1
|
Yu X, Yao Y, Zhou H, Zhu J, Zhang N, Sang S, Zhou H. Integrating network pharmacology and experimental validation to explore the potential mechanism by which resveratrol acts on osimertinib resistance in lung cancer. Oncol Lett 2025; 29:192. [PMID: 40041411 PMCID: PMC11877012 DOI: 10.3892/ol.2025.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
Globally, osimertinib resistance has been a long-term challenge. Resveratrol, a naturally occurring polyphenolic compound found in various plants, has the potential to modulate multidrug resistance mechanisms. However, the specific role of resveratrol in delaying osimertinib resistance in lung cancer is still unclear. The present study aimed to investigate the therapeutic effects and underlying mechanisms of resveratrol in delaying osimertinib resistance. Accordingly, the corresponding targets of resveratrol were screened through the Traditional Chinese Medicine Systems Pharmacology database. Similarly, the corresponding targets for osimertinib resistance were mined from the GeneCards database. A protein-protein interaction network was subsequently constructed to pinpoint key hub genes that resveratrol may target to delay resistance. Molecular docking analysis was then employed to assess the binding energy between the predicted key targets and resveratrol. Finally, in vitro experiments were performed to validate the results. Ultimately, 13 potential therapeutic targets of resveratrol related to delaying osimertinib resistance were identified. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the effects of resveratrol may be associated with the apoptotic pathway. Molecular docking revealed that resveratrol has good binding affinities with MCL1 and BCL2L11. In vitro experiments confirmed that resveratrol inhibited the proliferation of osimertinib-resistant cells and upregulated the expression of BCL2L11. In conclusion, resveratrol may promote apoptosis by targeting BCL2L11 to delay osimertinib resistance.
Collapse
Affiliation(s)
- Xin Yu
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Yuan Yao
- Department of TCM, Shimen Er Lu Community Health Service Center of Jing'an District, Shanghai 200041, P.R. China
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, P.R. China
| | - Haiwen Zhou
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Jintao Zhu
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Nini Zhang
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang 311800, P.R. China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
2
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
3
|
Wei FF, Zhang J, Jia Z, Yao ZC, Chen CQ. Furmonertinib re-challenge for epidermal growth factor receptor-mutant lung adenocarcinoma after osimertinib-induced interstitial lung disease: A case report. World J Clin Oncol 2025; 16:101766. [PMID: 40130059 PMCID: PMC11866095 DOI: 10.5306/wjco.v16.i3.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Most non-small cell lung cancer patients have epidermal growth factor receptor (EGFR) activating mutations, such as exon 19 deletion and exon 21 replacement mutations. Osimertinib is a third-generation EGFR-tyrosine kinase inhibitors approved for the treatment of lung cancer patients carrying EGFR activating mutations. Osimertinib-induced interstitial lung disease (ILD) is a rare and potentially fatal pulmonary toxic manifestation of drug therapy. At present, there is no international consensus on the risks and treatment of the osimertinib-induced ILD. CASE SUMMARY We report a case of a 56-year-old woman who was diagnosed with lung adenocarcinoma with lung hilum, mediastinal lymph nodes and brain metastases (T4N3M1c stage IVB). The patient received targeted treatment with osimertinib after radiotherapy and chemotherapy. But she developed ILD after osimertinib treatment. Following active symptomatic treatment and hormone treatment, the lung injury alleviated. The patient was retreated with furmonertinib combined with prednisone and did not experience ILD again. So far, she has survived for 14 months without disease progression. CONCLUSION Retreatment with furmonertinib under prednisone could be considered as an effective therapeutic option after risk-benefit assessment for EGFR-mutant lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Fei-Fei Wei
- Department of Tumor Radiotherapy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second People’s Hospital of Guangxi Zhuang Autonomous Region), Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Jing Zhang
- Department of Oncology, People’s Hospital of Guilin, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Zhe Jia
- Department of Oncology, People’s Hospital of Guilin, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Chao Yao
- Department of Pathematology, People’s Hospital of Guilin, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| | - Chun-Qiao Chen
- Department of Oncology, People’s Hospital of Guilin, Guilin 541002, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Gawli CS, Patil CR, Patel HM. A clinical review on third and fourth generation EGFR tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Bioorg Med Chem 2025; 123:118146. [PMID: 40153991 DOI: 10.1016/j.bmc.2025.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
"Epidermal growth factor receptor (EGFR)" mutations are pivotal in the pathogenesis of "Non-Small Cell Lung Cancer (NSCLC)," which is associated with high morbidity and mortality rates. The advent of third and fourth-generation EGFR tyrosine kinase inhibitors (TKIs) has significantly advanced the therapeutic landscape for EGFR-mutant NSCLC, particularly in overcoming resistance mutations such as T790M and C797S. This review delves into the current clinical status, efficacy, safety profiles, and regulatory approvals of third-generation EGFR TKIs, including Osimertinib, Lazertinib, Furmonertinib, Aumolertinib, Rezivertinib, Befotertinib, Sunvozertinib. Furthermore, it explores emerging fourth-generation EGFR TKIs designed to address resistance mechanisms beyond those targeted by their predecessors. Notable fourth-generation candidates such as TQB3804, BPI-361175, BDTX-1535, WJ13404, QLH11811, H002, HS-10375, BBT-207, JIN-A02, and HS-10504 are highlighted for their potential to overcome the C797S mutation. The review emphasizes the importance of these advanced inhibitors in enhancing "progression-free survival and overall survival rates". By evaluating the therapeutic potential and limitations of these EGFR TKIs, this review aims to guide future research in the management of EGFR-mutant NSCLC. This acts as guiding beacon for the strategic design and development of third and fourth generation EGFR-TK inhibitors to overcome the drug resistance hurdles in the development of EGFR-TK inhibitors.
Collapse
Affiliation(s)
- Chandrakant S Gawli
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule 425405 Maharashtra, India
| | - Chandragouda R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule 425405 Maharashtra, India
| | - Harun M Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule 425405 Maharashtra, India.
| |
Collapse
|
5
|
Dai J, Lu X, Zhang C, Qu T, Li W, Su J, Guo R, Yin D, Wu P, Han L, Zhang E. NNMT promotes acquired EGFR-TKI resistance by forming EGR1 and lactate-mediated double positive feedback loops in non-small cell lung cancer. Mol Cancer 2025; 24:79. [PMID: 40089784 PMCID: PMC11909984 DOI: 10.1186/s12943-025-02285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are remarkably effective for treating EGFR-mutant non-small cell lung cancer (NSCLC). However, patients inevitably develop acquired drug resistance, resulting in recurrence or metastasis. It is important to identify novel effective therapeutic targets to reverse acquired TKI resistance. RESULTS Bioinformatics analysis revealed that nicotinamide N-methyltransferase (NNMT) was upregulated in EGFR-TKI resistant cells and tissues via EGR1-mediated transcriptional activation. High NNMT levels were correlated with poor prognosis in EGFR-mutated NSCLC patients, which could promote resistance to EGFR-TKIs in vitro and in vivo. Mechanistically, NNMT catalyzed the conversion of nicotinamide to 1-methyl nicotinamide by depleting S-adenosyl methionine (the methyl group donor), leading to a reduction in H3K9 trimethylation (H3K9me3) and H3K27 trimethylation (H3K27me3) and subsequent epigenetic activation of EGR1 and ALDH3A1. In addition, ALDH3A1 activation increased lactic acid levels, which further promoted NNMT expression via p300-mediated histone H3K18 lactylation on its promoter. Thus, NNMT mediates the formation of a double positive feedback loop via EGR1 and lactate, EGR1/NNMT/EGR1 and NNMT/ALDH3A1/lactate/NNMT. Moreover, the combination of a small-molecule inhibitor for NNMT (NNMTi) and osimertinib exhibited promising potential for the treatment of TKI resistance in an NSCLC osimertinib-resistant xenograft model. CONCLUSIONS The combined contribution of these two positive feedback loops promotes EGFR-TKI resistance in NSCLC. Our findings provide new insight into the role of histone methylation and histone lactylation in TKI resistance. The pivotal NNMT-mediated positive feedback loop may serve as a powerful therapeutic target for overcoming EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jun Su
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Pingping Wu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, Jiangsu, PR China.
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Soni S, Megha K, Shah VB, Shah AC, Bhatt S, Merja M, Khadela A. Unlocking the therapeutic potential of antibody-drug conjugates in targeting molecular biomarkers in non-small cell lung cancer. J Egypt Natl Canc Inst 2025; 37:6. [PMID: 40025313 DOI: 10.1186/s43046-025-00264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2025] [Indexed: 03/04/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and lethal malignancy worldwide, posing significant challenges to patient survival. Recent advancements in the field of oncology have introduced immunotherapy and targeted therapy as primary treatment modalities for NSCLC. However, the emergence of treatment resistance and relapse has impeded their long-term effectiveness. Antibody-drug conjugates (ADCs), a rapidly evolving class of anti-cancer agents, offer a promising solution to this issue by harnessing the specificity of monoclonal antibodies and the cytotoxic potency of drug payloads. ADCs have demonstrated notable potential in targeting both highly expressing and low-expressing malignant cells, with early-phase clinical trials yielding superior survival outcomes in NSCLC patients. This review comprehensively outlines the recent advancements in ADC-based strategies for managing NSCLC, supported by evidence from clinical trials. Additionally, the review delves into the oncogenic mechanisms of various biomarkers and offers insights into strategies for their detection in NSCLC patients. Lastly, a forward-looking perspective is provided to address the challenges associated with the utilization of ADCs in NSCLC therapy.
