1
|
Xin MJ, Yuan Y. Centromere protein A knockdown inhibits rectal cancer through O6-methylguanine DNA methyltransferase/protein tyrosine phosphatase nonreceptor type 4 axis. World J Gastrointest Oncol 2025; 17:102619. [DOI: 10.4251/wjgo.v17.i4.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Centromere protein A (CENPA) exhibits an increased expression level in primary human rectal cancer tissues, but its role has not been investigated.
AIM To clarify the specific role and mechanism of CENPA in rectal cancer progression.
METHODS CENPA protein expression in rectal cancer tissues and cell lines were detected. CENPA was overexpressed and knocked down in SW837 and SW480 cells, and proliferation, invasion, apoptosis and epithelial-mesenchymal transition (EMT) marker protein levels were examined. O6-methylguanine DNA methyltransferase (MGMT) promoter methylation was assessed with methylation-specific polymerase chain reaction. Co-immunoprecipitation assay verified the interaction between MGMT and protein tyrosine phosphatase nonreceptor type 4 (PTPN4). SW837 cells with CENPA knockdown were injected subcutaneously into mice, and tumor growth was examined.
RESULTS CENPA was upregulated in rectal cancer tissues and cell lines. CENPA overexpression promoted proliferation, invasion and EMT, and inhibited apoptosis in rectal cancer cells. Whereas CENPA knockdown showed the opposite results. Moreover, CENPA inhibited MGMT expression by promoting DNA methyltransferase 1-mediated MGMT promoter methylation. MGMT knockdown abolished the CENPA knockdown-mediated inhibition of rectal cancer cell progression. MGMT increased PTPN4 protein stability by inhibiting PTPN4 ubiquitination degradation via competing with ubiquitin-conjugating enzyme E2O for interacting with PTPN4. PTPN4 knockdown abolished the inhibitory effects of MGMT overexpression on rectal cancer cell progression. Moreover, CENPA knockdown inhibited xenograft tumor growth in vivo.
CONCLUSION CENPA knockdown inhibited rectal cancer cell growth and attenuated xenograft tumor growth through regulating the MGMT/PTPN4 axis.
Collapse
Affiliation(s)
- Ming-Jie Xin
- Medical College, Henan Vocational University of Science and Technology, Zhoukou 466000, Henan Province, China
| | - Yong Yuan
- Medical College, Henan Vocational University of Science and Technology, Zhoukou 466000, Henan Province, China
| |
Collapse
|
2
|
Marques A, Drinnenberg IA. Same but different: Centromere regulations in holocentric insects and plants. Curr Opin Cell Biol 2025; 93:102484. [PMID: 39983583 DOI: 10.1016/j.ceb.2025.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Centromeres are essential chromosomal regions responsible for ensuring proper chromosome segregation during cell division. Unlike monocentric chromosomes, which have a single centromeric region, holocentric chromosomes distribute centromeric activity along their entire length. This unique organization poses intriguing questions about its structure, function, and evolutionary origins. In this review, we outline recent advances in characterizing the molecular architectures of holocentric chromosomes in mitosis and meiosis, emphasizing both the shared features and lineage-specific adaptations that have evolved in plants and insects. A more detailed characterization of holocentric architectures across different lineages will also offer valuable insights into the potential mechanisms driving the evolutionary transition from monocentric to holocentric chromosomes.
Collapse
Affiliation(s)
- André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| | - Ines A Drinnenberg
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.
| |
Collapse
|
3
|
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int J Mol Sci 2024; 26:303. [PMID: 39796159 PMCID: PMC11719560 DOI: 10.3390/ijms26010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.
Collapse
Affiliation(s)
| | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.R.); (S.F.)
| |
Collapse
|
4
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
5
|
van den Berg SJW, Jansen LET. SUMO control of centromere homeostasis. Front Cell Dev Biol 2023; 11:1193192. [PMID: 37181753 PMCID: PMC10172491 DOI: 10.3389/fcell.2023.1193192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
7
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Wu W, McHugh T, Kelly DA, Pidoux AL, Allshire RC. Establishment of centromere identity is dependent on nuclear spatial organization. Curr Biol 2022; 32:3121-3136.e6. [PMID: 35830853 PMCID: PMC9616734 DOI: 10.1016/j.cub.2022.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-ACnp1 incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-ACnp1 overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-ACnp1 assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-ACnp1 incorporation. We demonstrate that heterochromatin-independent de novo CENP-ACnp1 chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-ACnp1 assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-ACnp1 incorporation because target sequences are exposed to high levels of CENP-ACnp1 and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity.
