1
|
Wang X, Huang S, Li X, Cheng H. The Transfer of USP25 by Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorates Diabetic Nephropathy Through Stabilizing SMAD7 Expression. Chem Biol Drug Des 2025; 105:e70118. [PMID: 40317686 DOI: 10.1111/cbdd.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are identified to be potential therapeutic candidates for diabetic nephropathy (DN) through secreting exosomes (Exos). Ubiquitin-specific protease 25 (USP25) has been reported to be involved in DN-induced renal injury. Herein, this study aimed to investigate whether ADSCs affected DN progression by Exo transfer of USP25. High glucose (HG)-induced mouse podocytes were used to mimic DN-induced injury for in vitro viability, inflammation, and apoptosis analyses. The db/db mice of DN were established for renal injury and function analysis in vivo. The deubiquitination effect of USP25 was analyzed by cellular ubiquitination and immunoprecipitation assays. ADSCs reversed HG-induced apoptosis and inflammation in podocytes, and these effects were achieved by Exo-mediated transfer of USP25. Mechanistically, USP25 interacted with SMAD7 protein and elevated its expression in podocytes via inducing SMAD7 deubiquitination. USP25 transferred via ADSC-Exos abolished HG-induced apoptosis and inflammation in podocytes by elevating SMAD7 protein levels. In vivo assay also confirmed that ADSC-Exo attenuated Type 2 Diabetes Mellitus-induced kidney injury and podocyte apoptosis and inflammation by releasing USP25. ADSCs attenuated T2DM-induced kidney injury, podocyte apoptosis, and inflammation via elevating SMAD7 stabilization through exosome transfer of USP25.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Siyue Huang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiaoqin Li
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huan Cheng
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
2
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Lu D, Zhang Y, Zhu P, Wu J, Yuan C, Ni L. The roles of the ubiquitin-proteasome system in renal disease. Int J Med Sci 2025; 22:1791-1810. [PMID: 40225869 PMCID: PMC11983301 DOI: 10.7150/ijms.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway of specific intracellular protein degradation through proteasome degradation of ubiquitin-labeled substrates. Numerous biological processes, including the cell cycle, transcription, translation, apoptosis, receptor activity, and intracellular signaling, are regulated by UPS. Alterations of the UPS, which render them more or less susceptible to degradation, are responsible for disorders of renal diseases. This review aims to summarize the mechanism of UPS in renal diseases. Besides, this review explores the relationship among UPS, autophagy, and deubiquitination in the development of renal disease. The specific molecular linkages among these systems and pathogenesis, on the other hand, are unknown and controversial. In addition, we briefly describe some anti-renal disease agents targeting UPS components. This review emphasizes UPS as a promising therapeutic modality for the treatment of kidney disease. Our work, though still basic and limited, could provide options to future potential therapeutic targets for renal diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Danqin Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingying Zhang
- Department of Nephrology, Tongii Hospital of Tongji University, Shanghai, China
| | - Ping Zhu
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jiao Wu
- Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Cheng Yuan
- Department of Oncology, Yichang Central People's Hospital and The First College of Clinical Medical Science, China Three Gorges University Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University Yichang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yang T, Peng Y, Shao Y, Pan D, Cheng Q, Jiang Z, Qian S, Li B, Yan M, Zhu X, Liu J, Wang T, Lu Q, Yin X. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156411. [PMID: 39884075 DOI: 10.1016/j.phymed.2025.156411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Renal tubular injury was a significant pathological change of diabetic kidney disease (DKD), and the amelioration of renal tubular injury through mitochondrial function was an important treatment strategy of DKD. Our previous study had revealed that Jujuboside A (Ju A), the main active substance isolated from Semen Ziziphi Spinosae (SZS), could restore renal function of diabetic mice. However, its protective mechanism against DKD remains unclear. PURPOSE To investigate the effects and the mechanism of Ju A against DKD-associated renal tubular injury. STUDY DESIGN AND METHODS The anti-apoptotic effect of Ju A and its protection effect on mitochondria dysfunction of renal tubular epithelial cells (RTECs) were examined in high glucose (HG)-cultured HK-2 cells, and in db/db mice. Subsequently, Network Pharmacology analysis, molecular docking, luciferase assay, chromatin immunoprecipitation (ChIP), Yin Yang 1 (YY1) overexpression lentiviral vector and peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α) specific agonist ZLN005 were all used to identify the protective mechanism of Ju A towards DKD-associated mitochondrial dysfunction of RTECs. RESULTS Ju A inhibited RTECs apoptosis and ameliorated mitochondria dysfunction of RTECs of diabetic mice, and HG-cultured HK-2 cells. YY1 was the potential target of Ju A against DKD-related mitochondrial dysfunction, and the down-regulation of YY1 induced by Ju A increased PGC-1α promoter activity, leading to the restored mitochondrial function of HG-treated HK-2 cells. Renal tubule specific overexpression of YY1 intercepted the renal protective effect of Ju A on diabetic mice via blocking PGC-1α-mediated restoration of mitochondrial function of RTECs. The in-depth mechanism research revealed that the protective effect of Ju A towards DKD-associated renal tubular injury was linked to the restored mitochondrial function through YY1/PGC-1α signaling, resulting in the inhibited apoptosis of RTECs in diabetic condition via inactivating CytC-mediated Caspase9/Caspase3 signaling. CONCLUSION Ju A through the inhibition of mitochondria-dependent apoptosis alleviated DKD-associated renal tubular injury via YY1/PGC-1α signaling.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yuting Peng
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yuting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Dandan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Junjie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Urology, The affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, PR China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, PR China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
5
|
Xi X, Wang X, Ma J, Chen Q, Zhang Y, Song Y, Li Y. miR-130a-3p enhances autophagy through the YY1/PI3K/AKT/mTOR signaling pathway to regulate macrophage polarization and alleviate diabetic retinopathy. J Diabetes Investig 2025; 16:392-404. [PMID: 39668747 PMCID: PMC11871404 DOI: 10.1111/jdi.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
AIMS/INTRODUCTION Diabetic retinopathy (DR) is a common complication of diabetes that can lead to poor vision and blindness. This study aimed to explore the mechanism of action of miR-130a-3p in DR progression. MATERIALS AND METHODS In this study, we administered a single intraperitoneal injection of 100 mg/kg streptozotocin (STZ) to construct a DR mouse model, and induced a human monocyte cell line (THP-1) to differentiate into M0 macrophages, after which the M0 macrophages were cultured with 30 mM high glucose (HG) as a model of inflammation. The relative gene and protein levels were validated by RT-qPCR and western blotting. Macrophage polarization and retinal damage in the mice were tested using ELISA, MDC staining, immunofluorescence staining, and HE staining. RESULTS The results revealed that the expression of miR-130a-3p was low in M1 macrophages, whereas the expression of miR-130a-3p was high in M2 macrophages, and the level of miR-130a-3p was reduced after HG treatment of macrophages. The overexpression of miR-130a-3p attenuated HG- or STZ-induced inflammation, promoted macrophage autophagy, inhibited M1 polarization of macrophages, and attenuated the progression of DR. In addition, YY1 was the downstream target gene of miR-130a-3p, and overexpression of miR-130a-3p inhibited YY1 expression. However, overexpression of YY1 weakened the effect of miR-130a-3p mimic. After further treatment with the PI3K/Akt/mTOR pathway activator 740 Y-P, the effect of YY1 knockdown was weakened, macrophage autophagy was inhibited, and M1 polarization and inflammation were promoted. CONCLUSION miR-130a-3p inhibited the activation of the PI3K/Akt/mTOR pathway by downregulating YY1 expression, thus facilitating macrophage autophagy, inhibiting M1 polarization and the inflammatory response of macrophages, and finally attenuating the progression of DR. The results of this study provide theoretical support for the use of miR-130a-3p as a new target for the treatment of DR.
