1
|
Fines C, McCarthy H, Buckley N. The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025; 26:2472432. [PMID: 40089851 PMCID: PMC11913391 DOI: 10.1080/15384047.2025.2472432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Nearly 20 million people are diagnosed with cancer each year with breast cancer being the most common among women. Triple negative breast cancer (TNBC), defined by its no/low expression of ER and PR and lack of amplification of HER2, makes up 15-20% of all breast cancer cases. While patients overall have a higher response to chemotherapy, this subgroup is associated with the lowest survival rate indicating significant clinical and molecular heterogeneity demanding alternate treatment options. Therefore, new therapies have been explored, with a large focus on utilizing the immune system. A whole host of immunotherapies have been studied including immune checkpoint inhibitors, now standard of care for eligible patients, and possibly the most exciting and promising is that of a TNBC vaccine. While currently there are no approved TNBC vaccines, this review highlights many promising studies and points to an antigen, p53, which we believe is highly relevant for TNBC.
Collapse
Affiliation(s)
- Cory Fines
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
2
|
Li X, Lou C, Ren H, Cui L, Chen K. Fundamental knowledge and research regarding the role of immunity in triple-negative breast cancer from 2014-2024: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2483022. [PMID: 40135819 PMCID: PMC11951696 DOI: 10.1080/21645515.2025.2483022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Immunity has vital research value and promising applications in triple-negative breast cancer (TNBC). Nevertheless, few bibliometric analyses have systematically investigated this area. This study aimed to comprehensively review the collaboration and impact of countries, institutions, authors, and journals on the role of immunity in TNBC from a bibliometric perspective, evaluate the keyword co-occurrence of the knowledge structure, and identify hot trends and emerging topics. Articles and reviews related to immunity in TNBC were retrieved from the Web of Science core collection using subject search. A bibliometric study was conducted primarily using CiteSpace and VOSviewer. A total of 3,104 articles and reviews were included from January 1, 2014, through December 31, 2024. The number of articles on immunization in TNBC is rising. These publications are mainly from 415 institutions in 82 countries, led by China and the USA. Among these publications, Lajos Pusztai published the most papers, while Peter Schmid was co-cited the most. The most productive journals focused on molecular biology, biological immunology, and clinical medicine. Furthermore, co-citation analysis revealed that tumor microenvironment, biomarkers, and immune checkpoint inhibitors are current and developing research areas. The keywords "immunotherapy" and "nanoparticles" are also likely to be new trends and focal points for future research. This study adopted bibliometric and visualization methods to provide a comprehensive review of the research on immunization in TNBC. This article will help researchers better understand the dynamic evolution of the role of immunity in TNBC and identify areas for future research.
Collapse
Affiliation(s)
- Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chun Lou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Cui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kexin Chen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. Targeting γc family cytokines with biologics: current status and future prospects. MAbs 2025; 17:2468312. [PMID: 39967341 PMCID: PMC11845063 DOI: 10.1080/19420862.2025.2468312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Over the recent decades the market potential of biologics has substantially expanded, and many of the top-selling drugs worldwide are now monoclonal antibodies or antibody-like molecules. The common gamma chain (γc) cytokines, Interleukin (IL-)2, IL-4, IL-7, IL-9, IL-15, and IL-21, play pivotal roles in regulating immune responses, from innate to adaptive immunity. Dysregulation of cell signaling by these cytokines is strongly associated with a range of immunological disorders, which includes cancer as well as autoimmune and inflammatory diseases. Given the essential role of γc cytokines in maintaining immune homeostasis, the development of therapeutic interventions targeting these molecules poses unique challenges. Here, we provide an overview of current biologics targeting either single or multiple γc cytokines or their respective receptor subunits across a spectrum of diseases, primarily focusing on antibodies, antibody-like constructs, and antibody-cytokine fusions. We summarize therapeutic biologics currently in clinical trials, highlighting how they may offer advantages over existing therapies and standard of care, and discuss recent advances in this field. Finally, we explore future directions and the potential of novel therapeutic intervention strategies targeting this cytokine family.
Collapse
Affiliation(s)
- Fabian Bick
- Argenx BV, Zwijnaarde, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J. Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
4
|
Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F. Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors. J Control Release 2025; 382:113722. [PMID: 40233830 PMCID: PMC12076078 DOI: 10.1016/j.jconrel.2025.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8+ T cells and M2-type macrophages were strong predictors of treatment response.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Stella Angeli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus; Cancer Genetics, Therapeutics & Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
5
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Tong YY, Wang BZ, Zhang YJ, Jiang LL, Ding XF, Zhou J, Zuo DY, Chen J, Zhu J, Chen G. Motor neuron and pancreas homeobox 1 (MNX1) suppresses Triple Negative Breast Cancer (TNBC) cell phagocytosis by macrophage through CD24 signaling. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167763. [PMID: 40037472 DOI: 10.1016/j.bbadis.2025.167763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer with limited therapeutic options. Motor neuron and pancreas homeobox 1 (MNX1) has been implicated in tumor progression, yet its roles in TNBC immune evasion remain unexplored. In the present study, we analyzed TCGA datasets and performed immunohistochemistry to evaluate MNX1 expression in TNBC tissues. DNA Affinity Purification and sequencing (DAP-seq) were used to identify MNX1 binding motifs. The regulatory relationship between MNX1 and CD24 was validated through dual luciferase reporter assays and expression manipulation in TNBC cell lines. Macrophage-mediated phagocytosis was assessed using in vitro co-culture systems and a humanized macrophage immune reconstruction mouse xenograft model. We found MNX1 expression was significantly elevated in TNBC tissues and correlated with poor patient prognosis. MNX1-knockdown significantly inhibited MDA-MB-468 cell proliferation in vitro and xenograft growth in vivo. In MDA-MB-231 cell, MNX1-overexpression promoted cell proliferation in vitro. We identified "TAATTA" as the MNX1 binding motif and demonstrated that MNX1 directly activates CD24 transcription. MNX1 knockdown in MDA-MB-468 cells enhanced macrophage phagocytosis, while its overexpression in MDA-MB-231 cells reduced phagocytosis. In the humanized mouse model, MNX1 downregulation increased macrophage infiltration and suppressed tumor growth. In summary, our findings reveal that MNX1 promotes TNBC immune evasion through transcriptional regulation of CD24. SIGNIFICANCE: We showed that CD24 is a novel target of transcription factor MNX1. MNX1-driven CD24-overexpression enables TNBC cells to evade from phagocytosis in both co-culturing TNBC cells with macrophage and in humanized macrophage immune reconstruction mouse xenograft model.
Collapse
Affiliation(s)
- Ying-Ying Tong
- Department of Lab Medicine, The First People's Hospital of Wenling (Taizhou University Affiliated Wenling Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Bo-Ze Wang
- Department of Lab Medicine, The First People's Hospital of Wenling (Taizhou University Affiliated Wenling Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yi-Jia Zhang
- Department of Lab Medicine, The First People's Hospital of Wenling (Taizhou University Affiliated Wenling Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ling-Ling Jiang
- Department of Lab Medicine, The First People's Hospital of Wenling (Taizhou University Affiliated Wenling Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Xiao-Fei Ding
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jun Zhou
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Dai-Ying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jie Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Jin Zhu
- Department of Breast Surgeon, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, PR China.
