CLINICAL SIGNIFICANCE The main aim of periodontal therapy is to remove dental plaque and eliminate inflammation. However, some patients with low plaque scores and insufficient neutrophil clearance, resulting in poor responsiveness to periodontal therapy. Under the circumstances, local Application of drug that regulate the immune microenvironment had significance in controlling the progression of inflammation.
Collapse
Affiliation(s)
- Haiwei Zhuo
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Shuting Zhang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Hongbo Wang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jiayin Deng
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| | - Xi Zhang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
7
|
Shen L, Zhou Y, Gong J, Fan H, Liu L. The role of macrophages in hypertrophic scarring: molecular to therapeutic insights. Front Immunol 2025; 16:1503985. [PMID: 40226618 PMCID: PMC11986478 DOI: 10.3389/fimmu.2025.1503985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by injury to the deep dermis due to trauma, burns, or surgical injury. The main feature of HS is the thickening and hardening of the skin, often accompanied by itching and pain, which seriously affects the patient's quality of life. Macrophages are involved in all stages of HS genesis through phenotypic changes. M1-type macrophages primarily function in the early inflammatory phase by secreting pro-inflammatory factors, while M2-type macrophages actively contribute to tissue repair and fibrosis. Despite advances in understanding HS pathogenesis, the precise mechanisms linking macrophage phenotypic changes to fibrosis remain incompletely elucidated. This review addresses these gaps by discussing the pathological mechanisms of HS formation, the phenotypic changes of macrophages at different stages of HS formation, and the pathways through which macrophages influence HS progression. Furthermore, emerging technologies for HS treatment and novel therapeutic strategies targeting macrophages are highlighted, offering potential avenues for improved prevention and treatment of HS.
Collapse
Affiliation(s)
| | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Lan D, Huang S, Li J, Zhou S, Deng J, Qin S, Zhou T, Meng F, Li W. Ferroptosis in Endometriosis: Traditional Chinese Medicine Interventions and Mechanistic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:385-408. [PMID: 40145281 DOI: 10.1142/s0192415x25500156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease affecting 5-10% of women of reproductive age, characterized by the growth of endometrial tissue on the outside of the uterus. The dysregulation of iron metabolism leads to the accumulation of iron ions at the lesion sites, resulting in oxidative stress and pro-inflammatory responses that promote the progression of EMS. The mechanisms underlying ferroptosis in EMS primarily involve iron accumulation, lipid peroxidation, and loss of glutathione peroxidase 4 activity. These mechanisms confer resistance to ferroptosis within the ectopic tissues and facilitate cell survival and proliferation. Traditional Chinese medicine (TCM) has demonstrated therapeutic potential for modulating ferroptosis. Studies have shown that TCM monomers may regulate ferroptosis by modulating iron transport proteins and anti-oxidant defense mechanisms. TCM formulas employ distinct treatment strategies depending on the stage of EMS: in the early stages, they promote ferroptosis to control lesion growth, whereas in the later stages, they inhibit ferroptosis to reduce oxidative stress and inflammation in order to improve reproductive health and slow disease progression. This study provides a new perspective on potential therapeutic strategies for the management of EMS by summarizing the role of ferroptosis in its pathological mechanisms and reviewing findings on the use of TCM in regulating ferroptosis.
Collapse
Affiliation(s)
- Dingli Lan
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuping Huang
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jing Li
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shilang Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jianli Deng
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuiyun Qin
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Ting Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Fengyun Meng
- Yao College of Medicine Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Weihong Li
- Department of Nursing Guangxi University of Chinese Medicine Nanning, P. R. China
| |
Collapse
|
9
|
Park J, An G, Hong T, Lee H, Song G, Lim W, Jeong W. Fenoxycarb induces cardiovascular, hepatic, and pancreatic toxicity in zebrafish larvae via ROS production, excessive inflammation, and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178957. [PMID: 40015127 DOI: 10.1016/j.scitotenv.2025.178957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Fenoxycarb, a carbamate insecticide, functions as a juvenile hormone agonist to inhibit pests, and its detection in aquatic environments is concerning because of its widespread application. These concerns have led to ecotoxicological studies on aquatic crustaceans; however, research on the effects of fenoxycarb on the developmental processes of organisms is limited. In the present study, the deleterious effects of fenoxycarb on zebrafish development and the related cellular mechanisms mediating this toxicity were addressed. Exposure to sublethal concentrations of fenoxycarb (0, 0.5, 1, and 2 mg/L) resulted in morphological defects in zebrafish larvae, particularly in the heart region, eyes, and body length. These defects were accompanied by an increase in the number of apoptotic cells and the upregulation of related gene expression. Moreover, fenoxycarb increased ROS production and the number of macrophages, and altered the expression of immune-related genes, thereby inducing inflammation. These results revealed various abnormalities in the heart, vasculature, liver, and pancreas, as confirmed by transgenic models, such as cmlc2:DsRed, fli1a:EGFP, and fabp10a:DsRed;elastase:GFP. These developmental impairments were associated with the altered expression levels of genes involved in the development and function of each organ. These results suggest that fenoxycarb can affect multiple organs through excessive inflammation during development and highlight its potent toxic effects on other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| |
Collapse
|
10
|
Karasaki K. Effects of aged garlic extract on macrophage functions: a short review of experimental evidence (Review). Biomed Rep 2025; 22:47. [PMID: 39882336 PMCID: PMC11775638 DOI: 10.3892/br.2025.1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Macrophages play crucial roles in both the innate and adaptive immune systems, contributing to the removal of pathogens and subsequent immune responses. Conversely, aberrant macrophage functions are associated with the onset and progression of various diseases, highlighting macrophages as potential therapeutic targets. Aged garlic extract (AGE) is derived from garlic that has undergone a maturation process of over 10 months in an ethanol solution and contains a variety of bioactive components which are produced in the aging process. Previous animal studies and clinical trials have demonstrated that AGE and its constituents exert a range of health benefits, including immune modulation and amelioration of disease conditions. Experimental studies indicate that AGE modulates macrophage functions associated with pathological conditions. To facilitate understanding of AGE's potential as a functional alleviation for macrophage-associated diseases, the present short review summarizes experimental evidence supporting the notion that AGE and its components modify macrophage functions, including phagocytosis, production of reactive oxygen species and polarization.