Collapse
Affiliation(s)
- Xiaoting Xi
- Ophthalmology DepartmentThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xuewei Wang
- Kunming Medical UniversityKunmingYunnanChina
| | - Jia Ma
- Ophthalmology DepartmentThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Qianbo Chen
- Ophthalmology DepartmentThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yuxin Zhang
- Ophthalmology DepartmentThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yaxian Song
- Department of EndocrinologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yan Li
- Ophthalmology DepartmentThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
6
|
Deng S, Huang L, Shao Y, Xie Y, Yuan S, Tang L. CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease. Cell Signal 2025; 127:111611. [PMID: 39842531 DOI: 10.1016/j.cellsig.2025.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Diabetic kidney disease2 (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs3 (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear. Herein, we investigated the expression profiles of circRNAs in DKD mice compared to non-diabetic mice using RNA-seq analysis. A novel circRNA, circMRP4, derived from the circularization of Multidrug resistance-associated protein 44 (MRP4) was identified. The expression of circMRP4 was significantly increased in both kidney tissues of DKD and mouse podocytes exposed to high glucose5 (HG). In addition, knockdown of circMRP4 alleviated podocytes apoptosis and inflammation induced by HG, while circMRP4 overexpression resulted in the opposite impact. Dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assay demonstrated that circMRP4 could directly target miR-499-5p which was closely associated with podocytes apoptosis and inflammation. Furthermore, circMRP4 was found to act as a sponge for miR-499-5p, leading to the upregulation of its target RRAGB, thereby activating the mTORC1/P70S6K signaling. In summary, our findings suggested that circMRP4 mediated podocytes apoptosis and inflammation in DKD by modulating the miR-499-5p/RRAGB/mTORC1/P70S6K axis, highlighting circMRP4 as a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Shujun Deng
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Lingzhi Huang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Yawen Shao
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China.
| |
Collapse
|
7
|
He X, Li H. Role of LncRNA in Pathogenesis, Diagnosis and Treatment of Chronic Kidney Disease. Cell Biochem Biophys 2025:10.1007/s12013-025-01698-2. [PMID: 40000585 DOI: 10.1007/s12013-025-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Chronic kidney disease (CKD) is a clinical syndrome of metabolic disorder caused by progressive kidney impairment for more than 3 months. CKD has become a global public health problem due to its high morbidity and mortality, which is difficult to be cured for most patients. The pathogenesis of CKD is still unclear, which is closely related to glomerulosclerosis, kidney tubular injury and kidney fibrosis. LncRNA is a non-coding RNA with a length of more than 200 nucleotides. It not only participates in intracellular transcriptional regulation, post-transcriptional regulation and epigenetic activities, but also forms a regulatory network together with miRNA and mRNA, to further conduct the reticular regulation in cells. Recently, it has been found that lncRNA participates in pathophysiological mechanism of CKD by regulating glomerulosclerosis, kidney tubular injury and kidney fibrosis. This has also become a new direction of lncRNA in early diagnosis and targeted therapy of CKD.
Collapse
Affiliation(s)
- Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Stanigut AM, Tuta L, Pana C, Alexandrescu L, Suceveanu A, Blebea NM, Vacaroiu IA. Autophagy and Mitophagy in Diabetic Kidney Disease-A Literature Review. Int J Mol Sci 2025; 26:806. [PMID: 39859520 PMCID: PMC11766107 DOI: 10.3390/ijms26020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations. Diabetic nephropathy (DN) is traditionally defined as a specific form of kidney disease caused by long-standing diabetes, characterized by the classic histological lesions in the kidney, including mesangial expansion, glomerular basement membrane thickening, nodular glomerulosclerosis (Kimmelstiel-Wilson nodules), and podocyte injury. Clinical markers for DN are albuminuria and the gradual decline in glomerular filtration rate (GFR). Diabetic kidney disease (DKD) is a broader and more inclusive term, for all forms of chronic kidney disease (CKD) in individuals with diabetes, regardless of the underlying pathology. This includes patients who may have diabetes-associated kidney damage without the typical histological findings of diabetic nephropathy. It also accounts for patients with other coexisting kidney diseases (e.g., hypertensive nephrosclerosis, ischemic nephropathy, tubulointerstitial nephropathies), even in the absence of albuminuria, such as a reduction in GFR.
Collapse
Affiliation(s)
- Alina Mihaela Stanigut
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Liliana Tuta
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Camelia Pana
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Luana Alexandrescu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Adrian Suceveanu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Nicoleta-Mirela Blebea
- Department of Pharmacotherapy, Faculty of Pharmacy, Ovidius University of Constanta, Aleea Universitatii Nr. 1, 900470 Constanta, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, Sf. Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania
| |
Collapse
|
9
|
Liu F, Xu Z, Chen G, Xu X, Cao H, Chen J. Evolutionary patterns and research frontiers in autophagy in podocytopathies: a bibliometric analysis. Front Med (Lausanne) 2025; 11:1445550. [PMID: 39850100 PMCID: PMC11754056 DOI: 10.3389/fmed.2024.1445550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Podocytopathies are a uniquely renal disease syndrome, in which direct or indirect podocyte injury leads to proteinuria or nephrotic syndrome. Of the many factors that contribute to podocytopathies, the abnormal regulation of autophagy, such insufficient or excessive autophagy levels, have been proposed to play a significant role in the occurrence and development of podocytopathies. However, there still has been a lack of systematic and comparative research to elucidate exact role of autophagy in podocytopathies and its current research status. This study aims to utilize bibliometric analysis to clarify the role of autophagy in the pathogenesis of podocytopathies, analyze the research focus in this area, as well as explore the future research trends. Methods We retrieved original articles and review papers with respect to autophagy in podocytopathies research published between the year 2008 and 2022 from the Web of Science Core Collection (WOSCC). Then, VOSviewer and CiteSpace software were employed to reveal the leading subjects and generate visual maps of countries/regions, organizations, authors, journals, and keyword networks in this field. Results and discussion A total of 825 publications regarding autophagy in podocytopathies published between 2008 and 2022 were included, with China contributing the most followed by the United States and Japan. Professor Koya Daisuke, Professor He Qiang, and Professor Jin Juan are the most prolific researchers in this field. Oxidative stress, the NLRP3 inflammasome, and therapeutic targets were the knowledge base for the research in this special field. Taken together, this bibliometric analysis helps us reveal the current research hotspots and guide future research directions, which provides a reference for scholars to further investigate the role of autophagy in podocytopathies as well as conduct clinical trial with autophagy regulators in podocytopathies.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyu Xu
- Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaijie Chen
- Health Management Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojing Xu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiefang Chen
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zhang K, Wu D, Huang C. Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy. Biochem Pharmacol 2024; 230:116621. [PMID: 39542182 DOI: 10.1016/j.bcp.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Collapse
Affiliation(s)
- Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Chen Y, Sun T, Liu C, Gu L, Yuan P. In silico approach uncovers the shared genetic landscape of type 2 diabetes mellitus and asthenozoospermia. Syst Biol Reprod Med 2024; 70:272-288. [PMID: 39292564 DOI: 10.1080/19396368.2024.2395545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/20/2024]
Abstract
Asthenozoospermia (AZS) is one of the most common types of male infertility. Current evidence revealed that type 2 diabetes mellitus (T2DM) is closely associated with declining semen quality, especially for poor sperm motility. This study aimed to uncover the genetic interrelationships and important biomarkers between AZS and T2DM. Transcriptome data regarding AZS and T2DM were downloaded from the Gene Expression Omnibus (GEO) database. We performed GO and pathway analysis, and protein-protein interaction (PPI) network construction for T2DM-related differentially expressed genes (DMRGs). Moreover, we calculated receiver operator characteristic (ROC) curve and conducted external independent validation. Expression of hub DMRGs was assessed for patients using the qPCR method. MiRNA interaction and immune infiltration were subsequently characterized. A total of 554 overlapping DMRGs were identified between the AZS/T2DM and healthy groups. These overlapping DMRG participated in the DNA damage-, energy metabolism-, and immune-related biological pathways. Module function analysis discovered that the top three PPI modules were tightly correlated with DNA damage-related processes. After external validation in other independent datasets, two hub DMRGs (TBC1D12 and SCG5) were obtained. ROC analysis revealed that TBC1D12 and SCG5 had good diagnostic performance (area under the curve > 0.75). Immune infiltration profile showed that the level of T cell co-stimulation and CD8+_T_cells were negatively related to the hub DMRGs expression. Mirna interaction analysis showed 15 significant hub DMRGs-miRNA interactions. The qPCR results showed that expression of TBC1D12 and SCG5 were significantly different between sperm samples from diabetic patients with AZS and controls. The present study revealed molecular signatures and critical pathways between the AZS and T2DM, and identified two hub DMRGs of TBC1D12 and SCG5. The data would provide novel understandings of shared pathogenic mechanisms in T2DM-associated AZS.
