1
|
Zhao Y, Zhou C, Zuo L, Yan H, Gu Y, Liu H, Yu G, Zhou X. Identification of cancer cell-intrinsic biomarkers associated with tumor progression and characterization of SFTA3 as a tumor suppressor in lung adenocarcinomas. BMC Cancer 2025; 25:36. [PMID: 39780110 PMCID: PMC11707868 DOI: 10.1186/s12885-024-13395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood. METHODS Single-cell RNA sequencing data were utilized to identify novel cancer cell-intrinsic gene signatures associated with the progression of LUAD, and their roles in LUAD were comprehensively analyzed. Serum samples were collected to quantify the expression levels of SFTA3 in LUAD patients. Furthermore, a series of biological experiments, including cell viability assays, scratch wound healing assays, and colony formation assays, were conducted to demonstrate the tumor-suppressive effects of SFTA3. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SFTA3 in lung cancer cells. RESULTS We constructed a prognostic model comprising eight genes: ALDOA, ATP5MD, SERPINH1, SFTA3, SLK, U2SURP, SCGB1A1, and SCGB1A3. The model effectively stratified patients into high- and low-risk categories, revealing that low-risk patients experienced superior clinical outcomes, exhibited an immunologically hot tumor microenvironment (TME), and had a greater probability of responding to immunotherapy. In contrast, the high-risk group exhibited a cold TME and may benefit more from chemotherapy. Furthermore, our study revealed that a progressive decrease in SFTA3 expression in cancer cells was correlated with tumor advancement. Notably, the serum levels of SFTA3 significantly decreased in patients with LUAD, suggesting its potential utility in liquid biopsy for LUAD diagnosis. Additionally, the knockdown of SFTA3 enhances the proliferation and migration of lung cancer cells, whereas its overexpression inhibits these phenotypes. The epithelial-mesenchymal transition pathway was significantly enriched following SFTA3 silencing, suggesting that SFTA3 may impact tumor progression by modulating this process. We also identified key transcription factors and epigenetic mechanisms implicated in the downregulation of SFTA3 in LUAD. CONCLUSION We developed a robust prognostic model and identified SFTA3 as a novel biomarker with potential applications in the diagnosis, prognosis, and personalized treatment of LUAD. Additionally, our findings offer new insights into the mechanisms underlying LUAD tumorigenesis and immune evasion.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Chengcheng Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Ling Zuo
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Haoming Yan
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Yuhan Gu
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China.
| |
Collapse
|
2
|
Cai ZR, Wang W, Chen D, Chen HJ, Hu Y, Luo XJ, Wang YT, Pan YQ, Mo HY, Luo SY, Liao K, Zeng ZL, Li SS, Guan XY, Fan XJ, Piao HL, Xu RH, Ju HQ. Diagnosis and prognosis prediction of gastric cancer by high-performance serum lipidome fingerprints. EMBO Mol Med 2024; 16:3089-3112. [PMID: 39543322 PMCID: PMC11628598 DOI: 10.1038/s44321-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Early detection is warranted to improve prognosis of gastric cancer (GC) but remains challenging. Liquid biopsy combined with machine learning will provide new insights into diagnostic strategies of GC. Lipid metabolism reprogramming plays a crucial role in the initiation and development of tumors. Here, we integrated the lipidomics data of three cohorts (n = 944) to develop the lipid metabolic landscape of GC. We further constructed the serum lipid metabolic signature (SLMS) by machine learning, which showed great performance in distinguishing GC patients from healthy donors. Notably, the SLMS also held high efficacy in the diagnosis of early-stage GC. Besides, by performing unsupervised consensus clustering analysis on the lipid metabolic matrix of patients with GC, we generated the gastric cancer prognostic subtypes (GCPSs) with significantly different overall survival. Furthermore, the lipid metabolic disturbance in GC tissues was demonstrated by multi-omics analysis, which showed partially consistent with that in GC serums. Collectively, this study revealed an innovative strategy of liquid biopsy for the diagnosis of GC on the basis of the serum lipid metabolic fingerprints.
