1
|
Krishna N, Ramalakshmi NA, Krishnamurthy RG. Comprehensive Bioinformatics Analysis Reveals Molecular Signatures and Potential Caloric Restriction Mimetics with Neuroprotective Effects: Validation in an In Vitro Stroke Model. J Mol Neurosci 2025; 75:32. [PMID: 40080242 DOI: 10.1007/s12031-025-02328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Caloric restriction (CR) is a dietary intervention that reduces calorie intake without inducing malnutrition, demonstrating lifespan-extending effects in preclinical studies and some human trials, along with potential benefits in ameliorating age-related ailments. Caloric restriction mimetics (CRMs) are compounds mimicking CR effects, offering a potential therapeutic avenue for age-related diseases. This study explores the potential protective effects of CR on the brain neocortex (GSE11291) and the identification of CRMs using integrative bioinformatics and systems biology approaches. Our findings indicate that long-term CR activates cellular pathways improving mitochondrial function, enhancing antioxidant capacity, and reducing inflammation, potentially providing neuroprotection. The key signaling pathways enriched in our study include PPAR, mTOR, FoxO, AMPK, and Notch signaling pathways, which are crucial regulators of metabolism, cellular stress response, neuroprotection, and longevity. We identify key signaling molecules and molecular mechanisms associated with CR, including transcription factors, kinase regulators, and microRNAs linked to differentially expressed genes. Furthermore, potential CRMs such as rapamycin, replicating CR-related health benefits, are identified. Additionally, machine learning models were developed to classify small molecules based on their CNS activity and anti-inflammatory properties. As a proof of concept, we have demonstrated the ischemic neuroprotective effects of two top-ranked candidate reference molecules (CRMs) using the oxygen-glucose deprivation (OGD) model, an established in vitro stroke model. However, further investigations are essential to fully elucidate the therapeutic potential of these CRMs. In summary, our study suggests that long-term CR entails protective mechanisms preserving and safeguarding neuronal function, potentially impacting the treatment of age-related neurological diseases. Moreover, our findings contribute to the identification of potential genes and regulatory molecules involved in CR, along with potential CRMs, providing a promising foundation for future research in the field of neurological disorder treatment.
Collapse
Affiliation(s)
- Navami Krishna
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India, 673601
| | | | | |
Collapse
|
2
|
Ferreira CS, Da Silva AT, Brustolini OJB, Soares BRP, Manuli ER, Ramundo MS, Paranhos-Baccala G, Sabino EC, Vasconcelos ATR. Immune and vascular modulation by HERVs: the role of CXCR1 and IL18RAP in dengue severity progression. Front Immunol 2025; 16:1557588. [PMID: 40124360 PMCID: PMC11925782 DOI: 10.3389/fimmu.2025.1557588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Human Endogenous Retroviruses (HERVs), which can be activated by viral infections, have complex roles in gene regulation and immune modulation. However, their contribution to disease progression is not yet fully understood. Dengue fever ranges from mild symptoms to severe cases characterized by plasma leakage and immune dysregulation, providing a relevant context to investigate these interactions. Methods This study comes up with a comprehensive analysis of differentially expressed HERVs (DE-HERVs), protein-coding genes (DEGs), and regulatory elements such as microRNAs (DE-miRNA) and non-LTR retroviruses (DE-LINEs and DE-SINEs) derived from the transcriptomes of Brazilian dengue patients across different disease stages. Results The results show that DE-HERVs are associated with key genes identified in severe dengue cases, including ARG1, SLC15A2, COL3A1, SVEP1, CH25H, CST7, CXCR1, IL18RAP, SORL1, and TACR1, suggesting their role in immune modulation and endothelial permeability. Specifically, the upregulation of CXCR1 and IL18RAP genes in patients who progressed to severe dengue correlates with a complex regulatory network involving down-regulated microRNAs (miRNAs) and non-LTR retroviruses, emphasizing their relevance to inflammation and vascular permeability. MicroRNAs and non-LTR retroviruses were found to regulate these genes differently across dengue stages, with non-LTR elements appearing predominantly in non-severe cases and miRNA expression profiles varying across the comparison groups. Discussion These findings improve our understanding of the molecular mechanisms underlying dengue progression and suggest that HERV-related regulatory networks may influence viral infections. Further research is required to clarify the specific roles of HERVs in dengue pathogenesis.
Collapse
Affiliation(s)
- Cristina Santos Ferreira
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC/MCTIC), Rio de Janeiro, Brazil
| | - Alan Tardin Da Silva
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC/MCTIC), Rio de Janeiro, Brazil
| | | | - Beatriz Rodrigues Pellegrina Soares
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erika Regina Manuli
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil
| | - Mariana Severo Ramundo
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Ester Cerdeira Sabino
- Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Lin YK, Pan YF, Jiang TY, Chen YB, Shang TY, Xu MY, Feng HB, Ma YH, Tan YX, Wang HY, Dong LW. Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice. J Biomed Sci 2025; 32:31. [PMID: 40016734 PMCID: PMC11869713 DOI: 10.1186/s12929-025-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive. METHODS In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice. RESULTS Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity. CONCLUSIONS This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.
Collapse
Affiliation(s)
- Yun-Kai Lin
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yu-Fei Pan
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tian-Yi Jiang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yi-Bin Chen
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tai-Yu Shang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Meng-You Xu
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hui-Bo Feng
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yun-Han Ma
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ye-Xiong Tan
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Li-Wei Dong
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
4
|
Hosseinpouri A, Sadegh K, Zarei-Behjani Z, Dehghan Z, Karbalaei R. Identification of critical genes and drug repurposing targets in entorhinal cortex of Alzheimer's disease. Neurogenetics 2025; 26:27. [PMID: 39928227 DOI: 10.1007/s10048-025-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is a slow brain degeneration disorder in which the accumulation of beta-amyloid precursor plaque and an intracellular neurofibrillary tangle of hyper-phosphorylated tau proteins in the brain have been implicated in neurodegeneration. In this study, we identified the most important genes that are unique and sensitive in the entorhinal region of the brain to target AD effectively. At first, microarrays data are selected and constructed protein-protein interaction network (PPIN) and gene regulatory network (GRN) from differentially expressed genes (DEGs) using Cytoscape software. Then, networks analysis was performed to determine hubs, bottlenecks, clusters, and signaling pathways in AD. Finally, critical genes were selected as targets for repurposing drugs. Analyzing the constructed PPIN and GRN identified CD44, ELF1, HSP90AB1, NOC4L, BYSL, RRP7A, SLC17A6, and RUVBL2 as critical genes that are dysregulated in the entorhinal region of AD suffering patients. The functional enrichment analysis revealed that DEG nodes are involved in the synaptic vesicle cycle, glutamatergic synapse, PI3K-Akt signaling pathway, retrograde endocannabinoid signaling, endocrine and other factor-regulated calcium reabsorption, ribosome biogenesis in eukaryotes, and nicotine addiction. Gentamicin, isoproterenol, and tumor necrosis factor are repurposing new drugs that target CD44, which plays an important role in the development of AD. Following our model validation using the existing experimental data, our model based on previous experimental reports suggested critical molecules and candidate drugs involved in AD for further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Arghavan Hosseinpouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Sadegh
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Karbalaei
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
5
|
Lin J, Zhu X, Li X, Hong Y, Liang Y, Chen S, Feng C, Cao L. Impaired hippocampal neurogenesis associated with regulatory ceRNA network in a mouse model of postoperative cognitive dysfunction. BMC Anesthesiol 2025; 25:60. [PMID: 39915734 PMCID: PMC11800588 DOI: 10.1186/s12871-025-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) represents a post-surgical complication that features progressive cognitive impairment and memory loss, often occurring in elderly patients. This study aimed to investigate the potential biological mechanisms underlying POCD. METHODS Male C57BL/6 mice (2 and 17 months old) were randomly assigned to surgery or control groups. The surgery group underwent laparotomy under 1.5% isoflurane anesthesia, while controls received no intervention. Cognitive function was assessed 7-10 days post-surgery using open field, Y-maze, and novel object recognition tests. Hippocampal mRNA expression was analyzed using Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. A competing endogenous RNA (ceRNA) network was constructed using microRNA (miRNA) target prediction databases (miRanda, miRTarbase, miRcode) and sequencing results. Key findings were validated by RT-qPCR and immunofluorescence. The Connectivity Map (CMap) database was queried to predict potential POCD treatments. RESULTS Aging significantly affected mice's spontaneous activity in the open field test (F1, 28 = 8.933, P < 0.01) and the proportion of time spent in the center area (F1, 28 = 5.387, P < 0.05). Surgery significantly reduced the rate of spontaneous alternations in the Y-maze (F1, 28 = 16.94, P < 0.001) and the recognition index in novel object recognition test (F1, 28 = 6.839, P < 0.05) in aging mice, but had no effect on young mice. Transcriptome analysis revealed that aging and surgery downregulated multiple neurogenesis-related genes in the hippocampus. Doublecortin (DCX) immunofluorescence staining confirmed reduced hippocampal neurogenesis in aging mice, which was further decreased after surgery. We identified several key lncRNAs and miRNAs implicated in neurogenesis regulation. Additionally, drugs were predicted as potential therapeutic candidates for POCD treatment. CONCLUSION Both aging and surgery have complex effects on the hippocampal transcriptome in mice. The significant decrease in neurogenesis may be a potential reason for the increased susceptibility of aging mice to POCD. The identified key regulatory lncRNAs, miRNAs, and drugs provide potential therapeutic targets for POCD prevention and treatment.
