1
|
Hockaden N, Leriger G, Wang J, Ray H, Chakrabarti S, Downing N, Desmond J, Williams D, Hollenhorst PC, Longmore G, Carpenter RL. Amyloidogenesis promotes HSF1 activity enhancing cell survival during breast cancer metastatic colonization. Cell Stress Chaperones 2025; 30:143-159. [PMID: 40147541 PMCID: PMC12002613 DOI: 10.1016/j.cstres.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women and the second leading cause of cancer deaths in women. A majority of these breast cancer deaths are due to metastasis, which occurs when primary tumor cells invade into the blood stream to travel and colonize at distant organ sites. Metastatic colonization is the rate-limiting step of metastasis. Heat shock factor 1 (HSF1) is a transcription factor that has been shown to be involved in promoting malignancy with a function in metastatic dissemination due to its contribution to promoting epithelial-to-mesenchymal transition. The role of HSF1 in colonization is unclear. In this study, we observed that HSF1 was essential for metastatic colonization. Consistent with these findings, we also observed that HSF1 was more active in human metastatic tumors compared to primary tumors. HSF1 was also seen to be activated during in vitro colony formation, which was accompanied by increases in amyloid beta (Aβ) fibrils, which was also observed in human metastatic tumors. Aβ fibrils led to HSF1 activation and depletion or inhibition of HSF1 led to increases in Aβ fibrils. HSF1 inhibition with small molecule inhibitors suppressed in vitro colony formation and mammosphere growth of metastatic breast cancer cells. These results suggest that colonization increases Aβ fibril formation that subsequently activates HSF1 as a cell survival mechanism that is essential for metastatic initiation and outgrowth.
Collapse
Affiliation(s)
| | - Gabi Leriger
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | - John Wang
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | - Haimanti Ray
- Medical Sciences, Indiana University, Bloomington, IN 47405
| | | | | | - Jacob Desmond
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - David Williams
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University, Bloomington, IN 47405; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gregory Longmore
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard L Carpenter
- Medical Sciences, Indiana University, Bloomington, IN 47405; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202.
| |
Collapse
|
2
|
Fiser O, Muller P. Role of HSF1 in cell division, tumorigenesis and therapy: a literature review. Cell Div 2025; 20:11. [PMID: 40287736 PMCID: PMC12034185 DOI: 10.1186/s13008-025-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for maintaining cellular health and protein homeostasis. These effects are achieved through rapid expression of molecular chaperones, the heat shock proteins (HSPs), which ensure correct protein folding, repair, degradation and stabilization of multiprotein complexes. In addition to its role in the HSR, HSF1 influences the cell cycle, including processes such as S phase progression and regulation of the p53 pathway, highlighting its importance in cellular protein synthesis and division. While HSF1 activity offers neuroprotective benefits in neurodegenerative diseases, its proteome-stabilizing function may also reinforce tumorigenic transformation. HSF1 overexpression in many types of cancer reportedly enhances cell growth enables survival, alters metabolism, weakens immune response and promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of "HSF1 addiction". Furthermore, the client proteins of HSF1-regulated chaperones, particularly Hsp90, include numerous key players in classical tumorigenic pathways. HSF1 thus presents a promising therapeutic target for cancer treatment, potentially in combination with HSP inhibitors to alleviate typical initiation of HSR upon their use.
Collapse
Affiliation(s)
- Otakar Fiser
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
3
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. Cell Death Differ 2025:10.1038/s41418-025-01502-x. [PMID: 40204953 DOI: 10.1038/s41418-025-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The stress-associated chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing oncoproteins. Most inhibitors target the key component, heat-shock protein 90 (HSP90). Although HSP90 inhibitors are highly tumor-selective, they fail in clinical trials. These failures are partly due to interference with a negative regulatory feedback loop in the heat-shock response (HSR): in response to HSP90 inhibition, there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock-factor 1 (HSF1). We recently identified that wild-type p53 reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here, we test whether in HSP90-based therapies, simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. We found that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids, and patient-derived organoids (PDOs). Mechanistically, upon combination therapy, CRC cells upregulate p53-associated pathways, apoptosis, and inflammatory pathways. Likewise, in a CRC mouse model, dual HSF1-HSP90 inhibition represses tumor growth and remodels immune cell composition. Importantly, inhibition of the cyclin-dependent kinases 4/6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Moreover, in p53-deficient CRC cells, HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR and reduces cancer growth. Likewise, p53-mutated PDOs respond to dual HSF1-HSP90 inhibition, providing a strategy to target CRC independent of the p53 status. In sum, we provide new options to improve HSP90-based therapies to enhance CRC therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
4
|
Liu H, Gu X, Meng J, Gu Y, Shen L, Li J, Lv Y, Wang X, Chen B, Yin J, Li A. Knockdown of HSF1 inhibits invasion, metastasis, and proliferation of endometrial carcinoma cells while promoting apoptosis. Cancer Biomark 2025; 42:18758592241311191. [PMID: 40235068 DOI: 10.1177/18758592241311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BackgroundHeat shock factor 1 (HSF1), the principal transcriptional regulator of cellular stress responses, has been exhibited to play a role in the progression of various human cancer types. However, the function of HSF1 in endometrial cancer (EC) has not yet been evaluated.ObjectiveThis study examined the expression and role of HSF1 in EC.MethodsImmunohistochemistry was performed to explore HSF1 level in 135 endometrial tissue specimens. The relationship between HSF1 level and EC patients' clinicopathological characteristics was analyzed. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting were employed to explore HSF1 expression level in tissues in vitro. Small interfering RNA (siRNA) was employed to suppress HSF1 expression level. The invasion and migration capacities were evaluated using transwell and wound healing assays. Cell cycle arrest and apoptosis were assessed by flow cytometric analysis.ResultsEC tissues exhibited higher HSF1 expression level compared with normal endometrial and atypical endometrial hyperplasia tissues. High HSF1 expression level was associated with histological grade, muscular invasion, lymph node metastasis, and estrogen receptor (ER) expression level in EC tissues and cells. Kaplan-Meier analysis indicated that EC patients with elevated HSF1 expression level had poorer overall survival. Knockdown of HSF1 in EC cells resulted in cell cycle arrest, increased apoptosis, and inhibited EC cell proliferation, invasion, and migration.ConclusionThe results demonstrated that HSF1 could function as an oncogene in EC. HSF1 could play a notable role in EC progression. HSF1 may be a potential molecular target for both the treatment and prognosis of patients with EC.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yongzhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yanhong Lv
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Obstetrics and Gynecology, Xi'an People's Hospital (Xi 'an Fourth Hospital), Xi'an, Shaanxi Province, China
| | - Junbin Yin
- Department of Neurology, The 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
| |
Collapse
|
5
|
Ghai S, Shrestha R, Su KH. HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms. Front Cell Dev Biol 2025; 12:1500880. [PMID: 39850800 PMCID: PMC11754285 DOI: 10.3389/fcell.2024.1500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit. In addition, we discuss emerging research implicating HSF1's roles in autophagy, apoptosis, DNA damage repair, drug efflux, and thus chemoresistance. This article highlights the significance of HSF1 in cancer chemoresistance and its potential as a target for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
| | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Garde R, Dea A, Herwig MF, Ali A, Pincus D. Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. J Cell Biol 2024; 223:e202401082. [PMID: 39302312 PMCID: PMC11415305 DOI: 10.1083/jcb.202401082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted the induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing the expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.