Collapse
Affiliation(s)
- Weifang Wu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Toni McHugh
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - David A Kelly
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
9
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|
11
|
Salinas-Luypaert C, Allu PK, Logsdon GA, Dawicki-McKenna JM, Gambogi CW, Fachinetti D, Black BE. Gene replacement strategies validate the use of functional tags on centromeric chromatin and invalidate an essential role for CENP-A K124ub. Cell Rep 2021; 37:109924. [PMID: 34731637 PMCID: PMC8643106 DOI: 10.1016/j.celrep.2021.109924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Functional tags are ubiquitous in cell biology, and for studies of one chromosomal locus, the centromere, tags have been remarkably useful. The centromere directs chromosome inheritance at cell division. The location of the centromere is defined by a histone H3 variant, CENP-A. The regulation of the chromatin assembly pathway essential for centromere inheritance and function includes posttranslational modification (PTM) of key components, including CENP-A itself. Others have recently called into question the use of functional tags, with the claim that at least two widely used tags obscured the essentiality of one particular PTM, CENP-AK124 ubiquitination (ub). Here, we employ three independent gene replacement strategies that eliminate large, lysine-containing tags to interrogate these claims. Using these approaches, we find no evidence to support an essential function of CENP-AK124ub. Our general methodology will be useful to validate discoveries permitted by powerful functional tagging schemes at the centromere and other cellular locations. Using three gene replacement strategies, Salinas-Luypaert et al. demonstrate that CENP-AK124ub is not essential for CENP-A function at centromeres. Thus, functional tags do not mask the role of K124 when it is mutated. These strategies can be employed to interrogate posttranslational modifications at the centromere and other cellular locations.
Collapse
Affiliation(s)
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniele Fachinetti
- Institut Curie, PSL University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Wang Q, Xu J, Xiong Z, Xu T, Liu J, Liu Y, Chen J, Shi J, Shou Y, Yue C, Liu D, Liang H, Yang H, Yang X, Zhang X. CENPA promotes clear cell renal cell carcinoma progression and metastasis via Wnt/β-catenin signaling pathway. J Transl Med 2021; 19:417. [PMID: 34627268 PMCID: PMC8502268 DOI: 10.1186/s12967-021-03087-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of the kidney. New and reliable biomarkers are in urgent need for ccRCC diagnosis and prognosis. The CENP family is overexpressed in many types of cancers, but its functions in ccRCC have not been fully clarified. In this paper, we found that several CENP family members were highly expressed in ccRCC tissues. Also, CENPA expression level was related to clinicopathological grade and prognosis by weighted gene co-expression network analysis (WGCNA). CENPA served as a representative CENP family member as a ccRCC biomarker. Further in vitro experiments verified that overexpression of CENPA promoted ccRCC proliferation and metastasis by accelerating the cell cycle and activating the Wnt/β-catenin signaling pathway. The elevated β-catenin led by CENPA overexpression translocated to nucleus for downstream effect. Functional recovery experiment confirmed that Wnt/β-catenin pathway was essential for ccRCC progression and metastasis. Developing selective drugs targeting CENPA may be a promising direction for cancer treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaping Chen
- Department of Thoracic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changjie Yue
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Walstein K, Petrovic A, Pan D, Hagemeier B, Vogt D, Vetter IR, Musacchio A. Assembly principles and stoichiometry of a complete human kinetochore module. SCIENCE ADVANCES 2021; 7:7/27/eabg1037. [PMID: 34193424 PMCID: PMC8245036 DOI: 10.1126/sciadv.abg1037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/14/2021] [Indexed: 05/03/2023]
Abstract
Centromeres are epigenetically determined chromosomal loci that seed kinetochore assembly to promote chromosome segregation during cell division. CENP-A, a centromere-specific histone H3 variant, establishes the foundations for centromere epigenetic memory and kinetochore assembly. It recruits the constitutive centromere-associated network (CCAN), which in turn assembles the microtubule-binding interface. How the specific organization of centromeric chromatin relates to kinetochore assembly and to centromere identity through cell division remains conjectural. Here, we break new ground by reconstituting a functional full-length version of CENP-C, the largest human CCAN subunit and a blueprint of kinetochore assembly. We show that full-length CENP-C, a dimer, binds stably to two nucleosomes and permits further assembly of all other kinetochore subunits in vitro with relative ratios closely matching those of endogenous human kinetochores. Our results imply that human kinetochores emerge from clustering multiple copies of a fundamental module and may have important implications for transgenerational inheritance of centromeric chromatin.