| | - Guang Chen
- Department of Lab Medicine, The First People's Hospital of Wenling (Taizhou University Affiliated Wenling Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China; Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
7
|
Kuo YC, Chen CL, Lee KL, Wang HF, Drew VJ, Lan PC, Ho YS, Huang YH. Nicotine-driven enhancement of tumor malignancy in triple-negative breast cancer via additive regulation of CHRNA9 and IGF1R. J Pathol 2025; 266:230-245. [PMID: 40244072 DOI: 10.1002/path.6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cigarette smoking is a significant risk factor for cancer development with complex mechanisms. This study aims to investigate the impact of nicotine exposure on the regulation of stemness- and metastasis-related properties via cholinergic receptor nicotinic alpha 9 subunit (CHRNA9) and insulin-like growth factor-1 receptor (IGF1R) and to evaluate their therapeutic potential in triple-negative breast cancer (TNBC). We performed Kaplan-Meier survival analysis of public databases and revealed that high expression of CHRNA9, IGF1R signaling molecules, and stemness genes was significantly associated with poor recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) in TNBC samples. Additionally, we examined two patient cohorts to determine the clinical associations between the expression levels of different genes (n = 67) and proteins (n = 42) and showed a strong positive correlation between the expression levels of CHRNA9, IGF1R signaling molecules, and stemness markers POU5F1/NANOG in tumor tissues. We carried out nicotine treatment and knockdown of CHRNA9 and IGF1R in TNBC cells to identify the effects on stemness-related properties in vitro. Furthermore, primary and secondary metastatic in vivo animal models were examined using micro-computed tomography (μCT) screening and in situ hybridization with a human Alu probe to detect tumor cells. Nicotine was found to upregulate the expression of CHRNA9, POU5F1, and IGF1R, influencing stemness- and metastasis-related properties. Knockdown of CHRNA9 expression attenuated nicotine-induced stemness-related properties in a TNBC cell model. Furthermore, knockdown of IGF1R expression significantly alleviated nicotine/CHRNA9-induced stemness features and cancer cell metastasis in cell cultures and lung metastatic mouse models. These results demonstrate that nicotine triggers IGF1R signaling, thereby enhancing stemness-related properties, cell migration, invasion, and tumor metastasis, resulting in a poorer prognosis for patients with TNBC. These findings highlight IGF1R as a promising therapeutic target for reducing stemness and metastasis in TNBC patients exposed to environmental nicotine. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- MOHW103-TD-B-111-01 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW104-TDU-B-212-124-001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW105-TDU-B-212-134001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW106-TDU-B-212-144001 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW107-TDU-B-212-114014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- MOHW108-TDU-B-212-124014 Ministry of Health and Welfare, Taiwan (Health and Welfare Surcharge of Tobacco Products)
- TMU109-AE1-B02 Taipei Medical University
- NSTC 111-2314-B-038-089-MY3 National Science and Technology Council, Taiwan
- 113-2314-B-038-136 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-039-057 National Science and Technology Council, Taiwan
- MOST 111-2320-B-039-067-MY3 National Science and Technology Council, Taiwan
- NSTC 113-2634-F-039-001 National Science and Technology Council, Taiwan
- MOST 111-2320-B-038-022 National Science and Technology Council, Taiwan
- NSTC 112-2320-B-038-011-MY3 National Science and Technology Council, Taiwan
- CMU113-S-23 China Medical University
Collapse
Affiliation(s)
- Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kha-Liang Lee
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Feng Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Victor James Drew
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Chi Lan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Good Tissue Practice, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Yen-Hua Huang
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Zhang C, Liu J, Gu T, Meng X, Cai X, Zhang J, Chen Y, Zhang D, Wu Y. Enhanced antitumor efficacy of bispecific antibody blocking PD-L1 and LAG-3 with doxorubicin: mechanism and safety evaluation. Breast Cancer Res Treat 2025; 211:637-648. [PMID: 40050525 DOI: 10.1007/s10549-025-07676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE Combination therapy has emerged as a leading trend in cancer treatment, having had a significant impact on the management of advanced-stage breast cancer. This approach, which relies on immune checkpoint modulation, has revolutionized the therapeutic landscape. However, the precise mechanisms underlying its therapeutic effects remain unclear. METHODS Previously, we designed a bispecific antibody (BsAb) targeting PD-L1 (programmed cell death ligand 1) and the T cell immune checkpoint, LAG-3 (lymphocyte activation gene-3). In the present study, we evaluated the combination treatment of the BsAb (named Ba-PL) with doxorubicin (DOX) in a tumor-bearing mouse model and comprehensively investigated the underlying mechanisms involved. RESULTS The animal experiments demonstrated that the Ba-PL exerted an anti-tumor effect. Notably, mice treated with a combination of Ba-PL and DOX exhibited superior antitumor responses, mediated by the induction of robust immune cytokine responses. Furthermore, our findings revealed that this combination therapy restored depleted T cell activity and reinstated immune surveillance against tumors by reducing regulatory T cell levels. This immunotherapy combination exhibited favorable safety profiles and effectively prolonged the survival of tumor-bearing mice. CONCLUSION Blocking PD-L1 and LAG-3 in combination with doxorubicin is therapeutic potential approach for breast cancer and offers hope for improved patient outcomes.
Collapse
Affiliation(s)
- Chenxing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyi Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jinfeng Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Daguang Zhang
- Department of Orthopaedic, The First Hospital of Jilin University, Changchun, China.
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
10
|
Ran R, Chen X, Yang J, Xu B. Immunotherapy in breast cancer: current landscape and emerging trends. Exp Hematol Oncol 2025; 14:77. [PMID: 40405250 DOI: 10.1186/s40164-025-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Breast cancer remains one of the most prevalent malignancies worldwide, underscoring an urgent need for innovative therapeutic strategies. Immunotherapy has emerged as a transformative frontier in this context. In triple-negative breast cancer (TNBC), the combination of immunotherapy based on PD-1/PD-L1 immune checkpoint inhibitors (ICIs) with chemotherapy has proven efficacious in both early and advanced clinical trials. These encouraging results have led to the approval of ICIs for TNBC, opening up new therapeutic avenues for challenging-to-treat patient populations. Furthermore, a multitude of ongoing trials are actively investigating the efficacy of immunotherapy-based combinations, including ICIs in conjunction with chemotherapy, targeted therapy and radiation therapy, as well as other novel strategies such as bispecific antibodies, CAR-T cells and cancer vaccines across all breast cancer subtypes, including HR-positive/HER2-negative and HER2-positive disease. This review provides a comprehensive overview of current immunotherapeutic approaches in breast cancer, highlighting pivotal findings from recent clinical trials and the potential impact of these advancements on patient outcomes.
Collapse
Affiliation(s)
- Ran Ran
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Chen
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Binghe Xu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Zhao Y, Fu Y, Wang W, Peng H, Wang S. DEK::AFF2-Associated Papillary Squamous Cell Carcinoma of the Sinonasal Tract: Clinicopathologic Characterization of 9 Cases. Head Neck Pathol 2025; 19:66. [PMID: 40392381 DOI: 10.1007/s12105-025-01799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION DEK::AFF2 fusion-associated carcinoma, a recently recognized entity predominantly localized to the sinonasal tract and skull base, remains diagnostically challenging due to its poorly defined clinicopathological spectrum and epidemiological profile. Despite its deceptively bland histomorphology, this neoplasm is paradoxically linked to aggressive clinical behavior and elevated mortality rates. PURPOSE To delineate the clinicopathological and molecular characteristics of DEK::AFF2 fusion-associated carcinomas to elucidate their biological drivers and refine therapeutic strategies. METHODS A retrospective cohort study was conducted on some cases initially diagnosed as sinonasal papilloma of various types, with or without dysplasia or associated malignant transformation. DEK::AFF2 fusion was confirmed by DEK break-apart fluorescence in situ hybridization (FISH). Molecular features were assessed using immunohistochemistry (IHC) and in situ hybridization (ISH) to differential diagnosis. Clinical outcomes were analyzed for recurrence and disease-specific mortality. RESULTS Nine cases with DEK gene rearrangements were identified. The cohort comprised patients aged 51-76 years (median: 59 years), with a male predominance (M:F = 7:2). All cases demonstrated nuclear positivity for p40/p63 and AFF2 (30% ~90% tumor cells), while staining for p16 and Epstein-Barr encoded mRNA (EBER) was uniformly negative by IHC and ISH. Ki-67 index ranges from 5 to 40% with the median at 20%. Local recurrences occurred in 55.6% (5/9) of patients within 10-30 months following initial therapeutic intervention. The disease-specific mortality observed in 22.2% (2/9) of cases. CONCLUSION DEK::AFF2 fusion-associated carcinoma is characterized by a clinicopathological dichotomy: bland histological features contrast with aggressive biological behavior and poor prognosis in the nasal cavity, paranasal sinuses, and skull base.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yebin Fu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Xinyi Hospital of Traditional Chinese Medicine, Xinyi, Jiangsu, China
| | - Hui Peng
- Guangdong Provincial Hospital of Traditional Chinese Medicine Zhuhai Hospital/The Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine Hospital, Zhuhai, Guangdong, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Wilkerson AD, Juric I, Singh S, Rayman PA, Pavicic PG, Powers J, Parthasarathy PB, Al-Hilli Z, Ko JS, Chan T, Alban T, Montero AJ, Diaz-Montero CM. Responses to checkpoint inhibition in metastatic triple negative breast cancer driven by divergent myeloid phenotypes. COMMUNICATIONS MEDICINE 2025; 5:180. [PMID: 40382442 PMCID: PMC12085700 DOI: 10.1038/s43856-025-00860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/10/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Given the scarcity of effective therapeutic targets, metastatic triple negative breast cancer (mTNBC) has shorter survival times compared to other advanced breast cancer subtypes. Although chemo-immunotherapy with immune checkpoint inhibitors (ICIs) in PD-L1+ mTNBC has shown promise, survival benefit remains modest. Therefore, it is crucial to gain improved insight into the mechanisms underlying response and resistance to checkpoint inhibition in mTNBC. METHODS We employed single cell RNA sequencing (scRNAseq), single cell secretomics, and flow cytometry to identify transcriptomic and proteomic peripheral immune cell signatures associated with response and non-response to anti-PD-1/PD-L1 therapy and chemotherapy in mTNBC. RESULTS Transcriptomic analysis reveal divergent transcriptional programming of CD33+ myeloid cells between responders and non-responders, even in pretreatment PBMC samples. This divergence, in responders, is characterized by an immune-promoting CD33+ cell phenotype involving IL1b signaling compared to non-responders, where an immunosuppressive phenotype marked by IL1b inhibition is observed. These baseline differences become more pronounced during the course of chemo-immunotherapy. Differences in CD33+ cell phenotype result in functional differences in lymphocyte activities between responders and non-responders. Depletion of CD33+ cells in pre-treatment samples from non-responders, restores T cell effector function. CONCLUSION Our findings highlight CD33+ cell phenotype as a key determinant of response to chemo-immunotherapy, which can be assessed from peripheral blood. This offers a valuable tool in the context of metastatic TNBC, in which tissue sampling is often challenging.