Collapse
Affiliation(s)
- Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Madeline F. Herwig
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Sebastian RM, Patrick JE, Hui T, Amici DR, Giacomelli AO, Butty VL, Hahn WC, Mendillo ML, Lin YS, Shoulders MD. Dominant-negative TP53 mutations potentiated by the HSF1-regulated proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621414. [PMID: 39554167 PMCID: PMC11565964 DOI: 10.1101/2024.11.01.621414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
Collapse
Affiliation(s)
- Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica E. Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Kawamura A, Yoshida S, Yoshida K. The diverse functions of DYRK2 in response to cellular stress. Histol Histopathol 2024; 39:1427-1434. [PMID: 38656683 DOI: 10.14670/hh-18-744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To maintain microenvironmental and cellular homeostasis, cells respond to multiple stresses by activating characteristic cellular mechanisms consisting of receptors, signal transducers, and effectors. Dysfunction of these mechanisms can trigger multiple human diseases as well as cancers. Dual-specificity tyrosine-regulated kinases (DYRKs) are members of the CMGC group and are evolutionarily conserved from yeast to mammals. Previous studies revealed that DYRK2 has important roles in the regulation of the cell cycle and survival in cancer cells. On the other hand, recent studies show that DYRK2 also exhibits significant functions in multiple cellular stress responses and in maintaining cellular homeostasis. Hence, the further elucidation of mechanisms underlying DYRK2's diverse responses to various stresses helps to promote the advancement of innovative clinical therapies and pharmacological drugs. This review summarizes the molecular mechanisms of DYRK2, particularly focusing on cellular stress responses.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Ciccarelli M, Andréasson C. Protein Misfolding Releases Human HSF1 from HSP70 Latency Control. J Mol Biol 2024; 436:168740. [PMID: 39122169 DOI: 10.1016/j.jmb.2024.168740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity. Here, we have investigated the latency control and activation of human HSF1 by HSP70 and misfolded proteins. Purified oligomeric HSF1-HSP70 (HSPA1A) complexes exhibited basal DNA binding activity that was inhibited by increasing the levels of HSP70 and, importantly, misfolded proteins reverted the inhibitory effect. Using site-specific UV photo-crosslinking, we monitored HSP70-HSF1 complexes in HEK293T cells. While HSF1 was bound by the substrate binding domain of HSP70 in unstressed cells, activation of HSF1 by heat shock as well as by inducing the misfolding of newly synthesized proteins resulted in release of HSF1 from the chaperone. Taken our results together, we conclude that latent HSF1 populate dynamic complexes with HSP70, which are sensitive to increased levels of misfolded proteins that compete for binding to the HSP70 substrate binding domain. Thus, human HSF1 is activated by various stress conditions that all titrate available HSP70.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| |
Collapse
|
11
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
12
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
13
|
Williams I, DeHart H, O'Malley M, Walker B, Ulhaskumar V, Ray H, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive PLK1 inhibitor Sensitivity in High Grade Serous Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598486. [PMID: 38915574 PMCID: PMC11195273 DOI: 10.1101/2024.06.11.598486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ovarian cancer is a deadly female cancer with high rates of recurrence. The primary treatment strategy for patients is platinum-based therapy regimens that almost universally develop resistance. Consequently, new therapeutic avenues are needed to overcome the plateau that current therapies have on patient outcomes. We describe a gene amplification involving both HSF1 and MYC, wherein these two genes on chromosome 8q are co-amplified in over 7% of human tumors that is enriched to over 30% of patients with ovarian cancer. We further found that HSF1 and MYC transcriptional activity is correlated in human tumors and ovarian cancer cell lines, suggesting they may cooperate in ovarian cancer cells. CUT&RUN for HSF1 and MYC in co-amplified ovarian cancer cells revealed that HSF1 and MYC have overlapping binding at a substantial number of locations throughout the genome where their binding peaks are near identical. Consistent with these data, a protein-protein interaction between HSF1 and MYC was detected in ovarian cancer cells, implying these two transcription factors have a molecular cooperation. Further supporting their cooperation, growth of HSF1-MYC co-amplified ovarian cancer cells were found to be dependent on both HSF1 and MYC. In an attempt to identify a therapeutic target that could take advantage of this dependency on both HSF1 and MYC, PLK1 was identified as being correlated with HSF1 and MYC in primary human tumor specimens, consistent with a previously established effect of PLK1 on HSF1 and MYC protein levels. Targeting PLK1 with the compound volasertib (BI-6727) revealed a greater than 200-fold increased potency of volasertib in HSF1-MYC co-amplified ovarian cancer cells compared to ovarian cancer cells wild-type HSF1 and MYC copy number, which extended to several growth assays, including spheroid growth. Volasertib, and other PLK1 inhibitors, have not shown great success in clinical trials and this study suggests that targeting PLK1 may be viable in a precision medicine approach using HSF1-MYC co-amplification as a biomarker for response.