Collapse
Affiliation(s)
- Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaohui Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Siqi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Karaoglu B, Gur Dedeoglu B. A Regulatory Circuits Analysis Tool, "miRCuit," Helps Reveal Breast Cancer Pathways: Toward Systems Medicine in Oncology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:49-59. [PMID: 39853230 DOI: 10.1089/omi.2024.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
A systems medicine understanding of the regulatory molecular circuits that underpin breast cancer is essential for early cancer detection and precision/personalized medicine in clinical oncology. Transcription factors (TFs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) control gene expression and cell biology, and by extension, serve as pillars of the regulatory circuits that determine human health and disease. We report here the development of a regulatory circuit analysis program, miRCuit, constructing 10 different types of regulatory elements involving messenger RNA, miRNA, lncRNA, and TFs. Using the miRCuit, we analyzed expression profiling data from 179 invasive ductal breast carcinoma and 51 normal tissue samples from the Gene Expression Omnibus database. We identified eight circuit types along with two special types of circuits, one of which highlighted the significant roles of lncRNA CASC15, miR-130b-3p, and TF KLF5 in breast cancer development and progression. These findings advance our understanding of the regulatory molecules associated with breast cancer. Moreover, miRCuit offers a new avenue for users to construct circuits from regulatory molecules for potential applications to decipher disease pathogenesis.
Collapse
Affiliation(s)
- Begum Karaoglu
- Biotechnology Institute, Ankara University, Ankara, Turkey
- Intergen Genetics and Rare Diseases Diagnosis Center, Ankara, Turkey
| | | |
Collapse
|
7
|
Wang X, Zhang Q, Zhao D, Li X, Yi L, Li S, Wang X, Gu M, Gao J, Jia X. Identification of regulatory genes associated with POAG by integrating expression and sequencing data. Ophthalmic Genet 2025; 46:56-64. [PMID: 39568137 DOI: 10.1080/13816810.2024.2431103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a subtype of glaucoma that accounts for 60%~70% of all cases. Its pathogenic mechanism is intricate and its pathogenic process is concealed. Numerous significant biological processes associated with POAG continue to be elucidated. METHODS In this study, by exploring the expression data of POAG tissues and normal tissues, we mined the regulatory lncRNAs and mRNAs closely associated with the pathogenesis and progression of POAG by exploring a regulatory network of competing endogenous RNA (ceRNA), established by integrating gene expression data with the known lncRNA-miRNA and miRNA-mRNA-regulatory interactions. The key regulatory pathways and regulatory elements of POAG were identified by topological analysis. Simultaneously, the exome data of 28 cases with POAG and healthy controls were analyzed to identify high-frequency mutations and genes. RESULTS A total of 2712 differentially expressed genes were identified, including 1828 mRNAs and 884 lncRNAs. Network analysis suggested that lncRNAs such as HAGLR, HOTAIR and MIR29B2CHG, and mRNAs such as PPP6R3, BMPR2 and CFL2, may be involved in the onset and progression of POAG. In addition, 55 mutations with potential pathogenicity were identified. CONCLUSION These genes and mutations provide novel potential genetic heterogeneity and genetic susceptibility of POAG, as well as fresh suggestions for elucidating the molecular mechanism underlying the pathogenesis of POAG.
Collapse
Affiliation(s)
- Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Qiang Zhang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Dongdong Zhao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaofen Li
- Liao Cheng 120 Medical Emergency Command and Dispatch Center, Liaocheng, Shandong, P.R. China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Siyuan Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
8
|
Arizono K, Sedohara A, Tuvshinjargal K, Tanaka T, Koga M, Nakahara F, Ootani A, Kanno Y, Ikeuchi K, Saito M, Adachi E, Tsutsumi T, Yotsuyanagi H. MicroRNA in neuroexosome as a potential biomarker for HIV-associated neurocognitive disorders. J Neurovirol 2025:10.1007/s13365-024-01241-8. [PMID: 39821903 DOI: 10.1007/s13365-024-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
HIV-associated neurocognitive disorder (HAND) is a complication of chronic inflammation caused by HIV infection that impairs cognitive and motor functions. HAND can occur at any age, regardless of the duration of infection, even in people living with HIV (PLWH) whose blood viral load is controlled by antiretroviral therapy. The diagnosis of HAND requires a battery of neuropsychological tests, which is time-consuming and burdensome, limiting its effectiveness for screening PLWH. Here, we aimed to identify biomarkers for quantitatively diagnosing and screening for HAND using minimally invasive blood tests. Neuronal-derived exosomes (neuroexosomes) were isolated from the peripheral blood of PLWH, and the transcriptomes of their microRNAs (miRNAs) were analyzed. We identified five upregulated miRNAs (hsa-miR-16-5p, hsa-miR-26a-3p, hsa-92a-3p, hsa-miR-103a-3p, and hsa-miR-185-5p), and two downregulated miRNA (hsa-miR-3613-3p and hsa-miR-4668-5p) in PLWH diagnosed with HAND (HAND PLWH). Functional analysis of five miRNAs whose expression levels increased in HAND PLWH using the database showed that these miRNAs are involved in motor proteins and endocytosis, which are associated with nerve function. The expression levels of hsa-miR-16-5p, hsa-miR-103a-3p, and hsa-miR-185-5p were significantly higher than those in the non-HIV controls and non-HAND PLWH, suggesting that these miRNAs are potential biomarkers for HAND. Since there were no changes in known dementia miRNA biomarkers in HAND PLWH, the miRNAs identified in this study will allow for early differentiation of HAND.
Collapse
Affiliation(s)
- Kotaro Arizono
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Khulan Tuvshinjargal
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Takahiro Tanaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Fumio Nakahara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Amato Ootani
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshiaki Kanno
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Eisuke Adachi
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| |
Collapse
|
9
|
Kim K, Han M, Lee D. InTiCAR: Network-based identification of significant inter-tissue communicators for autoimmune diseases. Comput Struct Biotechnol J 2025; 27:333-345. [PMID: 39897058 PMCID: PMC11782887 DOI: 10.1016/j.csbj.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Inter-tissue communicators (ITCs) are intricate and essential aspects of our body, as they are the keepers of homeostatic equilibrium. It is no surprise that the dysregulation of the exchange between tissues are at the core of various disorders. Among such conditions, autoimmune diseases (AIDs) refer to a collection of pathological conditions where the miscommunication drives the immune system to mistakenly attack one's own body. Due to their myriad and diverse pathophysiologies, AIDs cannot be easily diagnosed or treated, and continuous efforts are required to seek for potential diagnostic markers or therapeutic targets. The identification of ITCs with significant involvement in the disease states is therefore crucial. Here, we present InTiCAR, Inter-Tissue Communicators for Autoimmune diseases by Random walk with restart, which is a network exploration-based analysis method that suggests disease-specific ITCs based on prior knowledge of disease genes, without the need for the external expression data. We first show that distinct ITC profile s can be acquired for various diseases by InTiCAR. We further illustrate that, for autoimmune diseases (AIDs) specifically, the disease-specific ITCs outperform disease genes in diagnosing patients using the UK Biobank plasma proteome dataset. Also, through CMap LINCS dataset, we find that high perturbation on the AIDs genes can be observed by the disease-specific ITCs. Our results provide and highlight unique perspectives on biological network analysis by focusing on the entities of extracellular communications.
Collapse
Affiliation(s)
- Kwansoo Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Manyoung Han
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Magouliotis DE, Sicouri S, Rad AA, Skoularigis J, Giamouzis G, Xanthopoulos A, Karamolegkou AP, Viviano A, Athanasiou T, Ramlawi B. In-depth computational analysis reveals the significant dysregulation of key gap junction proteins (GJPs) driving thoracic aortic aneurysm development. Hellenic J Cardiol 2025:S1109-9666(25)00001-6. [PMID: 39800318 DOI: 10.1016/j.hjc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
OBJECTIVE Thoracic aortic aneurysm (TAA) represents an aortic pathology that is caused by the deranged integrity of the three layers of the aortic wall and is related to severe morbidity and mortality. Consequently, it is crucial to identify the biomarkers implicated in the pathogenesis and biology of TAA. The aim of the current computational study was to assess the differential gene expression profile of the gap junction proteins (GJPs) in patients with TAA to identify novel potential biomarkers for the diagnosis and treatment of this disease. METHODS We implemented bioinformatics methodology to construct the gene network of the GJPs family, evaluate their expression in pathologic aortic tissue excised from patients with TAA, and compare it with healthy controls. We also investigated the related biological functions and miRNA families. RESULTS We extracted raw data related to the transcriptomic profile of selected genes from a microarray dataset, incorporating 43 TAA and 43 healthy control samples. A total of 17 GJPs were evaluated. Eight GJPs (47%) were downregulated in TAA (GJA3, GJA9, GJA10, GJB1 GJC2, GJD2, GJD3, and GJD4). We also demonstrated the important correlations among the differentially expressed genes (DEGs). Four GJPs (GJA3, GJA9, GJC2, and GJD3) were associated with fair discrimination and calibration traits in predicting TAA presentation. Finally, we performed gene set enrichment analysis (GSEA) and identified the major biological functions and miRNA families (hsa-miR-5001-3p, hsa-miR-942-5p, hsa-miR-7113-3p, hsa-miR-6867-3p, and hsa-miR-4685-3p) associated with the DEGs. CONCLUSION These outcomes support the important role of certain gap junction proteins in the pathogenesis of TAA.
Collapse
Affiliation(s)
- Dimitrios E Magouliotis
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA 19096, USA; Unit of Quality Improvement, Department of Cardiothoracic Surgery, University of Thessaly, Biopolis, Larissa, Greece.
| | - Serge Sicouri
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA 19096, USA.
| | - Arian Arjomandi Rad
- Division of Medical Sciences, University of Oxford, Oxford, UK; Department of Surgery and Cancer, Imperial College London, London, UK.
| | - John Skoularigis
- Department of Cardiology, University of Thessaly, Biopolis, Larissa 41110, Greece.
| | - Grigorios Giamouzis
- Department of Cardiology, University of Thessaly, Biopolis, Larissa 41110, Greece.
| | - Andrew Xanthopoulos
- Department of Cardiology, University of Thessaly, Biopolis, Larissa 41110, Greece.
| | - Anna P Karamolegkou
- Department of Anesthesiology, Hippokration General Hospital, Athens, Greece.
| | - Alessandro Viviano
- Department of Cardiac Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK.