Collapse
Affiliation(s)
- Shruti Soni
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaivalya Megha
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vraj B Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Aayushi C Shah
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Shelly Bhatt
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Manthan Merja
- Starlit Cancer Centre, Kothiya Hospital campus, Ahmedabad, Gujarat, 382350, India
| | - Avinash Khadela
- Department of Pharmacology L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
- Present address: L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Zhang Y, Xu Y, Xu J, Zhong H, Xia J, Zhong R. Osimertinib for EGFR-Mutant NSCLC Patients With Acquired T790M and EGFR Amplification After First-Generation EGFR-TKI Resistance. Cancer Sci 2025; 116:753-763. [PMID: 39741120 PMCID: PMC11875782 DOI: 10.1111/cas.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
Third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is the standard therapy for patients harboring T790M after first-generation EGFR-TKI resistance. However, the impact of acquired EGFR amplification on the efficacy of third-generation EGFR-TKI against T790M remains uncertain. We aimed to investigate whether the presence of acquired EGFR amplification after first-generation EGFR-TKI resistance influences the efficacy of third-generation EGFR-TKI in patients with advanced non-small-cell lung cancer (NSCLC). We reviewed data from 275 advanced NSCLC patients harboring T790M after first-generation EGFR-TKI resistance. Patients were categorized into two groups based on the presence or absence of acquired EGFR amplification identified through next-generation sequencing (NGS) after first-line EGFR-TKI treatment. We evaluated the efficacy of osimertinib used as a second-line treatment. Among these patients, 59 exhibited acquired EGFR amplification, while 216 did not. The median progression-free survival (PFS) was 12.20 months in the EGFR amplification group and 12.03 months in the non-amplification group (p = 0.011), with median overall survival (OS) of 33.90 months and 23.30 months, respectively (p = 0.164). Multivariate analysis of PFS revealed that acquired EGFR amplification and EGFR 19del were independent prognostic factors for patients with T790M undergoing osimertinib. Additionally, subgroup analysis indicated a prolonged PFS in patients with EGFR 19del compared to those with EGFR 21L858R (p = 0.034) in the EGFR amplification group. Following first-generation EGFR-TKI resistance, advanced EGFR-mutant NSCLC patients harboring both acquired T790M and EGFR amplification are likely to experience enhanced PFS with osimertinib. This phenomenon is particularly noteworthy among individuals with EGFR 19del.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingqi Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinjing Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
He W, Liu P, Lei Q, Xu J, Liu L. DUSP1 Promotes Osimertinib Drug-Tolerant Persistence by Inhibiting MAPK/ERK Signaling in Non-small Cell Lung Cancer. Mol Biotechnol 2025; 67:1256-1268. [PMID: 38551790 DOI: 10.1007/s12033-024-01127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/27/2024] [Indexed: 02/08/2025]
Abstract
EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC) patients, which remarkably improve the clinical outcomes. However, drug resistance has greatly impaired the efficacy of EGFR-TKIs and contributes to cancer treatment failure. DUSP1, a negative regulator of MAPK signaling pathway, was discovered to mediate drug resistance in multiple types of cancers. Our study aimed to explore the role of DUSP1 in NSCLC cell resistance to osimertinib, a third-generation EGFR-TKI. Human NSCLC cell lines PC-9 and HCC827 were exposed to increasing concentrations of osimertinib for over 6 months to generate osimertinib resistant cells (PC-9-OR and HCC827-OR). The viabilities of osimertinib-resistant and parental sensitive NSCLC cells in response to osimertinib stimulation were detected by MTS assay and the IC50 values for osimertinib were obtained. The differentially expressed genes in osimertinib-resistant and sensitive NSCLC cells were identified by analyzing the GEO dataset GSE106765 using bioinformatic tools. DUSP1 expression was knocked down by using the short hairpin RNAs (shRNAs). Then, the effects of DUSP1 silencing on osimertinib-resistant and sensitive NSCLC cell resistance to osimertinib, viability, proliferation and apoptosis were assessed through loss-of-function experiments. The expression of key molecules (JNK, ERK, and p38 MAPK) in the MAPK signaling pathway was detected through western blotting analysis. DUSP1 was overexpressed in osimertinib-resistant NSCLC cells versus parental sensitive cells. DUSP1 silencing attenuated the resistance of NSCLC cells to osimertinib. DUSP1 silencing markedly inhibited osimertinib-resistant and sensitive NSCLC cell proliferation but enhanced cell apoptosis. Mechanically, DUSP1 knockdown increased phosphorylated-JNK, ERK, and p38 MAPK levels in NSCLC cells. Treatment with SB203580, the p38 MAPK inhibitor, reversed the effects of DUSP1 silencing on osimertinib-resistant NSCLC cell resistance to osimertinib, cell proliferation and apoptosis. DUSP1 downregulation restores the sensitivity of NSCLC cells to osimertinib via activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Wenjuan He
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Ping Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Quan Lei
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Jun Xu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Li Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China.
- Wuhan Fourth Hospital, No.473, Hanzheng Street, Qiaokou District, Wuhan, Hubei Province, China.
| |
Collapse
|
9
|
Yang X, Li W. Comprehensive analysis of the potential mechanism of gansui in blocking non-small cell lung cancer progression. PHARMACEUTICAL BIOLOGY 2025; 63:170-187. [PMID: 40029169 DOI: 10.1080/13880209.2025.2471844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/07/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
CONTEXT Gansui [Euphorbia kansui T. N. Liou ex S.B.Ho (Euphorbiaceae)] has been reported to inhibit the proliferation of non-small cell lung cancer (NSCLC) cells; however, its underlying pharmacological mechanism remains unclear. OBJECTIVE To investigate the potential effects and mechanisms of Gansui in blocking NSCLC progression. MATERIALS AND METHODS The targets of Gansui's components and NSCLC-related targets were obtained through public database and published studies. Functional enrichment analysis was performed using the clusterProfiler R package. STRING database was used for protein-protein interaction analysis. CytoHubba plugin was applied to get the hub genes. Molecular docking was applied to assess the binding affinities between the hub targets and the crucial components. Kidjolanin was used to treat A549 and NCI-H1385, and its effects on cell viability, sensitivity of paclitaxel and expression levels of hub genes were investigated by cell counting kit-8 assay, flow cytometry and qPCR. RESULTS A total of 16 Gansui active ingredients and 337 targets were collected, of which 298 targets overlapped with NSCLC-related genes. STAT3, EGFR, GRB2, AKT2, AKT3 and PIK3CA were identified as hub genes. The components in Gansui, including kidjoranin 3-O-β-digitoxopyranoside, cynotophylloside B, 13-Oxyingenol-dodecanoate, and kidjolanin had good binding affinity with the hub targets. Kidjolanin inhibited the viability of NSCLC cells, promoted apoptosis and inhibited the expression of hub genes. Kidjolanin also enhanced the proliferation inhibition and apoptosis of NSCLC cells induced by paclitaxel. DISCUSSION AND CONCLUSION Gansui exerts anti-NSCLC effects via multiple downstream targets, implying its potential in NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoxu Yang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Mauri G, Patelli G, Roazzi L, Valtorta E, Amatu A, Marrapese G, Bonazzina E, Tosi F, Bencardino K, Ciarlo G, Mariella E, Marsoni S, Bardelli A, Bonoldi E, Sartore-Bianchi A, Siena S. Clinicopathological characterisation of MTAP alterations in gastrointestinal cancers. J Clin Pathol 2025; 78:195-201. [PMID: 38350716 PMCID: PMC11874331 DOI: 10.1136/jcp-2023-209341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Methylthioadenosine phosphorylase (MTAP) is an essential metabolic enzyme in the purine and methionine salvage pathway. In cancer, MTAP gene copy number loss (MTAP loss) confers a selective dependency on the related protein arginine methyltransferase 5. The impact of MTAP alterations in gastrointestinal (GI) cancers remains unknown although hypothetically druggable. Here, we aim to investigate the prevalence, clinicopathological features and prognosis of MTAP loss GI cancers. METHODS Cases with MTAP alterations were retrieved from The Cancer Genome Atlas (TCGA) and a real-world cohort of GI cancers profiled by next-generation sequencing. If MTAP alterations other than loss were found, immunohistochemistry was performed. Finally, we set a case-control study to assess MTAP loss prognostic impact. RESULTS Findings across the TCGA dataset (N=1363 patients) and our cohort (N=508) were consistent. Gene loss was the most common MTAP alteration (9.4%), mostly co-occurring with CDKN2A/B loss (97.7%). Biliopancreatic and gastro-oesophageal cancers had the highest prevalence of MTAP loss (20.5% and 12.7%, respectively), being mostly microsatellite stable (99.2%). In colorectal cancer, MTAP loss was rare (1.1%), while most MTAP alterations were mutations (5/7, 71.4%); among the latter, only MTAP-CDKN2B truncation led to protein loss, thus potentially actionable. MTAP loss did not confer worse prognosis. CONCLUSIONS MTAP alterations are found in 5%-10% of GI cancers, most frequently biliopancreatic and gastro-oesophageal. MTAP loss is the most common alteration, identified almost exclusively in MSS, CDKN2A/B loss, upper-GI cancers. Other MTAP alterations were found in colorectal cancer, but unlikely to cause protein loss and drug susceptibility.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Roazzi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuele Valtorta
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Marrapese
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gabriele Ciarlo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elisa Mariella
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Bonoldi
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Division of Research and Innovation, Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
11
|