Collapse
|
14
|
Nakamura ET, Park A, Pereira MA, Kikawa D, Tustumi F. Prognosis value of heat-shock proteins in esophageal and esophagogastric cancer: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:1578-1595. [PMID: 38660660 PMCID: PMC11037039 DOI: 10.4251/wjgo.v16.i4.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are molecular chaperones that play an important role in cellular protection against stress events and have been reported to be overexpressed in many cancers. The prognostic significance of HSPs and their regulatory factors, such as heat shock factor 1 (HSF1) and CHIP, are poorly understood. AIM To investigate the relationship between HSP expression and prognosis in esophageal and esophagogastric cancer. METHODS A systematic review was conducted in accordance with PRISMA recommendations (PROSPERO: CRD42022370653), on Embase, PubMed, Cochrane, and LILACS. Cohort, case-control, and cross-sectional studies of patients with esophagus or esophagogastric cancer were included. HSP-positive patients were compared with HSP-negative, and the endpoints analyzed were lymph node metastasis, tumor depth, distant metastasis, and overall survival (OS). HSPs were stratified according to the HSP family, and the summary risk difference (RD) was calculated using a random-effect model. RESULTS The final selection comprised 27 studies, including esophageal squamous cell carcinoma (21), esophagogastric adenocarcinoma (5), and mixed neoplasms (1). The pooled sample size was 3465 patients. HSP40 and 60 were associated with a higher 3-year OS [HSP40: RD = 0.22; 95% confidence interval (CI): 0.09-0.35; HSP60: RD = 0.33; 95%CI: 0.17-0.50], while HSF1 was associated with a poor 3-year OS (RD = -0.22; 95%CI: -0.32 to -0.12). The other HSP families were not associated with long-term survival. HSF1 was associated with a higher probability of lymph node metastasis (RD = -0.16; 95%CI: -0.29 to -0.04). HSP40 was associated with a lower probability of lymph node dissemination (RD = 0.18; 95%CI: 0.03-0.33). The expression of other HSP families was not significantly related to tumor depth and lymph node or distant metastasis. CONCLUSION The expression levels of certain families of HSP, such as HSP40 and 60 and HSF1, are associated with long-term survival and lymph node dissemination in patients with esophageal and esophagogastric cancer.
Collapse
Affiliation(s)
- Eric Toshiyuki Nakamura
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
- Department of Scientific Initiation, Universidade Mogi das Cruzes, São Paulo 08780911, Brazil
| | - Amanda Park
- Department of Evidence-Based Medicine, Centro Universitário Lusíada, Centre for Evidence-Based Medicine, Centro Universitário Lusíada (UNILUS), Santos, Brazil
| | - Marina Alessandra Pereira
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
| | - Daniel Kikawa
- Department of Scientific Initiation, Universidade Mogi das Cruzes, São Paulo 08780911, Brazil
| | - Francisco Tustumi
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, São Paulo 05652900, Brazil
| |
Collapse
|
15
|
Joutsen J, Pessa JC, Jokelainen O, Sironen R, Hartikainen JM, Sistonen L. Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2. Cell Stress Chaperones 2024; 29:235-271. [PMID: 38458311 PMCID: PMC10963207 DOI: 10.1016/j.cstres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
Collapse
Affiliation(s)
- Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland.
| | - Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Otto Jokelainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
16
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
17
|
Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, Woo Y, Kim ES, Kim SY, Kim KM, Lim HK, Jung J, Kang S, Park B, Lee HB, Han W, Lee MS, Moon A. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy 2024; 20:659-674. [PMID: 38290972 PMCID: PMC10936647 DOI: 10.1080/15548627.2024.2305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.
Collapse
Affiliation(s)
- Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Minjoo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yeji Hong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Young Keun Hwang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yunjung Woo
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul, Korea
| | - Kyung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
18
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581507. [PMID: 38464125 PMCID: PMC10925225 DOI: 10.1101/2024.02.22.581507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The stress-associated molecular chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing hundreds of oncoproteins and disturbing the stoichiometry of protein complexes. Most inhibitors target the key component heat-shock protein 90 (HSP90). However, although classical HSP90 inhibitors are highly tumor-selective, they fail in phase 3 clinical oncology trials. These failures are at least partly due to an interference with a negative feedback loop by HSP90 inhibition, known as heat-shock response (HSR): in response to HSP90 inhibition there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock factor 1 (HSF1). We recently identified that wildtype p53 (p53) actively reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here we test the hypothesis that in HSP90-based therapies simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. Indeed, we find that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids and patient-derived organoids (PDOs). Mechanistically, upon combination therapy human CRC cells strongly upregulate p53-associated pathways, apoptosis, and inflammatory immune pathways. Likewise, in the chemical AOM/DSS CRC model in mice, dual HSF1-HSP90 inhibition strongly represses tumor growth and remodels immune cell composition, yet displays only minor toxicities in mice and normal mucosa-derived organoids. Importantly, inhibition of the cyclin dependent kinases 4 and 6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Even more important, in p53-deficient (mutp53-harboring) CRC cells, an HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR system and reduces cancer growth. Likewise, p53-mutated PDOs strongly respond to dual HSF1-HSP90 pathway inhibition and thus, providing a strategy to target CRC independent of the p53 status. In sum, activating p53 (in p53-proficient cancer cells) or inhibiting CDK4/6 (independent of the p53 status) provide new options to improve the clinical outcome of HSP90-based therapies and to enhance colorectal cancer therapy.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- Charité – Universitätsmedizin Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | | |
Collapse
|
19
|
An X, Mao L, Wang Y, Xu Q, Liu X, Zhang S, Qiao Z, Li B, Li F, Kuang Z, Wan N, Liang X, Duan Q, Feng Z, Yang X, Liu S, Nevo E, Liu J, Storz JF, Li K. Genomic structural variation is associated with hypoxia adaptation in high-altitude zokors. Nat Ecol Evol 2024; 8:339-351. [PMID: 38195998 DOI: 10.1038/s41559-023-02275-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai-Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.
Collapse
Affiliation(s)
- Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Xi Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shangzhe Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhenglei Qiao
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Fang Li
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
20
|
Jacobs C, Shah S, Lu WC, Ray H, Wang J, Hockaden N, Sandusky G, Nephew KP, Lu X, Cao S, Carpenter RL. HSF1 Inhibits Antitumor Immune Activity in Breast Cancer by Suppressing CCL5 to Block CD8+ T-cell Recruitment. Cancer Res 2024; 84:276-290. [PMID: 37890164 PMCID: PMC10790131 DOI: 10.1158/0008-5472.can-23-0902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.
Collapse
Affiliation(s)
- Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Sakhi Shah
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - George Sandusky
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Xin Lu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Medical Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Garde R, Dea A, Herwig MF, Pincus D. Feedback control of the heat shock response by spatiotemporal regulation of Hsp70. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574867. [PMID: 38260373 PMCID: PMC10802473 DOI: 10.1101/2024.01.09.574867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.