Collapse
Affiliation(s)
- Avia D Wilkerson
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
- Cleveland Clinic Foundation, Department of General Surgery, Digestive Disease & Surgery Institute, Cleveland, OH, USA
| | - Ivan Juric
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Salendra Singh
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Patricia A Rayman
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Paul G Pavicic
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Jennifer Powers
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Prerana Bangalore Parthasarathy
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Zahraa Al-Hilli
- Cleveland Clinic Foundation, Department of General Surgery, Digestive Disease & Surgery Institute, Cleveland, OH, USA
| | - Jennifer S Ko
- Cleveland Clinic Foundation, Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| | - Timothy Chan
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA
| | - Tyler Alban
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA.
| | - Alberto J Montero
- University Hospitals/Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - C Marcela Diaz-Montero
- Cleveland Clinic Foundation, Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
13
|
Ajjawi I, Rios A, Wei W, Park TS, Lustberg MB. Clinical, sociodemographic, and facility-related determinants of immunotherapy use in metastatic triple-negative breast cancer. Breast Cancer Res Treat 2025:10.1007/s10549-025-07725-3. [PMID: 40369346 DOI: 10.1007/s10549-025-07725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Immunotherapy has emerged as a promising treatment for metastatic triple-negative breast cancer (mTNBC), yet factors influencing its adoption remain unclear. This study examines clinical, sociodemographic, and facility-related determinants of immunotherapy use in mTNBC patients using the National Cancer Database (NCDB). METHODS We conducted a retrospective cohort study of mTNBC patients from the NCDB (2015-2020), categorizing them into immunotherapy recipients and non-recipients. Patients with missing data on key variables were excluded. Univariable and multivariable logistic regression identified factors influencing immunotherapy adoption. Cox proportional hazards regression and log-rank tests assessed overall survival. RESULTS Among 1,887 mTNBC patients, 232 (12.2%) received immunotherapy. Factors positively associated with immunotherapy use included later diagnosis year (2018-2020: OR 5.35, p < 0.001), academic facilities (OR 1.43, p = 0.044), and private insurance (OR 1.34, p < 0.001). Lower likelihood of immunotherapy use was observed in older age (71+: OR 0.49, p = 0.019), rural facilities (OR 0.43, p = 0.042), Black race (OR 0.73, p = 0.039), Hispanic ethnicity (OR 0.53, p = 0.026), and higher Charlson comorbidity scores (≥ 2: OR 0.31, p = 0.035). Immunotherapy was associated with significantly improved survival (median 2.21 vs. 1.01 years, log-rank p < 0.001) and reduced mortality risk (HR 0.59, p < 0.001). CONCLUSION Immunotherapy use in mTNBC has increased in recent years, with clinical, sociodemographic, and facility-related factors influencing its adoption. Our findings highlight the importance of addressing disparities in access to immunotherapy to ensure equitable treatment and better survival outcomes for all mTNBC patients.
Collapse
Affiliation(s)
- Ismail Ajjawi
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alejandro Rios
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Wei Wei
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tristen S Park
- Mount Sinai Health System, Icahn School of Medicine, New York, NY, USA
| | - Maryam B Lustberg
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Xie X, Chen L, Kong X, Huo Y, Huang W, Huang J, Zhang L, Jiang H, Gao J. Comparative efficacy and safety of PD-1 versus PD-L1 inhibitors in breast cancer treatment: A systematic review and meta analysis. Int J Cancer 2025; 156:1936-1949. [PMID: 40110878 DOI: 10.1002/ijc.35313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 03/22/2025]
Abstract
The comparative efficacy and safety of programmed death-ligand 1 (PD-L1) inhibitors versus programmed death protein 1 (PD-1) inhibitors in breast cancer treatment remain inconclusive, as no head-to-head randomized controlled trials (RCTs) conducted. This study aims to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors as monotherapy or in combination with chemotherapy for breast cancer. A systematic review and meta-analysis were performed using major databases and oncology conference proceedings. The primary outcomes were overall survival (OS) for advanced breast cancer and pathological complete response (PCR) rate for early breast cancer. Secondary outcomes included progression-free survival (PFS) for advanced breast cancer and incidence of adverse events (AEs). Seventeen studies met the inclusion criteria, consisting of seven RCTs on early-stage and 10 on advanced breast cancer. For advanced breast cancer, PD-1/PD-L1 inhibitors modestly improved OS compared to chemotherapy, with no significant differences between PD-1 and PD-L1 inhibitors. PD-L1 inhibitors showed greater improvement in PFS compared to PD-1 inhibitors. The likelihood of AEs of any grade was higher with PD-L1 inhibitor treatment than with PD-1 inhibitor treatment. In early breast cancer, combining PD-1/PD-L1 inhibitors with chemotherapy inducing higher PCR rates than chemotherapy alone, with PD-1 inhibitors achieving better outcomes than PD-L1 inhibitors. PD-1 inhibitors were linked to slightly higher rates of grade >2 AEs compared to PD-L1 inhibitors. The findings indicate that PD-1 inhibitors may offer advantages for advanced breast cancer due to similar OS and a lower rate of AEs. For early breast cancer, PD-1 inhibitors are recommended given their superior PCR rates.