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London W2 1NY, UK.
| | - Basel Ramlawi
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA 19096, USA; Department of Cardiac Surgery, Lankenau Heart Institute, Main Line Health, Wynnewood, PA 19096, USA.
| |
Collapse
|
11
|
Cui S, Yu S, Huang HY, Lin YCD, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, Li G, Ma J, Chen B, Zhang H, Fu J, Wang L, Huang HD. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res 2025; 53:D147-D156. [PMID: 39578692 PMCID: PMC11701613 DOI: 10.1093/nar/gkae1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-26 nucleotides) that regulate gene expression by interacting with target mRNAs, affecting various physiological and pathological processes. miRTarBase, a database of experimentally validated miRNA-target interactions (MTIs), now features over 3 817 550 validated MTIs from 13 690 articles, significantly expanding its previous version. The updated database includes miRNA interactions with therapeutic agents, revealing roles in drug resistance and therapeutic strategies. It also highlights miRNAs as predictive, safety and monitoring biomarkers for toxicity assessment, clinical treatment guidance and therapeutic optimization. The expansion of miRNA-mRNA and miRNA-miRNA networks allows the identification of key regulatory genes and co-regulatory miRNAs, providing deeper insights into miRNA functions and critical target genes. Information on oxidized miRNA sequences has been added, shedding light on how oxidative modifications influence miRNA targeting and regulation. The integration of the LLAMA3 model into the NLP pipeline, alongside prompt engineering, enables the efficient identification of MTIs and miRNA-disease associations without large training datasets. An updated data integration and a redesigned user interface enhance accessibility, reinforcing miRTarBase as an essential resource for molecular oncology, drug development and related fields. The updated miRTarBase is available at https://mirtarbase.cuhk.edu.cn/∼miRTarBase/miRTarBase_2025.
Collapse
Affiliation(s)
- Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Bojian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jihan Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhuoran Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Guanghao Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiajun Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Baiming Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Haoxuan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiehui Fu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P.R. China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
12
|
Li Z, Xu Q, Xiao F, Cui Y, Jiang J, Zhou Q, Yan J, Sun Y, Li M. Transcriptomic profiling and machine learning reveal novel RNA signatures for enhanced molecular characterization of Hashimoto's thyroiditis. Sci Rep 2025; 15:677. [PMID: 39753616 PMCID: PMC11699148 DOI: 10.1038/s41598-024-80728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 01/06/2025] Open
Abstract
While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their potential for enhanced molecular characterization. Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral blood. Differential expression analysis identified transcriptomic features, which were integrated using multi-omics factor analysis. Pathway enrichment, co-expression, and regulatory network analyses were performed. A novel machine-learning model was developed for HT molecular characterization using stacking techniques. HT patients exhibited increased thyroid volume, elevated tissue hardness, and higher antibody levels despite being in the early subclinical stage. Analysis identified 79 HT-associated transcriptomic features (3 mRNA, 6 miRNA, 64 lncRNA, 6 circRNA). Co-expression (77 nodes, 266 edges) and regulatory (18 nodes, 45 edges) networks revealed significant hub genes and modules associated with HT. Enrichment analysis highlighted dysregulation in immune system, cell adhesion and migration, and RNA/protein regulation pathways. The novel stacking-model achieved 95% accuracy and 97% AUC for HT molecular characterization. This study demonstrates the value of transcriptome analysis in uncovering HT-associated signatures, providing insights into molecular changes and potentially guiding future research on disease mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Zefeng Li
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
- Key Laboratory of National Health Commission for Forensic Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Qiuyu Xu
- Key Laboratory of National Health Commission for Forensic Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Fengxu Xiao
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Yipeng Cui
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Jue Jiang
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Qi Zhou
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Jiangwei Yan
- Department of Genetics, School of Medicine & Forensics, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Yu Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, 107 Wenhua West Road, Ji'nan, 250012, China.
| | - Miao Li
- Department of Medical Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
13
|
Khan A, Ghasemi AR, Ingram KK, Ay A. Machine learning uncovers novel sex-specific dementia biomarkers linked to autism and eye diseases. J Alzheimers Dis Rep 2025; 9:25424823251317177. [PMID: 40034518 PMCID: PMC11864256 DOI: 10.1177/25424823251317177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Recently, microRNAs (miRNAs) have attracted significant interest as predictive biomarkers for various types of dementia, including Alzheimer's disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), normal pressure hydrocephalus (NPH), and mild cognitive impairment (MCI). Machine learning (ML) methods enable the integration of miRNAs into highly accurate predictive models of dementia. Objective To investigate the differential expression of miRNAs across dementia subtypes compared to normal controls (NC) and analyze their enriched biological and disease pathways. Additionally, to evaluate the use of these miRNAs in binary and multiclass ML models for dementia prediction in both overall and sex-specific datasets. Methods Using data comprising 1685 Japanese individuals (GSE120584 and GSE167559), we performed differential expression analysis to identify miRNAs associated with five dementia groups in both overall and sex-specific datasets. Pathway enrichment analyses were conducted to further analyze these miRNAs. ML classifiers were used to create predictive models of dementia. Results We identified novel differentially expressed miRNA biomarkers distinguishing NC from five dementia subtypes. Incorporating these miRNAs into ML classifiers resulted in up to a 27% improvement in dementia risk prediction. Pathway analysis highlighted neuronal and eye disease pathways associated with dementia risk. Sex-specific analyses revealed unique biomarkers for males and females, with miR-128-1-5 as a protective factor for males in AD, VaD, and DLB, and miR-4488 as a risk factor for female AD, highlighting distinct pathways and potential therapeutic targets for each sex. Conclusions Our findings support existing dementia etiology research and introduce new potential and sex-specific miRNA biomarkers.
Collapse
Affiliation(s)
- Ayub Khan
- Department of Computer Science, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ali R Ghasemi
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| |
Collapse
|
14
|
Luo X, Liang M, Zhang D, Huang B. Identification of diagnostic genes and the miRNA‒mRNA‒TF regulatory network in human oocyte aging via machine learning methods. J Assist Reprod Genet 2025; 42:319-333. [PMID: 39540991 PMCID: PMC11806187 DOI: 10.1007/s10815-024-03311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Oocyte aging is a significant factor in the negative reproductive outcomes of older women. However, the pathogenesis of oocyte aging remains unclear. This study aimed to identify the hub genes involved in oocyte aging via bioinformatics methods. METHODS The oocyte aging datasets GSE155179 and GSE158802 were obtained from the GEO database and analyzed as the training set. The GSE164371 dataset was then defined as the validation set. Differentially expressed genes were analyzed via the limma package and weighted gene coexpression network analysis, and intersected with cellular senescence-associated genes from the Cell Senescence database. The hub genes were identified via three machine learning algorithms, namely, support vector machine recursive feature elimination, random forest, and least absolute shrinkage and selection operator logistic, which were also confirmed via the validation set. Finally, a microRNA-mRNA‒transcription factor regulatory network and single-gene gene set enrichment analysis were performed to clarify the pathogenesis of oocyte aging. RESULTS A competing endogenous RNA network of GSE155179 and GSE158802 with 124 mRNAs, 31 long noncoding RNAs, and 31 miRNAs was constructed. Two modules with 814 genes were considered the key modules of oocyte aging. PDIK1L, SIRT1, and MCU were subsequently identified as hub genes; on the basis of these hub genes, a regulatory network of oocyte aging with 8 miRNAs, 3 mRNAs, and 227 TFs was ultimately constructed. CONCLUSIONS This study contributes to a deeper understanding of oocyte aging and may aid in the development of therapeutic approaches to improve reproductive outcomes in older women.
Collapse
Affiliation(s)
- Xi Luo
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Eye Health, Nanning, 530021, China
| | - Mingming Liang
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
| | - Dandan Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Eye Health, Nanning, 530021, China
| | - Ben Huang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Eye Health, Nanning, 530021, China.
| |
Collapse
|
15
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
16
|
Giannopoulos-Dimitriou A, Saiti A, Malousi A, Anagnostopoulos AK, Vatsellas G, Al-Maghrabi PM, Müllertz A, Fatouros DG, Vizirianakis IS. Molecular Profiling of A549 Cell-Derived Exosomes: Proteomic, miRNA, and Interactome Analysis for Identifying Potential Key Regulators in Lung Cancer. Cancers (Basel) 2024; 16:4123. [PMID: 39766023 PMCID: PMC11674491 DOI: 10.3390/cancers16244123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches. METHODS We performed comprehensive morphological and physicochemical characterization of exosomes isolated from cell culture supernatant of A549 cells in vitro, using DLS, cryo-TEM, Western blot, and flow cytometry. Proteomic and miRNA high-throughput profiling, coupled with bioinformatics network analysis, were applied to elucidate the exosome molecular cargo. A comparative miRNA analysis was also conducted with exosomes derived from normal lung fibroblast MRC-5 cells. RESULTS Exosomes exhibited an average size of ~40 nm and disk-shaped lipid bilayer structures, with tetraspanins CD9 and CD63 validated as exosomal markers. Proteomic analysis identified 68 proteins, primarily linked to the extracellular matrix organization and metabolic processes. miRNA sequencing revealed 72 miRNAs, notably hsa-miR-619-5p, hsa-miR-122-5p, hsa-miR-9901, hsa-miR-7704, and hsa-miR-151a-3p, which are involved in regulating metabolic processes, gene expression, and tumorigenic pathways. Th integration of proteomic and miRNA data through a proteogenomics approach identified dually affected genes including ERBB2, CD44, and APOE, impacted by both exosomal miRNA targeting and protein interactions through synergistic or antagonistic interactions. Differential analysis revealed a distinct miRNA profile in A549 exosomes, associated with cancer-related biological processes, compared to MRC-5 exosomes; notably, hsa-miR-619-5p emerged as a promising candidate for future clinical biomarker studies. The network analysis also revealed genes targeted by multiple upregulated tumor-associated miRNAs in potential exosome-recipient cells. CONCLUSIONS This integrative study provides insights into the molecular interactome of lung adenocarcinoma A549 cell-derived exosomes, providing a foundation for future research on exosomal cargo and its role in tumor cell communication, growth, and progression.
Collapse
Affiliation(s)
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.-D.); (A.S.)
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios K. Anagnostopoulos
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Greek Genome Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece;
| | - Passant M. Al-Maghrabi
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.G.-D.); (A.S.)