Wang S, Lai JC, Li Y, Tang C, Lu J, Han M, Ye X, Jia L, Cui W, Yang J, Wu C, Wang L. Loss of CDKN2A Enhances the Efficacy of Immunotherapy in EGFR-Mutant Non-Small Cell Lung Cancer. Cancer Res 2025; 85:585-601. [PMID: 39514336 DOI: 10.1158/0008-5472.can-24-1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Mutant EGFR is a common driver of non-small cell lung cancer (NSCLC). Although mutant EGFR has been reported to limit the efficacy of immunotherapy, a subset of patients with EGFR-mutant NSCLC benefit from treatment with immune checkpoint inhibitors. A better understanding of how co-occurring genomic alterations in oncogenic driver genes impact immunotherapy efficacy may provide a more complete understanding of cancer heterogeneity and identify biomarkers of response. Here, we investigated the effects of frequent EGFR co-mutations in EGFR-mutant lung cancer models and identified loss-of-function mutation of CDKN2A as a potential sensitizer to anti-PD-1 treatment in vitro and in vivo. Mechanistically, CDKN2A loss impacted the composition of the tumor immune microenvironment by promoting the expression of PD-L2 through reduced ubiquitination of c-MYC, and mutant EGFR cooperating to upregulate c-MYC and PD-L2 by activating the MAPK pathway. Blocking PD-L2 induced antitumor immune responses mediated by CD8+ T cells in EGFR/CDKN2A co-mutated lung cancer. Importantly, a small-molecule PD-L2 inhibitor, zinc undecylenate, remodeled the tumor immune microenvironment of EGFR/CDKN2A co-mutant tumors and enhanced the antitumor efficacy of EGFR tyrosine kinase inhibitors. Collectively, these results identify EGFR/CDKN2A co-mutation as a distinct subtype of NSCLC that shows superior sensitivity to immune checkpoint blockade and reveals a potential combined therapeutic strategy for treating this NSCLC subtype. Significance: Upregulation of c-MYC driven by co-mutation of CDKN2A and EGFR increases PD-L2 to abrogate CD8+ T-cell activity in lung cancer, which confers sensitivity to PD-L2 blockade in combination with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Jia-Cheng Lai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yu Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chengfang Tang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Jiajia Lu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Min Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Xianjiang Ye
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| |
Collapse
|
12
|
Zhu H, She Q, Li H, Zhang N, Huang W, Xu Y, Liu Z, Liang Y. EGFR-TKIs induce acneiform rash and xerosis via Caspase-3/GSDME-mediated pyroptosis of keratinocytes and sebocytes. Toxicology 2025; 511:154018. [PMID: 39608440 DOI: 10.1016/j.tox.2024.154018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Skin toxicities are the most common adverse effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). While EGFR-TKIs induce pyroptosis in lung cancer cells through Gasdermin E (GSDME) activation, it is unknown whether they can similarly affect skin cells. In this study, we used immunohistochemistry to demonstrate that in acneiform rash, the N-terminus of GSDME (GSDME-N) is predominantly expressed in the basal layer of the follicular epithelium and sebocytes, while it is absent in the interfollicular epidermis. In contrast, in cases of xerosis or secondary eczematous rash, GSDME-N was significantly expressed in the basal layer of the interfollicular epidermis and weakly or partially positive in the follicular epithelium. Bright-field microscopy of HaCaT and SZ95 cells treated with afatinib revealed cell swelling and large bubble formation, while scanning electron microscopy showed a reduction in microvilli and membrane pores formation. Transmission electron microscopy further revealed multiple membrane pores and decreased cytoplasmic density. Importantly, we found that GSDME is cleaved during afatinib-induced pyroptosis via caspase-3 activation. ELISA analysis further confirmed that afatinib-treated cells released elevated levels of HMGB1 and IL-1α. Meanwhile, inhibition of caspase-3 activity or knockdown of GSDME both suppressed afatinib-induced pyroptosis, while GSDME elimination did not affect caspase-3 activation. These results indicate that afatinib-induced pyroptosis in keratinocytes and sebocytes is mediated by the caspase-3/GSDME pathway. Our findings suggest that GSDME-dependent pyroptosis in HaCaT and SZ95 cells contributes to the development of acneiform rash and xerosis, highlighting the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Huiling Zhu
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, No.2, Lujing Road, Yuexiu District, Guangzhou, Guangdong 510091, China
| | - Qiuyun She
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, No. 28, Middle Qiaozhong Road, Liwan District, Guangzhou, Guangdong 510163, China
| | - Hongmei Li
- Core Facility Center of Life Sciences, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No.135 Xingang West Road, Guangzhou 510275, China
| | - Ning Zhang
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, No. 28, Middle Qiaozhong Road, Liwan District, Guangzhou, Guangdong 510163, China
| | - Weining Huang
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, No. 28, Middle Qiaozhong Road, Liwan District, Guangzhou, Guangdong 510163, China
| | - Yingping Xu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, No. 2, Lujing Road, Yuexiu District, Guangzhou 510091, China
| | - Zhongrong Liu
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, No. 28, Middle Qiaozhong Road, Liwan District, Guangzhou, Guangdong 510163, China.
| | - Yunsheng Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, No.2, Lujing Road, Yuexiu District, Guangzhou, Guangdong 510091, China.
| |
Collapse
|
13
|
Huang J, Zhang X, Zhang H, Li Y, Huang H, Li Z, Qiu Z, Wu H, Huang D, Xu X, Bian J. Addressing Clinical Limitations of Glutaminase Inhibitors: Novel Strategies for Osimertinib-Resistant Lung Cancer by Exploiting Glutamine Metabolic Dependency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411479. [PMID: 39680480 PMCID: PMC11809341 DOI: 10.1002/advs.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Overcoming acquired resistance to Osimertinib remains a critical challenge in treating NSCLC. This research indicates that Osimertinib-resistant cells exhibit a strong dependence on glutamine metabolism. However, targeting GLS1 shows limited anticancer effects, probably because it cannot fully block the glutamine metabolic pathway. The investigation reveals that a more effective strategy involves simultaneously inhibiting both ASCT2 and GLS1. After confirming the efficacy of this dual-targeting approach against Osimertinib-resistant cells in preclinical models, the potential of utilizing a broad-spectrum glutamine metabolism antagonist is further explored to achieve superior antitumor efficacy. DON, broad-spectrum glutamine antagonist, presents toxicity issues. Herein, the high NQO1 expression in Osimertinib-resistant NSCLC cells is leveraged to design an NQO1-responsive DON prodrug, 10e (LBJ-10e). This prodrug demonstrates superior safety compared to natural DON and greater antitumor activity against resistant tumors compared to the clinical phase II drug DRP104. These findings may address the clinical limitations of GLS1 allosteric inhibitors and underscore prodrug strategies in effectively treating Osimertinib-resistant lung cancer, providing a foundation for future clinical trials.
Collapse
Affiliation(s)
- Jiali Huang
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiankang Zhang
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Hui Zhang
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Yu Li
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Huidan Huang
- Center of Drug Screening & EvaluationWannan Medical CollegeWuhuAnhui241000China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Dechun Huang
- Department of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and OptimizationDepartment of Medicinal ChemistryChina Pharmaceutical UniversityNanjingJiangsu210009China
| |
Collapse
|
14
|
Liao YY, Tsai CL, Huang HP. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers (Basel) 2025; 17:459. [PMID: 39941826 PMCID: PMC11815769 DOI: 10.3390/cancers17030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with epidermal growth factor receptor (EGFR) mutations present in a substantial proportion of patients. Third-generation EGFR tyrosine kinase inhibitors (EGFR TKI), exemplified by osimertinib, have dramatically improved outcomes by effectively targeting the T790M mutation-a primary driver of acquired resistance to earlier-generation EGFR TKI. Despite these successes, resistance to third-generation EGFR TKIs inevitably emerges. Mechanisms include on-target mutations such as C797S, activation of alternative pathways like MET amplification, histologic transformations, and intricate tumor microenvironment (TME) alterations. These resistance pathways are compounded by challenges in tolerability, adverse events, and tumor heterogeneity. In light of these hurdles, this review examines the evolving landscape of combination therapies designed to enhance or prolong the effectiveness of third-generation EGFR TKIs. We explore key strategies that pair osimertinib with radiotherapy, anti-angiogenic agents, immune checkpoint inhibitors, and other molecularly targeted drugs, and we discuss the biological rationale, preclinical evidence, and clinical trial data supporting these approaches. Emphasis is placed on how these combinations may circumvent diverse resistance mechanisms, improve survival, and maintain a favorable safety profile. By integrating the latest findings, this review aims to guide clinicians and researchers toward more individualized and durable treatment options, ultimately enhancing both survival and quality of life for patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Yan-You Liao
- Department of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chia-Luen Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
15
|
Huang G, Liu Y, Li L, Li B, Jiang T, Cao Y, Yang X, Liu X, Qu H, Li S, Zheng X. Integration analysis of microRNAs as potential biomarkers in early-stage lung adenocarcinoma: the diagnostic and therapeutic significance of miR-183-3p. Front Oncol 2024; 14:1508715. [PMID: 39759146 PMCID: PMC11697600 DOI: 10.3389/fonc.2024.1508715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) poses a significant therapeutic challenge, primarily due to delayed diagnosis and the limited efficacy of existing treatments. Methods To understand the pathogenesis and identify diagnostic biomarkers for LUAD in the early stage, we investigated differential miRNA expression in 33 stage I LUAD patients between tumor and matched paracancerous tissues by Illumina Sequencing. Target genes of differentially expressed miRNAs were predicted using TargetScan and miRDB databases and further analyzed by GO and KEGG pathway enrichment analysis. The miRNAs expression results were verified using qRT-PCR. Additionally, we evaluated the clinical significance of miRNAs by the TCGA database. miR-183-3p was chosen for subsequent biological functional studies by cell proliferation assays, cell migration and cell invasion assays, cell apoptosis and cell cycle assays in LUAD cells. The clinical relevance target genes of miR-183-3p were predicted by TargetScan databases and bioinformatics assays. Gene-specific experimental validation was performed using qRT-PCR, western blotting and luciferase reporter assays. Results We identified 36 differentially expressed miRNAs between LUAD tissues and matched paracancerous tissues. Target genes for these miRNAs revealed associations with processes and pathways such as RNA biosynthesis, intracellular signaling, protein transport, and the Ras, MAPK, and PI3K-AKT pathways. The qRT-PCR results were in alignment with the sequencing data for 19 out of these 21 miRNAs which not yet implicated in LUAD, 13 were up-regulated, 6 were down-regulated. The clinical relevance assays showed that 5 up-regulated miRNAs have diagnostic value for LUAD. miR-183-3p showed significant advantages in the result of sequencing, qRT-PCR, and clinical relevance assay. Biological functional assays showed that miR-183-3p emerged as a key regulator, promoting LUAD cell proliferation, decreasing apoptosis, and augmenting migration and invasion capabilities. The clinical relevance assays and experimental validation showed SESN1 as a clinical significance target of miR-183-3p. Discussion Our study lays the foundation for investigating miRNAs with diagnostic significance in early-stage LUAD, pointing out that inhibition of miR-183-3p may serve as a novel therapeutic in LUAD.