Collapse
Affiliation(s)
- Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Hao-Jie Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Jing Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yi-Ting Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Yi-Qian Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hai-Yu Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shu-Yu Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shan-Shan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Juan Fan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| |
Collapse
|
3
|
Li K, Lin Y, Zhou Y, Xiong X, Wang L, Li J, Zhou F, Guo Y, Chen S, Chen Y, Tang H, Qiu X, Cai S, Zhang D, Bremer E, Jim Yeung SC, Zhang H. Salivary Extracellular MicroRNAs for Early Detection and Prognostication of Esophageal Cancer: A Clinical Study. Gastroenterology 2023; 165:932-945.e9. [PMID: 37399999 DOI: 10.1053/j.gastro.2023.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND & AIMS Early detection of esophageal squamous cell carcinoma (ESCC) will facilitate curative treatment. We aimed to establish a microRNA (miRNA) signature derived from salivary extracellular vesicles and particles (EVPs) for early ESCC detection and prognostication. METHODS Salivary EVP miRNA expression was profiled in a pilot cohort (n = 54) using microarray. Area under the receiver operator characteristic curve (AUROC) and least absolute shrinkage and selector operation regression analyses were used to prioritize miRNAs that discriminated patients with ESCC from controls. Using quantitative reverse transcription polymerase chain reaction, the candidates were measured in a discovery cohort (n = 72) and cell lines. The prediction models for the biomarkers were derived from a training cohort (n = 342) and validated in an internal cohort (n = 207) and an external cohort (n = 226). RESULTS The microarray analysis identified 7 miRNAs for distinguishing patients with ESCC from control subjects. Because 1 was not always detectable in the discovery cohort and cell lines, the other 6 miRNAs formed a panel. A signature of this panel accurately identified patients with all-stage ESCC in the training cohort (AUROC = 0.968) and was successfully validated in 2 independent cohorts. Importantly, this signature could distinguish patients with early-stage (stage Ⅰ/Ⅱ) ESCC from control subjects in the training cohort (AUROC = 0.969, sensitivity = 92.00%, specificity = 89.17%) and internal (sensitivity = 90.32%, specificity = 91.04%) and external (sensitivity = 91.07%, specificity = 88.06%) validation cohorts. Moreover, a prognostic signature based on the panel was established and efficiently predicted the high-risk cases with poor progression-free survival and overall survival. CONCLUSIONS The salivary EVP-based 6-miRNA signature can serve as noninvasive biomarkers for early detection and risk stratification of ESCC. Chinese Clinical Trial Registry, ChiCTR2000031507.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Guangdong Second Provincial General Hospital, Faculty of Medical Science and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China; Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China; Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Graduate School, Shantou University Medical College, Shantou, Guangdong, China
| | - Yu Zhou
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Xiao Xiong
- Department of Urology, Guangdong Second Provincial General Hospital, Faculty of Medical Science and Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Junkuo Li
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaobin Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hao Zhang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China; Institute of Precision Cancer Medicine and Pathology, School of Medicine, Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Pu Y, An J, Mo X. Liquid Biopsy in Adverse Neurodevelopment of Children: Problems and Prospects. Methods Mol Biol 2023; 2695:337-349. [PMID: 37450130 DOI: 10.1007/978-1-0716-3346-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Neurodevelopmental disorders in children have an important impact on the quality of life in the whole life cycle. Severe neurodevelopmental disorders will become a serious social and family burden and an important social and economic problem. The early and middle childhood is the critical period of children's neurodevelopment. Early diagnosis of neurological disorders plays an important role in guiding children's neurological development. Existing monitoring tools lack prenatal and even early assessment of children's neurodevelopment, so reliable biomarkers are conducive to personalized care at an earlier stage. In this review, we will discuss different methods of neurodevelopmental monitoring at different times and the role and evaluation of liquid biopsy in neurodevelopmental monitoring.
Collapse
Affiliation(s)
- Yiwei Pu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jia An
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Wang SQ, Chai CX, Wang BR, Zhu F, Shang D, Li M. Liquid biopsy: Precise diagnosis and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2022; 14:362-365. [PMID: 35116122 PMCID: PMC8790414 DOI: 10.4251/wjgo.v14.i1.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/19/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
The following letter to the editor highlights the review titled "Liquid biopsy in cholangiocarcinoma: Current status and future perspective" in World J Gastrointest Oncol 2021; 13: 332-350. It is necessary to realize individualized therapy to improve the clinical prognosis of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Si-Qin Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Chu-Xing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bi-Rong Wang
- Department of Breast and Thyroid Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Feng Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
6
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
7
|
Raoof S, Kennedy CJ, Wallach DA, Bitton A, Green RC. Molecular cancer screening: in search of evidence. Nat Med 2021; 27:1139-1142. [PMID: 34211183 DOI: 10.1038/s41591-021-01431-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sana Raoof
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | | | | | - Asaf Bitton
- Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Ariadne Labs, Boston, MA, USA
| | - Robert C Green
- Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Ariadne Labs, Boston, MA, USA
| |
Collapse
|
8
|
Chibuk J, Flory A, Kruglyak KM, Leibman N, Nahama A, Dharajiya N, van den Boom D, Jensen TJ, Friedman JS, Shen MR, Clemente-Vicario F, Chorny I, Tynan JA, Lytle KM, Holtvoigt LE, Murtaza M, Diaz LA, Tsui DWY, Grosu DS. Horizons in Veterinary Precision Oncology: Fundamentals of Cancer Genomics and Applications of Liquid Biopsy for the Detection, Characterization, and Management of Cancer in Dogs. Front Vet Sci 2021; 8:664718. [PMID: 33834049 PMCID: PMC8021921 DOI: 10.3389/fvets.2021.664718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology. These discoveries, combined with technological advances in DNA profiling, are shifting the paradigm for cancer diagnosis toward earlier detection with the goal of improving outcomes. Liquid biopsy testing has already revolutionized the way cancer is managed in human medicine - and it is poised to make a similar impact in veterinary medicine. Multiple clinical use cases for liquid biopsy are emerging, including screening, aid in diagnosis, targeted treatment selection, treatment response monitoring, minimal residual disease detection, and recurrence monitoring. This review article highlights key scientific advances in genomics and their relevance for veterinary oncology, with the goal of providing a foundational introduction to this important topic for veterinarians. As these technologies migrate from human medicine into veterinary medicine, improved awareness and understanding will facilitate their rapid adoption, for the benefit of veterinary patients.
Collapse
Affiliation(s)
| | | | | | - Nicole Leibman
- The Cancer Institute, Animal Medical Center, New York, NY, United States
| | | | | | | | | | | | - M. Richard Shen
- RS Technology Ventures LLC., Rancho Santa Fe, CA, United States
| | | | | | | | | | | | - Muhammed Murtaza
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
9
|
Kumar H. Grail's reply to editorial on "liquid biopsy" for cancer screening. BMJ 2021; 372:n596. [PMID: 33658189 DOI: 10.1136/bmj.n596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Harpal Kumar
- Grail Europe, New Penderel House, London WC1V 7HP, UK
| |
Collapse
|