Collapse
Affiliation(s)
- Kohei Karasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
11
|
Campos-Sánchez JC, Guardiola FA, Meseguer J, Esteban MÁ. Erythrocytes from gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) did not engage in phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110166. [PMID: 39890037 DOI: 10.1016/j.fsi.2025.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Phagocytosis is a fundamental innate immune process primarily executed by vertebrate leucocytes. Fish erythrocytes are involved in immune functions, although their role in phagocytosis remains poorly investigated. Consequently, this study aimed to examine the potential phagocytic mechanisms of fish erythrocytes. To this end, systemic blood erythrocytes were isolated from the teleost gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) and incubated for various times (20, 40, 60, 80, 100, and 120 min) with formalin-inactivated bacteria or heat-killed yeasts labelled with fluorescein isothiocyanate. Their putative phagocytic properties and respiratory burst activity were investigated. Our results did not indicate variations in the phagocytic ability or phagocytic capacity of erythrocytes of seabream or sea bass incubated with the bacteria, whereas no activity was detected in the case of incubation with yeast. Additionally, no respiratory burst activity was detected in the erythrocytes of either fish species under any of the experimental conditions tested. Using fluorescence microscopy, it was observed that erythrocytes could bind bacteria to their surface membranes. However, this attachment process was rarely seen with yeast cells. In contrast, examination of the fine structure of erythrocytes using transmission electron microscopy showed distinctive inward and outward folding (pseudopodia formation) and some cytoplasmic vesicles in both species. The results of our study indicate that erythrocytes from gilthead seabream and sea bass did not exhibit phagocytic capabilities when exposed to these specific target particles. Additional studies are necessary to gain more insights into how they contribute to the immune system of fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
12
|
Wu C, Tong Y, Huang J, Wang S, Kobori H, Zhang Z, Suzuki K. Atrophic C2C12 Myotubes Activate Inflammatory Response of Macrophages In Vitro. Cells 2025; 14:317. [PMID: 40072046 PMCID: PMC11899532 DOI: 10.3390/cells14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells. However, the impact of skeletal muscle wasting on macrophage inflammatory responses remains poorly understood. METHODS To investigate the effect of atrophic myotubes on the inflammatory response of macrophages, we established two in vitro models to induce myotube atrophy: one induced by D-galactose and the other by starvation. Conditioned medium (CM) from normal and atrophic myotubes were collected and administered to bone marrow-derived macrophages (BMDMs) from mice. Subsequently, lipopolysaccharide (LPS) stimulation was applied, and the expression of inflammatory cytokines was measured via RT-qPCR. RESULTS Both D-galactose and starvation treatments reduced myotube diameter and upregulated muscle atrophy-related gene expression. CM from both atrophic myotubes models augmented the gene expression of pro-inflammatory factors in BMDMs following LPS stimulation, including Il6, Il1b, and Nfkb1. Notably, CM from starvation-induced atrophic myotubes also enhanced Il12b, Tnf, and Nos2 expression in BMDMs after stimulation, a response not observed in D-galactose-induced atrophic myotubes. CONCLUSIONS These findings suggest that CM from atrophic myotubes enhanced the expression of LPS-induced pro-inflammatory mediators in macrophages.
Collapse
Affiliation(s)
- Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Haruki Kobori
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
13
|
Xie Z, Jiang J, Yang F, Han J, Ma Z, Wen T, Bai X. The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage. FASEB J 2025; 39:e70272. [PMID: 39777689 PMCID: PMC11706223 DOI: 10.1096/fj.202402278rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated. However, the related mechanisms remain poorly understood. Complement 3 (C3) knockout mice, complement 3a receptor (C3aR) knockout mice, platelet C-type lectin-like receptor 2 (Clec-2)-deficient mice, and myeloid cell podoplanin (Pdpn)-deficient mice were generated. Liver tissues were collected for histological analysis, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. Our data demonstrated that APAP activated the C3/C3aR pathway, leading to intrahepatic hemorrhage, ultimately resulting in hepatocyte necrosis. Deletion of C3 or C3aR mitigated APAP-induced liver injury (AILI). C3/C3aR signaling upregulated the expression and phosphorylation of transcription factors STAT3 and c-Fos in hepatic Kupffer cells, which in turn increased PDPN expression, promoting platelet recruitment to the Kupffer cells via the interaction of PDPN and the CLEC-2 on platelets. Since the activation of platelets mediated by C3/C3aR occurs irrespective of the major hemostatic pathways, blocking the C3/C3aR pathway in ALF could be a coagulopathy-sparing and novel therapeutic approach. In summary, this study unveiled the critical roles of the C3/C3aR pathway in developing AILI, providing evidence that the C3/C3aR pathway could be an effective therapeutic target for AILI.
Collapse
Affiliation(s)
- Zhanli Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical SchoolNanjing UniversitySuzhouChina
| | - Jiang Jiang
- Department of Nuclear MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tao Wen
- Medical Research CenterBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| |
Collapse
|
14
|
Isali I, McClellan P, Wong TR, Hijaz S, Fletcher DR, Liu G, Bonfield TL, Anderson JM, Hijaz A, Akkus O. Differential effects of macrophage subtype-specific cytokines on fibroblast proliferation and endothelial cell function in co-culture system. J Biomed Mater Res A 2025; 113:e37799. [PMID: 39295242 DOI: 10.1002/jbm.a.37799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Macrophages are involved in several critical activities associated with tissue repair and regeneration. Current approaches in regenerative medicine are focusing on leveraging the innate immune response to accelerate tissue regeneration and improve long-term healing outcomes. Of particular interest in this regard are the currently known, four main M2 macrophage subtypes: M2interleukin (IL)-4,IL-13, M2IC, M2IL-10, M2non-selective adenosine receptor agonists (NECA) (M2IL-4,IL-13 → M2NECA). In this study, rat bone marrow-derived macrophages (M0) were polarized to each of the four subtypes M2IL-4,IL-13 → M2NECA and cultured for 72 h in vitro. Luminex assay results highlighted increased production of tissue inhibitor of metalloproteinases-1 (TIMP-1) for M2IL-4,IL-13, higher amounts of transforming growth factor-beta 1 (TGF-β1) for M2IL-10, and elevated vascular endothelial growth factor A (VEGF-A) from M2NECA. Co-culture experiments performed with M2IL-10 macrophages and L929 fibroblasts highlighted the increased production of soluble collagen within the media as well as higher amounts of collagen in the extracellular matrix. Human umbilical vein endothelial cells (HUVECs) were co-cultured with M2NECA macrophages, which demonstrated an increase in intercellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM), as well as increased formation of endothelial tubes. The findings of this study emphasize a critical demand for further characterization and analyses of distinct M2 subtypes and careful selection of specific macrophage populations for regeneration of specific tissue types. The current, broad classification of "M2" may be sufficient in many general tissue engineering applications, but, as conditions are constantly in flux within the microenvironment in vivo, a higher degree of specificity and control over the initial M2 subtype could result in more consistent long-term outcomes where macrophages are utilized as part of an overall regenerative strategy.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sara Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R Fletcher
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - Guiming Liu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| | - Tracey L Bonfield
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - James M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adonis Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Gandhi I, Adler R, Fishman C, Khan F, Albert M. Reducing Periocular Edema: Review and Product Concept. Cureus 2025; 17:e77815. [PMID: 39991426 PMCID: PMC11843588 DOI: 10.7759/cureus.77815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Prompt and gentle reduction of periocular edema is imperative. Here, we comprehensively review diverse accepted and novel strategies to mitigate periocular edema including corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), bromelain, diuretics, surgical and other non-pharmaceutical methods, and cryotherapy. We also introduce the concept for an innovative cryotherapeutic device: Mod-Enswell. Made of surgical steel, Mod-Enswell consists of a rectangular base with short pegs extending from its surface. The device was designed to induce focal vasoconstriction and gradually cool skin, features that are especially important considering the delicate nature of periocular skin. This paper explores various avenues to improve patient recovery following periocular swelling; future comparative investigations will be needed to determine the ideal strategy to reduce periocular edema.