Collapse
Affiliation(s)
- Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL
| | - Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Madeline F. Herwig
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Liu D, Guo Y, Du Q, Zhu Y, Guo Y. RING induces cell cycle arrest and apoptosis in human breast cancer cells by regulating the HSF1/MT2A axis. Exp Cell Res 2023; 433:113795. [PMID: 37797799 DOI: 10.1016/j.yexcr.2023.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
It was reported that lowly expressed RING1 indicates poor prognosis in breast cancer (BC) patients, while the mechanism by which RING1 is involved in BC progression is not fully understood. Here, we found that RING1 was lowly expressed in BC tissues and cells than in normal mammary tissues and epithelial cells. Overexpression of RING1 suppressed the cell proliferative and colony formation abilities, and facilitated cell cycle arrest and cell apoptosis in BC cells (T47D and MCF-7 cells). Mechanistically, as an ubiquitin ligase, RING1 bound to HSF1 and induced its proteasome-dependent degradation. HSF1 could bind to the promoter region of MT2A to promote the transcriptional level of MT2A. While RING1 overexpression hindered the transcriptional activation of MT2A induced by HSF1. Moreover, ectopic expression of MT2A reversed the inhibitory effect of RING1 on cell proliferation and clonogenesis, and antagonized the promotion effect of RING1 on cell cycle arrest and apoptosis in BC cells. Additionally, T47D cells infected with or without lentivirus-mediated RING1 overexpression vector (LV-RING1) were injected subcutaneously into the right back of nude mice to evaluate tumorigenicity. And overexpression of RING1 impeded the growth of BC xenografts in mice. In conclusion, RING1 suppressed the transcriptional activation of MT2A induced by HSF1 by facilitating the ubiquitination degradation of HSF1, resulting in cell cycle arrest and apoptosis in BC cells.
Collapse
Affiliation(s)
- Di Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yize Guo
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qin Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yuxuan Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ya Guo
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
23
|
Zhang Y, Liang R, Chen Y, Wang Y, Li X, Wang S, Jin H, Liu L, Tang Z. HSF1 protects cells from cadmium toxicity by governing proteome integrity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115571. [PMID: 37837696 DOI: 10.1016/j.ecoenv.2023.115571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Cadmium toxicity has been associated with disruption of protein homeostasis by interfering with protein folding processes. Heat shock factor 1 (HSF1) coordinates the rapid and extensive cellular response to maintain proteomic balance facing the challenges from many environmental stressors. Thus, we suspect that HSF1 may shield cells from cadmium toxicity by conserving proteome integrity. RESULTS Here, we demonstrate that cadmium, a highly poisonous metal, induces aggregation of cytosolic proteins in human cells, which disrupts protein homeostasis and activates HSF1. Cadmium exposure increases HSF1's phosphorylation, nuclear translocation and DNA bindings. Aside from this, HSF1 goes through liquid-liquid phase separation to form small nuclear condensates upon cadmium exposure. A specific regulatory domain of HSF1 is critical for HSF1's phase separation capability. Most importantly, human cells with impaired HSF1 are sensitized to cadmium, however, cells with overexpressed HSF1 are protected from cadmium toxicity. Overexpression of HSF1 in human cells reduces protein aggregates, amyloid fibrils and DNA damages to antagonize cadmium toxicity. CONCLUSIONS HSF1 protects cells from cadmium toxicity by governing the integrity of both proteome and genome. Similar mechanisms may enable HSF1 to alleviate cellular toxicity caused by other heavy metals. HSF1's role in cadmium exposure may provide important insights into the toxic effects of heavy metals on human cells and body organs, allowing us to better manage heavy metal poisoning.
Collapse
Affiliation(s)
- Yuchun Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingxiao Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaling Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
24
|
Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, Gassman NR, Tan M. Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology. Cancers (Basel) 2023; 15:5167. [PMID: 37958341 PMCID: PMC10649344 DOI: 10.3390/cancers15215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Yeh Chin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ibrahim Haruna Ibrahim
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Brahmana A. Tjokroprawiro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Jer-Yen Yang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Institute of Biochemistry and Molecular Biology, Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
25
|
Mazurakova A, Solarova Z, Koklesova L, Caprnda M, Prosecky R, Khakymov A, Baranenko D, Kubatka P, Mirossay L, Kruzliak P, Solar P. Heat shock proteins in cancer - Known but always being rediscovered: Their perspectives in cancer immunotherapy. Adv Med Sci 2023; 68:464-473. [PMID: 37926002 DOI: 10.1016/j.advms.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Heat shock proteins (HSPs) represent cellular chaperones that are classified into several families, including HSP27, HSP40, HSP60, HSP70, and HSP90. The role of HSPs in the cell includes the facilitation of protein folding and maintaining protein structure. Both processes play crucial roles during stress conditions in the cell such as heat shock, degradation, and hypoxia. Moreover, HSPs are important modulators of cellular proliferation and differentiation, and are strongly associated with the molecular orchestration of carcinogenesis. The expression and/or activity of HSPs in cancer cells is generally abnormally high and is associated with increased metastatic potential and activity of cancer stem cells, more pronounced angiogenesis, downregulated apoptosis, and the resistance to anticancer therapy in many patients. Based on the mentioned reasons, HSPs have strong potential as valid diagnostic, prognostic, and therapeutic biomarkers in clinical oncology. In addition, numerous papers describe the role of HSPs as chaperones in the regulation of immune responses inside and outside the cell. Importantly, highly expressed/activated HSPs may be inhibited via immunotherapeutic targets in various types of cancers. The aim of this work is to provide a comprehensive overview of the relationship between HSPs and the tumor cell with the intention of highlighting the potential use of HSPs in personalized cancer management.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Solarova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Artur Khakymov
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
| |
Collapse
|
26
|
Rivas-Macho A, Romeo MV, Rackles E, Olabarria G, Falcon-Perez JM, Berganza-Granda J, Cortajarena AL, Goñi-de-Cerio F. Potential use of heat shock protein 90 as a biomarker for the diagnosis of human diseases. Expert Rev Mol Diagn 2023; 23:875-884. [PMID: 37577928 DOI: 10.1080/14737159.2023.2246883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION The heat shock protein 90 (Hsp90) is a protein involved in many different biological processes and especially in cell survival. Some of these functions require the participation of other biological molecules, so Hsp90 is a chaperone that takes part in many protein-protein interactions working as a critical signaling hub protein. As a member of the heat shock protein family, Hsp90 expression is regulated under certain environmental and/or stressful situations, therefore Hsp90 concentration can be monitored and linked to these effects. AREAS COVERED This review discusses the Hsp90 expression in samples from individuals affected by different diseases (from infectious to cancer origin), and the biological consequences of these disorders, including the potential use of Hsp90 as a biomarker for the diagnosis of human diseases. EXPERT OPINION The potential of Hsp90 as a biomarker disease has been demonstrated in several studies in relation to infectious diseases and especially cancer. However, further research in this field is still needed, mainly to validate in statistically significant clinical studies that the detection of Hsp90 protein allows the diagnosis of some cancers at an early stage and also that it can act as a biomarker for monitoring the efficacy of their therapies.