Collapse
Affiliation(s)
- Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chang Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Liu S, Jiang R, Wang X, Zhang Q, Li S, Sun X, Feng Y, Du F, Zheng P, Tian Y, Li Z, Liu S. Comprehensive identification of a disulfidptosis-associated long non-coding RNA signature to predict the prognosis and treatment options in ovarian cancer. Front Endocrinol (Lausanne) 2024; 15:1434705. [PMID: 39345881 PMCID: PMC11427372 DOI: 10.3389/fendo.2024.1434705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Distinguished from cuproptosis and ferroptosis, disulfidptosis has been described as a newly discovered form of non-programmed cell death tightly associated with glucose metabolism. However, the prognostic profile of disulfidptosis-related lncRNAs (DRLRs) in ovarian cancer (OC) and their biological mechanisms need to be further elucidated. Materials and methods First, we downloaded the profiles of RNA transcriptome, clinical information for OC patients from the TCGA database. Generated from Cox regression analysis, prognostic lncRNAs were utilized to identify the risk signature by least absolute shrinkage and selection operator analysis. Then, we explored the intimate correlations between disulfidptosis and lncRNAs. What's more, we performed a series of systemic analyses to assess the robustness of the model and unravel its relationship with the immune microenvironment comprehensively. Results We identified two DRLR clusters, in which OC patients with low-risk scores exhibited a favorable prognosis, up-regulated immune cell infiltrations and enhanced sensitivity to immunotherapy. Furthermore, validation of the signature by clinical features and Cox analysis demonstrated remarkable consistency, suggesting the universal applicability of our model. It's worth noting that high-risk patients showed more positive responses to immune checkpoint inhibitors and potential chemotherapeutic drugs. Conclusion Our findings provided valuable insights into DRLRs in OC for the first time, which indicated an excellent clinical value in the selection of management strategies, spreading brilliant horizons into individualized therapy.
Collapse
Affiliation(s)
- Shouze Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rulan Jiang
- Department of Pain, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine (TCM-WM) Hebei, Cangzhou, Hebei, China
| | - Xinxin Wang
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Shumei Li
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoxue Sun
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yajun Feng
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Feida Du
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pengtao Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongkang Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
14
|
庞 一, 刘 雅, 陈 思, 张 荆, 曾 今, 潘 元, 安 娟. [Biological role of SPAG5 in the malignant proliferation of gastric cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1497-1507. [PMID: 39276045 PMCID: PMC11378056 DOI: 10.12122/j.issn.1673-4254.2024.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To analyze the expression of SPAG5 in gastric cancer tissues and its regulatory roles in gastric cancer cell growth. METHODS TCGA analysis, immunohistochemistry, and immunofluorescence staining were used to analyze the expression patterns of SPAG5 and MKi67 in gastric cancer and adjacent tissues. In gastric cancer AGS and MGC803 cells, the effects of lentivirus-mediated SPAG5 knockdown on cell growth and apoptosis were evaluated using Celigo, MTT, clone formation assays and flow cytometry. RESULTS Proteinatlas and TCGA database analysis suggested that SPAG5 was highly expressed in gastric cancer, and Kaplan-Meier analysis and GEPIA analysis showed high expressions of SPAG 5 in lung adenocarcinoma, breast cancer, hepatocellular carcinoma, pancreatic carcinoma, cervical cancer and bladder carcinoma. Immunohistochemistry revealed that SPAG5 was highly expressed in gastric cancer tissues (P < 0.001), and immunofluorescence colocalization analysis demonstrated a significant correlation between SPAG5 and MKI67 (R=0.393, P < 0.001). RT-qPCR and Western blotting showed that SPAG5 was highly expressed in MKN74, BGC823, MGC803, SGC7901 and AGS cells. In AGS and MGC803 cells, SPAG5 knockdown significantly inhibited proliferation and promoted apoptosis. CONCLUSIONS The expressions of SPAG5 and MKi67 are correlated in gastric cancer tissues, and SPAG5 knockdown inhibits the proliferation of gastric cancer cells. SPAG5 is associated with the prognosis of gastric cancer patients and may serve as a promising biomarker for gastric cancer.
Collapse
|
15
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
16
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Yu S, Li Y, Lu X, Han Z, Li C, Yuan X, Guo D. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy. Cell Signal 2024; 118:111144. [PMID: 38493883 DOI: 10.1016/j.cellsig.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes that causes glomerular sclerosis and end-stage renal disease, leading to ascending morbidity and mortality in diabetic patients. Excessive accumulation of aberrantly modified proteins or damaged organelles, such as advanced glycation end-products, dysfunctional mitochondria, and inflammasomes is associated with the pathogenesis of DN. As one of the main degradation pathways, autophagy recycles toxic substances to maintain cellular homeostasis and autophagy dysregulation plays a crucial role in DN progression. MicroRNA (miRNA) and long non-coding RNA (lncRNA) are non-coding RNA (ncRNA) molecules that regulate gene expression and have been implicated in both physiological and pathological conditions. Recent studies have revealed that autophagy-regulating miRNA and lncRNA have been involved in pathological processes of DN, including renal cell injury, mitochondrial dysfunction, inflammation, and renal fibrosis. This review summarizes the role of autophagy in DN and emphasizes the modulation of miRNA and lncRNA on autophagy during disease progression, for the development of promising interventions by targeting these ncRNAs in this disease.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yue Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zehui Han
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China.