Collapse
Affiliation(s)
- Isha Gandhi
- Dermatology, University of Minnesota Twin Cities Medical School, Minneapolis, USA
| | - Robert Adler
- Dermatology, State University of New York (SUNY) Downstate Medical School, Brooklyn, USA
| | - Chase Fishman
- Sports Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - Fariha Khan
- Dermatology, Touro College of Osteopathic Medicine, New York City, USA
| | - Mark Albert
- Plastic Surgery, Albert Plastic Surgery, New York City, USA
| |
Collapse
|
16
|
Wang C, Wu Y, Liu C, Li Y, Mi S, Yang X, Liu T, Tian Y, Zhang Y, Hu P, Qiao L, Deng G, Liang N, Sun J, Zhang Y, Zhang J. Nervonic acid alleviates radiation-induced early phase lung inflammation by targeting macrophages activation in mice. Front Immunol 2024; 15:1405020. [PMID: 39723218 PMCID: PMC11668677 DOI: 10.3389/fimmu.2024.1405020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair. However, the influence of NA on RILI progression has yet to be examined. Aim This study aimed to assess the role of macrophage subtypes in RILI and whether NA can alleviate RILI. Specifically, whether NA can alleviate RILI by targeting macrophages and reducing the levels of inflammatory mediators in mouse models was assessed. Methods Mice RILI model was employed with 13 Gy whole thoracic radiation with or without administration of NA. Various assays were performed to evaluate lung tissue histological changes, cytokine expression, IκB-α expression and the number and proportion of macrophages. Results Radiation can lead to the release of inflammatory mediators, thereby exacerbating RILI. The specific radiation dose and duration of exposure can lead to different dynamic changes in the number of subpopulations of lung macrophages. NA can affect the changes of macrophages after irradiation and reduce inflammatory responses to alleviate RILI. Conclusion Macrophages play a significant role in the integrated pathological process of lung injury after irradiation which shows a dynamic change with different times. NA can protect lung tissues against the toxic effects of ionizing radiation and is a new potential functional component for targeting macrophages.
Collapse
Affiliation(s)
- Chenlin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanan Wu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaofan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Yuanjing Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - YingYing Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeto College of Medicine, Shandong University, Jinan, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Onay UV, Xu D, Biyashev D, Evans ST, Demczuk MM, Neef T, Podojil JR, Beddow S, Gianneschi NC, Le Poole IC, Miller SD, Lu KQ. Attenuation of skin injury by a MARCO targeting PLGA nanoparticle. NPJ Regen Med 2024; 9:37. [PMID: 39639015 PMCID: PMC11621362 DOI: 10.1038/s41536-024-00381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous exposure to the DNA alkylating class of chemotherapeutic agents including nitrogen mustard (NM) leads to both skin injury and systemic inflammation. Circulating myeloid subsets recruited to the skin act to further exacerbate local tissue damage while interfering with the wound healing process. We demonstrate herein that intravenous delivery of poly(lactic-co-glycolic acid) immune-modifying nanoparticles (PLGA-IMPs) shortly after NM exposure restricts accumulation of macrophages and inflammatory monocytes at the injury site, resulting in attenuated skin pathology. Furthermore, PLGA-IMPs induce an early influx and local enrichment of Foxp3+ regulatory T cells (Treg) in the skin lesions critical for the suppression of myeloid cell-pro-inflammatory responses via induction of IL-10 and TGF-β in the cutaneous milieu. Functional depletion of CD4+ Tregs ablates the efficacy of PLGA-IMPs accompanied by a loss of local accumulation of anti-inflammatory cytokines essential for wound healing. Thus, in severe skin trauma, PLGA-IMPs may have therapeutic potential via modulation of inflammatory myeloid cells and regulatory T lymphocytes.