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
17
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
18
|
Li W, Ballard J, Zhao Y, Long Q. Knowledge-guided learning methods for integrative analysis of multi-omics data. Comput Struct Biotechnol J 2024; 23:1945-1950. [PMID: 38736693 PMCID: PMC11087912 DOI: 10.1016/j.csbj.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Integrative analysis of multi-omics data has the potential to yield valuable and comprehensive insights into the molecular mechanisms underlying complex diseases such as cancer and Alzheimer's disease. However, a number of analytical challenges complicate multi-omics data integration. For instance, -omics data are usually high-dimensional, and sample sizes in multi-omics studies tend to be modest. Furthermore, when genes in an important pathway have relatively weak signal, it can be difficult to detect them individually. There is a growing body of literature on knowledge-guided learning methods that can address these challenges by incorporating biological knowledge such as functional genomics and functional proteomics into multi-omics data analysis. These methods have been shown to outperform their counterparts that do not utilize biological knowledge in tasks including prediction, feature selection, clustering, and dimension reduction. In this review, we survey recently developed methods and applications of knowledge-guided multi-omics data integration methods and discuss future research directions.
Collapse
Affiliation(s)
- Wenrui Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, PA, USA
| | - Jenna Ballard
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, 19104, PA, USA
| | - Yize Zhao
- Department of Biostatistics, School of Public Health, Yale University, 60 College Street, New Haven, 06510, CT, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, 19104, PA, USA
| |
Collapse
|
19
|
Krushkal J, Zhao Y, Roney K, Zhu W, Brooks A, Wilsker D, Parchment RE, McShane LM, Doroshow JH. Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors. Epigenetics 2024; 19:2309824. [PMID: 38369747 PMCID: PMC10878021 DOI: 10.1080/15592294.2024.2309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Kyle Roney
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
| | - Weimin Zhu
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alan Brooks
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E. Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Sun T, Huang J, Li Y, Wu S, Zhao L, Kang Y. Identification and characterization of circular RNAs in the skin of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101277. [PMID: 38943979 DOI: 10.1016/j.cbd.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an economically significant freshwater-farmed fish worldwide, and the frequent outbreaks of infectious hematopoietic necrosis (IHN) in recent years have gravely compromised the healthy growth of the rainbow trout aquaculture industry. Fish skin is an essential immune barrier against the invasion of external pathogens, but it is poorly known about the role of circRNAs in rainbow trout skin. Therefore, we examined the expression profiles of circRNAs in rainbow trout skin following IHNV infection using RNA-seq. A total of 6607 circRNAs were identified, of which 34 circRNAs were differentially expressed (DE) and these DE circRNA source genes were related to immune-related pathways such as Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, Cytokine-cytokine receptor interaction, ubiquitin mediated proteolysis, and ferroptosis. We used qRT-PCR, Sanger sequencing, and subcellular localization to validate the chosen DE circRNAs, confirming their localization and expression patterns in rainbow trout skin. Further, 12 DE circRNAs were selected to construct the circRNA-miRNA-mRNA regulatory network, finding one miRNA could connect one or more circRNAs and mRNAs, and some miRNAs were reported to be associated with antiviral immunity. The functional prediction findings revealed that novel_circ_002779 and novel_circ_004118 may act as sponges for miR-205-z and miR-155-y to regulate the expression of target genes TLR8 and PIK3R1, respectively, and participated in the antiviral immune responses in rainbow trout. These results shed light on the immunological mechanism of circRNAs in rainbow trout skin and offer fundamental information for further research on the innate immune system and breeding rainbow trout resistant to disease.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
21
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
22
|
Wu X, Zhang L, Tong X, Wang Y, Zhang Z, Kong X, Ni S, Luo X, Zheng M, Tang Y, Li X. miCGR: interpretable deep neural network for predicting both site-level and gene-level functional targets of microRNA. Brief Bioinform 2024; 26:bbae616. [PMID: 39592153 PMCID: PMC11596087 DOI: 10.1093/bib/bbae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
MicroRNAs (miRNAs) are critical regulators in various biological processes to cleave or repress translation of messenger RNAs (mRNAs). Accurately predicting miRNA targets is essential for developing miRNA-based therapies for diseases such as cancer and cardiovascular disease. Traditional miRNA target prediction methods often struggle due to incomplete knowledge of miRNA-target interactions and lack interpretability. To address these limitations, we propose miCGR, an end-to-end deep learning framework for predicting functional miRNA targets. MiCGR employs 2D convolutional neural networks alongside an enhanced Chaos Game Representation (CGR) of both miRNA sequences and their candidate target site (CTS) on mRNA. This advanced CGR transforms genetic sequences into informative 2D graphical representations based on sequence composition and subsequence frequencies, and explicitly incorporates important prior knowledge of seed regions and subsequence positions. Unlike one-dimensional methods based solely on sequence characters, this approach identifies functional motifs within sequences, even if they are distant in the original sequences. Our model outperforms existing methods in predicting functional targets at both the site and gene levels. To enhance interpretability, we incorporate Shapley value analysis for each subsequence within both miRNA sequences and their target sites, allowing miCGR to achieve improved accuracy, particularly with more lenient CTS selection criteria. Finally, two case studies demonstrate the practical applicability of miCGR, highlighting its potential to provide insights for optimizing artificial miRNA analogs that surpass endogenous counterparts.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lehan Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zimei Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiangtai Kong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shengkun Ni
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yun Tang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
23
|
Sun P, Wang Y, Zhou S, Liang J, Zhang B, Li P, Han R, Fei G, Cao C, Wang R. Exploring the shared pathogenic mechanisms of tuberculosis and COVID-19: emphasizing the role of VNN1 in severe COVID-19. Front Cell Infect Microbiol 2024; 14:1453466. [PMID: 39639868 PMCID: PMC11618882 DOI: 10.3389/fcimb.2024.1453466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background In recent years, COVID-19 and tuberculosis have emerged as major infectious diseases, significantly contributing to global mortality as respiratory illnesses. There is increasing evidence of a reciprocal influence between these diseases, exacerbating their incidence, severity, and mortality rates. Methods This study involved retrieving COVID-19 and tuberculosis data from the GEO database and identifying common differentially expressed genes. Machine learning techniques, specifically random forest analysis, were applied to pinpoint key genes for diagnosing COVID-19. The Cibersort algorithm was employed to estimate immune cell infiltration in individuals with COVID-19. Additionally, single-cell sequencing was used to study the distribution of VNN1 within immune cells, and molecular docking provided insights into potential drugs targeting these critical prognosis genes. Results GMNN, SCD, and FUT7 were identified as robust diagnostic markers for COVID-19 across training and validation datasets. Importantly, VNN1 was associated with the progression of severe COVID-19, showing a strong correlation with clinical indicators and immune cell infiltration. Single-cell sequencing demonstrated a predominant distribution of VNN1 in neutrophils, and molecular docking highlighted potential pharmacological targets for VNN1. Conclusions This study enhances our understanding of the shared pathogenic mechanisms underlying tuberculosis and COVID-19, providing essential insights that could improve the diagnosis and treatment of severe COVID-19 cases.
Collapse
Affiliation(s)
- Peng Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Infectious Diseases, Hefei Second People’s Hospital, Hefei, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, China
| | - Jiahui Liang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Arul S, Jassen E, Ayers-Ringler J, Mereuta OM, Senol YC, Orscelik A, Ghozy S, Brinjikji W, Kallmes DF, Kadirvel R. Circulating miRNA profiles as predictive biomarkers for aneurysm healing following endovascular treatment: a prospective study. Interv Neuroradiol 2024:15910199241298321. [PMID: 39552445 DOI: 10.1177/15910199241298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Aneurysm treatments are crucial to minimize the rupture risk. The underlying molecular processes mediating cellular remodeling, endothelialization, and aneurysm healing following endovascular treatment are poorly understood. The current study aims to explore circulating miRNA as a treatment and outcome-associated biomarkers in patients undergoing endovascular treatment. METHODS Patients undergoing endovascular interventions for unruptured intracranial aneurysms, using either flow diverter placement or coil embolization, were enrolled. Blood samples were collected before the intervention and during a follow-up period between 6 and 18 months. Total mRNA/miRNA was isolated from plasma, followed by RNA-seq analysis. Gene Ontology analysis was used to identify pathways linked to altered miRNA expression. RESULTS Twenty-three patients participated, with 13 (56.5%) undergoing flow diversion and 10 (43.5%) coil embolization. The median follow-up sample collection time was 10.70 months (SEM ± 1.32). No significant differences in angiographic occlusion were noted between intervention groups. Differentially expressed miRNAs were not identified between groups at baseline. However, at follow-up, 39 miRNAs were upregulated and 41 were downregulated, independent of intervention. Notably, three miRNAs (miR-4746-5p, miR-4685-3p, and miR-490-3p) were downregulated in the flow diversion group compared to the coil embolization group. Bioinformatics analysis revealed associations with upregulated fluid shear stress, p53, adherens junction pathways, along with downregulated apoptosis pathways. CONCLUSIONS This study suggests that fluid shear stress and apoptosis may influence aneurysm healing or thromboembolic events in flow diverter-treated patients. Further research is warranted to elucidate the functional significance of these findings in treatment outcomes, providing valuable insights for improved patient care in intracranial aneurysm management.