| |
Collapse
|
18
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
19
|
Zhang H, Lu H, Zhan B, Shi H, Shui B. Comprehensive Analysis of ceRNA Network and Immune Cell Infiltration Pattern of Autophagy-Related Genes in IgA Nephropathy. Kidney Blood Press Res 2024; 49:528-547. [PMID: 38824914 DOI: 10.1159/000539571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION IgA nephropathy (IgAN) is a prevalent worldwide glomerular disease with a complex pathophysiology that has significant economic implications. Despite the lack of successful research, this study aims to discover the potential competing endogenous RNA (ceRNA) network of autophagy-associated genes in IgAN and examine their correlation with immune cell infiltration. METHODS Autophagy-related hub genes were discovered by assessing the GSE116626 dataset and constructing a protein-protein interaction network. Nephroseq v5 analysis engine was used to analyze correlations between hub genes and proteinuria, glomerular filtration rate (GFR), and serum creatinine levels. Then, a ceRNA network construction and the CIBERSORT tool for immune cell infiltration analysis were also performed. Additionally, the differentially expressed autophagy-related genes were used to predict potential targeted medications for IgAN. RESULTS Overall, 1,396 differentially expressed genes were identified in IgAN along with 25 autophagy-related differentially expressed messenger RNAs. Enrichment analysis revealed significant involvement of autophagy and apoptosis in biological processes. Next, we evaluated the top hub nodes based on their highest degrees. The ability of IgAN discrimination was confirmed in the GSE35487 and GSE37460 datasets by validating the five hub genes: SIRT1, FOS, CCL2, CDKN1A, and MYC. In the Nephroseq v5 analysis engine, the clinical correlation of the five hub genes was confirmed. Furthermore, the ceRNA network identified 18 circular RNAs and 2 microRNAs associated with hub autophagy-related genes in IgAN. Our investigation identified hsa-miR-32-3p and hsa-let-7i-5p as having elevated expression levels and substantial diagnostic value. Finally, four distinctively infiltrated immune cells were found to be associated with the hub autophagy-related genes, and 67 drugs were identified as potential therapeutic options for IgAN. CONCLUSION This study sheds light on a novel ceRNA regulatory network mechanism associated with autophagy in IgAN development.
Collapse
Affiliation(s)
- Huaying Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiai Lu
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bicui Zhan
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - He Shi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingjie Shui
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Guo L, Yuan H, Zhu H, Zhou J, Wan Z, Zhou Y. SPAG5 deficiency activates autophagy to reduce atherosclerotic plaque formation in ApoE -/- mice. BMC Cardiovasc Disord 2024; 24:275. [PMID: 38807081 PMCID: PMC11131316 DOI: 10.1186/s12872-024-03945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.
Collapse
Affiliation(s)
- Liangyun Guo
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, Jiangxi, 330006, China
| | - Huijing Yuan
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, No. 318 Bayi avenue, Nanchang, Jiangxi, 330006, China
| | - Huayao Zhu
- Department of ICU, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Jie Zhou
- Department of ICU, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Zixin Wan
- Department of ICU, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Yihua Zhou
- Department of ICU, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
21
|
Zhao YX, Cui Y, Li XH, Yang WH, An SX, Cui JX, Zhang MY, Lu JK, Zhang X, Wang XM, Bao LL, Zhao PW. Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506. World J Gastrointest Oncol 2024; 16:1465-1478. [PMID: 38660658 PMCID: PMC11037056 DOI: 10.4251/wjgo.v16.i4.1465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality. Human β-defensin-1 (hBD-1) may play an integral function in the innate immune system, contributing to the recognition and destruction of cancer cells. Long non-coding RNAs (lncRNAs) are involved in the process of cell differentiation and growth. AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin (mTOR) pathway and autophagy in human colon cancer SW620 cells. METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration. Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation. Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway. Additionally, p-mTOR (Ser2448), Beclin1, and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis. RESULTS hBD-1 inhibited the proliferative ability of SW620 cells, as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1. hBD-1 decreased the expression of p-mTOR (Ser2448) protein and increased the expression of Beclin1 and LC3II/I protein. Furthermore, bioinformatics analysis identified seven lncRNAs (2 upregulated and 5 downregulated) related to the mTOR pathway. The lncRNA TCONS_00014506 was ultimately selected. Following the inhibition of the lncRNA TCONS_00014506, exposure to hBD-1 inhibited p-mTOR (Ser2448) and promoted Beclin1 and LC3II/I protein expression. CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital, The Fourth Hospital, Hohhot 010035, Inner Mongolia Autonomous Region, China
| | - Yan Cui
- College of Humanities and Education, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xin-Hong Li
- Department of Radiotherapy, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Wen-Hong Yang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Shi-Xiang An
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Jia-Xian Cui
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Min-Yu Zhang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Jing-Kun Lu
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xuan Zhang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xiu-Mei Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Li-Li Bao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Peng-Wei Zhao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| |
Collapse
|
22
|
Wang T, Chen Y, Liu Z, Zhou J, Li N, Shan Y, He Y. Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p. J Cell Mol Med 2024; 28:e18204. [PMID: 38506068 PMCID: PMC10951868 DOI: 10.1111/jcmm.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.
Collapse
Affiliation(s)
- Ting Wang
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yanxia Chen
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Zhihong Liu
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Jing Zhou
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Na Li
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yue Shan
- Department of EndocrinologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiP.R. China
| | - Yinxi He
- Department of Orthopaedic TraumaThe Third Hospital of ShijiazhuangShijiazhuangHebeiP.R. China
| |
Collapse
|
23
|
Wang X, Liu Z, Deng S, Zhou J, Li X, Huang J, Chen J, Ji C, Deng Y, Hu Y. SIRT3 alleviates high glucose-induced chondrocyte injury through the promotion of autophagy and suppression of apoptosis in osteoarthritis progression. Int Immunopharmacol 2024; 130:111755. [PMID: 38408417 DOI: 10.1016/j.intimp.2024.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
A growing amount of epidemiological evidence proposes diabetes mellitus (DM) to be an independent risk factor for osteoarthritis (OA). Sirtuin 3 (SIRT3), which is mainly located in mitochondria, belongs to the family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases and is involved in the physiological and pathological processes of cell regulation. The aim of this study was to investigate the effects of SIRT3 on diabetic OA and underlying mechanisms in the prevention of type 2 DM (T2DM)-induced articular cartilage damage. High-fat and high-sugar diets combined with streptozotocin (STZ) injection were used for establishing an experimental T2DM rat model. The destabilization of medial meniscus (DMM) surgery was applied to induce the rat OA model. Primary rat chondrocytes were cultivated with a concentration of gradient glucose. Treatment with intra-articular injection of SIRT3 overexpression lentivirus was achieved in vivo, and intervention with SIRT3 knockdown was performed using siRNA transfection in vitro. High glucose content was found to activate inflammatory response, facilitate apoptosis, downregulate autophagy, and exacerbate mitochondrial dysfunction in a dose-dependent manner in rat chondrocytes, which can be deteriorated by SIRT3 knockdown. In addition, articular cartilage damage was found to be more severe in T2DM-OA rats than in DMM-induced OA rats, which can be mitigated by the intra-articular injection of SIRT3 overexpression lentivirus. Targeting SIRT3 is a potential therapeutic strategy for the alleviation of diabetic OA.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Junwen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Chuang Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Yu Deng