Collapse
Affiliation(s)
- Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dan Xu
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dauren Biyashev
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Spencer T Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael M Demczuk
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tobias Neef
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph R Podojil
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Cour Pharmaceutical Development Company, Northbrook, IL, USA
| | - Sara Beddow
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen D Miller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department od Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
18
|
Morante-Carriel J, Nájera H, Samper-Herrero A, Živković S, Martínez-Esteso MJ, Martínez-Márquez A, Sellés-Marchart S, Obrebska A, Bru-Martínez R. Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review. Int J Mol Sci 2024; 25:13036. [PMID: 39684747 DOI: 10.3390/ijms252313036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Much attention has been paid to the potential biological activities of prenylated flavonoids (PFs) in various plant families over the last decade. They have enormous potential for biological activities, such as anti-cancer, anti-diabetic, antimicrobial, anti-inflammatory, anti-Alzheimer's, and neuroprotective activities. Medicinal chemists have recently shown a strong interest in PFs, as they are critical to the development of new medicines. PFs have been rapidly prepared by isolation and semi- or full synthesis, demonstrating their significant utility in medicinal chemistry research. This study encompasses the research progress on PFs in the last decade, including their pharmacological activities in the Fabaceae family. This information demonstrates the bioactive potential of PF compounds and their role in the control and treatment of various human health problems.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsáchilas, Quevedo 120501, Ecuador
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Suzana Živković
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
19
|
Zhao Y, Chen J, Kong L, Zhang Q, Zhu Q. The Immune Regulatory Mechanism of Adrenomedullin on Promoting the Proliferation and Differentiation of Dental Pulp Stem Cells. Int Dent J 2024; 74:1386-1396. [PMID: 38806333 PMCID: PMC11551551 DOI: 10.1016/j.identj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE This research seeks to analyse the immunomodulatory impacts of adrenomedullin (ADM) on macrophages induced by bacterial lipopolysaccharide and to investigate the influence of macrophage-conditioned media from various stimulating factors on the biological activity of dental pulp stem cells (DPSCs) in vitro. METHODS The polarisation effect of ADM on macrophages was analysed through cell immunofluorescence staining and flow cytometry. Potential mechanisms were explored through transcriptomics and metabolomics. The impact of different macrophage-conditioned media on the biological activity of DPSCs was evaluated through western blotting, Realtime fluorescence quantitative, alkaline phosphatase activity assay, and eosin red staining. Each experiment was performed with 3 biological and 3 technical duplicate measurements. Statistical analysis was performed with t test and one-way ANOVA, and mathematical significance defined as P < .05. RESULTS ADM can reverse polarisation of macrophages towards M2 phenotype by Lipopolysaccharide and the conditioned media of ADM-induced M2 polarised macrophages significantly enhances the proliferation and differentiation of DPSCs. The mechanism may involve the metabolic reprogramming of macrophages by ADM, specifically promoting the metabolic shift from glycolysis to mitochondrial oxidative phosphorylation in Lipopolysaccharide-induced macrophages. CONCLUSION These results indicate that ADM is involved in suppressing inflammation and enhancing the proliferation and differentiation of DPSCs by reprogramming macrophage metabolism.
Collapse
Affiliation(s)
- Yangpeng Zhao
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qian Zhang
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China.
| |
Collapse
|
20
|
Wang X, Liu D. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Tissue Eng Regen Med 2024; 21:1109-1124. [PMID: 39352458 PMCID: PMC11589044 DOI: 10.1007/s13770-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary Academy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
21
|
Panda ES, Gautam AS, Pandey SK, Singh RK. IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis. Inflammation 2024:10.1007/s10753-024-02199-9. [PMID: 39607627 DOI: 10.1007/s10753-024-02199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.
Collapse
Affiliation(s)
- Ekta Swarnamayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
22
|
Almansour S, Dunster JL, Crofts JJ, Nelson MR. Modelling the continuum of macrophage phenotypes and their role in inflammation. Math Biosci 2024; 377:109289. [PMID: 39243940 DOI: 10.1016/j.mbs.2024.109289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Macrophages are a type of white blood cell that play a significant role in determining the inflammatory response associated with a wide range of medical conditions. They are highly plastic, having the capacity to adopt numerous polarisation states or 'phenotypes' with disparate pro- or anti-inflammatory roles. Many previous studies divide macrophages into two categorisations: M1 macrophages are largely pro-inflammatory in nature, while M2 macrophages are largely restorative. However, there is a growing body of evidence that the M1 and M2 classifications represent the extremes of a much broader spectrum of phenotypes, and that intermediate phenotypes can play important roles in the progression or treatment of many medical conditions. In this article, we present a model of macrophage dynamics that includes a continuous description of phenotype, and hence incorporates intermediate phenotype configurations. We describe macrophage phenotype switching via nonlinear convective flux terms that scale with background levels of generic pro- and anti-inflammatory mediators. Through numerical simulation and bifurcation analysis, we unravel the model's resulting dynamics, paying close attention to the system's multistability and the extent to which key macrophage-mediator interactions provide bifurcations that act as switches between chronic states and restoration of health. We show that interactions that promote M1-like phenotypes generally result in a greater array of stable chronic states, while interactions that promote M2-like phenotypes can promote restoration of health. Additionally, our model admits oscillatory solutions reminiscent of relapsing-remitting conditions, with macrophages being largely polarised toward anti-inflammatory activity during remission, but with intermediate phenotypes playing a role in inflammatory flare-ups. We conclude by reflecting on our observations in the context of the ongoing pursuance of novel therapeutic interventions.
Collapse
Affiliation(s)
- Suliman Almansour
- School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Jonathan J Crofts
- School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin R Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
23
|
Jiang K, Chen Y, Wang K, Yang L, Sun S, Yang J, Li X. miR-331-depleted exosomes derived from injured endometrial epithelial cells promote macrophage activation during endometritis. Int J Biol Macromol 2024; 279:134967. [PMID: 39179075 DOI: 10.1016/j.ijbiomac.2024.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Exosomes are natural carriers of biological macromolecules that are involved in the pathogenesis of a wide variety of inflammatory diseases. The purpose of this study was to investigate the role of exosomes derived from injured endometrial epithelial cells (EECs) in the development of endometritis. We isolated exosomes derived from LPS-injured EECs and identified these exosomes as proinflammatory mediators that can be internalized by macrophages and thus induce proinflammatory macrophage activation. We further found that miR-331 expression was sharply downregulated in exosomes derived from LPS-injured EECs and that macrophages treated with these exosomes also presented a lower level of miR-331. Importantly, the pathogenic role of exosomal miR-331 in promoting endometrial inflammation was revealed by the ability of adoptively transferred EECs-derived exosomes to cause macrophage activation, and this was reversed by miR-331 overexpression. Mechanistically, overexpression of miR-331 in macrophages mitigated NF-κB p65 phosphorylation by inhibiting the Notch1/IKKα pathway, which in turn curbed macrophage activation. In vivo assays further unveiled that miR-331 expression is negatively correlated with proinflammatory macrophage activation and that miR-331 upregulation markedly slowed disease progression in mice with endometritis. The exosome/miR-331/Notch1 axis plays a critical pathological role in endometrial inflammation, representing a new therapeutic target for endometritis.