Collapse
Affiliation(s)
- Guodong Huang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yuxia Liu
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lisha Li
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Bing Li
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ting Jiang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yufeng Cao
- Cancer Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xiaoping Yang
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xinning Liu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Honglin Qu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Shitao Li
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zheng
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
16
|
Wang H, Xiong A, Chen X, Guo J, Tang Z, Wu C, Ren S, Zhou C, Chen J, Hou L, Jiang T. CXCR1 + neutrophil infiltration orchestrates response to third-generation EGFR-TKI in EGFR mutant non-small-cell lung cancer. Signal Transduct Target Ther 2024; 9:342. [PMID: 39638994 PMCID: PMC11621634 DOI: 10.1038/s41392-024-02045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Although third-generation Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) is standard of care for patients with EGFR-mutant Non-small cell lung cancer (NSCLC), little is known about the predictors of response or resistance. Here, we integrated single-cell RNA (scRNA) sequencing, bulk RNA sequencing, multiplexed immunofluorescence and flow cytometry data from pretreatment and post-resistant tumor samples of EGFR-mutant NSCLC patients received third-generation EGFR-TKIs. We show that resistant samples had a markedly enriched CXCR1+ neutrophils infiltration (P < 0.01) than pretreatment samples, which were distinguished from other subtypes of neutrophils and displayed immunosupressive characteristics. Spatial analysis showed that increased CXCR1+ neutrophils predominantly infiltrated into the tumor core in resistant samples and the average distance of neutrophils to tumor cells markedly reduced from 33 to 19 μm. Deep analysis of scRNA and bulk RNA sequencing data revealed the increased interactions between CXCR1+ neutrophils and tumor cells and activated TNF-α/NF-κB signaling pathway in tumor cells of resistant samples. In vitro and in vivo experiments validated that CXCR1+ neutrophils resulted in resistance to third-generation EGFR-TKI via activating TNF-α/NF-κB signaling pathway in tumor cells. Importantly, patients with low pretreatment CXCR1+ neutrophil infiltration abundance had a dramatically longer progression-free survival (11.8 vs. 7.5 months; P = 0.019) and overall survival (33.0 vs. 23.5 months; P = 0.029) than those with high infiltration abundance. Collectively, these findings suggest that CXCR1+ neutrophils infiltration was associated with the efficacy of third-generation EGFR-TKI in patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Yin F, Li F, Qi P, Zhang A. Inflammasome complex genes with clinical relevance suggest potential as therapeutic targets for anti-tumor drugs in clear cell renal cell carcinoma. Open Life Sci 2024; 19:20220980. [PMID: 39588117 PMCID: PMC11588011 DOI: 10.1515/biol-2022-0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 11/27/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a challenging malignancy characterized by intricate biology and clinical characteristics. Despite advancements in treatment strategies, the molecular mechanisms underlying ccRCC initiation, progression, and therapeutic resistance remain elusive. Inflammasomes, multi-protein complexes involved in innate immunity and inflammation, have emerged as potential regulators in cancers. However, their involvement and mechanisms in ccRCC remain poorly understood. In this study, we conducted a systematic investigation into the expression patterns and clinical significance of inflammasome complexes in ccRCC. We found the perturbation of inflammasome complexes genes was related to patient's prognosis and other clinical characteristics. By developing an Inflammasome Complexes (IFC) score and identifying IFC subtypes with distinct clinical characteristics and oncogenic roles, our study suggested that inflammasome activation could impact tumorigenesis and modulate the tumor immune landscape, particularly its positive correlations with immunosuppressive macrophages. Furthermore, our study revealed the potential of inflammasome complex genes as predictive markers for patient responses to various anti-tumor drugs, including Osimertinib, Ulixertinib, Telomerase Inhibitor IX, and GSK2578215A. These findings have significant clinical implications and offer opportunities for guiding treatment strategies and improving patient outcomes of ccRCC.
Collapse
Affiliation(s)
- Fengchao Yin
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Urology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pan Qi
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
18
|
Yao L, Zhang C, Li D, Xu L, Yang X. Efficacy and safety of osimertinib plus bevacizumab versus osimertinib alone for advanced non-small-cell lung cancer with EGFR mutations: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e40320. [PMID: 39533634 PMCID: PMC11557104 DOI: 10.1097/md.0000000000040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND To systematically evaluate the efficacy and safety of osimertinib plus bevacizumab in treating advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. METHODS Up to May 26, 2024, the databases of PubMed, EMBASE, Cochrane Library, ClinicalTrials.gov, China National Knowledge Infrastructure, Chinese Biomedical Literature, China Science and Technology Journal, and Wanfang were searched, and the randomized controlled clinical trials (RCTs) of osimertinib plus bevacizumab in the treatment of advanced EGFR-mutant NSCLC were included. Two researchers independently screened the literature, assessed the quality of the included literature, and extracted the literature data. Revman5.4 software was used for meta-analysis. RESULTS A total of 824 patients were included in 10 RCTs. The results of meta-analysis showed that compared with the control group (osimertinib alone), the experimental group (osimertinib plus bevacizumab) had a higher objective response rate (ORR) (relative risk [RR] = 1.23, 95% confidence interval [CI] = 1.03-1.47, P = .02), and the experimental group could significantly reduce the expression levels of carcinoembryonic antigen (mean difference [SMD] = 0.82, 95% CI = 0.30-1.35, P = .002), vascular endothelial growth factor (SMD = 0.43, 95% CI = 0.13-0.73, P = .005), neuron-specific enolase (SMD = 0.88, 95% CI = 0.60-1.17, P < .00001), cytokeratin 19 fragments (SMD = 1.33, 95% CI = 0.34-2.33, P = .009), and carbohydrate antigen 125 (SMD = 0.46, 95% CI = 0.15-0.77, P = .004) in serum. However, the experimental group did not significantly improve the disease control rate (DCR) (RR = 1.17, 95% CI = 1.00-1.36, P = .05), 1- and 2-year progression-free survival (PFS) rates (RR = 1.15, 95% CI = 1.00-1.33, P = .05; RR = 1.02, 95% CI = 0.74-1.40, P = .92), 1- and 2-year overall survival (OS) rates (RR = 1.11, 95% CI = 0.92-1.36, P = .28; RR = 0.99, 95% CI = 0.84-1.18, P = .95). Interestingly, the results of subgroup analysis showed that the experimental group significantly improved ORR, DCR, 1-year PFS, and OS rates in the Chinese population and patients under 65 years old (P < .05). In addition, when the dose of bevacizumab was 7.5 mg/kg q3w in the experimental group, ORR, DCR, 1-year PFS, and OS rates were significantly better than those in the control group (P < .05). In terms of adverse events of drugs, the incidence of proteinuria, hypertension, oral mucositis, bleeding, nausea, and vomiting in the experimental group was higher than that in the control group (P < .05). CONCLUSION For patients with advanced EGFR-mutant NSCLC, osimertinib plus bevacizumab has some clinical benefit compared with osimertinib alone. Still, it does not provide additional long-term survival benefits and has higher toxicity. More well-designed, multicenter RCTs are needed to identify the subgroups of patients most likely to benefit from this combination regimen and to validate the optimal dose of this combination regimen.
Collapse
Affiliation(s)
- Ling Yao
- Department of Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Chunzhen Zhang
- Department of Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Dailong Li
- Department of Oncology, General Hospital of The Yangtze River Shipping, Wuhan, Hubei, China
| | - Lu Xu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| |
Collapse
|
19
|
Wang HL, Zhou SX, Kuang J, Xiao S, Li M. Feasibility and Tolerability of Anlotinib Plus PD-1 Inhibitors for Previously-Treated Advanced Non-Small Cell Lung Cancer: A Retrospective Exploratory Study. Biologics 2024; 18:313-326. [PMID: 39524378 PMCID: PMC11549916 DOI: 10.2147/btt.s489363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Objective Anlotinib demonstrated encouraging therapeutic activity as third-line treatment for patients with advanced non-small cell lung cancer (NSCLC). Programmed cell death protein 1 (PD-1) inhibitors also exhibited promising and durable response against previously-treated advanced NSCLC. Therefore, the present study aimed to determine the feasibility and safety of anlotinib plus PD-1 inhibitors for previously-treated NSCLC in clinical practice. Methods This retrospective study included 56 patients with advanced NSCLC treated with systemic treatment previously. Patients included were treated with anlotinib plus PD-1 inhibitors in clinical practice. Therapeutic outcomes of the patients were evaluated radiologically using target lesions, and the prognostic outcomes were generated by follow-up. Adverse reactions experienced throughout the treatment were documented and analyzed. Results Between August 2018 and November 2022, 56 patients with advanced NSCLC were eligible to participate in this study consecutively. Therapeutic outcomes resulted in an overall response rate of 28.6% [95% confidence interval (CI): 17.3%-42.2%] and a disease control rate of 91.1% (95% CI: 80.4%-97.0%). Furthermore, this combination regimen among the 56 patients yielded a median progression-free survival (PFS) of 6.5 months (95% CI: 4.81-8.19) and a median overall survival (OS) of 15.8 months (95% CI: 10.23-21.37), respectively. And the median duration of response (DoR) among patients who responded was 8.3 months (95% CI: 4.38-12.22). Additionally, adverse reactions of all grades throughout the treatment were observed in 50 patients (89.3%), and adverse reactions of grade ≥3 were detected in 23 patients (41.1%). Fatigue, hypertension, diarrhea, nausea, and vomiting were the most common adverse reactions. Association analysis between PFS and baseline characteristic subgroups indicated that ECOG score and number of metastatic lesions might be potential predictors of PFS in the exploratory analysis. Conclusion Anlotinib plus PD-1 inhibitors demonstrated a tolerable safety profile and encouraging therapeutic activity as subsequent-line therapy in patients with advanced NSCLC. This conclusion should be confirmed in prospective large-scale clinical trials subsequently.