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
24
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
25
|
He YX, Wang T, Li WX, Chen YX. Long noncoding RNA protein-disulfide isomerase-associated 3 regulated high glucose-induced podocyte apoptosis in diabetic nephropathy through targeting miR-139-3p. World J Diabetes 2024; 15:260-274. [PMID: 38464366 PMCID: PMC10921158 DOI: 10.4239/wjd.v15.i2.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy (DN). The regulatory relationship between long noncoding RNAs (lncRNAs) and podocyte apoptosis has recently become another research hot spot in the DN field. AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3 (Pdia3) could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism. METHODS Using normal glucose or high glucose (HG)-cultured podocytes, the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress (ERS) were explored. LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction. Relative cell viability was detected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis rate in each group was measured through flow cytometry. The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay. Finally, western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p. RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes. Next, lncRNA Pdia3 was involved in HG-induced podocyte apoptosis. Furthermore, the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p. LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes. CONCLUSION Taken together, this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p, which might provide a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yin-Xi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Wen-Xian Li
- Department of Endocrinology, The First Hospital of Zhangjiakou, Zhangjiakou 075000, Hebei Province, China
| | - Yan-Xia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
26
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Bian J, Ge W, Jiang Z. miR-26a-5p Attenuates Oxidative Stress and Inflammation in Diabetic Retinopathy through the USP14/NF- κB Signaling Pathway. J Ophthalmol 2024; 2024:1470898. [PMID: 38282961 PMCID: PMC10817816 DOI: 10.1155/2024/1470898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose Diabetic retinopathy (DR) is an ocular disease caused by diabetes and may lead to vision impairment and even blindness. Oxidative stress and inflammation are two key pathogenic factors of DR. Recently, regulatory roles of different microRNAs (miRNAs) in DR have been widely verified. miR-26a-5p has been confirmed to be a potential biomarker of DR. Nevertheless, the specific functions of miR-26a-5p in DR are still unclear. Methods Primary cultured mouse retinal Müller cells in exposure to high glucose (HG) were used to establish an in vitro DR model. Müller cells were identified via morphology observation under phase contrast microscope and fluorescence staining for glutamine synthetase. The in vivo animal models for DR were constructed using streptozotocin-induced diabetic C57BL/6 mice. Western blotting was performed to quantify cytochrome c protein level in the cytoplasm and mitochondria of Müller cells and to measure protein levels of glial fibrillary acidic protein (GFAP), ubiquitin-specific peptidase 14 (USP14), as well as factors associated with NF-κB signaling (p-IκBα, IκBα, p-p65, and p65) in Müller cells or murine retinal tissues. ROS production was detected by CM-H2DCFDA staining, and the concentration of oxidative stress markers (MDA, SOD, and CAT) was estimated by using corresponding commercial kits. Quantification of mRNA expression was conducted by RT-qPCR analysis. The concentration of proinflammatory factors (TNF-α, IL-1β, and IL-6) was evaluated by ELISA. Hematoxylin-eosin staining for murine retinal tissues was performed for histopathological analysis. Immunofluorescence staining was conducted to determine NF-κB p65 nuclear translocation in Müller cells. Furthermore, the interaction between miR-26a-5p and USP14 was verified via the luciferase reporter assays. Results HG stimulation contributed to Müller cell dysfunction by inducing inflammation, oxidative injury, and mitochondrial damage to Müller cells. miR-26a-5p was downregulated in Müller cells under HG condition, and overexpression of miR-26a-5p relieved HG-induced Müller cell dysfunction. Moreover, miR-26a-5p targeted USP14 and inversely regulated USP14 expression. Additionally, HG-evoked activation of NF-κB signaling was suppressed by USP14 knockdown or miR-26a-5p upregulation. Rescue assays showed that the protective impact of miR-26a-5p upregulation against HG-induced Müller cell dysfunction was reversed by USP14 overexpression. Furthermore, USP14 upregulation and activation of NF-κB signaling in the retinas of DR mice were detected in animal experiments. Injection with miR-26a-5p agomir improved retinal histopathological injury and weakened the concentration of proinflammatory cytokines and oxidative stress markers in the retinas of DR mice. Conclusion miR-26a-5p inhibits oxidative stress and inflammation in DR progression by targeting USP14 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Bian
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Weizhong Ge
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Zhengmei Jiang
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| |
Collapse
|
28
|
Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, Shu F, Jiang Z, Qian S, Zhu X, Wei C, Wei R, Yan M, Li C, Yin X, Lu Q. Correction to: YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2023; 39:2787-2792. [PMID: 37115478 DOI: 10.1007/s10565-023-09802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic β-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinyun Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiayu Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fanglin Shu
- Department of Pharmacy, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chujing Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenlin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
29
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
30
|
Kang K, Wang DP, Lv QL, Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J Stroke Cerebrovasc Dis 2023; 32:107367. [PMID: 37734181 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi 330029, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Li X, Liu Z, He Z, Wang X, Li R, Wang J, Ma G, Zhang P, Ma C. Acteoside protects podocyte against apoptosis through regulating AKT/GSK-3β signaling pathway in db/db mice. BMC Endocr Disord 2023; 23:230. [PMID: 37872577 PMCID: PMC10591407 DOI: 10.1186/s12902-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Podocyte apoptosis is one of the important pathological mechanisms of diabetic kidney disease (DKD). Acteoside (Act), a major active component of Rehmannia glutinosa leaves total glycoside, has a strong renoprotective action. Our study aims to demonstrate Act's renoprotective actions in db/db mice. METHODS We adopted C57BLKS/J db/db mice as DKD animal models. After 8 weeks of Act administration, the 24-hour urine albumin, renal function index, and blood lipid levels were quantified using matching kits. Renal pathology was evaluated by HE and PAS staining. The podocyte damage and apoptosis-related signaling pathway were observed by using immunohistochemistry, western blot, and TUNEL staining. RESULTS The albuminuria of db/db mice was reduced from 391 ug/24 h to 152 ug/24 h, and renal pathology changes were alleviated after Act administration. The western blot and immunohistochemistry showed that Act treatment upregulated the synaptopodin and podocin expression compared with db/db mice, while the TUNEL staining indicated podocyte apoptosis was inhibited. The B-cell lymphoma-2 (Bcl-2) level was upregulated in the Act group, but cleaved caspase-3 and Bcl-2 associated X protein (Bax) expression declined, while the protein kinase B/glycogen synthase kinase-3β (AKT/GSK-3β) signaling pathway was repressed. CONCLUSIONS By inhibiting the AKT/GSK-3β signaling pathway, Act protected podocytes from apoptosis, decreasing the urine albumin of db/db mice and delaying the course of DKD.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Zhilong Liu
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhixiu He
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaocheng Wang
- Department of Medical Record & Statistics, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Junwei Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Guiqiao Ma
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Peipei Zhang
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chanjuan Ma
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China.
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China.