Collapse
Affiliation(s)
- Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yajing Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kui Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Shumin Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
24
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
25
|
Peng Y, Ding S, Xu P, Zhang X, Wang J, Li T, Liao L, Zhang X. CCL18 promotes endometriosis by increasing endometrial cell migration and neuroangiogenesis. Eur J Histochem 2024; 68:4052. [PMID: 39105608 PMCID: PMC11369665 DOI: 10.4081/ejh.2024.4052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory gynecological disease whose pathogenesis is unclear. C-C motif chemokine ligand 18 (CCL18), a chemokine, is involved in several inflammatory diseases. In this study, we aimed to investigate the role of CCL18 in endometriosis and its underlying mechanisms. Human endometrium and peritoneal fluid were obtained from women with and without endometriosis for molecular studies. The expression level of CCL18 in each tissue sample was examined by RNA sequencing analysis, quantitative PCR analysis and immunohistochemistry staining. The effects of CCL18 on cell migration, tube formation and neurite growth were investigated in vitro using primary endometrial cells, human umbilical vein endothelial cells (HUVECs) and dorsal root ganglion (DRG) neurons, respectively. Moreover, the development of endometriosis in mice was studied in vivo by blocking CCL18. CCL18 was shown to be overexpressed in endometrial foci and peritoneal fluid in women with endometriosis and was positively correlated with endometriosis pain. In vitro, CCL18 promoted the migration of ectopic endometrial cells, tube formation of HUVECs, and nerve outgrowth of DRG neurons. More importantly, inhibition of CCL18 significantly suppressed lesion development, angiogenesis, and nerve infiltration in a mouse model of endometriosis. In conclusion, CCL18 may play a role in the progression of endometriosis by increasing endometrial cell migration and promoting neuroangiogenesis.
Collapse
Affiliation(s)
- Yangying Peng
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Obstetrics and Gynecology, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou.
| | - Shaojie Ding
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou.
| | - Ping Xu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou.
| | - Xueyan Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou.
| | - Jianzhang Wang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou.
| | - Tiantian Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou.
| | - Liyun Liao
- Xiangshan First People's Hospital Medical and Health Group, Ningbo.
| | - Xinmei Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou.
| |
Collapse
|
26
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
27
|
Yong Q, Huang C, Chen B, An J, Zheng Y, Zhao L, Peng C, Liu F. Gentiopicroside improves NASH and liver fibrosis by suppressing TLR4 and NLRP3 signaling pathways. Biomed Pharmacother 2024; 177:116952. [PMID: 38917754 DOI: 10.1016/j.biopha.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) and liver fibrosis are progressive conditions associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatocyte pyroptosis and hepatic stellate cell (HSC) activation. Gentiopicroside (GPS) has emerged as a potential treatment for NASH, yet its underlying mechanism remains unclear. AIM To confirm that GPS can improve NASH and liver fibrosis by blocking the NLRP3 signaling pathway STUDY DESIGN: Initially, different animal models were used to study the effects and mechanisms of GPS on NASH and fibrosis. Subsequent in vitro experiments utilized co-cultures and other techniques to delve deeper into its mechanism, followed by validation of the findings in mouse liver tissues. METHODS C57BL/6 mice were fed high-fat, high-cholesterol (HFHC), or methionine-choline-deficient (MCD) diets to induce NASH and fibrosis. RAW264.7 cells and born marrow bone marrow-derived macrophages (BMDMs) were stimulated with LPS and ATP to induce inflammation, then co-cultured with primary hepatocytes and HSCs, treated with GPS, and its efficacy and mechanism were analyzed. RESULTS In vivo, GPS alleviated NASH and liver fibrosis by inhibiting the NLRP3 pathway. In vitro, GPS attenuated inflammation induced by BMDMs by inhibiting TLR4 and NLRP3 signaling pathways, and Co-culture studies suggested that GPS reduced hepatocyte pyroptosis and HSC activation, which was also confirmed in liver tissues CONCLUSION: GPS improves NASH and liver fibrosis by inhibiting the TLR4 and NLRP3 signaling pathways. The specific mechanism may be related to the suppression of macrophage-mediated inflammatory responses, thereby reducing hepatocyte pyroptosis and HSC activation.
Collapse
Affiliation(s)
- Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinqi An
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Weber K, Bruer G, Krueger N, Schuster TB, Creutzenberg O, Schaudien D. Regenerative and progressing lesions in lungs and lung-associated lymph nodes from fourteen 90-day inhalation studies with chemically different particulate materials. Toxicol Lett 2024; 399 Suppl 1:49-72. [PMID: 38159619 DOI: 10.1016/j.toxlet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Rat lungs and lung-associated lymph nodes from 14 inhalation studies with chemically different particulate materials were histopathologically re-evaluated, and the bronchoalveolar lavage fluid (BALF) data and lung burden analyses were compared. All investigated substances caused similar lesions. For most substances, 1 mg/m3 of respirable particulate matter was established as the borderline for adverse morphological changes after the 90-day exposure period, confirmed by the increase in polymorphonuclear neutrophils in BALF. Possible reversibility was demonstrated when recovery groups are included in the study especially allowing the differentiation between regeneration or progressing of inflammatory changes during the recovery period. It was concluded, that the major driver of toxicity is not an intrinsic chemical property of the particle but a particle effect. Concerning classification for specific target organ toxicant (STOT) repeated exposure (RE), this paper highlights that merely comparing the lowest concentration, at which adverse effects were observed, with the Classification Labelling and Packaging (CLP) regulation (EC) no. 1272/2008 guidance values is inappropriate and might lead to a STOT classification under CLP for a large part of the substances discussed in this paper, on the basis of typically mild to moderate findings in rat lung and lung-associated lymph nodes on day 1 after exposure. An in-depth evaluation of the pathologic findings is required and an expert judgement has to be included in the decision on classification and labeling, evaluating the type and severity of effects and comparing these with the classification criteria.
Collapse
Affiliation(s)
| | - Gustav Bruer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Nils Krueger
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany.
| |
Collapse
|
29
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
30
|
Bae E, Kim S, Sung JH, Kim JH, Jung SH, Song KS, Cho WS. The oxidative stress-dependent pulmonary inflammation of inhalable multi-walled carbon nanotube-containing nano-concrete dust and its comparison with conventional concrete dust and DQ12. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135214. [PMID: 39029181 DOI: 10.1016/j.jhazmat.2024.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Nano-concrete, which is an admixture of nanomaterials in concrete recipes, has been investigated to overcome the limitations of existing concrete, such as its stability and strength. However, there is no information on the human health effects of broken-down dust released during the construction and demolition efforts. In this study, we prepared an inhalable fraction of multi-walled carbon nanotube-containing nano-concrete dust and performed comparative toxicity studies with conventional concrete dust and DQ12 using a rat intratracheal instillation model. Although the recipes for concrete and nano-concrete are entirely different, the pulverized dust samples showed similar physicochemical properties, such as 0.46-0.48 µm diameter and chemical composition. Both concrete and nano-concrete dust exhibited similar patterns and magnitudes, representing acute neutrophilic inflammation and chronic active inflammation with lymphocyte infiltration. The toxicity endpoints of the tested particles at both time points showed an excellent correlation with the reactive oxygen species levels released from the alveolar macrophages, highlighting that alveolar macrophages are the primary target cells and that the oxidative stress paradigm is the main toxicity mechanism of the tested particles. In addition, the toxicity potentials of both concrete and nano-concrete dust were more than 10 times lower than that of DQ12.