Collapse
Affiliation(s)
- Hai-Li Wang
- Department of Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, People’s Republic of China
| | - Shi-Xia Zhou
- Department of Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, People’s Republic of China
| | - Jing Kuang
- Department of Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, People’s Republic of China
| | - Sa Xiao
- Department of Oncology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, People’s Republic of China
| | - Min Li
- Department of Oncology, Zhengzhou People’s Hospital, Zhengzhou, 450053, People’s Republic of China
| |
Collapse
|
20
|
Xiao X, Xu R, Lu J, Xin B, Wang C, Zhu K, Zhang H, Chen X. The potential role of next-generation sequencing in identifying MET amplification and disclosing resistance mechanisms in NSCLC patients with osimertinib resistance. Front Oncol 2024; 14:1470827. [PMID: 39497720 PMCID: PMC11532092 DOI: 10.3389/fonc.2024.1470827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Purposes Osimertinib, one of the third-generation EGFR-tyrosine kinase inhibitors (TKIs) designed to target EGFR T790M mutation, significantly improves the prognosis of lung cancer. However, drug resistance still happens and MET amplification is responsible for one of the main causes. Fluorescence in situ hybridization (FISH) is the gold standard for MET amplification detection, but fundamentally limited by observer subjectivity. Herein, we assessed the value of next-generation sequencing (NGS) method in MET amplification detection in non-small cell lung cancer (NSCLC), as well as revealed the mutation profiling of NSCLC patients with osimertinib resistance to provide some valuable clues to the mechanisms of resistance. Methods A total of 317 cancer tissue samples from 317 NSCLC patients at time of progression following osimertinib were submitted to NGS and only 96 tissues were tested by FISH simultaneously. With FISH results as gold standard, enumeration algorithm was applied to establish the optimal model for identifying MET amplification using gene copy number (GCN) data. Results The optimal model for identifying MET amplification was constructed based on the GCN of MET, BRAF, CDK6 and CYP3A4, which achieved a 74.0% overall agreement with FISH and performed well in identifying MET amplification except polysomy with a sensitivity of 85.7% and a specificity of 93.9%. The inconsistency between NGS and FISH occurred mainly in polysomy subtype, while MET GCN ≥ 5 could be reliably recognized by NGS. Moreover, the most frequently mutated genes in NSCLC patients with osimertinib resistance were EGFR (59.94%), followed by TP53 (43.85%), NRG1 (9.46%), PIK3CA (6.31%), and ATM (5.36%). The known resistance mechanisms, including MET amplification, EGFR (C797S, L718Q/R), TP53, CDK4, CDK6, CDKN2A, BRAF, KRAS, NRAS and PIK3CA mutations were also disclosed in our cohort. Conclusions NGS assay can achieve a high concordance with FISH in MET amplification detection and has advantages in portraying various genetic alterations, which is of worthy in clinical promotion.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Physics, Changchun University of Science and Technology, Changchun, China
- Research & Development Department, Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, China
| | - Ren Xu
- School of Physics, Changchun University of Science and Technology, Changchun, China
- Research & Development Department, Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, China
| | - Jun Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Xin
- Research & Development Department, Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, China
| | - Chenyang Wang
- Research & Development Department, Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, China
| | - Kexin Zhu
- Research & Development Department, Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, China
| | - Hao Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xinyu Chen
- School of Physics, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
21
|
Deng J, Zhou J, Jiang B. Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy. Discov Oncol 2024; 15:559. [PMID: 39404930 PMCID: PMC11480308 DOI: 10.1007/s12672-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Protein shuttling between the cytoplasm and nucleus is a unique phenomenon in eukaryotic organisms, integral to various cellular functions. Membrane-bound transcription factors (MTFs), a specialized class of nucleocytoplasmic shuttling proteins, are anchored to the cell membrane and enter the nucleus upon ligand binding to exert their transcriptional regulatory functions. MTFs are crucial in cellular signal transduction, and aberrant nucleocytoplasmic shuttling of MTFs is closely associated with tumor initiation, progression, and resistance to anticancer therapies. Studies have demonstrated that MTFs, such as human epidermal growth factor receptor (HER), fibroblast growth factor receptor (FGFR), β-catenin, Notch, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor (IR), play critical roles in tumorigenesis and cancer progression. Targeted therapies developed against HERs and FGFRs, among these MTFs, have yielded significant success in cancer treatment. However, the development of drug resistance remains a major challenge. As research on MTFs progress, it is anticipated that additional MTF-targeted therapies will be developed to enhance cancer treatment. In this review, we summarized recent advancements in the study of MTFs and their roles in carcinogenesis and therapy, aiming to provide valuable insights into the potential of targeting MTF pathways for the reseach of therapeutic strategies.
Collapse
Affiliation(s)
- JiaLi Deng
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jie Zhou
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - BinYuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
22
|
Dawoud R, Saman H, Rasul K, Jibril F, Sahal A, Al-Okka R, Mahfouz Y, Omar NE, Hamad A, Mohsen R, Kanbour A, Battikh N, Chandra P, Elazzazy S. Real-World Data Presenting the Descriptive Analysis of the Use of Tyrosine Kinase Inhibitors (TKIs) Among Metastatic Non-Small-Cell Lung Cancer (mNSCLC) Patients in Qatar: A Nationwide Retrospective Cohort Study. Clin Med Insights Oncol 2024; 18:11795549241272490. [PMID: 39416762 PMCID: PMC11481063 DOI: 10.1177/11795549241272490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background There has been significant improvement in treating metastatic non-small-cell lung cancer (mNSCLC) over the past 2 decades. The aim of this study is to describe the use of tyrosine kinase inhibitors (TKIs) in Qatar. This study focuses on the objective response rate (ORR) and reported adverse drug events (ADEs) of TKIs used for the management of patients with mNSCLC. Methods This is a descriptive retrospective cohort study. All non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations who received TKIs between 2015 and 2019 in Qatar were included. The TKIs used during this period include EGFR inhibitors such as afatinib, erlotinib, gefitinib, and osimertinib and ALK inhibitors such as alectinib and crizotinib. The response on each TKI was identified by reporting the ORR (as the sum of the complete response [CR] and the partial response [PR]), in addition stable disease (SD) and disease progression (DP) were reported. While ADEs were reported using the National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE). Results A total of 63 patients were included, of which 36 cases (57.1%) expressed EGFR mutation, and 27 patients (42.9%) expressed ALK rearrangement. The ORR in EGFR inhibitors was as follows: osimertinib 40%, gefitinib 33%, afatinib 22%, and erlotinib 18%. However, the response to the ALK-targeted therapy was 43% with alectinib and 40% with crizotinib. A total of 112 ADEs were reported. They were distributed as 63.4% (71 of 112) with the anti-EGFR and 36.6% (41 of 112) ADEs with the ALK inhibitors. In the anti-EGFR group, the most common types of ADEs were dermatological toxicity 30%, whereas, in the anti-ALK group, gastrointestinal toxicity was the most common (29%). Conclusions The EGFR-targeted and ALK-targeted therapies appear to have acceptable clinical response rate and safety profile in our population. Close and frequent monitoring of adverse events is advised to ensure a good quality of life and prevent serious complications.
Collapse
Affiliation(s)
- Rawan Dawoud
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Harman Saman
- Department of Pulmonary Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Kakil Rasul
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Farah Jibril
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Arwa Sahal
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Randa Al-Okka
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Yaser Mahfouz
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anas Hamad
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| | - Reyad Mohsen
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Naim Battikh
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Prem Chandra
- Department of Medical Research, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shereen Elazzazy
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| |
Collapse
|
23
|
Lv L, Hua X, Liu J, Zhan S, Zhang Q, Liang X, Feng J, Song Y. Anlotinib reverses osimertinib resistance via inhibiting epithelial-to-mesenchymal transition and angiogenesis in non-small cell lung cancer. J Biomed Res 2024; 38:1-15. [PMID: 39375945 DOI: 10.7555/jbr.38.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
In the present, we aimed to investigate the effect of anlotinib on the potential reversal of osimertinib resistance by inhibiting the formation of epithelial-to-mesenchymal transition (EMT) and angiogenesis. In a clinical case, anlotinib reversed osimertinib resistance in Non-small cell lung cancer (NSCLC). We performed an immunohistochemical experiment on tumor tissues from three non-small cell lung cancer patients exhibiting osimertinib resistance to analyze alterations in the expression levels of EMT markers and vascular endothelial growth factor A (VEGFA) before and after osimertinib resistance. The results revealed the downregulation of E-cadherin, coupled with the upregulation of vimentin and VEGFA in tumor tissues of patients exhibiting osimertinib resistance, compared with the expression in tissues of patients before taking osimertinib. Subsequently, we established osimertinib-resistant cell lines and found that the osimertinib-resistant cells acquired the EMT features. Then, we analyzed the synergistic effects of the combination therapy to verify whether anlotinib could reverse osimertinib resistance by inhibiting EMT. The expression levels of VEGFA and micro-vessels were analyzed in the combination group in vitro. Finally, we explored the reversal of osimertinib resistance in combination with anlotinib in vivo with 20 nude mice. The combined treatment of osimertinib and anlotinib effectively prevented the metastasis of resistant cells, which also inhibited tumor growth, exerted anti-tumor activity, and ultimately reversed osimertinib resistance in mice. The co-administration of osimertinib and anlotinib demonstrated their synergistic efficacy in inhibiting EMT and angiogenesis in three NSCLC patients, ultimately reversing osimertinib resistance.