Collapse
Affiliation(s)
- Ane Rivas-Macho
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
- Centre for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Elisabeth Rackles
- Exosomes Laboratory. Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park 801, Derio, Spain
| | - Garbiñe Olabarria
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory. Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park 801, Derio, Spain
- Centro de Investigación Biomédica e Red de enfermedades hepáticas y digestivas (CIBRehd), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Aitziber L Cortajarena
- Centre for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| |
Collapse
|
27
|
Pasqua AE, Sharp SY, Chessum NEA, Hayes A, Pellegrino L, Tucker MJ, Miah A, Wilding B, Evans LE, Rye CS, Mok NY, Liu M, Henley AT, Gowan S, De Billy E, te Poele R, Powers M, Eccles SA, Clarke PA, Raynaud FI, Workman P, Jones K, Cheeseman MD. HSF1 Pathway Inhibitor Clinical Candidate (CCT361814/NXP800) Developed from a Phenotypic Screen as a Potential Treatment for Refractory Ovarian Cancer and Other Malignancies. J Med Chem 2023; 66:5907-5936. [PMID: 37017629 PMCID: PMC10150365 DOI: 10.1021/acs.jmedchem.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 04/06/2023]
Abstract
CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.
Collapse
Affiliation(s)
- A. Elisa Pasqua
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael J. Tucker
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - N. Yi Mok
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Manjuan Liu
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Sharon Gowan
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A. Clarke
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence I. Raynaud
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Matthew D. Cheeseman
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
28
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Keszthelyi TM, Tory K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biol Futur 2023:10.1007/s42977-023-00158-3. [PMID: 37000312 DOI: 10.1007/s42977-023-00158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the "fifth nucleoside." This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases. Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridylation process.
Collapse
Affiliation(s)
| | - Kálmán Tory
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Tandon V, Moreno R, Allmeroth K, Quinn J, Wiley S, Nicely L, Denzel M, Edwards J, de la Vega L, Banerjee S. Dual inhibition of HSF1 and DYRK2 impedes cancer progression. Biosci Rep 2023; 43:BSR20222102. [PMID: 36622366 PMCID: PMC9894012 DOI: 10.1042/bsr20222102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Preserving proteostasis is a major survival mechanism for cancer. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a key oncogenic kinase that directly activates the transcription factor heat-shock factor 1 (HSF1) and the 26S proteasome. Targeting DYRK2 has proven to be a tractable strategy to target cancers sensitive to proteotoxic stress; however, the development of HSF1 inhibitors remains in its infancy. Importantly, multiple other kinases have been shown to redundantly activate HSF1 that promoted ideas to directly target HSF1. The eventual development of direct HSF1 inhibitor KRIBB11 suggests that the transcription factor is indeed a druggable target. The current study establishes that concurrent targeting of HSF1 and DYRK2 can indeed impede cancer by inducing apoptosis faster than individual targetting. Furthermore, targeting the DYRK2-HSF1 axis induces death in proteasome inhibitor-resistant cells and reduces triple-negative breast cancer (TNBC) burden in ectopic and orthotopic xenograft models. Together the data indicate that cotargeting of kinase DYRK2 and its substrate HSF1 could prove to be a beneficial strategy in perturbing neoplastic malignancies.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Rita Moreno
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Sandra E. Wiley
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, U.S.A
| | - Lynden G. Nicely
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Martin S. Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
- Altos Labs, Cambridge Institute of Science, Granta Park, Great Abington, Cambridge CB21 6GP, U.K
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Laureano de la Vega
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Sourav Banerjee
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| |
Collapse
|
31
|
Amatya E, Blagg BSJ. Recent advances toward the development of Hsp90 C-terminal inhibitors. Bioorg Med Chem Lett 2023; 80:129111. [PMID: 36549397 PMCID: PMC9869726 DOI: 10.1016/j.bmcl.2022.129111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heat shock protein 90 (Hsp90) is a dynamic protein which serves to ensure proper folding of nascent client proteins, regulate transcriptional responses to environmental stress and guide misfolded and damaged proteins to destruction via ubiquitin proteasome pathway. Recent advances in the field of Hsp90 have been made through development of isoform selective inhibitors, Hsp90 C-terminal inhibitors and disruption of protein-protein interactions. These approaches have led to alleviation of adverse off-target effects caused by pan-inhibition of Hsp90 using N-terminal inhibitors. In this review, we provide an overview of relevant advances on targeting the Hsp90 C-terminal Domain (CTD) and the development of Hsp90 C-terminal inhibitors (CTIs) since 2015.
Collapse
Affiliation(s)
- Eva Amatya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
32
|
Cell-of-Origin Targeted Drug Repurposing for Triple-Negative and Inflammatory Breast Carcinoma with HDAC and HSP90 Inhibitors Combined with Niclosamide. Cancers (Basel) 2023; 15:cancers15020332. [PMID: 36672285 PMCID: PMC9856736 DOI: 10.3390/cancers15020332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
We recently identified a cell-of-origin-specific mRNA signature associated with metastasis and poor outcome in triple-negative carcinoma (TNBC). This TNBC cell-of-origin signature is associated with the over-expression of histone deacetylases and zinc finger protein HDAC1, HDAC7, and ZNF92, respectively. Based on this signature, we discovered that the combination of three drugs (an HDAC inhibitor, an anti-helminthic Niclosamide, and an antibiotic Tanespimycin that inhibits HSP90) synergistically reduces the proliferation of the twelve tested TNBC cell lines. Additionally, we discovered that four out of five inflammatory breast carcinoma cell lines are sensitive to this combination. Significantly, the concentration of the drugs that are used in these experiments are within or below clinically achievable dose, and the synergistic activity only emerged when all three drugs were combined. Our results suggest that HDAC and HSP90 inhibitors combined with the tapeworm drug Niclosamide can achieve remarkably synergistic inhibition of TNBC and IBC. Since Niclosamide, HDAC, and HSP90 inhibitors were approved for clinical use for other cancer types, it may be possible to repurpose their combination for TNBC and IBC.