Collapse
Affiliation(s)
- Eunsol Bae
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jae Hyuck Sung
- Bio Division, Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| | - Joo Hyung Kim
- Construction Division, Korea Conformity Laboratories, Cheongju 28115, Republic of Korea
| | - Sang Hwa Jung
- Construction Division, Korea Conformity Laboratories, Cheongju 28115, Republic of Korea
| | - Kyung-Seuk Song
- Bio Division, Korea Conformity Laboratories, Incheon 21999, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
31
|
Valencia R, Kranrod JW, Fang L, Soliman AM, Azer B, Clemente-Casares X, Seubert JM. Linoleic acid-derived diol 12,13-DiHOME enhances NLRP3 inflammasome activation in macrophages. FASEB J 2024; 38:e23748. [PMID: 38940767 DOI: 10.1096/fj.202301640rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua W Kranrod
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amro M Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brandon Azer
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Arshad L, Haque MA, Harikrishnan H, Ibrahim S, Jantan I. Syringin from Tinospora crispa downregulates pro-inflammatory mediator production through MyD88-dependent pathways in lipopolysaccharide (LPS)-induced U937 macrophages. Mol Biol Rep 2024; 51:789. [PMID: 38990383 DOI: 10.1007/s11033-024-09722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Syringin, a phenylpropanoid glycoside, has exhibited numerous biological properties including inhibitory activities against various immune and inflammatory disorders. In this study, syringin isolated from Tinospora crispa was evaluated for its ability to down-regulate activated nuclear factor-kappa B (NF-κB), phosphoinositide-3-kinase-Akt (PI3K-Akt) and mitogen-activated protein kinases (MAPKs) signal transducing networks in U937 macrophages activated by lipopolysaccharide. METHODS The attenuating effects of syringin on the productions of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and the expressions of signaling molecules of the signaling pathways were investigated by using ELISA, Western blot, and qRT-PCR. RESULTS Syringin downregulated the NF-κB, MAPKs, and PI3K-Akt signal networks by significantly reducing PGE2 production in the macrophages via suppression of COX-2 gene and protein expression levels. It also reduced TNF-α and IL-1β secretion and their mRNA expression, suppressed phosphorylation of NF-κB (p65), IKKα/β, and IκBα, and restored ability of IκBα to degrade. Syringin dose-dependently attenuated Akt, p38 MAPKs, JNK, and ERK phosphorylation. Also, the expression of corresponding upstream signaling molecules toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) were down-regulated in response to syringin treatment. CONCLUSION The suppressive effect of syringin on the inflammatory signaling molecules in MyD88-dependent pathways suggested it's potential as a drug candidate for development into an agent for treatment of various immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States of America
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, UKM 43600, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, UKM 43600, Malaysia.
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.
| |
Collapse
|
33
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
34
|
Tang Z, Ning Z, Li Z. The beneficial effects of Rosuvastatin in inhibiting inflammation in sepsis. Aging (Albany NY) 2024; 16:10424-10434. [PMID: 38885061 PMCID: PMC11236309 DOI: 10.18632/aging.205937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Microbial infection-induced sepsis causes excessive inflammatory response and multiple organ failure. An effective strategy for the treatment of sepsis-related syndromes is still needed. Rosuvastatin, a typical β-hydroxy β-methylglutaryl-CoA reductase inhibitor licensed for reducing the levels of low-density lipoprotein cholesterol in patients with hyperlipidemia, has displayed anti-inflammatory capacity in different types of organs and tissues. However, its effects on the development of sepsis are less reported. Here, we found that the administration of Rosuvastatin reduced the mortality of sepsis mice and prevented body temperature loss. Additionally, it inhibited the production of inflammatory cytokines such as tumor necrosis factor (TNF-α), Interleukin-6 (IL-6), interleukin-1β (IL-1β), and migration inhibitory factor (MIF) in peritoneal lavage supernatants of animals. The increased number of mononuclear cells in the peritoneum of sepsis mice was reduced by Rosuvastatin. Interestingly, it ameliorated lung inflammation and improved the hepatic and renal function in the sepsis animals. Further in vitro experiments show that Rosuvastatin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory cytokines in RAW 264.7 macrophages by preventing the activation of nuclear factor kappa-B (NF-κB). Our findings demonstrate that the administration of Rosuvastatin hampered organ dysfunction and mitigated inflammation in a relevant model of sepsis.
Collapse
Affiliation(s)
- Ziming Tang
- Department of Emergency, Peking University International Hospital, Beijing 102206, China
| | - Zheng Ning
- Department of Emergency, Peking University International Hospital, Beijing 102206, China
| | - Zexuan Li
- Department of Emergency, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
35
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
36
|
Bianchini E, Ashley Sin YJ, Lee YJ, Lin C, Anil U, Hamill C, Cowman MK, Kirsch T. The Role of Hyaluronan/Receptor for Hyaluronan-Mediated Motility Interactions in the Modulation of Macrophage Polarization and Cartilage Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1047-1061. [PMID: 38403161 PMCID: PMC11156159 DOI: 10.1016/j.ajpath.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.
Collapse
Affiliation(s)
- Emilia Bianchini
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - Yun Jin Ashley Sin
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - You Jin Lee
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Charles Lin
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Utkarsh Anil
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Cassie Hamill
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Thorsten Kirsch
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
37
|
Jo S, Park SB, Kim H, Im I, Noh H, Kim EM, Kim KY, Oelgeschläger M, Kim JH, Park HJ. hiPSC-derived macrophages improve drug sensitivity and selectivity in a macrophage-incorporating organoid culture model. Biofabrication 2024; 16:035021. [PMID: 38749417 DOI: 10.1088/1758-5090/ad4c0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.