Collapse
Affiliation(s)
- Santhosh Arul
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Erik Jassen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Nizam R, Malik MZ, Jacob S, Alsmadi O, Koistinen HA, Tuomilehto J, Alkandari H, Al-Mulla F, Thanaraj TA. Circulating hsa-miR-320a and its regulatory network in type 1 diabetes mellitus. Front Immunol 2024; 15:1376416. [PMID: 39464889 PMCID: PMC11502356 DOI: 10.3389/fimmu.2024.1376416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Increasing evidence from human and animal model studies indicates the significant role of microRNAs (miRNAs) in pancreatic beta cell function, insulin signaling, immune responses, and pathogenesis of type 1 diabetes (T1D). Methods We aimed, using next-generation sequencing, to screen miRNAs from peripheral blood mononuclear cells of eight independent Kuwaiti-Arab families with T1D affected siblings, consisting of 18 T1D patients and 18 unaffected members, characterized by no parent-to-child inheritance pattern. Results Our analysis revealed 20 miRNAs that are differentially expressed in T1D patients compared with healthy controls. Module-based weighted gene co-expression network analysis prioritized key consensus miRNAs in T1D pathogenesis. These included hsa-miR-320a-3p, hsa-miR-139-3p, hsa-miR-200-3p, hsa-miR-99b-5p and hsa-miR-6808-3p. Functional enrichment analysis of differentially expressed miRNAs indicated that PI3K-AKT is one of the key pathways perturbed in T1D. Gene ontology analysis of hub miRNAs also implicated PI3K-AKT, along with mTOR, MAPK, and interleukin signaling pathways, in T1D. Using quantitative RT-PCR, we validated one of the key predicted miRNA-target gene-transcription factor networks in an extended cohort of children with new-onset T1D positive for islet autoantibodies. Our analysis revealed that hsa-miR-320a-3p and its key targets, including PTEN, AKT1, BCL2, FOXO1 and MYC, are dysregulated in T1D, along with their interacting partners namely BLIMP3, GSK3B, CAV1, CXCL3, TGFB, and IL10. Receiver Operating Characteristic analysis highlighted the diagnostic potential of hsa-miR-320a-3p, CAV1, GSK3B and MYC for T1D. Discussion Our study presents a novel link between hsa-miR-320a-3p and T1D, and highlights its key regulatory role in the network of mRNA markers and transcription factors involved in T1D pathogenesis.
Collapse
Affiliation(s)
- Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Osama Alsmadi
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Metabolism Group, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hessa Alkandari
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | | |
Collapse
|
26
|
Wang Y, Li X, Lu W, Li F, Yao L, Liu Z, Shi H, Zhang W, Bai Y. Full-length circRNA sequencing method using low-input RNAs and profiling of circRNAs in MPTP-PD mice on a nanopore platform. Analyst 2024; 149:5118-5130. [PMID: 39240088 DOI: 10.1039/d4an00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Considering the importance of accurate information of full-length (FL) transcripts in functional analysis, researchers prefer to develop new sequencing methods based on third-generation sequencing (TGS) rather than short-read sequencing. Several FL circRNA sequencing strategies have been developed. However, the current methods are inapplicable to low-biomass samples, since a large amount of total RNAs are acquired for circRNA enrichment before library preparation. In this work, we developed an effective method to detect FL circRNAs from a nanogram level (1-100 ng) of total RNAs based on a nanopore platform. Additionally, prior to the library preparation process, we added a series of 24 nt barcodes for each sample to reduce the cost and operating time. Using this method, we profiled circRNA expression in the striatum, hippocampus and cerebral cortex of a Parkinson's disease (PD) mouse model. Over 6% of reads were effective for FL circRNA identification in most datasets. Notably, a reduction in the RNA initial input resulted in a lower correlation between replicates and the detection efficiency for longer circRNA, but the lowest input (1 ng) was able to detect numerous FL circRNAs. Next, we systematically identified over 263 934 circRNAs in PD and healthy mice using the lower-input FL sequencing method, some of which came from 50.52% of PD-associated genes. Moreover, significant changes were observed in the circRNA expression pattern at an isoform level, and high-confidence protein translation evidence was predicted. Overall, we developed an effective method to characterize FL circRNAs from low-input samples and provide a comprehensive insight into the biological function of circRNAs in PD at an isoform level.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Lingsong Yao
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhiyu Liu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Huajuan Shi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
27
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
28
|
Jung J, Lee J, Kang H, Park K, Kim YS, Ha J, So S, Sung S, Yun JH, Jang JH, Choi SJ, Choung YH. miR-409-3p Regulates IFNG and p16 Signaling in the Human Blood of Aging-Related Hearing Loss. Cells 2024; 13:1595. [PMID: 39329776 PMCID: PMC11429563 DOI: 10.3390/cells13181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition caused by the natural aging process affecting the auditory system. Genome-wide association studies (GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete. This study aims to evaluate a potential protective tool for ARHL treatment by comparing human blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response, apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.
Collapse
Affiliation(s)
- Junseo Jung
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jeongmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Kyeongjin Park
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Young Sun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Seongjun So
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hyeon Yun
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| |
Collapse
|
29
|
Tang L, Qiu H, Xu B, Su Y, Nyarige V, Li P, Chen H, Killham B, Liao J, Adam H, Yang A, Yu A, Jang M, Rubart M, Xie J, Zhu W. Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice. Circ Res 2024; 135:777-798. [PMID: 39145385 PMCID: PMC11392624 DOI: 10.1161/circresaha.124.324608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Apelin is an endogenous prepropeptide that regulates cardiac homeostasis and various physiological processes. Intravenous injection has been shown to improve cardiac contractility in patients with heart failure. However, its short half-life prevents studying its impact on left ventricular remodeling in the long term. Here, we aim to study whether microparticle-mediated slow release of apelin improves heart function and left ventricular remodeling in mice with myocardial infarction (MI). METHODS A cardiac patch was fabricated by embedding apelin-containing microparticles in a fibrin gel scaffold. MI was induced via permanent ligation of the left anterior descending coronary artery in adult C57BL/6J mice followed by epicardial patch placement immediately after (acute MI) or 28 days (chronic MI) post-MI. Four groups were included in this study, namely sham, MI, MI plus empty microparticle-embedded patch treatment, and MI plus apelin-containing microparticle-embedded patch treatment. Cardiac function was assessed by transthoracic echocardiography. Cardiomyocyte morphology, apoptosis, and cardiac fibrosis were evaluated by histology. Cardioprotective pathways were determined by RNA sequencing, quantitative polymerase chain reaction, and Western blot. RESULTS The level of endogenous apelin was largely reduced in the first 7 days after MI induction and it was normalized by day 28. Apelin-13 encapsulated in poly(lactic-co-glycolic acid) microparticles displayed a sustained release pattern for up to 28 days. Treatment with apelin-containing microparticle-embedded patch inhibited cardiac hypertrophy and reduced scar size in both acute and chronic MI models, which is associated with improved cardiac function. Data from cellular and molecular analyses showed that apelin inhibits the activation and proliferation of cardiac fibroblasts by preventing transforming growth factor-β-mediated activation of Smad2/3 (supporessor of mothers against decapentaplegic 2/3) and downstream profibrotic gene expression. CONCLUSIONS Poly(lactic-co-glycolic acid) microparticles prolonged the apelin release time in the mouse hearts. Epicardial delivery of the apelin-containing microparticle-embedded patch protects mice from both acute and chronic MI-induced cardiac dysfunction, inhibits cardiac fibrosis, and improves left ventricular remodeling.
Collapse
Affiliation(s)
- Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Huiliang Qiu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Bing Xu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Verah Nyarige
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Houjia Chen
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Brady Killham
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington (H.C., B.K., J.L.)
| | - Henderson Adam
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Aaron Yang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Alexander Yu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (M.R.)
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha (Y.S., J.X.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale (L.T., H.Q., B.X., V.N., P.L., H.A., A. Yang, A. Yu, M.J., W.Z.)
| |
Collapse
|
30
|
Liu J, Hu D, Wang Y, Zhou X, Jiang L, Wang P, Lai H, Wang Y, Xiao H. Exploration of a Predictive Model for Keloid and Potential Therapeutic Drugs Based on Immune Infiltration and Cuproptosis-Related Genes. J Burn Care Res 2024; 45:1217-1231. [PMID: 38334429 DOI: 10.1093/jbcr/irae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 02/10/2024]
Abstract
The aim of this study was to investigate the correlation between cuproptosis-related genes and immunoinfiltration in keloid, develop a predictive model for keloid occurrence, and explore potential therapeutic drugs. The microarray datasets (GSE7890 and GSE145725) were obtained from Gene Expression Omnibus database to identify the differentially expressed genes (DEGs) between keloid and nonkeloid samples. Key genes were identified through immunoinfiltration analysis and DEGs and then analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, followed by the identification of protein-protein interaction networks, transcription factors, and miRNAs associated with key genes. Additionally, a logistic regression analysis was performed to develop a predictive model for keloid occurrence, and potential candidate drugs for keloid treatment were identified. Three key genes (FDX1, PDHB, and DBT) were identified, showing involvement in acetyl-CoA biosynthesis, mitochondrial matrix, oxidoreductase activity, and the tricarboxylic acid cycle. Immune infiltration analysis suggested the involvement of B cells, Th1 cells, dendritic cells, T helper cells, antigen-presenting cell coinhibition, and T cell coinhibition in keloid. These genes were used to develop a logistic regression-based nomogram for predicting keloid occurrence with an area under the curve of 0.859 and good calibration. We identified 32 potential drug molecules and extracted the top 10 compounds based on their P-values, showing promise in targeting key genes and potentially effective against keloid. Our study identified some genes in keloid pathogenesis and potential therapeutic drugs. The predictive model enhances early diagnosis and management. Further research is needed to validate and explore clinical implications.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Ding Hu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Yaojun Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Xiaoqian Zhou
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Liyuan Jiang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Peng Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Haijing Lai
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Yu Wang
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| | - Houan Xiao
- Department of Burns and Plastic and Cosmetic Surgery, Xi' an Ninth Hospital, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
31
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
32
|
Böge FL, Ruff S, Hemandhar Kumar S, Selle M, Becker S, Jung K. Combined Analysis of Multi-Study miRNA and mRNA Expression Data Shows Overlap of Selected miRNAs Involved in West Nile Virus Infections. Genes (Basel) 2024; 15:1030. [PMID: 39202390 PMCID: PMC11353516 DOI: 10.3390/genes15081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The emerging zoonotic West Nile virus (WNV) has serious impact on public health. Thus, understanding the molecular basis of WNV infections in mammalian hosts is important to develop improved diagnostic and treatment strategies. In this context, the role of microRNAs (miRNAs) has been analyzed by several studies under different conditions and with different outcomes. A systematic comparison is therefore necessary. Furthermore, additional information from mRNA target expression data has rarely been taken into account to understand miRNA expression profiles under WNV infections. We conducted a meta-analysis of publicly available miRNA expression data from multiple independent studies, and analyzed them in a harmonized way to increase comparability. In addition, we used gene-set tests on mRNA target expression data to further gain evidence about differentially expressed miRNAs. For this purpose, we also studied the use of target information from different databases. We detected a substantial number of miRNA that emerged as differentially expressed from several miRNA datasets, and from the mRNA target data analysis as well. When using mRNA target data, we found that the targetscan databases provided the most useful information. We demonstrated improved miRNA detection through research synthesis of multiple independent miRNA datasets coupled with mRNA target set testing, leading to the discovery of multiple miRNAs which should be taken into account for further research on the molecular mechanism of WNV infections.