Collapse
Affiliation(s)
- Kai Walstein
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Birte Hagemeier
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| |
Collapse
|
14
|
Carty BL, Dattoli AA, Dunleavy EM. CENP-C functions in centromere assembly, the maintenance of CENP-A asymmetry and epigenetic age in Drosophila germline stem cells. PLoS Genet 2021; 17:e1009247. [PMID: 34014920 PMCID: PMC8136707 DOI: 10.1371/journal.pgen.1009247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)—the epigenetic determinant of centromere identity—is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of ‘mitotic drive’ that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs. Stem cells can divide in an asymmetric fashion giving rise to two daughter cells with different fates. One daughter remains a stem cell, while the other can differentiate and adopt a new cell fate. Germline stem cells in the testes and ovaries give rise to differentiating daughter cells that eventually form the gametes, eggs and sperm. Here we investigate mechanisms controlling germline stem cell divisions occurring in the ovary of the fruit fly Drosophila melanogaster. Centromeres are epigenetically specified loci on chromosomes that make essential connections to the cell division machinery. Our study is focused on the centromere component CENP-C. We show that CENP-C is critical for the correct assembly of centromeres that occurs prior to cell division in germline stem cells. In addition, we find that CENP-C is asymmetrically distributed between stem and daughter cells, with more CENP-C at stem cell centromeres. Finally, we show that CENP-C depletion in germline stem cells disrupts the balance of stem and daughter cells in the developing ovary, impacting on cell fate. Taken together, we propose that CENP-C level and function at centromeres plays an important role in determining cell fate upon asymmetric division occurring in stem cells.
Collapse
Affiliation(s)
- Ben L. Carty
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Anna A. Dattoli
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
15
|
Wang N, Liu J, Ricci WA, Gent JI, Dawe RK. Maize centromeric chromatin scales with changes in genome size. Genetics 2021; 217:iyab020. [PMID: 33857306 PMCID: PMC8049547 DOI: 10.1093/genetics/iyab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/30/2021] [Indexed: 11/14/2022] Open
Abstract
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.
Collapse
Affiliation(s)
- Na Wang
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| |
Collapse
|
16
|
de Groot C, Houston J, Davis B, Gerson-Gurwitz A, Monen J, Lara-Gonzalez P, Oegema K, Shiau AK, Desai A. The N-terminal tail of C. elegans CENP-A interacts with KNL-2 and is essential for centromeric chromatin assembly. Mol Biol Cell 2021; 32:1193-1201. [PMID: 33852350 PMCID: PMC8351560 DOI: 10.1091/mbc.e20-12-0798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of Caenorhabditis elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-tail containing the predicted structured region binds to KNL-2, a conserved SANTA domain and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode Caenorhabditis briggsae, despite divergence of the N-tail and KNL-2 primary sequences. Thus, the extended N-tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A–specific chaperone/targeting factor of the Scm3/HJURP family.
Collapse
Affiliation(s)
- Christian de Groot
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Jack Houston
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| | - Bethany Davis
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Department of Biology and Chemistry, Embry-Riddle Aeronautical University, Prescott, AZ 86301
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Joost Monen
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,School of Theoretical & Applied Science, Ramapo College of New Jersey, Mahwah, NJ 07430
| | | | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Gassmann R. Cell Division: Chromatin Dynamics Shape Insect Holocentromeres. Curr Biol 2021; 31:R34-R37. [PMID: 33434487 DOI: 10.1016/j.cub.2020.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Centromeres, the chromosomal loci that ensure chromosome segregation by directing kinetochore assembly, are typically marked by the histone CENP-A. A study in CENP-A-deficient insects finds that virtually any chromosomal region with low nucleosome turnover can assemble kinetochores, highlighting the extraordinary plasticity of holocentromeres.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
19
|
Milagre I, Pereira C, Oliveira RA, Jansen LET. Reprogramming of human cells to pluripotency induces CENP-A chromatin depletion. Open Biol 2020; 10:200227. [PMID: 33081635 PMCID: PMC7653353 DOI: 10.1098/rsob.200227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are central to development as they are the precursors of all cell types in the embryo. Therefore, maintaining a stable karyotype is essential, both for their physiological role as well as for their use in regenerative medicine. Karyotype abnormalities in PSCs in culture are common but the underlying causes remain unknown. To gain insight, we explore the composition of the centromere and kinetochore in human embryonic and induced PSCs. Centromere function depends on CENP-A nucleosome-defined chromatin. We show that while PSCs maintain abundant pools of CENP-A, CENP-C and CENP-T, these essential centromere components are strongly reduced at stem cell centromeres. Outer kinetochore recruitment is also impaired to a lesser extent, indicating an overall weaker kinetochore while the inner centromere protein Aurora B remains unaffected. We further show that, similar to differentiated human cells, CENP-A chromatin assembly in PSCs requires transition into G1 phase. Finally, reprogramming experiments indicate that reduction of centromeric CENP-A levels is an early event during dedifferentiation, coinciding with global chromatin remodelling. Our characterization of centromeres in human stem cells suggests a possible link between impaired centromere function and stem cell aneuploidies.
Collapse
Affiliation(s)
- Inês Milagre
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Carolina Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Lars E T Jansen
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.,Department of Biochemistry, University of Oxford, OX1, 3QU, UK
| |
Collapse
|