Collapse
Affiliation(s)
- Xintong Xie
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lingzhu Chen
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Center of Biomedical Research, Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Huo
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Center of Biomedical Research, Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Weiyuan Huang
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Center of Biomedical Research, Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hongkong, China
| | - Lin Zhang
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Center of Biomedical Research, Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Hongnan Jiang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Shah JR, Dong T, Phung AT, Khan S, Aisagbonhi O, Blair SL, Bouvet M, Trogler WC, Kummel AC. Liposomal oncolytic adenovirus as a neoadjuvant therapy for triple-negative breast cancer. Sci Rep 2025; 15:16737. [PMID: 40368934 PMCID: PMC12078467 DOI: 10.1038/s41598-025-00211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/24/2025] [Indexed: 05/16/2025] Open
Abstract
Breast cancer remains one of the leading causes of cancer-related death, with triple-negative breast cancer (TNBC) accounting for 15-20% of cases. TNBC, characterized by the absence of ER, PR, and HER2 protein, is an aggressive form of breast cancer that is unresponsive to hormonal therapies and HER2-targeted treatments, with fewer treatment options and poorer prognosis. Oncolytic adenoviruses (Ad) are a potential treatment option for TNBC but require coxsackievirus and adenovirus receptors (CAR) to effectively enter and transduce cancer cells. This study investigates a novel neoadjuvant therapy to improve the efficacy of an oncolytic Ad with human telomerase reverse transcriptase (Ad-hTERT) in CAR-low TNBC tumors using folate surface-modified liposomes to enhance delivery. This therapy helps deescalate treatment by reducing or eliminating the need for checkpoint inhibitors or toxic chemotherapy combinations. In vitro studies using CAR-low TNBC murine 4T1-eGFP cells, CAR-high TNBC human MDA-MB-231-GFP cells and several other TNBC human cancer cell lines with varying CAR expression demonstrated significantly higher cytotoxicity with encapsulated Ad-hTERT compared to Ad-hTERT. Similar results were observed in patient-derived primary TNBC cells. In vivo studies in immunocompetent mice with CAR-low 4T1-eGFP tumors revealed that encapsulated Ad-hTERT, administered as neoadjuvant therapy, resulted in stable or reduced tumor sizes, improved survival rates, higher apoptosis of cancer cells, lower cancer cell proliferation, and increased T-cell infiltration in resected tumors. Furthermore, encapsulated Ad-hTERT prevented lung metastasis and tumor recurrence at the primary site, resulting in higher survival rates in mice. Thus, liposomal encapsulation of Ad may be a viable strategy for treating TNBC.
Collapse
Affiliation(s)
- Jaimin R Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham T Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sohini Khan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sarah L Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Bouvet
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - William C Trogler
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew C Kummel
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Barroso-Sousa R, Zanudo JGT, Li T, Reddy SM, Emens LA, Kuntz TM, Silva CAC, AlDubayan SH, Chu H, Overmoyer B, Lange P, DiLullo MK, Montesion M, Kasparian J, Hughes ME, Attaya V, Basta A, Lin NU, Tayob N, Jeselsohn R, Mittendorf EA, Tolaney SM. Nivolumab plus low-dose ipilimumab in hypermutated HER2-negative metastatic breast cancer: a phase II trial (NIMBUS). Nat Commun 2025; 16:4430. [PMID: 40360544 PMCID: PMC12075640 DOI: 10.1038/s41467-025-59695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
In the phase II NIMBUS trial, patients with human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC) and high tumor mutational burden (TMB ≥ 9 mut/Mb) received nivolumab (3 mg/kg biweekly) and low-dose ipilimumab (1 mg/kg every 6 weeks) for 2 years or until progression. The primary endpoint was objective response rate (ORR) per RECIST 1.1 criteria. Among 30 patients enrolled, the median TMB was 10.9 mut/Mb (range: 9-110) and the confirmed objective response rate was 20%. Secondary endpoints included progression-free survival, overall survival, clinical benefit rate, and safety and tolerability, including immune-related adverse events (irAEs). A prespecified correlative outcome was to evaluate the ORR in patients with a TMB ≥ 14 mut/Mb. Patients with TMB ≥ 14 mut/Mb (n = 6) experienced higher response rates (60% vs 12%; p = 0.041) and showed a trend towards improved progression-free survival and overall survival compared to patients with TMB < 14 mut/Mb. Exploratory genomic analyses suggested that ESR1 and PTEN mutations may be associated with poor response, while clinical benefit was associated with a decrease or no change in tumor fraction by serial circulating tumor DNA during treatment. Stool microbiome analysis revealed that baseline blood TMB, PD-L1 positivity, and immune-related diarrhea are associated with distinct taxonomic profiles. In summary, some patients with hypermutated HER2-negative MBC experience extended clinical benefit with a dual immunotherapy regimen; a higher TMB, and additional genomic and microbiome biomarkers may optimize patient selection for therapy with nivolumab plus low-dose ipilimumab. (Funded by Bristol Myers Squibb; ClinicalTrials.gov identifier, NCT03789110).
Collapse
Affiliation(s)
| | - Jorge Gomez Tejeda Zanudo
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tianyu Li
- Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Leisha A Emens
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Thomas M Kuntz
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Hoyin Chu
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beth Overmoyer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paulina Lange
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Molly K DiLullo
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | | | - Julie Kasparian
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Melissa E Hughes
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Victoria Attaya
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Ameer Basta
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Nancy U Lin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nabihah Tayob
- Harvard Medical School, Boston, MA, USA
- Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rinath Jeselsohn
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Bhattacharya E, Shaw S, Nayak R, Bose S. Advances in targeted therapy for inflammatory breast cancer: nanomaterials, conventional treatments, and clinical applications. NANOTECHNOLOGY 2025; 36:222002. [PMID: 40294602 DOI: 10.1088/1361-6528/add165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Inflammatory breast cancer (IBC) presents a formidable challenge due to its rapid progression and unique clinical characteristics within the various manifestations of breast cancer. Despite being rare, its aggressive nature demands innovative approaches beyond conventional treatments. Nanomedicine offers exciting possibilities for improving all types of breast cancer therapeutics including IBC. In this review, we critically assess the current treatment landscape for IBC, highlighting the limitations of traditional methods and addressing the pressing need for new therapeutic strategies. Although many nanomaterials have been explored for breast cancer therapeutics, either alone or in combination with other therapies, only a limited number of nanotherapeutics have been extensively studied for IBC treatment. This review further explores how advancements in nanotechnology, such as nanoparticle- mediated photothermal therapy, Photodynamic therapy, and nanomedicinal targeted therapies can offer novel avenues for addressing the unique biological, technological, and regulatory challenges posed by IBC. IBC-related various nanomedicines based combinatorial therapies are highlighted in this review. It also provides a forward-looking perspective on key research directions and clinical applications.
Collapse
Affiliation(s)
- Eshana Bhattacharya
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Kaufman B, Abu-Ahmad M, Radinsky O, Gharra E, Manko T, Bhattacharya B, Gologan D, Erlichman N, Meshel T, Nuta Y, Cooks T, Elkabets M, Ben-Baruch A, Porgador A. N-glycosylation of PD-L1 modulates the efficacy of immune checkpoint blockades targeting PD-L1 and PD-1. Mol Cancer 2025; 24:140. [PMID: 40346531 PMCID: PMC12065222 DOI: 10.1186/s12943-025-02330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The PD-L1/PD-1 pathway is crucial for immune regulation and has become a target in cancer immunotherapy. However, in order to improve patient selection for immune checkpoint blockade (ICB) therapies, better selection criteria are needed. This study explores how the N-glycosylation of PD-L1 affects its interaction with PD-1 and ICB efficacy, focusing on its four N-linked glycosylation sites: N35, N192, N200, and N219. METHODS Human PD-L1 glycosylation mutants-at each individual site or at all four sites together (Nx4)-were tested for their functional interaction with PD-1 using an artificial immune checkpoint reporter assay (IcAR-PD1). The blocking efficacy of anti-PD-L1 and anti-PD-1 antibodies was evaluated using human breast cancer cell lines (MDA-MB231 and MCF7), as well as A375 melanoma and A549 lung carcinoma cells expressing the glycosylation mutants. Results were validated through ex vivo activation and cytotoxicity assays using human CD8+ T cells. RESULTS The binding of the PD-L1N35A mutant to PD-1 was not effectively blocked by anti-PD-L1 and anti-PD-1 ICBs. In contrast, high blocking efficacy of PD-L1 binding to PD-1 was obtained at minimal ICB concentrations when PD-L1 did not express any glycosylation site (PD-L1Nx4 mutant). The PD-L1N35A mutant produced elevated levels of PD-L1 as a soluble (sPD-L1) and extracellular vesicles (EV)-bound molecule; in contrast, the PD-L1Nx4 mutant had lower sPD-L1 and EV levels. PD-L1 glycosylation status influenced the ability of PD-L1 interactions with PD-1 to down-regulate T-cell activation and cytotoxicity, with the PD-L1N35A mutant showing the lowest levels of T cell functions and the PD-L1Nx4 mutant the highest. CONCLUSIONS The N-glycosylation of PD-L1 at all four sites interferes with the ability of anti-PD-L1 and anti-PD-1 ICBs to block PD-L1 interactions with PD-1; in contrast, glycosylation at the N35 site enhances ICB blocking efficacy. These effects are connected to the ability of sPD-L1 to compete with ICB binding to PD-L1 or PD-1. Thus, assessing PD-L1 glycosylation, beyond expression levels, could improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Bar Kaufman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Muhammad Abu-Ahmad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eman Gharra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Daniela Gologan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nofar Erlichman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoav Nuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
19
|
Stopeck AT, Abu-Khalaf M, Borges V, Chmielowski B, Rao R, Xie B, Dudek AZ, Mina L, O'Shaughnessy J, Chisamore M, Mattson P, Gargano M, Cox J, Osterwalder B, Drees J, Harrison B, Chan ASH, Qiu X, Ottoson N, Bose N, Uhlik M, Graff J, Iglesias J. Phase 2 trial of imprime and pembrolizumab immunotherapy in metastatic triple negative breast cancer patients who have progressed beyond first line chemotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf079. [PMID: 40338159 DOI: 10.1093/jimmun/vkaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/12/2025] [Indexed: 05/09/2025]
Abstract
The Phase 2 IMPRIME 1 study evaluated the combination of the pathogen-associated molecular pattern (PAMP) Imprime with the immune checkpoint inhibitor (ICI) pembrolizumab as second or later line of treatment (2 L+) for patients with metastatic triple-negative breast cancer (mTNBC). Eligible patients with mTNBC received weekly Imprime (4 mg/kg) intravenously in combination with pembrolizumab (200 mg every 3 weeks). Primary endpoints were overall response rate (ORR) and safety. Secondary endpoints included disease control rate (DCR), duration of response (DoR), progression free survival (PFS), and overall survival (OS). Exploratory endpoints included correlations between immune cell activation markers in tumor tissues and blood and response to therapy. Of the 42 evaluable patients, six had a response (one complete, five partial), with an ORR of 14.3% by RECIST v1.1. Median PFS was 2.7 months, median OS was 16.4 months, and DCR was 54.8%, with responders achieving a median DoR of 15.2 months. Therapy was generally well tolerated and resulted in an increase of immune activation markers, with higher levels of activation in peripheral blood associated with response and improved survival. The combination of Imprime and pembrolizumab was safe and demonstrated immune activation in tumor tissues and peripheral blood in patients with TNBC. Improved response rates were observed compared to historical studies of ICI monotherapy in similar patient populations. Study number (ClinicalTrials.gov trial registration): NCT02981303.