Collapse
Affiliation(s)
- Franz Leonard Böge
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Sergej Ruff
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Shamini Hemandhar Kumar
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Michael Selle
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Stefanie Becker
- Institute of Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30539 Hannover, Germany;
| | - Klaus Jung
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| |
Collapse
|
33
|
Chatterjee B, Thakur SS. miRNA-protein-metabolite interaction network reveals the regulatory network and players of pregnancy regulation in dairy cows. Front Cell Dev Biol 2024; 12:1377172. [PMID: 39156977 PMCID: PMC11329941 DOI: 10.3389/fcell.2024.1377172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Pregnancy is a complex process involving complex molecular interaction networks, such as between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite interactions. Advances in technology have led to the identification of many pregnancy-associated microRNA (miRNA), protein, and metabolite fingerprints in dairy cows. An array of miRNA, protein, and metabolite fingerprints produced during the early pregnancy of dairy cows were described. We have found the in silico interaction networks between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite. We have manually constructed miRNA-protein-metabolite interaction networks such as bta-miR-423-3p-IGFBP2-PGF2α interactomes. This interactome is obtained by manually combining the interaction network formed between bta-miR-423-3p-IGFBP2 and the interaction network between IGFBP2-PGF2α with IGFBP2 as a common interactor with bta-miR-423-3p and PGF2α with the provided sources of evidence. The interaction between bta-miR-423-3p and IGFBP2 has many sources of evidence including a high miRanda score of 169, minimum free energy (MFE) score of -25.14, binding probability (p) of 1, and energy of -25.5. The interaction between IGFBP2 and PGF2α occurs at high confidence scores (≥0.7 or 70%). Interestingly, PGF2α is also found to interact with different metabolites, such as PGF2α-PGD2, PGF2α-thromboxane B2, PGF2α-PGE2, and PGF2α-6-keto-PGF1α at high confidence scores (≥0.7 or 70%). Furthermore, the interactions between C3-PGE2, C3-PGD2, PGE2-PGD2, PGD2-thromboxane B2, PGE2-thromboxane B2, 6-keto-PGF1α-thromboxane B2, and PGE2-6-keto-PGF1α were also obtained at high confidence scores (≥0.7 or 70%). Therefore, we propose that miRNA-protein-metabolite interactomes involving miRNA, protein, and metabolite fingerprints of early pregnancy of dairy cows such as bta-miR-423-3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-keto-PGF1 alpha, and thromboxane B2 may form the key regulatory networks and players of pregnancy regulation in dairy cows. This is the first study involving miRNA-protein-metabolite interactomes obtained in the early pregnancy stage of dairy cows.
Collapse
|
34
|
Tsai YH, Hong JJ, Cheng CM, Cheng MH, Chen CH, Hsieh ML, Hsieh KS, Shen CF. Case report: Cytokine and miRNA profiling in multisystem inflammatory syndrome in children. Front Med (Lausanne) 2024; 11:1422588. [PMID: 39149604 PMCID: PMC11324540 DOI: 10.3389/fmed.2024.1422588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is an imperative pediatric inflammatory condition closely linked to COVID-19, which garners substantial attention since the onset of the pandemic. Like Kawasaki illness, this condition is characterized by an overactive immune response, leading to symptoms including pyrexia, cardiac and renal complications. To elucidate the pathogenesis of MIS-C and identify potential biomarkers, we conducted an extensive examination of specific cytokines (IL-6, IL-1β, IL-6R, IL-10, and TNF-α) and microRNA (miRNA) expression profiles at various intervals (ranging from 3 to 20 days) in the peripheral blood sample of a severely affected MIS-C patient. Our investigation revealed a gradual decline in circulating levels of IL-6, IL-1β, IL-10, and TNF-α following intravenous immune globulin (IVIG) therapy. Notably, IL-6 exhibited a significant reduction from 74.30 to 1.49 pg./mL, while IL-6R levels remained consistently stable throughout the disease course. Furthermore, we observed an inverse correlation between the expression of hsa-miR-596 and hsa-miR-224-5p and the aforementioned cytokines. Our findings underscore a robust association between blood cytokine and miRNA concentrations and the severity of MIS-C. These insights enhance our understanding of the genetic regulatory mechanisms implicated in MIS-C pathogenesis, offering potential avenues for early biomarker detection and therapy monitoring through miRNA analysis.
Collapse
Affiliation(s)
- Yun-Hao Tsai
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jun-Jie Hong
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsiu Cheng
- Department of Taiwan Business Development, Inti Taiwan, Inc., Hsinchu, Taiwan
| | - Cheng-Han Chen
- Institute of Biomedical Engineering, College of Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Ling Hsieh
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics and Structural, Congenital Heart and Echocardiography Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Dutta A, Hossain MA, Somadder PD, Moli MA, Ahmed K, Rahman MM, Bui FM. Exploring the therapeutic targets of stevioside in management of type 2 diabetes by network pharmacology and in-silico approach. Diabetes Metab Syndr 2024; 18:103111. [PMID: 39217825 DOI: 10.1016/j.dsx.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
AIMS The main objective of the current study is to investigate the pathways and therapeutic targets linked to stevioside in the management of T2D using computational approaches. METHODS We collected RNA-seq datasets from NCBI, then employed GREIN to retrieve differentially expressed genes (DEGs). Computer-assisted techniques DAVID, STRING and NetworkAnalyst were used to explore common significant pathways and therapeutic targets associated with T2D and stevioside. Molecular docking and dynamics simulations were conducted to validate the interaction between stevioside and therapeutic targets. RESULTS Gene ontology and KEGG analysis revealed that prostaglandin synthesis, IL-17 signaling, inflammatory response, and interleukin signaling were potential pathways targeted by stevioside in T2D. Protein-protein interactions (PPI) analysis identified six common hub proteins (PPARG, PTGS2, CXCL8, CCL2, PTPRC, and EDN1). Molecular docking results showed best binding of stevioside to PPARG (-8 kcal/mol) and PTGS2 (-10.1 kcal/mol). Finally, 100 ns molecular dynamics demonstrated that the binding stability between stevioside and target protein (PPARG and PTGS2) falls within the acceptable range. CONCLUSIONS This study reveals that stevioside exhibits significant potential in controlling T2D by targeting key pathways and stably binding to PPARG and PTGS2. Further research is necessary to confirm and expand upon these significant computational results.
Collapse
Affiliation(s)
- Amit Dutta
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka, 1213, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mahmuda Akter Moli
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Bangladesh
| | - Kawsar Ahmed
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, 1902, Bangladesh; Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada; Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
36
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
37
|
Awasthi P, Kumar D, Hasan S. Role of 14-3-3 protein family in the pathobiology of EBV in immortalized B cells and Alzheimer's disease. Front Mol Biosci 2024; 11:1353828. [PMID: 39144488 PMCID: PMC11322100 DOI: 10.3389/fmolb.2024.1353828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Several studies have revealed that Epstein-Barr virus (EBV) infection raised the likelihood of developing Alzheimer's disease (AD) via infecting B lymphocytes. The purpose of the current investigation was to assess the possible association between EBV infection and AD. Methods The microarray datasets GSE49628, GSE126379, GSE122063, and GSE132903 were utilized to extract DEGs by using the GEO2R tool of the GEO platform. The STRING tool was used to determine the interaction between the DEGs, and Cytoscape was used to visualize the results. The DEGs that were found underwent function analysis, including pathway and GO, using the DAVID 2021 and ClueGo/CluePedia. By using MNC, MCC, Degree, and Radiality of cytoHubba, we identified seven common key genes. Gene co-expression analysis was performed through the GeneMANIA web tool. Furthermore, expression analysis of key genes was performed through GTEx software, which have been identified in various human brain regions. The miRNA-gene interaction was performed through the miRNet v 2.0 tool. DsigDB on the Enrichr platform was utilized to extract therapeutic drugs connected to key genes. Results In GEO2R analysis of datasets with |log2FC|≥ 0.5 and p-value <0.05, 8386, 10,434, 7408, and 759 genes were identified. A total of 141 common DEGs were identified by combining the extracted genes of different datasets. A total of 141 nodes and 207 edges were found during the PPI analysis. The DEG GO analysis with substantial alterations disclosed that they are associated to molecular functions and biological processes, such as positive regulation of neuron death, autophagy regulation of mitochondrion, response of cell to insulin stimulus, calcium signaling regulation, organelle transport along microtubules, protein kinase activity, and phosphoserine binding. Kyoto Encyclopedia of Genes and Genomes analysis discovered the correlation between the DEGs in pathways of neurodegeneration: multiple disease, cell cycle, and cGMP-PKG signaling pathway. Finally, YWHAH, YWHAG, YWHAB, YWHAZ, MAP2K1, PPP2CA, and TUBB genes were identified that are strongly linked to EBV and AD. Three miRNAs, i.e., hsa-mir-15a-5p, hsa-let-7a-5p, and hsa-mir-7-5p, were identified to regulate most of hub genes that are associated with EBV and AD. Further top 10 significant therapeutic drugs were predicted. Conclusion We have discovered new biomarkers and therapeutic targets for AD, as well as the possible biological mechanisms whereby infection with EBV may be involved in AD susceptibility for the first time.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
38
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
39
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
40
|
Raju S, Turner ME, Cao C, Abdul-Samad M, Punwasi N, Blaser MC, Cahalane RM, Botts SR, Prajapati K, Patel S, Wu R, Gustafson D, Galant NJ, Fiddes L, Chemaly M, Hedin U, Matic L, Seidman M, Subasri V, Singh SA, Aikawa E, Fish JE, Howe KL. Multiomics unveils extracellular vesicle-driven mechanisms of endothelial communication in human carotid atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599781. [PMID: 38979218 PMCID: PMC11230219 DOI: 10.1101/2024.06.21.599781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background: Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into paired plaque and marginal zones (symptomatic n=16, asymptomatic n=13). EV cargos were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions, and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Carotid plaques contained more EVs than adjacent marginal zones, with differential enrichment for EV-miRNAs and EV-proteins in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated an endothelial signature with roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was validated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV- vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed angiogenic processes mediated by EVs creates new therapeutic avenues for atherosclerosis.