| |
Collapse
|
32
|
Ji B, Liu J, Yin Y, Xu H, Shen Q, Yu J. Minnelide combined with anti-ANGPTL3-FLD monoclonal antibody completely protects mice with adriamycin nephropathy by promoting autophagy and inhibiting apoptosis. Cell Death Dis 2023; 14:601. [PMID: 37689694 PMCID: PMC10492865 DOI: 10.1038/s41419-023-06124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Minimal change disease (MCD) is the common type of nephrotic syndrome (NS) in children. Currently, there is an urgent need to explore new treatments because of the significant side effects of long-term use of glucocorticoids and immunosuppressive drugs and the failure to reduce proteinuria in some patients. Angiopoietin-like protein 3 (Angptl3) is an essential target of NS, and anti-ANGPTL3-FLD monoclonal antibody (mAb) significantly reduces proteinuria in mice with adriamycin nephropathy (AN). However, some proteinuria is persistent. Minnelide, a water-soluble prodrug of triptolide, has been used for the treatment of glomerular disease. Therefore, the present study aimed to investigate whether minnelide combined with mAb could further protect mice with AN and the underlying mechanisms. 8-week-old C57BL/6 female mice were injected with 25 mg/kg of Adriamycin (ADR) by tail vein to establish the AN model. A dose of 200 μg/kg of minnelide or 20 mg/kg of mAb was administered intraperitoneally for the treatment. In vitro, the podocytes were treated with 0.4 μg/mL of ADR for 24 h to induce podocyte injury, and pretreatment with 10 ng/mL of triptolide for 30 min or 100 ng/mL of mAb for 1 h before ADR exposure was used to treat. The results showed that minnelide combined with mAb almost completely ameliorates proteinuria and restores the ultrastructure of the podocytes in mice with AN. In addition, minnelide combined with mAb restores the distribution of Nephrin, Podocin, and CD2AP and reduces the level of inflammatory factors in mice with AN. Mechanistically, minnelide combined with mAb could further alleviate apoptosis and promote autophagy in mice with AN by inhibiting the mTOR signaling pathway. In vitro, triptolide combined with mAb increases the expression of Nephrin, Podocin, and CD2AP, alleviates apoptosis, and promotes autophagy. Overall, minnelide combined with mAb completely protects the mice with AN by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Junchao Liu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Yin
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Ponticelli C, Moroni G, Reggiani F. Autophagy and podocytopathy. Nephrol Dial Transplant 2023; 38:1931-1939. [PMID: 36708169 DOI: 10.1093/ndt/gfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Indexed: 01/29/2023] Open
Abstract
Autophagy is a complex process of lysosomal-dependent degradation of unwanted cellular material. In response to endogenous or exogenous stimuli, autophagy is induced and regulated by two kinases: the AMP activated kinase and the mammalian target of rapamycin (mTOR). Cells activated by Unc-51-like kinase 1 form a double membrane complex that sequesters the cargo (phagophore) and elongates producing spherical vesicles (autophagosomes). These reach and fuse with lysosomes, which degrade the cargo (autolysosomes). The resulting macromolecules are released back and recycled in the cytosol for reuse. In the podocyte, autophagy is a homeostatic mechanism that contributes to the formation and preservation of the morphological and functional integrity of actin cytoskeleton. Podocytes, fenestrated endothelial cells and glomerular basement membrane compose the glomerular filtration barrier. Podocyte damage may cause dysfunction of the glomerular barrier, proteinuria and glomerulosclerosis in different glomerular diseases and particularly in so-called podocytopathies, namely minimal change disease and focal segmental glomerulosclerosis. Several drugs and molecules may activate autophagic function in murine models. Among them, aldosterone inhibitors, mineralocorticoid inhibitors and vitamin D3 were proven to protect podocyte from injury and reduce proteinuria in clinical studies. However, no clinical trial with autophagy regulators in podocytopathies has been conducted. Caution is needed with other autophagy activators, such as mTOR inhibitors and metformin, because of potential adverse events.
Collapse
Affiliation(s)
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
34
|
Hu QD, Tan RZ, Zou YX, Li JC, Fan JM, Kantawong F, Wang L. Synergism of calycosin and bone marrow-derived mesenchymal stem cells to combat podocyte apoptosis to alleviate adriamycin-induced focal segmental glomerulosclerosis. World J Stem Cells 2023; 15:617-631. [PMID: 37424951 PMCID: PMC10324505 DOI: 10.4252/wjsc.v15.i6.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.
Collapse
Affiliation(s)
- Qiong-Dan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yuan-Xia Zou
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun-Ming Fan
- Department of Nephrology, The Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
35
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Esawy MM, Ebaid AM, Abd-Elhameed A, Thagfan FA, Mubaraki MA, Alazzouni AS, Dkhil MA, Shabana MA. Assessment of Circulating lncRNA H19 in Ankylosing Spondylitis Patients and Its Correlation with Disease Activity. J Pers Med 2023; 13:914. [PMID: 37373903 DOI: 10.3390/jpm13060914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that results in severe pain and stiffness in the joints. The causes and pathophysiology of AS are still largely unknown. The lncRNA H19 plays key roles in the pathogenesis of AS by mediating inflammatory progression by acting in the axis of IL-17A/IL-23. The aims of this study were determining the role of lncRNA H19 in AS and assessing its clinical correlation. A case-control study was conducted and qRT-PCR was utilized to measure H19 expression. Comparing AS cases to healthy controls, it was found that H19 expression was significantly upregulated. For AS prediction, H19 demonstrated a 81.1% sensitivity, 100% specificity, and 90.6% diagnostic accuracy at a lncRNA H19 expression value of 1.41. lncRNA H19 had a significantly positive correlation with AS activity, MRI results, and inflammatory markers. lncRNA H19 seemed to be an independent predictor of AS (adjusted OR of 211 (95% CI: 4.7-939; p = 0.025)). After 3 months of clinical follow-up, seventeen patients (32.1%) showed minimal clinical improvement and fifteen patients (28.3%) showed major improvement. AS activity scores were significantly decreased in patients with high H19 expression. A significantly elevated lncRNA H19 expression was observed in AS cases compared with that in healthy controls. These results suggest that upregulation of lncRNA H19 expression may be involved in the pathogenesis of AS. The expression of the lncRNA H19 is related to the duration and activity of the disease. LncRNA H19 expression seems to be an independent predictor of AS.
Collapse
Affiliation(s)
- Marwa M Esawy
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany M Ebaid
- Rheumatology and Rehabilitation Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amir Abd-Elhameed
- Internal Medicine Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed S Alazzouni
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
| | - Marwa A Shabana
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
37
|
Qian C, Lu J, Che X, Min L, Wang M, Song A, Lu R, Gu L, Xie K. P2X7R/AKT/mTOR signaling mediates high glucose-induced decrease in podocyte autophagy. Free Radic Biol Med 2023:S0891-5849(23)00431-8. [PMID: 37245531 DOI: 10.1016/j.freeradbiomed.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. In our study we found that Adenosine triphosphate (ATP) content was significantly increased in the urine of diabetic mice. We examined the expression of all purinergic receptors in the renal cortex and found that only purinergic P2X7 receptor (P2X7R) expression was significantly increased in the renal cortex of wild-type diabetic mice and that the P2X7R protein partially co-localized with podocytes. Compared with P2X7R(-/-) non-diabetic mice, P2X7R(-/-) diabetic mice showed stable expression of the podocyte marker protein podocin in the renal cortex. The renal expression of microtubule associated protein 1A/1B light chain 3 (LC-3II) in wild-type diabetic mice was significantly lower than in wild-type controls, whereas the expression of LC-3II in the kidneys of P2X7R(-/-) diabetic mice was not significantly different from that of P2X7R(-/-) non-diabetic mice. In vitro, high glucose induced an increase in p-Akt/Akt, p-mTOR/mTOR and p62 protein expression along with a decrease in LC-3II levels in podocytes, whereas after transfection with P2X7R siRNA, Phosphorylated serine/threonine kinase (p-Akt)/Akt, Phosphorylated mechanistic target of rapamycin (p-mTOR)/mTOR, and p62 expression were restored and LC-3II expression was increased. In addition, LC-3II expression was also restored after inhibition of Akt and mTOR signaling with MK2206 and rapamycin, respectively. Our results suggest that P2X7R expression is increased in podocytes in diabetes, and that P2X7R is involved in the inhibition of podocyte autophagy by high glucose, at least in part through the Akt-mTOR pathway, thereby exacerbating podocyte damage and promoting the onset of diabetic nephropathy. Targeting P2X7R may be a potential treatment for diabetic nephropathy.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Xiajing Che
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Lulin Min
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Minzhou Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Ahui Song
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
38
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
39
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
40
|
Chen H, Zhang L, Zuo M, Lou X, Liu B, Fu T. Inhibition of apoptosis through AKT-mTOR pathway in ovarian cancer and renal cancer. Aging (Albany NY) 2023; 15:1210-1227. [PMID: 36849137 PMCID: PMC10008491 DOI: 10.18632/aging.204564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVE Ovarian cancer and renal cancer are malignant tumors; however, the relationship between TTK Protein Kinase (TTK), AKT-mTOR pathway and ovarian cancer, renal cancer remains unclear. METHODS Download GSE36668 and GSE69428 from Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed. Created protein-protein interaction (PPI) network. Used Gene Ontology analysis (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional enrichment analysis. Gene Set Enrichment Analysis (GSEA) analysis and survival analysis were performed. Created animal model for western blot analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was performed to explore the role of TTK on the overall survival of renal cancer. RESULTS GO showed that DEGs were enriched in anion and small molecule binding, and DNA methylation. KEGG analysis presented that they mostly enriched in cholesterol metabolism, type 1 diabetes, sphingolipid metabolism, ABC transporters, etc., TTK, mTOR, p-mTOR, AKT, p-AKT, 4EBP1, p-4EBP1 and Bcl-2 are highly expressed in ovarian cancer, Bax, Caspase3 are lowly expressed in ovarian cancer, cell apoptosis is inhibited, leading to deterioration of ovarian cancer. Furthermore, the TTK was not only the hub biomarker of ovarian cancer, but also one significant hub gene of renal cancer, and its expression was up-regulated in the renal cancer. Compared with the renal cancer patients with low expression of TTK, the patients with high expression of TTK have the poor overall survival (P = 0.0021). CONCLUSION TTK inhibits apoptosis through AKT-mTOR pathway, worsening ovarian cancer. And TTK was also one significant hub biomarker of renal cancer.