Collapse
Affiliation(s)
- Alison T Stopeck
- Department of Hematology and Oncology, Stony Brook University, Stony Brook, NY, United States
| | | | - Virginia Borges
- Medicine-Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bartosz Chmielowski
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
| | - Ruta Rao
- Rush University Medical Center, Chicago, IL, United States
| | - Bin Xie
- Hematology, Hematology Oncology, Medical Oncology, Swedish Cancer Institute, Issaquah, WA, United States
| | | | - Lida Mina
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
- Banner MD Anderson Cancer Center, Phoenix, AZ, United States
| | - Joyce O'Shaughnessy
- Medical Oncology, Internal Medicine, Baylor University, Medical Center, Texas Oncology, US Oncology, Dallas, TX, United States
| | | | | | | | - Joanna Cox
- Zentalis Pharmaceutical, San Diego, CA, United States
| | | | | | | | | | | | | | | | | | | | - Jose Iglesias
- APEX Oncology Consulting, Inc., Oakville, ON, Canada
| |
Collapse
|
20
|
Villa R, Shiau YP, Mahri S, Racacho KJ, Tang M, Zong Q, Ruiz D, Kim J, Li Y. Immunomodulatory nanoplatforms with multiple mechanisms of action in cancer treatment. Nanomedicine (Lond) 2025:1-18. [PMID: 40331271 DOI: 10.1080/17435889.2025.2500906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer immunotherapies have transformed oncology by utilizing the immune system to target malignancies; however, limitations in efficacy and potential side effects remain significant challenges. Nanoparticles have shown promise in enhancing drug delivery and improving immune activation, with the potential for numerous modifications to tailor them for specific environments or targets. Integrating nanoplatforms offers a promising avenue to overcome these hurdles, enhancing treatment outcomes and reducing adverse effects. By improving drug delivery, targeting, and immune modulation, nanoplatforms can unlock the full potential of cancer immunotherapy. This review explores the role of nanoplatforms in addressing these limitations and enhancing cancer immunotherapy outcomes, examining various types of nanoplatforms. Understanding the mechanisms of immunomodulation through nanoplatform deliveries is crucial. We discuss how these nanoplatforms interact with the tumor microenvironment, modulate tumor-associated macrophages and regulatory T cells, activate immune cells directly, enhance antigen presentation, and promote immunological memory. Further benefits include combination approaches integrating nanoplatforms with chemotherapy, radiotherapy, and phototherapy. Immunotherapy is a relatively new approach, but numerous clinical studies already utilize nanoplatform-based immunotherapies with promising results. This review aims to provide insights into the potential of nanoplatforms to enhance cancer immunotherapy and pave the way for more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Rodolfo Villa
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Ya-Ping Shiau
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Sohaib Mahri
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Kelsey Jane Racacho
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Qiufang Zong
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Donovan Ruiz
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Judy Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Liu S, Chen H, Gagea M, Federico L, Zhang F, Gomez J, Do KA, Symmans WF, Hortobagyi GN, Mills GB, Gonzalez-Angulo AM, Tripathy D. ADAMs contribute to triple negative breast cancer via mTORC1 pathway: targeting ADAM-mTOR axis improves efficacy. Cancer Lett 2025; 626:217775. [PMID: 40339955 DOI: 10.1016/j.canlet.2025.217775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Breast cancer is the most frequently diagnosed cancer globally and the second leading cause of cancer-related deaths in American women. Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Thus, fewer targeting therapies are available for this most aggressive subtype. The A Disintegrin and Metalloproteinase (ADAM) family plays a vital role in cancer pathophysiology. Previous studies focused on single ADAM members. However, none of these have entered into the clinical arena as diagnostics or therapeutics for breast cancer. In this study, we demonstrate the upregulation of a panel of ADAM members in TNBC, and overexpression of all the individual ADAMs tested are correlated with poor patient survival, making it unlikely that targeting a single ADAM member would be effective. Reverse-phase protein array and multiplexed immunofluorescence revealed that ADAM10/15/17 expression was associated with activated mTOR signaling. Individual knockdown of ADAM10, ADAM15, or ADAM17 modestly reduced mTOR signaling, cellular proliferation and survival. However, the concurrent knockdown of the three ADAMs drastically decreased mTOR signaling and cellular aggressiveness. Consistently, combined targeting of ADAMs and mTOR increased inhibitory efficacy compared to monotherapy in ADAM-mTOR-activated tumor growth and invasion in vitro and in immunodeficient and immunocompetent mice. These results establish a functional link between ADAMs and activation of mTOR signaling, suggesting the ADAM-mTOR axis as a therapeutic target and biomarker for ADAM-enriched TNBC and, potentially, other tumor lineages with high ADAM activity.
Collapse
Affiliation(s)
| | - Huiqin Chen
- Department of Breast Medical Oncology, USA; Department of of Biostatistics, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, USA
| | | | | | | | | | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
22
|
Chisaki Y, Nakamura N, Komuro T, Nyuji H, Harano M, Kitada N. Cost-Effectiveness Analysis of Pembrolizumab Plus Chemotherapy Compared with Chemotherapy as First-Line Treatment for Advanced PD-L1-Positive Triple-Negative Breast Cancer from a Japanese Healthcare Perspective. Clin Drug Investig 2025:10.1007/s40261-025-01445-8. [PMID: 40317386 DOI: 10.1007/s40261-025-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND OBJECTIVES Pembrolizumab has been approved for the immunotherapy of programmed death ligand 1 (PD-L1)-positive triple-negative breast cancer (TNBC) based on the KEYNOTE-355 trial. However, cost-effectiveness evidence is limited. The purpose of this study was to evaluate the cost-effectiveness of pembrolizumab plus chemotherapy compared with chemotherapy alone for patients with PD-L1-positive inoperable or metastatic TNBC from a Japanese healthcare perspective. METHODS The cost-effectiveness analysis was performed for pembrolizumab, of which the drug price was determined at 214,498 Japanese yen (JPY), or 1631 US dollars (USD) (1 USD = 131.5 JPY) for KEYTRUDA® (100 mg), using a partition survival model based on the KEYNOTE-355 trial subgroup analysis in Japan. The comparison was made using quality-adjusted life years (QALYs) and the incremental cost-effectiveness ratio (ICER). One-way deterministic and probabilistic sensitivity analyses (PSA), which evaluate the impact of parameter uncertainty, were performed to assess the robustness and calculate the acceptable probability, defined as the probability of the ICER being below the willingness-to-pay (WTP). RESULTS Pembrolizumab plus chemotherapy provided an additional 0.676 QALYs at an incremental cost of 8,503,072 JPY. The ICER for pembrolizumab plus chemotherapy compared with conventional chemotherapy was 12,577,178 JPY (95,644 USD) per QALY. The ICER per QALY was below the willingness-to-pay threshold of 15,000,000 JPY. PSAs revealed that the acceptable probability was 83.9% at 15,000,000 JPY. CONCLUSIONS The pembrolizumab plus chemotherapy is likely to be a cost-effective option compared with conventional chemotherapy for patients with PD-L1-positive inoperable or metastatic TNBC in a Japanese medical environment from a healthcare system.