Collapse
|
41
|
Inciuraite R, Ramonaite R, Kupcinskas J, Dalgediene I, Kulokiene U, Kiudelis V, Varkalaite G, Zvirbliene A, Jonaitis LV, Kiudelis G, Franke A, Schreiber S, Juzenas S, Skieceviciene J. The microRNA expression in crypt-top and crypt-bottom colonic epithelial cell populations demonstrates cell-type specificity and correlates with endoscopic activity in ulcerative colitis. J Crohns Colitis 2024; 18:jjae108. [PMID: 39022905 PMCID: PMC11637558 DOI: 10.1093/ecco-jcc/jjae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIMS Colonic epithelial barrier dysfunction is one of the early events in ulcerative colitis (UC) and microRNAs (miRNAs) participate in its regulation. However, cell type-specific miRNome during UC is still unknown. Thus, we aimed to explore miRNA expression patterns in colon tissue and epithelial cells at active and quiescent UC. METHODS Small RNA-sequencing in colon tissue, crypt-bottom (CD44+), and crypt-top (CD66a+) colonic epithelial cells from two cohorts of UC patients (n=74) and healthy individuals (n=50) was performed. Data analysis encompassed differential expression, weighted gene co-expression network, correlation, gene-set enrichment analyses. RESULTS Differentially expressed colonic tissue miRNAs showed potential involvement in regulation of interleukin-4 and interleukin-13 signalling during UC. As this pathway plays role in intestinal barrier regulation, consecutive analysis of spatially distinct colonic epithelial cell populations was performed. Cell-type (crypt-top and crypt-bottom) specific miRNA expression patterns were identified in both active and quiescent UC. Target genes of differentially expressed epithelial miRNAs at different disease activity were overrepresented in epithelial cell migration and therefore intestinal barrier integrity regulation. The pro-inflammatory miRNA co-expression module M1 correlated with endoscopic disease activity and successfully distinguished active and quiescent UC not only in both epithelial cell populations, but also in the colon tissue. The anti-inflammatory module M2 was specific to crypt-bottom cells and significantly enriched in the quiescent UC patients. CONCLUSIONS miRNA expression was specific to colonic epithelial cell populations and UC state, reflecting endoscopic disease activity. Irrespective of the UC state, deregulated epithelial miRNAs were associated with regulation of intestinal barrier integrity.
Collapse
Affiliation(s)
- Ruta Inciuraite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rima Ramonaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Indre Dalgediene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aurelija Zvirbliene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laimas Virginijus Jonaitis
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gediminas Kiudelis
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
42
|
Gan M, Lei Y, Wang K, Wang Y, Liao T, Ma J, Zhu L, Shen L. A dataset of hidden small non-coding RNA in the testis of heat-stressed models revealed by Pandora-seq. Sci Data 2024; 11:747. [PMID: 38982138 PMCID: PMC11233633 DOI: 10.1038/s41597-024-03612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Infertility, a worldwide reproductive health concern, impacts approximately one in five couples. Male infertility, stemming from spermatogenic dysfunction and reduced sperm quality, stands as a primary factor contributing to infertility. Given the global decrease in male fertility linked to environmental factors like the greenhouse effect, it is crucial to develop a comprehensive understanding of how increased temperatures impact both the quantity and quality of sperm. In this study, we utilized Pandora-seq technology to detect the small non-coding RNAs (sncRNAs) expression profile in the testicular tissue of heat-stressed mice. The investigation explores the dynamic shifts in sncRNAs within the mouse testis under heat stress, including miRNAs, tsRNAs, piRNAs, rsRNAs and other sncRNAs. Furthermore, we successfully identified differentially expressed sncRNAs in testicular tissues before and after heat stress. Subsequently, we conducted functional enrichment analysis on the potential predicted target genes of differentially expressed miRNAs and tsRNAs. These datasets will constitute a valuable foundational resource for further investigations into the decline in male reproductive capacity triggered by heat stress.
Collapse
Affiliation(s)
- Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
43
|
Fan L, Zhang F, Yao C, Nong L, Li J, Huang W. Unraveling the H19/GAS1 axis in recurrent implantation failure: A potential biomarker for diagnosis and insight into immune microenvironment alteration. PLoS One 2024; 19:e0306244. [PMID: 38968269 PMCID: PMC11226067 DOI: 10.1371/journal.pone.0306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Recurrent implantation failure (RIF) presents a significant clinical challenge due to the lack of established diagnostic and therapeutic guidelines. Emerging evidence underscores the crucial role of competitive endogenous RNA (ceRNA) regulatory networks in non-cancerous female reproductive disorders, yet the intricacies and operational characteristics of these networks in RIF are not fully understood. This study aims to demystify the ceRNA regulatory network and identify potential biomarkers for its diagnosis. We analyzed expression profiles of three RNA types (long noncoding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) sourced from the GEO database, leading to the identification of the H19-hsa-miR-301a-3p-GAS1 ceRNA network. This network demonstrates significant diagnostic relevance for RIF. Notably, the H19/GAS1 axis within this ceRNA network, identified through correlation analysis, emerged as a promising diagnostic marker, as evidenced by operating receiver operator characteristic (ROC) curve analysis. Further investigation into the binding potential of miR-301a-3p with H19 and GAS1 revealed a close association of these genes with endometrial disorders and embryo loss, as per the Comparative Toxicogenomics Database. Additionally, our immune infiltration analysis revealed a lower proportion of T cells gamma delta (γδ) in RIF, along with distinct differences in the expression of immune cell type-specific markers between fertile patients and those with RIF. We also observed a correlation between aberrant expression of H19/GAS1 and these immune markers, suggesting that the H19/GAS1 axis might play a role in modifying the immune microenvironment, contributing to the pathogenesis of RIF. In conclusion, the ceRNA-based H19/GAS1 axis holds promise as a novel diagnostic biomarker for RIF, potentially enhancing our understanding of its underlying mechanisms and improving the success rates of implantation.
Collapse
Affiliation(s)
- Li Fan
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
- Guangxi Maternal and Obstetric Disease Research Center, Liuzhou, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Fan Zhang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Chunling Yao
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Liuying Nong
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Jingjing Li
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
- Guangxi Maternal and Obstetric Disease Research Center, Liuzhou, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| |
Collapse
|
44
|
Wang L, Chen A, Zhang L, Zhang J, Wei S, Chen Y, Hu M, Mo Y, Li S, Zeng M, Li H, Liang C, Ren Y, Xu L, Liang W, Zhu X, Wang X, Sun D. Deciphering the molecular nexus between Omicron infection and acute kidney injury: a bioinformatics approach. Front Mol Biosci 2024; 11:1340611. [PMID: 39027131 PMCID: PMC11254815 DOI: 10.3389/fmolb.2024.1340611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background The ongoing global health crisis of COVID-19, and particularly the challenges posed by recurrent infections of the Omicron variant, have significantly strained healthcare systems worldwide. There is a growing body of evidence indicating an increased susceptibility to Omicron infection in patients suffering from Acute Kidney Injury (AKI). However, the intricate molecular interplay between AKI and Omicron variant of COVID-19 remains largely enigmatic. Methods This study employed a comprehensive analysis of human RNA sequencing (RNA-seq) and microarray datasets to identify differentially expressed genes (DEGs) associated with Omicron infection in the context of AKI. We engaged in functional enrichment assessments, an examination of Protein-Protein Interaction (PPI) networks, and advanced network analysis to elucidate the cellular signaling pathways involved, identify critical hub genes, and determine the relevant controlling transcription factors and microRNAs. Additionally, we explored protein-drug interactions to highlight potential pharmacological interventions. Results Our investigation revealed significant DEGs and cellular signaling pathways implicated in both Omicron infection and AKI. We identified pivotal hub genes, including EIF2AK2, PLSCR1, GBP1, TNFSF10, C1QB, and BST2, and their associated regulatory transcription factors and microRNAs. Notably, in the murine AKI model, there was a marked reduction in EIF2AK2 expression, in contrast to significant elevations in PLSCR1, C1QB, and BST2. EIF2AK2 exhibited an inverse relationship with the primary AKI mediator, Kim-1, whereas PLSCR1 and C1QB demonstrated strong positive correlations with it. Moreover, we identified potential therapeutic agents such as Suloctidil, Apocarotenal, 3'-Azido-3'-deoxythymidine, among others. Our findings also highlighted a correlation between the identified hub genes and diseases like myocardial ischemia, schizophrenia, and liver cirrhosis. To further validate the credibility of our data, we employed an independent validation dataset to verify the hub genes. Notably, the expression patterns of PLSCR1, GBP1, BST2, and C1QB were consistent with our research findings, reaffirming the reliability of our results. Conclusion Our bioinformatics analysis has provided initial insights into the shared genetic landscape between Omicron COVID-19 infections and AKI, identifying potential therapeutic targets and drugs. This preliminary investigation lays the foundation for further research, with the hope of contributing to the development of innovative treatment strategies for these complex medical conditions.