Collapse
Affiliation(s)
- Liting Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xin Hua
- Southeast University Medical College, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Sutong Zhan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Xiao Liang
- Department of Oncology, Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu 214400, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Nantong Key Laboratory of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| |
Collapse
|
24
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Aya A. Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
26
|
Shi Y, Xu Y, Wang M. Current clinical practice and physicians' insights on Chinese patients with advanced non-small cell lung cancer habouring epidermal growth factor receptor 20 insertion mutation. BMC Cancer 2024; 24:1043. [PMID: 39179992 PMCID: PMC11342509 DOI: 10.1186/s12885-024-12797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The present study aimed to investigate physicians' perspectives on the diagnosis and treatment decisions for patients with non-small cell lung cancer (NSCLC) harbouring epidermal growth factor receptor (EGFR) exon 20 insertion (exon20ins) mutations in a real-world setting in China using an online questionnaire. METHODS This study was performed via the CAPTRA-Lung collaboration between December 9, 2022 and March 6, 2023. The questionnaire was distributed digitally to physicians around China and was comprised of three sections: basic characteristics of surveyed physicians, diagnosis and treatment status of NSCLC patients with the EGFR exon20ins-mutation, and physicians' perspectives on treatment options. Physicians who treat more than 10 patients with advanced NSCLC every month and who have treated patients with advanced EGFR exon20ins-mutant NSCLC in the past six months were involved in this study. RESULTS A total of 53,729 questionnaires were distributed and 390 valid ones were collected. The EGFR mutation test was performed in 80.9% and 59.9% of patients receiving first-line or second-line therapy and beyond (hereinafter "second-line")therapy, respectively. In terms of treatment options, chemotherapy plus antiangiogenic therapy was the most common treatment option (30.0% of patients in first-line settings; 25.0% of patients in second-line settings), and a certain proportion of patients received novel EGFR exon20ins-targeted agents (including tyrosine kinase inhibitors [TKIs] and bispecific antibodies) in first- or second-line settings, which accounted for 11.9% and 15.7% of all treated patients, respectively. Additionally, physicians reported the highest satisfaction score for the efficacy and safety of targeted agents. Most physicians believed that EGFR exon20ins-targeted TKIs represented the most promising treatment option (80.2% in first-line treatment and 73.3% in second-line treatment). Among several novel agents under study, sunvozertinib has received the highest recognition for efficacy and safety. CONCLUSIONS This study investigated the current diagnosis and treatment status and physicians' perspective, of patients with EGFR exon20ins-mutant NSCLC. The results highlight significant unmet clinical needs in this subgroup of patients. EGFR exon20ins-targeted TKIs were recognized as the most promising treatment regimen and may benefit more patients considering their awareness and acceptance of targeted therapy.
Collapse
Affiliation(s)
- Yuequan Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Ko JC, Chen JC, Huang CH, Chen PJ, Chang QZ, Mu BC, Chen JJ, Tai TY, Suzuki K, Wang YX, Lin YW. Downregulation of Rad51 Expression and Activity Potentiates the Cytotoxic Effect of Osimertinib in Human Non-Small Cell Lung Cancer Cells. Chemotherapy 2024; 70:12-25. [PMID: 39128459 DOI: 10.1159/000540867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study was to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. METHODS We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time polymerase chain reaction was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. RESULTS We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using small interfering RNA or AKT inactivation through the phosphatidylinositol 3-kinase inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. CONCLUSION Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Ching-Hsiu Huang
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Pei-Jung Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Qiao-Zhen Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Bo-Cheng Mu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jun-Jie Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tzu-Yuan Tai
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Kasumi Suzuki
- Division of Fundamental and Applied Sciences, Iwate University, Morioka, Japan
| | - Yi-Xuan Wang
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
28
|
Fang W, Peng X, Zhou Q. Combination of pemetrexed with bevacizumab for non-small-cell lung cancer: a meta-analysis study. J Cardiothorac Surg 2024; 19:478. [PMID: 39090722 PMCID: PMC11295867 DOI: 10.1186/s13019-024-02975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Combining pemetrexed with bevacizumab may have some potential in improving the efficacy in patients with non-small-cell lung cancer (NSCLC), and this meta-analysis aims to explore the impact of pemetrexed addition to bevacizumab on treatment efficacy for NSCLC. METHODS PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched, and we included randomized controlled trials (RCTs) assessing the effect of pemetrexed addition to bevacizumab on treatment efficacy in patients with NSCLC. Overall survival and progression-free survival were included in this meta-analysis. RESULTS Four RCTs were finally included in the meta-analysis. Overall, compared with bevacizumab for NSCLC, pemetrexed addition showed significantly improved overall survival (hazard ratio [HR] = 0.87; 95% confidence interval [CI] = 0.76 to 0.99; P = 0.03), survival rate (odd ratio [OR] = 1.41; 95% CI = 1.06 to 1.86; P = 0.02), progression-free survival (HR = 0.63; 95% CI = 0.55 to 0.72; P < 0.00001) and progression-free survival rate (OR = 1.92; 95% CI = 1.38 to 2.67; P < 0.00001), but led to the increase in grade ≥ 3 adverse events (OR = 2.15; 95% CI = 1.62 to 2.84; P < 0.00001). CONCLUSIONS Pemetrexed addition may be effective to improve treatment efficacy for NSCLC compared to bevacizumab treatment.
Collapse
Affiliation(s)
- Wei Fang
- Department of Respiratory, Nan'an District People's Hospital, Chongqing, 400060, China
| | - Xingqiao Peng
- Comprehensive Cancer Center, Daping Hospital, Army Medical University, No. 10 Daping Changjiang branch Road, Yuzhong District, Chongqing, 400042, China.
| | - Qun Zhou
- Department of Respiratory, Nan'an District People's Hospital, Chongqing, 400060, China
| |
Collapse
|
29
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Ren B, Li X, Zhang Z, Tai S, Yu S. Exosomes: a significant medium for regulating drug resistance through cargo delivery. Front Mol Biosci 2024; 11:1379822. [PMID: 39135913 PMCID: PMC11317298 DOI: 10.3389/fmolb.2024.1379822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Exosomes are small lipid nanovesicles with a diameter of 30-150 nm. They are present in all body fluids and are actively secreted by the majority of cells through the process of exocytosis. Exosomes play an essential role in intercellular communication and act as significant molecular carriers in regulating various physiological and pathological processes, such as the emergence of drug resistance in tumors. Tumor-associated exosomes transfer drug resistance to other tumor cells by releasing substances such as multidrug resistance proteins and miRNAs through exosomes. These substances change the cell phenotype, making it resistant to drugs. Tumor-associated exosomes also play a role in impacting drug resistance in other cells, like immune cells and stromal cells. Exosomes alter the behavior and function of these cells to help tumor cells evade immune surveillance and form a tumor niche. In addition, exosomes also export substances such as tumoricidal drugs and neutralizing antibody drugs to help tumor cells resist drug therapy. In this review, we summarize the mechanisms of exosomes in promoting drug resistance by delivering cargo in the context of the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Bixuan Ren
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Xu FZ, Meng FR, Li WJ, Xu L, Zhang H, Zhang YB, Fan XY. Predictive value of serum magnesium levels for prognosis in patients with non-small cell lung cancer undergoing EGFR-TKI therapy. Open Life Sci 2024; 19:20220923. [PMID: 39071492 PMCID: PMC11282910 DOI: 10.1515/biol-2022-0923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
The aim of this study is to assess the impact of serum magnesium (Mg) levels on prognostic outcomes in patients with non-small cell lung cancer (NSCLC) undergoing treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). A cohort comprising 91 patients with NSCLC with epidermal growth factor receptor mutations received EGFR-TKI therapy. Assessments of liver and kidney function and electrolyte levels were conducted before treatment initiation and after completing two cycles of EGFR-TKI therapy. Data on variables such as age, gender, presence of distant metastasis, smoking history, other therapeutic interventions, and the specific TKI used were collected for analysis. Cox regression analysis revealed that patients with higher Mg levels prior to EGFR-TKI therapy had significantly longer progression-free survival (PFS) and overall survival (OS). Elevated Mg levels remained predictive of PFS and OS after two cycles of EGFR-TKI therapy. Multiple regression analysis confirmed these findings. Additionally, it was observed that smokers might represent a unique population, demonstrating a correlation between OS and Mg levels. Our findings indicate that serum Mg level is a prognostic factor in patients with NSCLC undergoing EGFR-TKI therapy. This may provide new insights into the underlying mechanisms of EGFR-TKI therapy related to electrolyte balance.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Geriatric Institute, Hefei, 230001, Anhui, China
| | - Fu-Rong Meng
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Geriatric Institute, Hefei, 230001, Anhui, China
| | - Wan-Jing Li
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Geriatric Institute, Hefei, 230001, Anhui, China
| | - Lu Xu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hao Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiao-Yun Fan
- Anhui Geriatric Institute, Hefei, 230001, Anhui, China
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 of JiXi Road, ShuShan District, Hefei, 230032, Anhui, China
| |
Collapse
|
32
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
33
|
Patil BR, Bhadane KV, Ahmad I, Agrawal YJ, Shimpi AA, Dhangar MS, Patel HM. Exploring the structural activity relationship of the Osimertinib: A covalent inhibitor of double mutant EGFR L858R/T790M tyrosine kinase for the treatment of Non-Small Cell Lung Cancer (NSCLC). Bioorg Med Chem 2024; 109:117796. [PMID: 38879996 DOI: 10.1016/j.bmc.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The USFDA granted regular approval to Osimertinib (AZD9291) on March 2017, for treating individuals with metastatic Non-Small Cell Lung Cancer having EGFR T790M mutation. Clinically, Osimertinib stands at the forefront for the treatment of patients with Non-Small Cell Lung Cancer. Osimertinib forms a covalent bond with the Cys797 residue and predominantly spares binding to WT-EGFR, thereby reducing toxicity and enabling the administration of doses that effectively inhibit T790M. However, a high percentage of patients treated with Osimertinib (AZD9291) developed a tertiary cysteine797 to serine797 (C797S) mutation in the EGFR kinase domain, rendering resistance to it. This comprehensive review sheds light on the chemistry, computational aspects, structural features, and expansive spectrum of biological activities of Osimertinib and its analogues. The in-depth exploration of these facets serves as a valuable resource for medicinal chemists, empowering them to design better Osimertinib analogues. This exhaustive study not only provides insights into improving potency but also emphasizes considerations for mutant selectivity and optimizing pharmacokinetic properties. This review acts as a guiding beacon for the strategic design and development of next-generation Osimertinib analogues.