Collapse
Affiliation(s)
- Yugo Chisaki
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Nobuhiko Nakamura
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takako Komuro
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hirokatsu Nyuji
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Mai Harano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Noriaki Kitada
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5-Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
23
|
Khan G, Hussain MS, Ahmad S, Alam N, Ali MS, Alam P. Metabolomics as a tool for understanding and treating triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04234-4. [PMID: 40314763 DOI: 10.1007/s00210-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous variant of breast cancer distinguished by a lack of targeted therapies, posing significant challenges in diagnosis and treatment. Metabolomics, the comprehensive study of small compounds in biological systems, has been identified as an instrument for revealing the metabolic underpinnings of TNBC. This review highlights recent advancements in metabolomic approaches, such as mass spectrometry and nuclear magnetic resonance, which have identified metabolic vulnerabilities, resistance mechanisms, and potential therapeutic targets. Key findings include alterations in fatty acid, amino acid, and glutathione metabolism, along with hypoxia-driven metabolic reprogramming that contributes to disease progression. The combination of metabolomics with multi-omics techniques, supported by advanced computational methods such as machine learning, offers a pathway to overcome challenges in data standardization and biological complexity. Emerging strategies, including the use of artificial intelligence and multidimensional omics approaches, are paving the way for personalized medicine by enabling the discovery of novel biomarkers and targeted therapies. Despite these advances, significant hurdles remain, including the need for robust data standardization, validation of findings in diverse patient cohorts, and seamless integration with clinical workflows. By addressing these challenges, metabolomics has the potential to revolutionize TNBC management, offering tools for early detection, precision therapy, and improved patient outcomes. This review underscores the importance of interdisciplinary collaboration to translate metabolomic insights into actionable clinical applications.
Collapse
Affiliation(s)
- Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand, 248007, India.
| | - Sarfaraz Ahmad
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| |
Collapse
|
24
|
Abudula M, Astuti Y, Raymant M, Sharma V, Schmid MC, Mielgo A. Macrophages suppress CD8 + T cell cytotoxic function in triple negative breast cancer via VISTA. Br J Cancer 2025:10.1038/s41416-025-03013-5. [PMID: 40316725 DOI: 10.1038/s41416-025-03013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Immunotherapy targeting negative immune checkpoint regulators to enhance the anti-tumour immune response holds promise in the treatment of TNBC. V-domain Ig suppressor of T-cell activation (VISTA) is an immune checkpoint molecule, known to be upregulated and involved in modulating tumour immunity in TNBC. However, how VISTA affects immune response and its therapeutic potential in TNBC remains unclear. METHOD Here, we examined VISTA expression and cellular distribution in TNBC patients' samples and pre-clinical TNBC mouse model. Functional assays were performed to assess the impact of VISTA blockade on macrophage phenotypes, CD8 + T cell infiltration and activation, and overall anti-tumour immune response. RESULTS In this study we show that VISTA expression levels are increased in TNBC patients' samples and pre-clinical mouse models compared to non-involved breast tissue and VISTA is mainly expressed on tumour infiltrating macrophages and neutrophils. Blocking VISTA reverts macrophages immunosuppressive phenotypes, increases CD8 + T cell infiltration and activation, and enhances an anti-tumour immune response. Mechanistically, we show that neutralising VISTA on macrophages enhances their immune-stimulatory functions and inhibits the suppressive effect of macrophages on CD8 + T cells activation. CONCLUSION These findings provide the rationale for the development of anti-VISTA targeting strategies in the treatment of TNBC.
Collapse
Affiliation(s)
- Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Yuliana Astuti
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Meirion Raymant
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Vijay Sharma
- School of Medicine and Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Department of Cellular Pathology, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Bolini L, Knott SRV, Galluzzi L. A macrophage-neutrophil program drives mammary carcinogenesis. Trends Cancer 2025; 11:427-429. [PMID: 40251071 DOI: 10.1016/j.trecan.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
The molecular and cellular pathways through which breast cancer evades immunosurveillance remain poorly understood. Recent data from Camargo et al. demonstrate that - on recruitment to the tumor microenvironment by ductal macrophages - a heterogeneous population of neutrophils can establish physical contacts with malignant cells within spatial niches that sustain mammary oncogenesis.
Collapse
Affiliation(s)
- Lukas Bolini
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Simon R V Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
27
|
El Gazzah E, Parker S, Pierobon M. Multi-omic profiling in breast cancer: utility for advancing diagnostics and clinical care. Expert Rev Mol Diagn 2025; 25:165-181. [PMID: 40193192 DOI: 10.1080/14737159.2025.2482639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Breast cancer remains a major global health challenge. While advances in precision oncology have contributed to improvements in patient outcomes and provided a deeper understanding of the biological mechanisms that drive the disease, historically, research and patients' allocation to treatment have heavily relied on single-omic approaches, analyzing individual molecular dimensions such as genomics, transcriptomics, or proteomics. While these have provided deep insights into breast cancer biology, they often fail to offer a complete understanding of the disease's complex molecular landscape. AREAS COVERED In this review, the authors explore the recent advancements in multi-omic research in the realm of breast cancer and use clinical data to show how multi-omic integration can offer a more holistic understanding of the molecular alterations and their functional consequences underlying breast cancer. EXPERT OPINION The overall developments in multi-omic research and AI are expected to complement precision diagnostics through potentially refining prognostic models, and treatment selection. Overcoming challenges such as cost, data complexity, and lack of standardization is crucial for unlocking the full potential of multi-omics and AI in breast cancer patient care to enable the advancement of personalized treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Emna El Gazzah
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Scott Parker
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
28
|
Huang M, Zhang Y, Chen Z, Yu X, Luo S, Peng X, Li X. Gut microbiota reshapes the TNBC immune microenvironment: Emerging immunotherapeutic strategies. Pharmacol Res 2025; 215:107726. [PMID: 40184763 DOI: 10.1016/j.phrs.2025.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and poor prognosis. The gut microbiota, a diverse community of microorganisms in the gastrointestinal tract, plays a crucial role in regulating immune responses through the gut-immune axis. Recent studies have highlighted its significant impact on TNBC progression and the efficacy of immunotherapies. This review examines the interactions between gut microbiota and the immune system in TNBC, focusing on key immune cells and pathways involved in tumor immunity. It also explores microbiota modulation strategies, including probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation, as potential methods to enhance immunotherapeutic outcomes. Understanding these mechanisms offers promising avenues for improving treatment efficacy and patient prognosis in TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Yikai Zhang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Zhaoji Chen
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Xin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China
| | - Shiping Luo
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management, China.