Collapse
Affiliation(s)
- Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ilkyun Im
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Haneul Noh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Michael Oelgeschläger
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jong-Hoon Kim
- Laboratory Stem Cells and Tissue regeneration, Department Biotechnology, Collage of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
38
|
Fitzpatrick JMK, O'Riordan D, Downer EJ. Cannflavin A inhibits TLR4-induced chemokine and cytokine expression in human macrophages. Nat Prod Res 2024:1-7. [PMID: 38780010 DOI: 10.1080/14786419.2024.2358382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Cannflavin A (CFL-A), a flavonoid present in the hemp plant Cannabis sativa L. (C. sativa), has anti-inflammatory and neuroprotective capacity. Research continues to elucidate the anti-inflammatory effects of components of C. sativa, with evidence that plant-derived cannabinoids and terpenes can mediate anti-inflammatory activity by targeting toll-like receptor (TLR) signalling, the sensors of pathogen-associated molecules. This study set out to determine if TLR-mediated inflammatory signalling is a CFL-A target using the endotoxin lipopolysaccharide (LPS) to induce TLR4 signalling in human THP-1-derived macrophages. TLR4 activation promoted the production of the chemokine CXCL10 and cytokines IL-1β and TNFα. Treatment with CFL-A dose-dependently attenuated TLR4-induced CXCL10 and IL-1β secretion, with our findings also indicating that the inhibitory effects of CFL-A on chemokine/cytokine secretion are in line with an NF-κB inhibitor. This study highlights TLR4 signalling as a cannflavin target in macrophages.
Collapse
Affiliation(s)
- John-Mark K Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | | | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
40
|
Sun H, Dong J, Fu Z, Lu X, Chen X, Lei H, Xiao X, Chen S, Lu J, Su D, Xiong Y, Fang Z, Mao J, Chen L, Wang X. TSG6-Exo@CS/GP Attenuates Endometrium Fibrosis by Inhibiting Macrophage Activation in a Murine IUA Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308921. [PMID: 38588501 DOI: 10.1002/adma.202308921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Intrauterine adhesion (IUA) is characterized by the formation of fibrous scar tissue within the uterine cavity, which significantly impacts female reproductive health and even leads to infertility. Unfortunately, severe cases of IUA currently lack effective treatments. This study presents a novel approach that utilizes tumor necrosis factor-(TNF) stimulated gene 6 (TSG6)-modified exosomes (Exos) in conjunction with an injectable thermosensitive hydrogel (CS/GP) to mitigate the occurrence of IUA by reducing endometrium fibrosis in a mouse IUA model. This study demonstrate that TSG6-modified Exos effectively inhibits the activation of inflammatory M1-like macrophages during the initial stages of inflammation and maintains the balance of macrophage phenotypes (M1/M2) during the repair phase. Moreover, TSG6 inhibits the interaction between macrophages and endometrial stromal fibroblasts, thereby preventing the activation of stromal fibroblasts into myofibroblasts. Furthermore, this research indicates that CS/GP facilitates the sustained release of TSG6-modified Exos, leading to a significant reduction in both the manifestations of IUA and the extent of endometrium fibrosis. Collectively, through the successful construction of CS/GP loaded with TSG6-modified Exos, a reduction in the occurrence and progression of IUA is achieved by mitigating endometrium fibrosis. Consequently, this approach holds promise for the treatment of IUA.
Collapse
Affiliation(s)
- Huijun Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Zhaoyue Fu
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xutao Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xifeng Xiao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Danjie Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Yujing Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| |
Collapse
|
41
|
Chen Y, Hua R, Shao G, Zhu X, Hou W, Li S, Yang A, Yang G. Effects of annexin B18 from Echinococcus granulosus sensu lato on mouse macrophages. Exp Parasitol 2024; 260:108723. [PMID: 38432406 DOI: 10.1016/j.exppara.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1β,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 μg/mL while no significant impact on metabolic activity was observed at 80 μg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1β, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1β, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China
| | - Wei Hou
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, 610000, Sichuan Province, PR China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, PR China.
| |
Collapse
|
42
|
Morante-Carriel J, Živković S, Nájera H, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Obrebska A, Samper-Herrero A, Bru-Martínez R. Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1211. [PMID: 38732426 PMCID: PMC11085352 DOI: 10.3390/plants13091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Suzana Živković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Susana Sellés-Marchart
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| |
Collapse
|
43
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Künig S, Steinberger P, Jeltsch M, Hirvonen JT, Barreto G, Stöckl J, Santos HA. Study of the Synergistic Immunomodulatory and Antifibrotic Effects of Dual-Loaded Budesonide and Serpine1 siRNA Lipid-Polymer Nanoparticles Targeting Macrophage Dysregulation in Tendinopathy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18643-18657. [PMID: 38564504 DOI: 10.1021/acsami.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Sarojinidevi Künig
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Wihuri Research Institute, Helsinki FI-00014, Finland
- Helsinki One Health, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Orton Orthopedic Hospital, Tenholantie 10, Helsinki 00280, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
44
|
Nong K, Liu Z, Qin X, Chen W, Zhang B, Wu Y, Wang Z, Fang X, Liu Y, Wang X, Shi H, Zhang H. Effect of the Pseudopleuronectes americanus-derived Pleurocidin on DSS-induced Ulcerative colitis in mice and its preliminary molecular mechanisms. Int Immunopharmacol 2024; 130:111757. [PMID: 38422770 DOI: 10.1016/j.intimp.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Pleurocidin is an antimicrobial peptide derived from the mucous membranes of the skin or intestinal secretions of Pseudopleuronectes americanus that has antimicrobial and immunomodulatory activities. Ulcerative colitis is recognized as a widespread human disease that may be influenced by environmental and genetic factors. Evidence emphasizes the critical role of the gut microbiota in UC. Synthetic Pleurocidin was analyzed by a combination of liquid chromatography and mass spectrometry. Pleurocidin pharmacological effects were evaluated by DAI score, colon histological score, cytokine levels, and tight junction protein expression in mice. The preliminary molecular mechanism was explored by the levels of key proteins in the NF-κB and MAPK inflammatory signaling pathways in colon tissues. The main analytical methods such as immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and Western blot were used. We then used 16S rRNA gene sequences to characterize the gut microbiota. Firstly, our study demonstrated that rectal injection of Pleurocidin at 5 mg/kg body weight alleviated clinical symptoms and colonic histopathological changes in UC mice caused by DSS. Secondly, Pleurocidin altered the abnormal levels of inflammatory and immune-related cytokines in serum, modulated the significant down-regulation of tight junction proteins, and inhibited the expression of NF-κB and MAPK inflammatory signaling pathway-related proteins. Finally, Pleurocidin can regulate gut microbiota, increase the relative abundance of beneficial bacteria and reduce the relative abundance of harmful bacteria. In conclusion, Pleurocidin alleviates UC symptoms in mice, and its effects on the gut microbiome may be potential pathways. It is providing a promising therapeutic option for UC.