Collapse
Affiliation(s)
- Bhatu R Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Kunal V Bhadane
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Yogesh J Agrawal
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Amit A Shimpi
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Mayur S Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India.
| |
Collapse
|
34
|
Zhang H, Zhang Y, Zhu Y, Dong T, Liu Z. Understanding the treatment response and resistance to targeted therapies in non-small cell lung cancer: clinical insights and perspectives. Front Oncol 2024; 14:1387345. [PMID: 39055566 PMCID: PMC11269125 DOI: 10.3389/fonc.2024.1387345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Lung cancer remains the leading cause of mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with a generally poor prognosis. In recent years, advances in targeted therapy and sequencing technology have brought significant improvement in the therapeutic outcomes of patients with advanced NSCLC. Targeted inhibitors directed against specific mutated or rearranged oncogenes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1(ROS1) among others, exhibit promising anti-tumor activity. Unfortunately, some patients develop acquired resistance and disease progression soon after initial remission. Despite the continuous development of new drugs and strategies to overcome drug resistance, it is still a major challenge in the treatment of NSCLC. The landscape of targeted therapy for NSCLC is evolving rapidly in response to the pace of scientific research. This study aimed to provide a comprehensive review of tumor target antigens and agents related to targeted therapy in NSCLC.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
36
|
Papazyan T, Denis MG, Sagan C, Raimbourg J, Herbreteau G, Pons-Tostivint E. Impact of PD-L1 Expression on the Overall Survival of Caucasian Patients with Advanced EGFR-Mutant NSCLC Treated with Frontline Osimertinib. Target Oncol 2024; 19:611-621. [PMID: 38825654 DOI: 10.1007/s11523-024-01072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The treatment of advanced non-small cell lung cancer (NSCLC) harboring an oncogenic epidermal growth factor receptor mutation (EGFRm) is currently based on osimertinib, a third-generation tyrosine kinase inhibitor (TKI). High Programmed death ligand 1 (PD-L1) expression ≥ 50% demonstrated to be a negative prognostic factor, mostly among Asian populations treated with 1st/2nd generation TKI. OBJECTIVE We investigated the impact of PD-L1 expression on the progression free survival (PFS) and overall survival (OS) within a cohort of patients receiving osimertinib as first-line treatment. METHODS Our bi-centre French retrospective study included all newly diagnosed patients with an advanced EGFRm (common and uncommon) NSCLC, between May 2018 and November 2022, treated with osimertinib. The primary endpoint was OS according to tumor proportion score PD-L1 expression (low/intermediate < 50% vs high ≥ 50%). Survival analyses were performed using Kaplan-Meier method and Cox model for adjusted multivariate analysis. RESULTS Of 96 patients, median age was 71 (IQR 62-76), 70 were women (72.9%), 81 had a performance status (PS) 0-1 (84.3%). Median follow-up was 22.6 months (95% CI 20.5-24.7). Twenty patients (20.8%) had high PD-L1 expression ≥ 50%. No significant differences in baseline characteristics were observed based on PD-L1 status. Patients with PD-L1 ≥ 50% had significant shorter PFS and OS than those with PD-L1 < 50%, respectively 9.3 vs 17.5 months (p = 0.044 months) and 14.3 vs 26.0 months (p = 0.025). Multivariable adjustment for baseline characteristics found that PS ≥ 2 (HR 2.79, 95% CI 1.12-6.93, p = 0.027), PD-L1 ≥ 50% (HR 2.61, 95% CI 1.31 to 5.22, p = 0.007) and uncommon EGFR mutation (HR 4.59, 95% CI 1.95-10.80, p = <0.001) were associated with a shorter OS. Brain metastases at diagnosis and age ≥ 65 were not, respectively HR 1.66 (95% CI 0.90-3.06, p = 0.11) and HR 0.95 (95% CI 0.50-1.80, p=0.9). CONCLUSIONS Our study found that PD-L1 expression ≥ 50% was associated with a shorter OS in EGFRm NSCLC patients treated with first line osimertinib. Further research is warranted to understand the underlying molecular and cellular mechanisms of this correlation.
Collapse
Affiliation(s)
- Thomas Papazyan
- Medical oncology, Centre Hospitalier Universitaire Nantes, Nantes University, Boulevard Professeur Jacques Monod, 44800, Saint Herblain, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Marc G Denis
- Department of Biochemistry, Centre Hospitalier Universitaire Nantes, Nantes University, 44000, Nantes, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Christine Sagan
- Pathology Department, Centre Hospitalier Universitaire Nantes, Nantes University, 44000, Nantes, France
| | - Judith Raimbourg
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de L'Ouest, Saint-Herblain, France
| | - Guillaume Herbreteau
- Department of Biochemistry, Centre Hospitalier Universitaire Nantes, Nantes University, 44000, Nantes, France
| | - Elvire Pons-Tostivint
- Medical oncology, Centre Hospitalier Universitaire Nantes, Nantes University, Boulevard Professeur Jacques Monod, 44800, Saint Herblain, France.
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
37
|
Wang Y, Qiu Q, Deng X, Wan M. EGFR-TKIs - induced cardiotoxicity in NSCLC: incidence, evaluation, and monitoring. Front Oncol 2024; 14:1426796. [PMID: 38983928 PMCID: PMC11232364 DOI: 10.3389/fonc.2024.1426796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The advent of targeted drug therapy has greatly changed the treatment landscape of advanced non-small cell lung cancer(NSCLC), but the cardioxic side effects of targeted drug anti-cancer therapy seriously affect the prognosis of NSCLC, and it has become the second leading cause of death in cancer patients. Therefore, early identification of the cardiotoxic side effects of targeted drugs is crucial for the prevention and treatment of cardiovascular diseases. The cardiotoxic side effects that may be caused by novel targeted drugs epidermal growth factor receptor inhibitors, including thromboembolic events, heart failure, cardiomyopathy, arrhythmia and hypertension, are discussed, and the mechanisms of their respective adverse cardiovascular reactions are summarized, to provide useful recommendations for cardiac management of patients with advanced lung cancer to maximize treatment outcomes for lung cancer survivors. Clinicians need to balance the risk-benefit ratio between targeted therapy for malignant tumors and drug-induced cardiotoxicity, and evaluate and monitor TKIs-induced cardiotoxicity through electrocardiogram, cardiac imaging, biomarkers, etc., so as to remove the susceptibility risk factors as soon as possible and provide a reference for the clinical use of such drugs in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yunlong Wang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qinggui Qiu
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xuan Deng
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Mengchao Wan
- Department of Outpatient, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Yang C, Ma S, Zhang J, Han Y, Wan L, Zhou W, Dong X, Yang W, Chen Y, Gao L, Cui W, Jia L, Yang J, Wu C, Wang Q, Wang L. EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2317790121. [PMID: 38814866 PMCID: PMC11161775 DOI: 10.1073/pnas.2317790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/β-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/β-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Shuxiang Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Jie Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yuchen Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Li Wan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wenlong Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Xiaoyu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| |
Collapse
|
39
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
40
|
Duan L, Chu C, Huang X, Yao H, Wen J, Chen R, Wang C, Tu Y, Lv Q, Pan Q, Xu S. Rational design and synthesis of 2,4-dichloro-6-methyl pyrimidine derivatives as potential selective EGFR T790M/L858R inhibitors for the treatment of non-small cell lung cancer. Arch Pharm (Weinheim) 2024; 357:e2300736. [PMID: 38381049 DOI: 10.1002/ardp.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Many patients with non-small cell lung cancer (NSCLC) initially benefit from epidermal growth factor receptor (EGFR) targeted therapy. Unfortunately, varying degrees of resistance or side effects eventually develop. Overcoming and preventing the resistance and side effects of EGFR inhibitors has become a hot topic of research today. Based on the previous studies on AZD-9291, we designed and synthesized two series of 2,4-dichloro-6-methylpyrimidine derivatives, 19 compounds in total, as potential inhibitors of the EGFR kinase. The most promising compound, L-18, showed better inhibitory activity (81.9%) and selectivity against EGFRT790M/L858R kinase. In addition, L-18 showed strong antiproliferative activity against H1975 cells with an IC50 value of 0.65 ± 0.06 μM and no toxicity to normal cells (LO-2). L-18 was able to dose-dependently induce the apoptosis of H1975 cells and produced a cell-cycle-blocking effect, and it can also dose-dependently inhibit the migration and invasion of H1975 cells. L-18 also showed in vivo anticancer efficacy in H1975 cells xenograft mice. We also performed a series of in vivo and in vitro toxicological evaluations of compound L-18, which did not cause obvious injury in mice during administration. These results suggest that L-18 may be a promising drug candidate that warrants further investigation.