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiologyand Pharmacology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
29
|
Wang X, Wang L, Liu Y. Current Status of Immune Checkpoint Inhibitors and Treatment Responsive Biomarkers for Triple-Negative Breast Cancer. Thorac Cancer 2025; 16:e70072. [PMID: 40324951 PMCID: PMC12052518 DOI: 10.1111/1759-7714.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Triple-negative breast cancer (TNBC), accounting for about 10%-20% of all breast cancer cases, is characterized by its aggressive nature, high recurrence rates, and poor prognosis. Unlike other breast cancer subtypes, TNBC lacks hormone receptors and specific molecular targets, limiting therapeutic options. In recent years, immune checkpoint inhibitors (ICIs) have shown promise in treating TNBC by targeting immune evasion mechanisms. Despite these advancements, several issues remain unresolved, including low response rates in programmed cell death ligand 1 (PD-L1) negative TNBC subtypes and the challenge of predicting which patients will benefit from ICIs. Consequently, there is growing interest in identifying reliable biomarkers beyond PD-L1 expression. This review synthesizes recent studies to provide a comprehensive perspective on ICI therapy in TNBC, clarifying the status of single-agent ICI therapies and combination strategies, emphasizing the need for further research into biomarkers. These insights provide clues for more personalized and effective treatment approaches, ultimately aiming to improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Xinran Wang
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lingxia Wang
- Value & Implementation, Global Medical & Scientific AffairsMSD ChinaShanghaiChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
30
|
Raman R, Debata S, Govindarajan T, Kumar P. Targeting Triple-Negative Breast Cancer: Resistance Mechanisms and Therapeutic Advancements. Cancer Med 2025; 14:e70803. [PMID: 40318146 PMCID: PMC12048392 DOI: 10.1002/cam4.70803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most heterogeneous and menacing forms of breast cancer, with no sustainable cure available in the current treatment landscape. Its lack of targets makes it highly unresponsive to various treatment modalities, which is why chemotherapy continues to be the primary form of treatment, despite the high rates of patients developing chemoresistance. In recent years, however, there has been significant progress in identifying and understanding the role of several aspects that might contribute to genomic instability and other hallmarks of cancer, including cellular proteins, immune targets, and epigenetic mechanisms, which are desirable as they permit reversibility easier than the often-adamant genetic changes. METHODS A literature review was conducted on the role of various TNBC associated biomarkers, their therapeutic applications, and their role in tumorigenesis and tumor maintenance, with a focus on linking both the driving biological mechanisms and emerging treatment options for TNBC. CONCLUSIONS Shifting the focus of treatment to identify crucial tumor cell subpopulations and associated biomarkers, such as local immune cell populations and cancer stem cells, could potentially solve or simplify decades' worth of problems that are associated with TNBC, bolstering early detection and the evolution of precision medicine and treatment. The techniques that can be used here are epigenetic analysis and RNA sequencing. Biomarkers, such as PD-L1, survivin, and ABC transporters, are implicated in several crucial processes that maintain tumors, such as cell proliferation, metastasis, immunosuppression, and stemness. Complex treatment options such as, immunotherapy, pathway inhibition, PARP inhibition, virotherapy, and RNA targeting have been considered for TNBC. Phytochemicals are also being considered as a treatment modality for TNBC, as a supplement to chemotherapy and radiation therapy, or as sole treatment.
Collapse
Affiliation(s)
- Rachana Raman
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Shristi Debata
- Department of Biotechnology, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Praveen Kumar
- Photoceutics and Regeneration Laboratory, Department of Biotechnology, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
- Innotech Manipal, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
31
|
Zhang Y, Yang H, Jiang Y, Jiang Y, Mao R. Angiogenesis and immune microenvironment in triple-negative breast cancer: Targeted therapy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167880. [PMID: 40316057 DOI: 10.1016/j.bbadis.2025.167880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that typically lacks effective targeted therapies, leading to limited treatment options. Chemotherapy remains the primary treatment modality; however, in recent years, new immunotherapy approaches, such as immune checkpoint inhibitors, have shown positive results in some patients. Although the development of TNBC is closely associated with BRCA gene mutations, the tumor immune microenvironment (TIME) plays a crucial role in tumor progression and immune escape. Tumor angiogenesis, the accumulation of immunosuppressive cells, and alterations in immune molecules collectively shape an environment unfavorable for anti-tumor immune responses. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) promote immune escape by secreting immunosuppressive factors. Therefore, combination strategies of anti-angiogenic and immune checkpoint inhibitory therapies have shown synergistic effects in clinical trials, while new targeted therapies such as TGF-β inhibitors and IL-1β inhibitors offer new options for TNBC treatment. With the development of personalized medicine, combining immunotherapy and targeted therapies brings new hope for TNBC patients.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Hao Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Yanhong Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China..
| |
Collapse
|
32
|
Qiu S, Han QY, Zhao X, Li WJ, Li XQ. A Preliminary Study on the Therapeutic Role of γδT Cells in Triple-Negative Breast Cancer. Kaohsiung J Med Sci 2025:e70029. [PMID: 40289760 DOI: 10.1002/kjm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
This study was aimed to elucidate the cytotoxic effects of γδT cells on triple-negative breast cancer (TNBC) cells and assess their antitumor efficacy in a mouse xenograft model. Furthermore, the underlying mechanisms of γδT cell action on TNBC were explored. The study utilized three TNBC cell lines (MDA-MB-231, MDA-MB-468, and BT-549) as target cells, with γδT cells serving as effector cells. Cytotoxicity was assessed in different effector-to-target ratios (E:T) at 5:1, 10:1, and 20:1 subsequent to coculture. To evaluate the antitumor effects of γδT cells in vivo, a xenograft mice model was established by inoculating MDA-MB-231 cells into the mammary fat pad of B-NDG mice. The mice received tail vein injections of γδT cells at different doses. The effects on tumor growth, mouse body weight, and γδT cell accumulation in the spleen were then determined. γδΤ cells at E:T of 10:1 exhibited significant cytotoxicity against all three TNBC cell lines, indicating a statistically significant difference compared to the control group (p < 0.0001). The cytotoxic effect at this ratio was superior to that at 20:1 and 5:1 effector-to-target ratios, as evidenced by statistical significance (p < 0.05). Following 21 days of adoptive transfer via tail vein injection, γδΤ cells at both low and high doses significantly reduced tumor volume and mass compared to the PBS control group (p < 0.001). This reduction was accompanied by an increased accumulation of γδΤ cells in the spleen. In conclusion, γδΤ cells exert significant cytotoxic effects on TNBC cells and effectively inhibit the growth of breast cancer xenografts in mice while also promoting the accumulation of γδΤ cells in the mouse spleen.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qin-Yu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Xian Zhao
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Wen-Jing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Xiang-Qi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| |
Collapse
|
33
|
Ahmed KA, Kim Y, Kim S, Wang MH, DeJesus M, Arrington JA, Soyano AE, Armaghani AJ, Costa RLB, Loftus LS, Rosa M, Caudell JJ, Diaz R, Etame AB, Tran ND, Soliman H, Czerniecki BJ, Forsyth PA, Yu HHM, Han HS. Nivolumab and stereotactic radiosurgery for patients with breast cancer brain metastases: long-term results and biomarker analysis from a non-randomized, open-label, phase Ib study. J Immunother Cancer 2025; 13:e011432. [PMID: 40295143 PMCID: PMC12039042 DOI: 10.1136/jitc-2024-011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND We hypothesized treatment with nivolumab and stereotactic radiosurgery (SRS) would be feasible, well tolerated, and may improve intracranial tumor control over SRS alone for breast cancer brain metastases (BCBM). METHODS The study is a phase Ib trial of nivolumab and SRS for BCBM. CLINICAL TRIAL INFORMATION NCT03807765. Key eligibility criteria include BCBM of all subtypes, age ≥18, Eastern Cooperative Oncology Group Performace Status (ECOG-PS)≤2 with ≤10 brain metastases. Treatment was initiated with a dose of nivolumab (480 mg intravenously) that was repeated every 4 weeks. The initial dose of nivolumab was followed 1 week later by SRS. Blood was collected at baseline and every 4 weeks for flow cytometry and cell-free DNA (cfDNA) assessment. RESULTS A total of 12 patients received SRS to 17 brain metastases. Breast cancer subtypes included triple negative (50%), hormone receptor (HR)+/HER2- (33%), and HR-/HER2+ (17%). Median follow-up from start of protocol therapy is 56 months. No cases of radionecrosis were noted. Two lesions were noted to undergo local failure, both pathologically confirmed, for a 12-month local control of 94%. Median distant intracranial control was 7.4 months with a 12-month control rate of 33%. Median systemic progression-free survival was 7.7 months with a 12-month rate of 42%. Median overall survival (OS) was 24.7 months with a 12-month OS of 75%. Most patients were noted to have an increase in cfDNA throughout study treatment, at week 5 compared with baseline (83%), week 25 compared with baseline (89%), and 100% at first follow-up. Intracranial control was associated with lower levels of CD4 regulatory T cells (Treg) (p=0.03) and higher levels of CD4 T effector memory (p=0.04). CONCLUSIONS Nivolumab and SRS is a safe and feasible treatment option in BCBM. Long-term follow-up revealed no cases of radiation necrosis. TRIAL REGISTRATION NUMBER NCT03807765.