Collapse
|
33
|
Li W, Yang C, Li J, Li X, Zhou P. MicroRNA-217 aggravates breast cancer through activation of NF1-mediated HSF1/ATG7 axis and c-Jun/ATF3/MMP13 axis. Hum Cell 2023; 36:377-392. [PMID: 36357766 DOI: 10.1007/s13577-022-00817-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Application of microRNA-mediated mRNA expression in treatment of diverse cancers has been documented. The current study was explored to study the role of miR-217 in breast cancer (BC) progression and the related downstream factors. Clinical tissue samples, BC cell lines and the established xenograft models were prepared for ectopic expression and depletion experiments to discern the regulatory roles of miR-217-mediated NF1 in BC cell proliferation, metastasis and chemoresistance as well as tumorigenic ability of BC cells in nude mice. miR-217 was upregulated in BC, which was a predictor of poor prognosis of BC patients. NF1 could be targeted by miR-217. miR-217 promoted malignant characteristics of BC cells through enhancing ATF3-MMP13 interaction by inhibiting NF1. miR-217 repressed sensitivity against anti-cancer drugs by inducing autophagy of BC cells through the NF1/HSF1/ATG7 axis. Also, miR-217 could inhibit NF1 to facilitate tumorigenic ability of BC cells in vivo. Our study emphasized that miR-217 could potentially inhibit NF1 expression to activate the c-Jun, thus enhancing the expression and interaction of ATF3/MMP13 and promoting the malignant features of BC cells. Furthermore, miR-217 conferred chemoresistance on BC by enhancing BC cell autophagy, which was achieved by limiting NF1 expression to induce the HSF1/ATG7 pathway.
Collapse
Affiliation(s)
- Weihan Li
- Department of Acupuncture and Moxibustion, Shenzhen Bao'an Traditional Chinese Medicine Hospital, No. 25, Yu'an Second Road, Bao'an District, Shenzhen, 518000, People's Republic of China
| | - Chaojie Yang
- Otorhinolaryngology Head and Neck Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Jingjing Li
- Department of Breast Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, People's Republic of China
| | - Xiaolian Li
- Department of Breast Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518000, People's Republic of China
| | - Peng Zhou
- Department of Acupuncture and Moxibustion, Shenzhen Bao'an Traditional Chinese Medicine Hospital, No. 25, Yu'an Second Road, Bao'an District, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
34
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Tan W, Zhang J, Liu L, Liang M, Li J, Deng Z, Zheng Z, Deng Y, Liu C, Li Y, Xie G, Zhang J, Zou F, Chen X. Hsp90 Inhibitor STA9090 induced VPS35 related extracellular vesicle release and metastasis in hepatocellular carcinoma. Transl Oncol 2022; 26:101502. [PMID: 36137350 PMCID: PMC9493061 DOI: 10.1016/j.tranon.2022.101502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been an important therapeutic target for cancer therapy for decades. Unexpectedly, the monotherapy of N-terminal Hsp90 inhibitor STA9090 related clinical trials halted in phase III, and metastases were reported in animal models with the treatment of N-terminal Hsp90 inhibitors. Vacuolar protein sorting-associated protein 35 (VPS35) plays a vital role in endosome-derived EV (extracellular vesicle) traffic in neurodegeneration diseases, but no vps35 related EV were reported in tumors till now. Since tumor derived EVs contributes to metastasis and VPS35 is recently found to be involved in the invasion and metastasis of hepatocellular carcinoma (HCC), whether N-terminal Hsp90 inhibitor STA9090 induced EVs generation and the role of VPS35 in it were explored in this study. We found that N-terminal Hsp90 inhibitor STA9090 upregulated Bclaf1 and VPS35 levels, increased the secretion of EVs, and STA9090-induced-EVs promoted the invasion of HepG2 cells. As the clinical data suggested that the increased Bclaf1 and VPS35 levels correlated with increased metastasis and poorer prognosis in HCC, we focused on the Bclaf1-VPS35-EVs axis to further explore the mechanism of VPS35-related metastasis. The results demonstrated that Bclaf1 facilitated the transcription of VPS35 via bZIP domain, and knockdown of Bclaf1 or VPS35 alleviated pro-metastatic capability of STA9090-induced-EVs. All the results revealed the role of Bclaf1-VPS35-EVs axis on metastasis of HCC, and VPS35 knockdown decreased Hsp90 Inhibitor STA9090 induced extracellular vesicle release and metastasis, which provided a new combination therapeutic strategy to inhibit the metastasis of HCC caused by N-terminal Hsp90 inhibitor induced extracellular vesicles.
Collapse
Affiliation(s)
- Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chenyang Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
37
|
Dong Q, Xiu Y, Wang Y, Hodgson C, Borcherding N, Jordan C, Buchanan J, Taylor E, Wagner B, Leidinger M, Holman C, Thiele DJ, O’Brien S, Xue HH, Zhao J, Li Q, Meyerson H, Boyce BF, Zhao C. HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 2022; 13:6107. [PMID: 36245043 PMCID: PMC9573868 DOI: 10.1038/s41467-022-33861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.
Collapse
Affiliation(s)
- Qianze Dong
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yan Xiu
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Yang Wang
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Nick Borcherding
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Craig Jordan
- grid.241116.10000000107903411Division of Hematology, University of Colorado Anschutz Campus, Denver, CO 80045 USA
| | - Jane Buchanan
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Eric Taylor
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Brett Wagner
- grid.214572.70000 0004 1936 8294Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah Leidinger
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | - Carol Holman
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | | | | | - Hai-hui Xue
- grid.239835.60000 0004 0407 6328Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110 USA
| | - Jinming Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Qingchang Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Howard Meyerson
- grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Brendan F. Boyce
- grid.412750.50000 0004 1936 9166Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chen Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA ,grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| |
Collapse
|
38
|
Iuliano L, Dalla E, Picco R, Mallavarapu S, Minisini M, Malavasi E, Brancolini C. Proteotoxic stress-induced apoptosis in cancer cells: understanding the susceptibility and enhancing the potency. Cell Death Dis 2022; 8:407. [PMID: 36195608 PMCID: PMC9531228 DOI: 10.1038/s41420-022-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Showmeya Mallavarapu
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Eleonora Malavasi
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy.
| |
Collapse
|
39
|
Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL, Lamia KA. Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. SCIENCE ADVANCES 2022; 8:eabo1123. [PMID: 36170373 PMCID: PMC9519049 DOI: 10.1126/sciadv.abo1123] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/12/2022] [Indexed: 05/04/2023]
Abstract
Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.