Collapse
Affiliation(s)
- Hongrun Chen
- Department of Urology, China Aerospace Science and Industry Corporation 731 Hospital, Beijing 100074, China
| | - Lianfeng Zhang
- Department of Urology, China Aerospace Science and Industry Corporation 731 Hospital, Beijing 100074, China
| | - Meini Zuo
- Department of Urology, China Aerospace Science and Industry Corporation 731 Hospital, Beijing 100074, China
| | - Xiaowen Lou
- Department of Social Work, The First People's Hospital of Fuyang District of Hangzhou, Hangzhou 311400, Zhejiang, China
| | - Bin Liu
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Taozhu Fu
- Department of Urology, China Aerospace Science and Industry Corporation 731 Hospital, Beijing 100074, China
| |
Collapse
|
41
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
42
|
Lin X, Xiang QY, Li S, Song WL, Wang YJ, Ni YQ, Zhao Y, Li C, Wang Y, Li HH, Liang Z, Zhan JK, Liu YS. BMF-AS1/BMF Promotes Diabetic Vascular Calcification and Aging both In Vitro and In Vivo. Aging Dis 2023; 14:170-183. [PMID: 36818559 PMCID: PMC9937703 DOI: 10.14336/ad.2022.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Department of Radiology, the Second Xiangya Hospital of Central South University, Hunan, China.
| | - Qun-Yan Xiang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Shuang Li
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Wan-Ling Song
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Yan-Jiao Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Yu-Qing Ni
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Yan Zhao
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Chen Li
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Yi Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.
| | - Hua-Hua Li
- Department of Geriatrics, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Hunan, China.
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Guangdong, China
| | - Jun-Kun Zhan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.,Correspondence should be addressed to: Dr. You-Shuo Liu (E-mail: ) and Jun-Kun Zhan (E-mail: ). the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, Hunan, China.,Correspondence should be addressed to: Dr. You-Shuo Liu (E-mail: ) and Jun-Kun Zhan (E-mail: ). the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Cai Y, Chen S, Jiang X, Wu Q, Xu Y, Wang F. LncRNA X Inactive Specific Transcript Exerts a Protective Effect on High Glucose-Induced Podocytes by Promoting the Podocyte Autophagy via miR-30d-5p/BECN-1 Axis. Int J Endocrinol 2023; 2023:3187846. [PMID: 36908288 PMCID: PMC10005869 DOI: 10.1155/2023/3187846] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Inhibiting podocyte autophagy promotes the development of diabetic nephropathy (DN). This study aims to explore the upstream regulatory mechanism of the autophagy-related gene BECN1 in high glucose (HG)-induced podocytes. C57BL/6 mice were treated with 50 mg/kg streptozotocin to construct a DN model. Biochemical indexes, pathological morphology of renal tissue, the morphology of renal podocytes, and the expressions of autophagy-related proteins in DN mice and normal mice were detected. The upstream miRNAs of BECN1 and the upstream long noncoding RNAs (lncRNAs) of miR-30d-5p were predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Mouse podocyte clone 5 (MPC5) cells were exposed to HG to construct a DN cell model. The levels of miR-30d-5p, X inactive specific transcript (XIST), and BECN1 in mouse kidney and MPC5 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The regulation of XIST/miR-30d-5p on the viability, apoptosis as well as proteins related to apoptosis, epithelial-mesenchymal transition (EMT), and autophagy in MPC5 cells were determined by rescue experiments. The levels of glucose, urinary protein, serum creatinine, and blood urea nitrogen were upregulated, but the kidney tissues and podocytes were damaged in DN mice. XIST targeted miR-30d-5p to promote viability while suppressing the apoptosis of HG-induced MPC5 cells. In kidney tissues or HG-induced MPC5 cells, the expressions of Beclin-1, light chain 3 (LC3) II/I, XIST, B-celllymphoma-2 (Bcl-2), and E-cadherin were downregulated, while the expressions of P62, miR-30d-5p, Bcl-2-associated X protein (Bax), cleaved-caspase-3, vimentin, and alpha-smooth muscle actin (α-SMA) were upregulated, which were reversed by XIST overexpression. The reversal effect of XIST overexpression was offset by miR-30d-5p mimic. Collectively, XIST promotes the autophagy of podocytes by regulating the miR-30d-5p/BECN1 axis to protect podocytes from HG-induced injury.
Collapse
Affiliation(s)
- Ying Cai
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Sheng Chen
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Xiaoli Jiang
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Qiyuan Wu
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| | - Yong Xu
- Instrument R&D Center, Medical System Biotechnology Co., Ltd., Ningbo, China
| | - Fang Wang
- Department of Nephrology, Ningbo Medical Center, Lihuili Hospital, Ningbo, China
| |
Collapse
|
44
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
45
|
Pan X, Chen S, Shen R, Liu S, You Y. HOXA11-OS participates in lupus nephritis by targeting miR-124-3p mediating Cyr61 to regulate podocyte autophagy. Mol Med 2022; 28:138. [PMID: 36418932 PMCID: PMC9682779 DOI: 10.1186/s10020-022-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The long chain non-coding RNA HOXA11-OS was recently identified. Increasing studies have shown that HOXA11-OS has regulatory effects on genes in gastric cancer, prostate cancer, and various kidney diseases, but research on its role in systemic lupus erythematosus is still lacking. The present study aimed to investigate the role of HOXA11-OS in the regulation of podocyte autophagy in the development of lupus nephritis (LN) and its potential molecular mechanism. METHODS mRNA and protein expression of the target gene (i.e., Cyr61) was detected by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Mouse podocytes were induced using serum immunoglobulin G (IgG) from patients with lupus and their viability was detected using the cell counting kit-8 assay. The interaction of miR-124-3p with HOXA11-OS and Cyr61 was analyzed by double luciferase reporter gene assay. Serum autoantibody levels were detected by enzyme-linked immunosorbent assay. Pathological lesions in the kidney tissue were detected by hematoxylin-eosin and periodate-Schiff staining. The independent samples t-test was used for comparing two groups, and one-way analysis of variance for comparing multiple groups. RESULTS HOXA11-OS was highly expressed in LN tissues, serum, and cells, and the expression of some key autophagy factors and Cyr61 was significantly increased, while miR-124-3p expression was significantly decreased. In vitro, LN-IgG inhibited podocyte activity, increased autophagy and Cyr61 expression, and aggravated podocyte injury in a time- and dose-dependent manner. As a competitive endogenous RNA of miR-124-3p, HOXA11-OS promoted the expression of Cyr61, thus enhancing the autophagy increase induced by LN-IgG and aggravating podocyte injury. Knockdown of HOXA11-OS had the opposite effect. miR-124-3p mimic or Cyr61 knockdown restored the high expression of autophagy factors and Cyr61 induced by HOXA11-OS overexpression and alleviated podocyte injury. Further in vivo experiments showed that injection of sh-HOXA11-OS adeno-associated virus downregulated HOXA11-OS and significantly alleviated renal damage in lupus mice. CONCLUSIONS HOXA11-OS is involved in the occurrence and development of LN by regulating podocyte autophagy through miR-124-3p/Cyr61 sponging, which may provide a good potential therapeutic target for LN.