Collapse
Affiliation(s)
- Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Huiyu Shi
- College of Tropical Agriculture and Forestry, Hainan University, China
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, China.
| |
Collapse
|
45
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Konesan J, Moore KH, Mansfield KJ, Liu L. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or d-mannose. Pathog Dis 2024; 82:ftae026. [PMID: 39363231 DOI: 10.1093/femspd/ftae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have an unclear impact on bladder mucosal physiology. This study investigates UPEC's effects on the urothelium and lamina propria using an ex vivo porcine bladder model. Bladder mucosal strips were analysed for contractile responses to acetylcholine, serotonin, and neurokinin A. Given rising antibiotic resistance, non-antibiotic agents such as cranberry and d-mannose were also evaluated for their potential to prevent UPEC-induced damage. The findings of the current study revealed that UPEC significantly compromised urothelial integrity, barrier function, and permeability, with loss of urothelial cells, uroplakins, and tight junction protein ZO-1 expression. Additionally, infected bladders exhibited a markedly enhanced contractile response to serotonin compared to uninfected controls. Notably, neither cranberry nor d-mannose offered protection against UPEC-mediated damage or mitigated the heightened serotonin-induced contractility. This study provides novel insights into how UPEC disrupts bladder cell biology and highlights the possible involvement of serotonin in the pathophysiology of UTIs.
Collapse
Affiliation(s)
- Jenane Konesan
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW 2217, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lu Liu
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Wu J, Pan J, Zhou W, Ji G, Dang Y. The role of N6-methyladenosine in macrophage polarization: A novel treatment strategy for non-alcoholic steatohepatitis. Biomed Pharmacother 2024; 171:116145. [PMID: 38198958 DOI: 10.1016/j.biopha.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
RNA methylation modifications, as a widespread type of modification in eukaryotic cells, especially N6-methyladenosine (m6A), are associated with many activities in organisms, including macrophage polarization and progression of non-alcoholic steatohepatitis (NASH). Macrophages in the liver are of diverse origin and complex phenotype, exhibiting different functions in development of NASH. In the review, we discuss the functions of m6A and m6A-related enzymes in macrophage polarization. Furthermore, we retrospect the role of macrophage polarization in NASH. Finally, we discuss the prospects of m6A in macrophages and NASH, and provide guidance for the treatment of NASH.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
48
|
Huang X, Zheng L, Zhou Y, Hu S, Ning W, Li S, Lin Z, Huang S. Controllable Adaptive Molybdate-Oligosaccharide Nanoparticles Regulate M2 Macrophage Mitochondrial Function and Promote Angiogenesis via PI3K/HIF-1α/VEGF Pathway to Accelerate Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2302256. [PMID: 37922497 DOI: 10.1002/adhm.202302256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/22/2023] [Indexed: 11/05/2023]
Abstract
The complex wound environment of diabetic wounds leads to poor treatment efficacy, and the inflammatory disorders and vascular injury are the primary causes of death in such patients. Herein, a sprayable, controllable adaptive, pH-responsive nanosystem of molybdate and oligosaccharide (CMO) is specially developed as an immunomodulatory and angiogenesis-promotion material for diabetic wound healing. CMO exhibited pH-responsive release of Mo2+ and oligosaccharide (COS), specifically in response to the alkalescent environment observed in diabetic wounds. CMO provide an anti-inflammatory environment by promoting M2 polarization through significantly stimulating macrophage mitochondrial function. Specifically, CMO with a certain concentration reduce reactive oxygen species (ROS) and tumor necrosis factor α (TNF-α) expression, and upregulated mitochondrial membrane potential (MMP), superoxide dismutase (SOD), and interleukin 10 (IL-10) expression in macrophages. Moreover, CMO facilitate angiogenesis via upregulating the PI3K/HIF-1α/VEGF pathway-a critical process for the formation of new blood vessels that supply nutrients and oxygen to the healing tissue. Remarkably, CMO promote cell viability and migration of endothelial cells, and enhance the expression of angiogenic genes. In vitro and in vivo studies suggest this simple but powerful nanosystem targeting mitochondrial function has the potential to become an effective treatment for diabetic wound healing.
Collapse
Affiliation(s)
- Xiuhong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Liqin Zheng
- Department of The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yueshan Zhou
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Shaonan Hu
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wancheng Ning
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Simin Li
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziling Lin
- Department of Orthopedic Trauma, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| |
Collapse
|
49
|
Er-Lukowiak M, Hänzelmann S, Rothe M, Moamenpour DT, Hausmann F, Khatri R, Hansen C, Boldt J, Bärreiter VA, Honecker B, Bea A, Groneberg M, Fehling H, Marggraff C, Cadar D, Bonn S, Sellau J, Lotter H. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis. Front Immunol 2023; 14:1279245. [PMID: 38179044 PMCID: PMC10764495 DOI: 10.3389/fimmu.2023.1279245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/06/2024] Open
Abstract
Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Rothe
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David T. Moamenpour
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Hansen
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jennifer Boldt
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annika Bea
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dániel Cadar
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Sellau
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
50
|
Ishibashi O, Muljo SA, Islam Z. Regulation of Macrophage Polarization in Allergy by Noncoding RNAs. Noncoding RNA 2023; 9:75. [PMID: 38133209 PMCID: PMC10745746 DOI: 10.3390/ncrna9060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Allergy is a type 2 immune reaction triggered by antigens known as allergens, including food and environmental substances such as peanuts, plant pollen, fungal spores, and the feces and debris of mites and insects. Macrophages are myeloid immune cells with phagocytic abilities that process exogenous and endogenous antigens. Upon activation, they can produce effector molecules such as cytokines as well as anti-inflammatory molecules. The dysregulation of macrophage function can lead to excessive type 1 inflammation as well as type 2 inflammation, which includes allergic reactions. Thus, it is important to better understand how macrophages are regulated in the pathogenesis of allergies. Emerging evidence highlights the role of noncoding RNAs (ncRNAs) in macrophage polarization, which in turn can modify the pathogenesis of various immune-mediated diseases, including allergies. This review summarizes the current knowledge regarding this topic and considers three classes of ncRNAs: microRNAs, long ncRNAs, and circular ncRNAs. Understanding the roles of these ncRNAs in macrophage polarization will provide new insights into the pathogenesis of allergies and identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|