Collapse
Affiliation(s)
- Marie Pariollaud
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lara H. Ibrahim
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emanuel Irizarry
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca M. Mello
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alanna B. Chan
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian J. Altman
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katja A. Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
41
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
42
|
Tilk S, Tkachenko S, Curtis C, Petrov DA, McFarland CD. Most cancers carry a substantial deleterious load due to Hill-Robertson interference. eLife 2022; 11:67790. [PMID: 36047771 PMCID: PMC9499534 DOI: 10.7554/elife.67790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may be because selective pressures are relaxed or because genome-wide linkage prevents deleterious mutations from being removed (Hill-Robertson interference)3. By stratifying tumors by their genome-wide mutational burden, we observe negative selection (dN/dS ~ 0.56) in low mutational burden tumors, while remaining cancers exhibit dN/dS ratios ~1. This suggests that most tumors do not remove deleterious passengers. To buffer against deleterious passengers, tumors upregulate heat shock pathways as their mutational burden increases. Finally, evolutionary modeling finds that Hill-Robertson interference alone can reproduce patterns of attenuated selection and estimates the total fitness cost of passengers to be 46% per cell on average. Collectively, our findings suggest that the lack of observed negative selection in most tumors is not due to relaxed selective pressures, but rather the inability of selection to remove deleterious mutations in the presence of genome-wide linkage.
Collapse
Affiliation(s)
- Susanne Tilk
- Department of Biology, Stanford University, Stanford, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, United States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, United States
| | - Christopher D McFarland
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
43
|
Kamran M, Bhattacharya U, Omar M, Marchionni L, Ince TA. ZNF92, an unexplored transcription factor with remarkably distinct breast cancer over-expression associated with prognosis and cell-of-origin. NPJ Breast Cancer 2022; 8:99. [PMID: 36038558 PMCID: PMC9424319 DOI: 10.1038/s41523-022-00474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Tumor phenotype is shaped both by transforming genomic alterations and the normal cell-of-origin. We identified a cell-of-origin associated prognostic gene expression signature, ET-9, that correlates with remarkably shorter overall and relapse free breast cancer survival, 8.7 and 6.2 years respectively. The genes associated with the ET-9 signature are regulated by histone deacetylase 7 (HDAC7) partly through ZNF92, a previously unexplored transcription factor with a single PubMed citation since its cloning in 1990s. Remarkably, ZNF92 is distinctively over-expressed in breast cancer compared to other tumor types, on a par with the breast cancer specificity of the estrogen receptor. Importantly, ET-9 signature appears to be independent of proliferation, and correlates with outcome in lymph-node positive, HER2+, post-chemotherapy and triple-negative breast cancers. These features distinguish ET-9 from existing breast cancer prognostic signatures that are generally related to proliferation and correlate with outcome in lymph-node negative, ER-positive, HER2-negative breast cancers. Our results suggest that ET-9 could be also utilized as a predictive signature to select patients for HDAC inhibitor treatment.
Collapse
|
44
|
Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. Int J Mol Sci 2022; 23:ijms23179758. [PMID: 36077156 PMCID: PMC9456243 DOI: 10.3390/ijms23179758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan–Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients’ relapse and poor survival.
Collapse
Affiliation(s)
- Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| |
Collapse
|
45
|
Du S, Liu Y, Yuan Y, Wang Y, Chen Y, Wang S, Chi Y. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy. Front Cell Dev Biol 2022; 10:942828. [PMID: 36036010 PMCID: PMC9399644 DOI: 10.3389/fcell.2022.942828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is one of the most conserved proteins and a ubiquitous molecular chaperone that plays a role in the folding, remodeling, and degradation of various proteins to maintain proteostasis. It has been shown that HSP70 is abundantly expressed in cancer and enhances tumor resistance to radiotherapy by inhibiting multiple apoptotic pathways, such as interfering with the cellular senescence program, promoting angiogenesis, and supporting metastasis. Thus, HSP70 provides an effective target for enhancing the effects of radiation therapy in the clinical management of cancer patients. Inhibition of HSP70 enhances the radiation-induced tumor-killing effect and thus improves the efficacy of radiotherapy. This article reviews the sensitivity of Hsp70 and its related inhibitors to radiotherapy of tumor cells.
Collapse
Affiliation(s)
- Sihan Du
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Ying Liu
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuran Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanfang Chen
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| |
Collapse
|
46
|
Peinado-Ruiz IC, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Relationship between heat shock proteins and cellular resistance to drugs and ageing. Exp Gerontol 2022; 167:111896. [PMID: 35870754 DOI: 10.1016/j.exger.2022.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Ageing is a multifactorial degenerative process which causes a decrease in the cellular capacity for repair and adaptation to external stressors. In this way, it is important to maintain the proper balance of the proteome. Heat shock proteins (HSP) will intervene in this balance, which are responsible for the correct assembly, folding and translocation of other proteins when cells are subjected to stressors. This type of protein is overexpressed in human tumor cells, while its deficit, both in function and quantity, contributes to ageing processes. The present work aims to analyze the response of cells from studies carried out in normal and tumor cells that are subjected to stressors. METHODS AND RESULTS A PubMed search was performed using the keywords "cell ageing, cell longevity, resistance, HSP, heat shock proteins, thermal shock proteins". This search generated 212 articles. Subsequently, a series of inclusion and exclusion criteria were applied to select the articles of interest to be evaluated. Normal cells subjected to external stressors at low doses increase the number of HSP, causing them to become more resistant. In addition, tumor cells expressing high levels of HSP show greater resistance to treatment and increased cell replication. HSP intervene in the cellular resistance of both normal and tumor cells. CONCLUSIONS In the case of normal cells, the increase in HSP levels makes them respond effectively to an external stressor, increasing their resistance and not causing cell death. In the case of tumor cells, there is an increase in resistance to treatment.