Collapse
Affiliation(s)
- Li Wang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lantian Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Shuqi Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingliang Hu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Sha Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Min Zeng
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yi Ren
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Liting Xu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Wenhua Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Xuejiao Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaokai Wang
- Xuzhou First People’s Hospital, Xuzhou, Jiangsu, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
45
|
Duman E, Özmen Ö, Kul S. Profiling several key milk miRNAs and analysing their signalling pathways in dairy sheep breeds during peak and late lactation. Vet Med Sci 2024; 10:e1505. [PMID: 38924289 PMCID: PMC11198020 DOI: 10.1002/vms3.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The comprehensive understanding of microRNAs (miRNAs) in sheep milk during various lactation periods and their impact on milk yield and composition remains limited. OBJECTIVES This study aimed to investigate the expression patterns of four highly expressed miRNAs in sheep milk and their association with milk composition and yield parameters during peak and late lactation stages. METHODS A total of 40 healthy 4-year-old Akkaraman (n = 20) and Awassi (n = 20) ewes registered with the Ministry of Agriculture and Forestry of the Republic of Türkiye were used in the present study. For miRNA isolation from milk, the Qiagen miRNeasy Serum/Plasma Advanced Kit was utilised following the manufacturer's instructions. The expression levels of miRNAs were assessed using Qiagen miRNA PCR Assays. RESULTS The significant fold changes in the expression levels of oar-miR-30a-5p, oar-miR-148a and oar-miR-181a were observed between peak and late lactation periods in the Awassi sheep breed. Conversely, only oar-miR-30a-5p and oar-miR-148a exhibited statistically significant changes in the Akkaraman sheep breed during the same lactation periods. Furthermore, oar-miR-21-5p demonstrated a significant fold change exclusively in peak lactation compared to Akkaraman and Awassi ewes. CONCLUSIONS The findings suggest that the expression of the analysed miRNAs is influenced by both the lactation stage and different sheep breeds. This study offers valuable insights into the relationship between key miRNA expressions in sheep milk and milk composition and yield parameters during peak and late lactation, contributing to the existing knowledge in this field.
Collapse
Affiliation(s)
- Esra Duman
- Faculty of Medicine, Institute of Molecular Gastroenterology and HepatologyKocaeli UniversityKocaeliTürkiye
| | - Özge Özmen
- Faculty of Veterinary Medicine, Department of GeneticsAnkara UniversityAnkaraTürkiye
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal BreedingYozgat Bozok UniversityYozgatTürkiye
| |
Collapse
|
46
|
Bhattacharjya A, Islam MM, Uddin MA, Talukder MA, Azad AKM, Aryal S, Paul BK, Tasnim W, Almoyad MAA, Moni MA. Exploring gene regulatory interaction networks and predicting therapeutic molecules for hypopharyngeal cancer and EGFR-mutated lung adenocarcinoma. FEBS Open Bio 2024; 14:1166-1191. [PMID: 38783639 PMCID: PMC11216941 DOI: 10.1002/2211-5463.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Hypopharyngeal cancer is a disease that is associated with EGFR-mutated lung adenocarcinoma. Here we utilized a bioinformatics approach to identify genetic commonalities between these two diseases. To this end, we examined microarray datasets from GEO (Gene Expression Omnibus) to identify differentially expressed genes, common genes, and hub genes between the selected two diseases. Our analyses identified potential therapeutic molecules for the selected diseases based on 10 hub genes with the highest interactions according to the degree topology method and the maximum clique centrality (MCC). These therapeutic molecules may have the potential for simultaneous treatment of these diseases.
Collapse
Affiliation(s)
- Abanti Bhattacharjya
- Department of Computer Science and EngineeringJagannath UniversityDhakaBangladesh
| | - Md Manowarul Islam
- Department of Computer Science and EngineeringJagannath UniversityDhakaBangladesh
| | - Md Ashraf Uddin
- School of Information TechnologyDeakin UniversityGeelongAustralia
| | - Md Alamin Talukder
- Department of Computer Science and EngineeringInternational University of Business Agriculture and TechnologyDhakaBangladesh
| | - AKM Azad
- Department of Mathematics and Statistics, Faculty of ScienceImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Sunil Aryal
- School of Information TechnologyDeakin UniversityGeelongAustralia
| | - Bikash Kumar Paul
- Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Software EngineeringDaffodil International UniversityDhakaBangladesh
| | - Wahia Tasnim
- Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | | | - Mohammad Ali Moni
- Artificial Intelligence & Data Science, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- AI & Digital Health Technology, Artificial Intelligence and Cyber Futures InstituteCharles Sturt UniversityBathurstAustralia
- Rural Health Research InstituteCharles Sturt UniversityOrangeAustralia
| |
Collapse
|
47
|
Fernández-Ruiz M, López-García Á, Valverde-Manso A, Parra P, Rodríguez-Goncer I, Ruiz-Merlo T, López-Medrano F, González E, Polanco N, San Juan R, Andrés A, Aguado JM, Redondo N. Human microRNA sequencing and cytomegalovirus infection risk after kidney transplantation. Am J Transplant 2024; 24:1180-1192. [PMID: 38311311 DOI: 10.1016/j.ajt.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Cytomegalovirus (CMV)-seropositive kidney transplant recipients (KTRs) with detectable CMV-specific cell-mediated immunity according to the QuantiFERON-CMV assay (QTF-CMV) are expected to have adequate immune protection. Nevertheless, a proportion of patients still develop CMV infection. Human microRNAs (hsa-miRNAs) are promising biomarkers owing to their high stability and easy detection. We performed whole blood miRNA sequencing in samples coincident with the first reactive QTF-CMV after transplantation or cessation of antiviral prophylaxis to investigate hsa-miRNAs differentially expressed according to the occurrence of CMV infection. One-year incidence of CMV viremia was 55.0% (median interval from miRNA sequencing sampling of 29 days). After qPCR validation, we found that hsa-miR-125a-5p was downregulated in KTRs developing CMV viremia within the next 90 days (ΔCt: 7.9 ± 0.9 versus 7.3 ± 1.0; P = .011). This difference was more evident among KTRs preemptively managed (8.2 ± 0.9 versus 6.9 ± 0.8; P < .001), with an area under the receiver operating characteristic curve of 0.865. Functional enrichment analysis identified hsa-miR-125a-5p targets involved in cell cycle regulation and apoptosis, including the BAK1 gene, which was significantly downregulated in KTRs developing CMV viremia. In conclusion, hsa-miR-125a-5p may serve as biomarker to identify CMV-seropositive KTRs at risk of CMV reactivation despite detectable CMV-CMI.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ángela López-García
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Andrea Valverde-Manso
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain; Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
48
|
Armesto M, Nemours S, Arestín M, Bernal I, Solano-Iturri JD, Manrique M, Basterretxea L, Larrinaga G, Angulo JC, Lecumberri D, Iturregui AM, López JI, Lawrie CH. Identification of miRNAs and Their Target Genes Associated with Sunitinib Resistance in Clear Cell Renal Cell Carcinoma Patients. Int J Mol Sci 2024; 25:6881. [PMID: 38999991 PMCID: PMC11241516 DOI: 10.3390/ijms25136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC) patients in recent years. However, 20-30% of treated patients do not respond. To identify miRNAs and genes associated with a response, comparisons were made between biopsies from responder and non-responder ccRCC patients. Using integrated transcriptomic analyses, we identified 37 miRNAs and 60 respective target genes, which were significantly associated with the NF-kappa B, PI3K-Akt and MAPK pathways. We validated expression of the miRNAs (miR-223, miR-155, miR-200b, miR-130b) and target genes (FLT1, PRDM1 and SAV1) in 35 ccRCC patients. High levels of miR-223 and low levels of FLT1, SAV1 and PRDM1 were associated with worse overall survival (OS), and combined miR-223 + SAV1 levels distinguished responders from non-responders (AUC = 0.92). Using immunohistochemical staining of 170 ccRCC patients, VEGFR1 (FLT1) expression was associated with treatment response, histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) score, whereas SAV1 and BLIMP1 (PRDM1) were associated with metachronous metastatic disease. Using in situ hybridisation (ISH) to detect miR-155 we observed higher tumoural cell expression in non-responders, and non-tumoural cell expression with increased histological grade. In summary, our preliminary analysis using integrated miRNA-target gene analyses identified several novel biomarkers in ccRCC patients that surely warrant further investigation.
Collapse
Affiliation(s)
- María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - María Arestín
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Iraide Bernal
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Jon Danel Solano-Iturri
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Manuel Manrique
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Laura Basterretxea
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Medical Oncology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Gorka Larrinaga
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| | - David Lecumberri
- Department of Urology, Urduliz University Hospital, 48610 Urduliz, Spain;
| | | | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Pathology Department, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
49
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
50
|
Zhang Z, Zou Z, Zhang H, Zhang DM. Regulatory network analysis based on integrated miRNA-TF reveals key genes in heart failure. Sci Rep 2024; 14:13896. [PMID: 38886500 PMCID: PMC11183224 DOI: 10.1038/s41598-024-64732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The etiology and pathophysiology of heart failure are still unknown. Increasing evidence suggests that abnormal microRNAs (miRNAs) and transcription factors (TFs) expression may be associated with the development of heart failure. Therefore, this study aims to explore key miRNAs, TFs, and related genes in heart failure to gain a greater understanding of the pathogenesis of heart failure. To search and download the dataset of mRNA chips related to heart failure from the GEO database (GSE59867, GSE9128, and GSE134766), we analyzed differential genes and screened the common differentially expressed genes on two chips using R language software. The binary interactions and circuits among miRNAs, TFs, and corresponding genes were determined by Pearson correlation coefficient. A regulatory network of miRNAs, TFs, and target genes was constructed based on bioinformatics. By comparing the sequences of patients with and without heart failure, five downregulated genes with hypermethylated mRNA and three upregulated genes with hypomethylated mRNA were identified. The miRNA-TF gene regulatory network consisted of 26 miRNAs, 22 TFs and six genes. GO and KEGG analysis results revealed that BP terms like cellular response to organic substance, cellular response to cytokine stimulus, and KEGG pathways like osteoclast differentiation, MAPK signaling pathway, and legionellosis were enriched of the DEGs. TMEM87A, PPP2R2A, DUSP1, and miR-92a have great potential as biomarkers for heart failure. The integrated analysis of the mRNA expression spectrum and microRNA-transcription factor-gene revealed the regulatory network of heart failure, which may provide clues to its alternative treatment.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Ziying Zou
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China
| | - Dai-Min Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211112, Jiangsu, People's Republic of China.
| |
Collapse
|