Collapse
Affiliation(s)
- Xiuhong Pan
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Shanshan Chen
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Ruiwen Shen
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Sen Liu
- grid.460081.bDepartment of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise, 533000 Guangxi Zhuang Autonomous Region China
| | - Yanwu You
- grid.410652.40000 0004 6003 7358Department of Nephrology, People’s Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning, 530000 China
| |
Collapse
|
46
|
Long Non-coding RNA SPAG5-AS1 Attenuates Diabetic Retinal Vascular Dysfunction by Inhibiting Human Retinal Microvascular Endothelial Cell Proliferation, Migration, and Tube Formation by Regulating the MicroRNA-1224-5p/IRS-1 Axis. Mol Biotechnol 2022; 65:904-912. [DOI: 10.1007/s12033-022-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
|
47
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
48
|
Xie M, Wang H, Peng J, Qing D, Zhang X, Guo D, Meng P, Luo Z, Wang X, Peng Q. Acacetin protects against depression-associated dry eye disease by regulating ubiquitination of NLRP3 through gp78 signal. Front Pharmacol 2022; 13:984475. [PMID: 36299901 PMCID: PMC9588975 DOI: 10.3389/fphar.2022.984475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that commonly occurs with depression. However, therapies targeting depression-related dry eye disease are rare. In the current study, we studied the beneficial effect of a natural flavone, acacetin, in depression-associated dry eye disease by utilizing the chronic unpredictable mild stress (CUMS) depression model. Our data showed that acacetin improved the depressive behaviors in sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST); relieved the dry eye symptoms including corneal epithelial impairments, tear production decrease and goblet cell loss in CUMS mice. Acacetin also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome expression levels and suppressed inflammatory responses via enhancing glycoprotein 78 (gp78)/Insulin induced gene-1 (Insig-1)-controlled NLRP3 ubiquitination in CUMS mice. Furthermore, knockdown of gp78 compromised acacetin-conferred protective efficacy in depression-related dry eye disease. In summary, our findings indicated that acacetin exerts beneficial effect in depression-associated dry eye disease, which is tightly related to gp78-mediated NLRP3 ubiquitination.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hanqing Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongqin Qing
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pan Meng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihong Luo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaoye Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| | - Qinghua Peng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Xiaoye Wang, ; Qinghua Peng,
| |
Collapse
|
49
|
Chen Z, Liang W, Hu J, Zhu Z, Feng J, Ma Y, Yang Q, Ding G. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif 2022; 55:e13296. [PMID: 35842903 PMCID: PMC9528772 DOI: 10.1111/cpr.13296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Increasing evidence suggests that mitochondrial dysfunction is the key driver of angiotensin II (Ang II)-induced kidney injury. This study was designed to investigate whether Sirtuin 6 (Sirt6) could affect Ang II-induced mitochondrial damage and the potential mechanisms. MATERIALS AND METHODS Podocyte-specific Sirt6 knockout mice were infused with Ang II and cultured podocytes were stimulated with Ang II to evaluate the effects of Sirt6 on mitochondrial structure and function in podocytes. Immunofluorescence staining was used to detect protein expression and mitochondrial morphology in vitro. Electron microscopy was used to assess mitochondrial morphology in mice. Western blotting was used to quantify protein expression. RESULTS Mitochondrial fission and decreased Sirt6 expression were observed in podocytes from Ang II-infused mice. In Sirt6-deficient mice, Ang II infusion induced increased apoptosis and mitochondrial fragmentation in podocytes than that in Ang II-infused wild-type mice. In cultured human podocytes, Sirt6 knockdown exacerbated Ang II-induced mitochondrial fission, whereas Sirt6 overexpression ameliorated the Ang II-induced changes in the balance between mitochondrial fusion and fission. Functional studies revealed that Sirt6 deficiency exacerbated mitochondrial fission by promoting dynamin-related protein 1 (Drp1) phosphorylation. Furthermore, Sirt6 mediated Drp1 phosphorylation by promoting Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression. CONCLUSION Our study has identified Sirt6 as a vital factor that protects against Ang II-induced mitochondrial fission and apoptosis in podocytes via the ROCK1-Drp1 signalling pathway.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jun Feng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Yiqiong Ma
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
50
|
Curcumin Improves Keratinocyte Proliferation, Inflammation, and Oxidative Stress through Mediating the SPAG5/FOXM1 Axis in an In Vitro Model of Actinic Dermatitis by Ultraviolet. DISEASE MARKERS 2022; 2022:5085183. [PMID: 36118675 PMCID: PMC9481376 DOI: 10.1155/2022/5085183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
Background Chronic actinic dermatitis (CAD) is an abnormally proliferating photoallergic skin disease. Dysregulated inflammation and oxidative stress are the immediate factors in the abnormal proliferation of keratinocytes. This study aimed to investigate the effect of curcumin on the aberrant proliferation of keratinocytes in an in vitro (actinic dermatitis) AD model and the possible molecular mechanisms. Methods The keratinocytes were irradiated with ultraviolet (UV) to construct an in vitro AD model and then processed with different concentrations of curcumin. Cell viability, oxidative stress markers (SOD, GSH-PX, and MDA), activated oxygen species (ROS), and inflammation markers (IL-1β, IL-6, IL-18, and TNFα) were determined, respectively. Western blot was applied to assay the profiles of apoptosis-related proteins (Bax, Bcl-xL, Caspase3, Caspase8, and Caspase9), oxidative stress proteins (Keap1, Nrf2, HO-1, COX2, and iNOS), and inflammatory proteins (NF-κB, MMP1, and MMP9) and SPAG5/FOXM1. Functionally, SPAG5 or FOXM1 overexpression and knockdown models were constructed in keratinocytes to characterize their influence on UV irradiation-mediated keratinocyte dysfunction. Results Curcumin weakened UV-mediated inflammation, proliferation, and oxidative stress and impaired apoptosis in keratinocytes. UV boosted SPAG5/FOXM1 expression in cells, while curcumin concentration-dependently retarded SPAG5/FOXM1 expression. Overexpression of SPAG5/FOXM1 fostered UV-mediated inflammation, proliferation, oxidative stress, and intensified apoptosis, whereas curcumin mostly reversed the SPAG5/FOXM1-mediated effects. In addition, knocking down SPAG5/FOXM1 ameliorated UV-mediated keratinocyte dysfunction, whereas curcumin failed to exert further protective effects in cells with knockdown of SPAG5/FOXM1. Conclusion Curcumin modulated proliferation, inflammation, oxidative stress, and apoptosis of keratinocytes by restraining the SPAG5/FOXM1 axis.
Collapse
|