Collapse
Affiliation(s)
- Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Huizhi Yao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Rui Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Caolin Wang
- School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Yuanbiao Tu
- Cancer Research Center, Jangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Han R, Lin C, Lu C, Wang Y, Kang J, Hu C, Dou Y, Wu D, He T, Tang H, Zheng J, Li L, He Y. Sialyltransferase ST3GAL4 confers osimertinib resistance and offers strategies to overcome resistance in non-small cell lung cancer. Cancer Lett 2024; 588:216762. [PMID: 38408602 DOI: 10.1016/j.canlet.2024.216762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.
Collapse
Affiliation(s)
- Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Chongqing University Jiangjin Hospital, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - TingTing He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Huan Tang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
42
|
Han R, Guo H, Shi J, Zhao S, Jia Y, Liu X, Liu Y, Cheng L, Zhao C, Li X, Zhou C. Osimertinib in combination with anti-angiogenesis therapy presents a promising option for osimertinib-resistant non-small cell lung cancer. BMC Med 2024; 22:174. [PMID: 38658988 PMCID: PMC11040894 DOI: 10.1186/s12916-024-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1β.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.
Collapse
Affiliation(s)
- Ruoshuang Han
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of Army Medical University, Chongqing, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yiwei Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
43
|
Zhou Y, Peng S, Wang H, Cai X, Wang Q. Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products. Genes (Basel) 2024; 15:468. [PMID: 38674402 PMCID: PMC11049652 DOI: 10.3390/genes15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 04/28/2024] Open
Abstract
In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.
Collapse
Affiliation(s)
- Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Huizhen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Xinyin Cai
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 202103, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| |
Collapse
|
44
|
Wang Y, Zhou Q, Liu C, Zhang R, Xing B, Du J, Dong L, Zheng J, Chen Z, Sun M, Yao X, Ren Y, Zhou X. Targeting IL-6/STAT3 signaling abrogates EGFR-TKI resistance through inhibiting Beclin-1 dependent autophagy in HNSCC. Cancer Lett 2024; 586:216612. [PMID: 38211653 DOI: 10.1016/j.canlet.2024.216612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is featured by notorious EGFR tyrosine kinase inhibitor (TKI) resistance attributable to activation of parallel pathways. The numerous phase I/II trials have rarely shown encouraging clinical outcomes of EGFR-TKIs during treatment in HNSCC patients with advanced tumors. A unique IL-6/STAT3 signaling axis is reported to regulate multiple cancer-related pathways, but whether this signaling is correlated with reduced EGFR-TKI responsiveness is unclear. Here, we found that STAT3 signaling is compensatorily upregulated after EGFR-TKI exposure and confers anti-EGFR therapy resistance during HNSCC therapy. Targeting STAT3 using small molecule inhibitors promotes complete recovery or sustained elimination of HNSCC tumors through combination with EGFR-TKIs both in vitro and in diverse animal models. Mechanistically, phosphorylated STAT3 was proven to enhance oncogenic autophagic flux, protecting cancer cells and preventing EGFR-TKI-induced tumor apoptosis. Thus, blockade of STAT3 signaling simultaneously disrupts several key interactions during tumor progression and remodels the autophagic degradation system, thereby rendering advanced HNSCC eradicable through combination with EGFR-TKI therapy. These findings provide a clinically actionable strategy and suggest STAT3 as a predictive biomarker with therapeutic potential for EGFR-TKI resistant HNSCC patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Ruizhe Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin' s Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
45
|
Lv S, Pan Q, Lu W, Zhang W, Wang N, Huang L, Li L, Liu J, Ma J, Li Z, Huang Y, Deng Q, Lei X. Tenovin 3 induces apoptosis and ferroptosis in EGFR 19del non small cell lung cancer cells. Sci Rep 2024; 14:7654. [PMID: 38561419 PMCID: PMC10985106 DOI: 10.1038/s41598-024-58499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.
Collapse
Affiliation(s)
- Sha Lv
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianrong Pan
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Weijin Lu
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517000, China
| | - Weisong Zhang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Naike Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lijuan Huang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lianjing Li
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jieyao Liu
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jiamei Ma
- Medicine and Health Science College, Guangzhou Huashang College, Guangzhou, People's Republic of China
| | - Zhan Li
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yong Huang
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xueping Lei
- The Fifth Affiliated Hospital,Guangdong Province & NMPA & State Key Laboratory,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
46
|
Bai H, Zhou Y, Liu W, Xu WY, Cheng L, Huo Y, Ji H, Xiong L. Genetic mutation profiling reveals biomarkers for targeted therapy efficacy and prognosis in non-small cell lung cancer. Heliyon 2024; 10:e27633. [PMID: 38496877 PMCID: PMC10944256 DOI: 10.1016/j.heliyon.2024.e27633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The genetic heterogeneity of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations may affect clinical responses and outcomes to EGFR tyrosine kinase inhibitors (EGFR-TKIs). This study aims to investigate the genomic factors that influence the efficacy and clinical outcomes of first-line, second-line and third-line treatments in NSCLC and explore the heterogeneity of resistance mechanisms. Materials and methods This real-world study comprised 65 patients with EGFR mutant NSCLC. Molecular alterations were detected using a customized DNA panel before and after administering targeted therapy. The efficacy and prognosis of each treatment line were evaluated. Results In first-generation EGFR-TKIs treatment, gefitinib showed favorable efficacy compared to icotinib and erlotinib, particularly in patients with EGFR L858R mutations. The resistance mechanisms to first-generation EGFR-TKIs varied among different EGFR mutation cohorts and different first-generation EGFR-TKIs. In second-line EGFR-TKIs treatment, EPH receptor A3 (EPHA3), IKAROS family zinc finger 1 (IKZF1), p21 (RAC1) activated kinase 5 (PAK5), DNA polymerase epsilon, catalytic subunit (POLE), RAD21 cohesin complex component (RAD21) and RNA binding motif protein 10 (RBM10) mutations were markedly associated with poorer progression-free survival (PFS). Notably, EPHA3, IKZF1 and RBM10 were identified as independent predictors of PFS. The mechanisms of osimertinib resistance exhibited heterogeneity, with a higher proportion of non-EGFR-dependent resistant mutations. In third-line treatments, the combination of osimertinib and anlotinib demonstrated superior efficacy compared to other regimens. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) mutation was an independent risk indicator of shorter OS following third-line treatments. Conclusions Comprehending the tumor evolution in NSCLC is advantageous for assessing the efficacy and prognosis at each stage of treatment, providing valuable insights to guide personalized treatment decisions for patients.
Collapse
Affiliation(s)
- Hao Bai
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wanting Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | - Lei Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | - Hao Ji
- Department of Respiratory and Critical Care Medicine, Department of Healthcare Associated Infection Management, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liwen Xiong
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
47
|
Qi H, Hou Y, Zheng Z, Zheng M, Qiao Q, Wang Z, Sun X, Xing L. Clinical characteristics and MRI based radiomics nomograms can predict iPFS and short-term efficacy of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma with brain metastases. BMC Cancer 2024; 24:362. [PMID: 38515096 PMCID: PMC10956298 DOI: 10.1186/s12885-024-12121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Predicting short-term efficacy and intracranial progression-free survival (iPFS) in epidermal growth factor receptor gene mutated (EGFR-mutated) lung adenocarcinoma patients with brain metastases who receive third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy was of great significance for individualized treatment. We aimed to construct and validate nomograms based on clinical characteristics and magnetic resonance imaging (MRI) radiomics for predicting short-term efficacy and intracranial progression free survival (iPFS) of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma patients with brain metastases. METHODS One hundred ninety-four EGFR-mutated lung adenocarcinoma patients with brain metastases who received third-generation EGFR-TKI treatment were included in this study from January 1, 2017 to March 1, 2023. Patients were randomly divided into training cohort and validation cohort in a ratio of 5:3. Radiomics features extracted from brain MRI were screened by least absolute shrinkage and selection operator (LASSO) regression. Logistic regression analysis and Cox proportional hazards regression analysis were used to screen clinical risk factors. Single clinical (C), single radiomics (R), and combined (C + R) nomograms were constructed in short-term efficacy predicting model and iPFS predicting model, respectively. Prediction effectiveness of nomograms were evaluated by calibration curves, Harrell's concordance index (C-index), receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Kaplan-Meier analysis was used to compare the iPFS of high and low iPFS rad-score patients in the predictive iPFS R model and to compare the iPFS of high-risk and low-risk patients in the predictive iPFS C + R model. RESULTS Overall response rate (ORR) was 71.1%, disease control rate (DCR) was 91.8% and median iPFS was 12.67 months (7.88-20.26, interquartile range [IQR]). There were significant differences in iPFS between patients with high and low iPFS rad-scores, as well as between high-risk and low-risk patients. In short-term efficacy model, the C-indexes of C + R nomograms in training cohort and validation cohort were 0.867 (0.835-0.900, 95%CI) and 0.803 (0.753-0.854, 95%CI), while in iPFS model, the C-indexes were 0.901 (0.874-0.929, 95%CI) and 0.753 (0.713-0.793, 95%CI). CONCLUSIONS The third-generation EGFR-TKI showed significant efficacy in EGFR-mutated lung adenocarcinoma patients with brain metastases, and the combined line plot of C + R can be utilized to predict short-term efficacy and iPFS.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Yichen Hou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Zhonghang Zheng
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Mei Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Qiang Qiao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Zihao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, China.
| |
Collapse
|
48
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
49
|
Gross F, Mancini A, Breton B, Kobayashi H, Pereira PHS, Le Gouill C, Bouvier M, Schann S, Leroy X, Sabbagh L. EGFR signaling and pharmacology in oncology revealed with innovative BRET-based biosensors. Commun Biol 2024; 7:250. [PMID: 38429428 PMCID: PMC10907714 DOI: 10.1038/s42003-024-05965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.
Collapse
Affiliation(s)
- Florence Gross
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Arturo Mancini
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Pedro Henrique Scarpelli Pereira
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Stephan Schann
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Xavier Leroy
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Laurent Sabbagh
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada.
| |
Collapse
|
50
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|