Collapse
Affiliation(s)
- Isabel C Peinado-Ruiz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio M Burgos-Molina
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
47
|
Baker GM, Bret-Mounet VC, Wang T, Veta M, Zheng H, Collins LC, Eliassen AH, Tamimi RM, Heng YJ. Immunohistochemistry scoring of breast tumor tissue microarrays: A comparison study across three software applications. J Pathol Inform 2022; 13:100118. [PMID: 36268097 PMCID: PMC9577037 DOI: 10.1016/j.jpi.2022.100118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Digital pathology can efficiently assess immunohistochemistry (IHC) data on tissue microarrays (TMAs). Yet, it remains important to evaluate the comparability of the data acquired by different software applications and validate it against pathologist manual interpretation. In this study, we compared the IHC quantification of 5 clinical breast cancer biomarkers-estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), and cytokeratin 5/6 (CK5/6)-across 3 software applications (Definiens Tissue Studio, inForm, and QuPath) and benchmarked the results to pathologist manual scores. IHC expression for each marker was evaluated across 4 TMAs consisting of 935 breast tumor tissue cores from 367 women within the Nurses' Health Studies; each women contributing three 0.6-mm cores. The correlation and agreement between manual and software-derived results were primarily assessed using Spearman's ρ, percentage agreement, and area under the curve (AUC). At the TMA core-level, the correlations between manual and software-derived scores were the highest for HER2 (ρ ranging from 0.75 to 0.79), followed by ER (0.69-0.71), PR (0.67-0.72), CK5/6 (0.43-0.47), and EGFR (0.38-0.45). At the case-level, there were good correlations between manual and software-derived scores for all 5 markers (ρ ranging from 0.43 to 0.82), where QuPath had the highest correlations. Software-derived scores were highly comparable to each other (ρ ranging from 0.80 to 0.99). The average percentage agreements between manual and software-derived scores were excellent for ER (90.8%-94.5%) and PR (78.2%-85.2%), moderate for HER2 (65.4%-77.0%), highly variable for EGFR (48.2%-82.8%), and poor for CK5/6 (22.4%-45.0%). All AUCs across markers and software applications were ≥0.83. The 3 software applications were highly comparable to each other and to manual scores in quantifying these 5 markers. QuPath consistently produced the best performance, indicating this open-source software is an excellent alternative for future use.
Collapse
Affiliation(s)
- Gabrielle M. Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vanessa C. Bret-Mounet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tengteng Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mitko Veta
- Medical Image Analysis Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hanqiao Zheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura C. Collins
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A. Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rulla M. Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Yujing J. Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Wang J, Bando M, Shirahige K, Nakato R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat Commun 2022; 13:3218. [PMID: 35680859 PMCID: PMC9184728 DOI: 10.1038/s41467-022-30792-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
49
|
Golden NL, Foley MK, Kim Guisbert KS, Guisbert E. Divergent regulatory roles of NuRD chromatin remodeling complex subunits GATAD2 and CHD4 in Caenorhabditis elegans. Genetics 2022; 221:iyac046. [PMID: 35323946 PMCID: PMC9071545 DOI: 10.1093/genetics/iyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
During proteotoxic stress, a pathway known as the heat shock response is induced to maintain protein-folding homeostasis or proteostasis. Previously, we identified the Caenorhabditis elegans GATAD2 ortholog, dcp-66, as a novel regulator of the heat shock response. Here, we extend these findings to show that dcp-66 positively regulates the heat shock response at the cellular, molecular, and organismal levels. As GATAD2 is a subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, we examined other nucleosome remodeling and deacetylase subunits and found that the let-418 (CHD4) nucleosome repositioning core also regulates the heat shock response. However, let-418 acts as a negative regulator of the heat shock response, in contrast to positive regulation by dcp-66. The divergent effects of these two nucleosome remodeling and deacetylase subunits extend to the regulation of other stress responses including oxidative, genotoxic, and endoplasmic reticulum stress. Furthermore, a transcriptomic approach reveals additional divergently regulated pathways, including innate immunity and embryogenesis. Taken together, this work establishes new insights into the role of nucleosome remodeling and deacetylase subunits in organismal physiology. We incorporate these findings into a molecular model whereby different mechanisms of recruitment to promoters can result in the divergent effects of nucleosome remodeling and deacetylase subunits.
Collapse
Affiliation(s)
- Nicole L Golden
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Michaela K Foley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
50
|
Wei S, Li Y, Gong Q, Liang H, Bernardi RE, Liang J. Molecular chaperone heat shock protein 70 inhibitors suppress conditioned place preference induced by morphine exposure in male rats. Addict Biol 2022; 27:e13163. [PMID: 35470556 DOI: 10.1111/adb.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Abstract
Previous studies have indicated a role for molecular chaperone heat shock protein 70 (Hsp70) in the development of behavioural sensitization to morphine in rodents, suggesting that Hsp70 expression following morphine exposure is involved in molecular changes that may underlie addiction vulnerability. The current study was carried out to investigate the role of Hsp70 in the positive reinforcing properties of morphine using conditioned place preference (CPP) in male rats. An unbiased CPP procedure of three phases (pre-conditioning: d1-d3; conditioning: d4-d6; and testing: d7) was used. During the conditioning phase, morphine injections (5 mg/kg, subcutaneously) were administered to induce significant place preference. To explore the effect of Hsp70 on the development and expression of morphine CPP, Hsp70 inhibitors (PES, KNK437 and methylene blue) were administered into the lateral ventricle prior to either morphine conditioning sessions or a morphine challenge on the test day. Furthermore, Hsp70 expression within the mesocorticolimbic system was measured after the treatment with KNK437, a transcriptional inhibitor. We found that PES and KNK437, respectively, injected intracerebroventricularly dose-dependently attenuated both the development and expression of morphine CPP. Methylene blue treatment demonstrated an attenuation of the development, but had no effect on the expression of morphine CPP. Following KNK437 treatment, Hsp70 expression was significantly inhibited in the shell of nucleus accumbens (NAc) during both the development and expression of morphine CPP. The findings suggest that Hsp70 in the NAc shell plays an important role in the reinforcing effects of morphine and may be involved in the development of morphine dependence.
Collapse
Affiliation(s)
- Shoupeng Wei
- Department of Pharmacology, School of Basic Medical Science Peking University Beijing P. R. China
- The Seventh Affiliated Hospital of Sun Yat‐sen University Shenzhen P. R. China
| | - Yu‐ling Li
- Department of Pharmacology, School of Basic Medical Science Peking University Beijing P. R. China
- Department of Pharmacy East Hospital, Tongji University School of Medicine Shanghai P. R. China
| | - Qi Gong
- Department of Pharmacology, School of Basic Medical Science Peking University Beijing P. R. China
| | - Hui Liang
- Department of Pharmacology, School of Basic Medical Science Peking University Beijing P. R. China
| | - Rick E. Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Jian‐hui Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing P. R. China
| |
Collapse
|