Collapse
Affiliation(s)
- Kamran A Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Younchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Sungjune Kim
- Department of Radiation Oncology, Mayo Clinic Jacksonville Campus, Jacksonville, Florida, USA
| | - Min Hsuan Wang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michelle DeJesus
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - John A Arrington
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Aixa E Soyano
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Avan J Armaghani
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ricardo L B Costa
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Loretta S Loftus
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Marilin Rosa
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roberto Diaz
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Arnold B Etame
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Nam D Tran
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hatem Soliman
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Peter A Forsyth
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Hyo S Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
34
|
Imani S, Farghadani R, Roozitalab G, Maghsoudloo M, Emadi M, Moradi A, Abedi B, Jabbarzadeh Kaboli P. Reprogramming the breast tumor immune microenvironment: cold-to-hot transition for enhanced immunotherapy. J Exp Clin Cancer Res 2025; 44:131. [PMID: 40281554 PMCID: PMC12032666 DOI: 10.1186/s13046-025-03394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
This review discusses reprogramming the breast tumor immune microenvironment from an immunosuppressive cold state to an immunologically active hot state. A complex interplay is revealed, in which the accumulation of metabolic byproducts-such as lactate, reactive oxygen species (ROS), and ammonia-is shown to impair T-cell function and promote tumor immune escape. It is demonstrated that the tumor microenvironment (TME) is dominated by immunosuppressive cytokines, including interleukin-10 (IL-10), transforming growth factorβ (TGFβ), and IL-35. Notably, IL-35 is produced by regulatory T cells and breast cancer cells. The conversion of conventional T cells into IL-35-producing induced regulatory T cells, along with the inhibition of pro-inflammatory cytokine secretion, contributes to the suppression of anti-tumor immunity. It is further demonstrated that key immune checkpoint molecules-such as PD-1, PDL1, CTLA-4, TIM-3, LAG-3, and TIGIT-are upregulated within the TME, leading to Tcell exhaustion and diminished immune responses. The blockade of these checkpoints is shown to restore T-cell functionality and is proposed as a strategy to convert cold tumors into hot ones with robust effector cell infiltration. The therapeutic potential of chimeric antigen receptor (CAR)T cell therapy is also explored, and targeting specific tumor-associated antigens, such as glycoproteins and receptor tyrosine kinases, is highlighted. It is suggested that CART cell efficacy can be enhanced by combining these cells with immune checkpoint inhibitors and other immunomodulatory agents, thereby overcoming the barriers imposed by the immunosuppressive TME. Moreover, the role of the microbiome in regulating estrogen metabolism and systemic inflammation is reviewed. Alterations in the gut microbiota are shown to affect the TME, and microbiome-based interventions are proposed as an additional means to facilitate the cold-to-hot transition. It is concluded that by targeting the metabolic and immunological pathways that underpin immune suppression-through combination strategies involving checkpoint blockade, CART cell therapies, and microbiome modulation-the conversion of the breast TME from cold to hot can be achieved. This reprogramming is anticipated to enhance immune cell infiltration and function, thereby improving the overall efficacy of immunotherapies and leading to better clinical outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Moradi
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland.
| |
Collapse
|
35
|
He Y, Liu Q, Luo Z, Hu Q, Wang L, Guo Z. Role of Tumor-Associated Macrophages in Breast Cancer Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26995. [PMID: 40302326 DOI: 10.31083/fbl26995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer (BC) is the second leading cause of death among women worldwide. Immunotherapy has become an effective treatment for BC patients due to the rapid development of medical technology. Considerable breakthroughs have been made in research, marking the beginning of a new era in cancer treatment. Among them, various cancer immunotherapies such as immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer are effective and have good prospects. The tumor microenvironment (TME) plays a crucial role in determining the outcomes of tumor immunotherapy. Tumor-associated macrophages (TAMs) are a key component of the TME, with an immunomodulatory effect closely related to the immune evasion of tumor cells, thereby affecting malignant progression. TAMs also significantly affect the therapeutic effect of ICIs (such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors). TAMs are composed of multiple heterogeneous subpopulations, including M1 phenotypes macrophages (M1) and M2 phenotypes macrophages (M2). Furthermore, they mainly play an M2-like role and moderate a variety of harmful consequences such as angiogenesis, immunosuppression, and metastasis. Therefore, TAMs have become a key area of focus in the development of tumor therapies. However, several tumor immunotherapy studies demonstrated that ICIs are effective only in a small number of solid cancers, and tumor immunotherapy still faces relevant challenges in the treatment of solid tumors. This review explores the role of TAMs in BC immunotherapy, summarizing their involvement in BC development. It also explains the classification and functions of TAMs, outlines current tumor immunotherapy approaches and combination therapies, and discusses the challenges and potential strategies for TAMs in immuno-oncology treatments.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, 518052 Shenzhen, Guangdong, China
| | - Zhihao Luo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Li Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
36
|
Roqué-Lloveras A, Pérez-Bueno F, Pozo-Ariza X, Polonio-Alcalá E, Ausellé-Bosch S, Oliveras G, Viñas G, Puig T. Breast Cancer Stem Cells and Immunogenicity Profile in High-Risk Early Triple-Negative Breast Cancer: A Pilot Study. Int J Mol Sci 2025; 26:3960. [PMID: 40362201 PMCID: PMC12071224 DOI: 10.3390/ijms26093960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype requiring further knowledge of biomarkers to improve targeted therapy. A major resistance mechanism involves breast cancer stem cells (BCSCs) evading the immune system. Neoadjuvant or adjuvant chemotherapy may alter BCSCs and the patients' immune response. We conducted a retrospective study including 29 early-stage TNBC patients resistant to chemotherapy diagnosed at the Catalan Institute of Oncology (Girona, Spain) in 2010-2019. We obtained 44 paired tumor samples (pre- and post-chemotherapy) from the Tumor Biobank, assessing BCSC biomarkers (CD44, CD24, and ALDH1), PD-L1, and percentages of stromal tumor-infiltrating lymphocytes (TILs). Clinicopathological characteristics were also collected. At baseline, 68% of tumors had high CD44 expression, 55% showed low CD24 expression, 9% had high ALDH1 expression, 91% were PD-L1-negative (<1%), and 64% had a low percentage of stromal TILs. PD-L1 expression significantly increased post-chemotherapy, with 50% of initially negative tumors becoming PD-L1 positive (≥1%) (p = 0.006). No significant changes were observed in BCSC markers or TILs. No association was found between baseline BCSCs and increased PD-L1 expression post-chemotherapy. At a median follow-up of 58.9 months, 48.3% of patients were alive, with non-significant favorable trends in time to progression, disease-free survival, and overall survival in the PD-L1 positivization cohort post-chemotherapy. In conclusion, high-risk early-stage TNBC tumors increased PD-L1 expression after chemotherapy, potentially affecting clinical outcomes. BCSCs remained stable and independent of the tumor immunogenicity post-chemotherapy. Further studies are needed to explore the relationship between BCSCs and the immunogenicity profile, for development of new combined therapeutic strategies.
Collapse
Affiliation(s)
- Ariadna Roqué-Lloveras
- Medical Oncology Department, Catalan Institute of Oncology Girona, 17007 Girona, Spain;
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), 17190 Salt, Spain;
- New Therapeutic Targets Laboratory (TargetsLab)–Oncology Unit, Medical Science Department, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (F.P.-B.); (S.A.-B.); (G.O.)
| | - Ferran Pérez-Bueno
- New Therapeutic Targets Laboratory (TargetsLab)–Oncology Unit, Medical Science Department, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (F.P.-B.); (S.A.-B.); (G.O.)
- Pathological Anatomy Department, Dr. Josep Trueta University Hospital, 17007 Girona, Spain;
| | - Xavier Pozo-Ariza
- Pathological Anatomy Department, Dr. Josep Trueta University Hospital, 17007 Girona, Spain;
| | - Emma Polonio-Alcalá
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), 17190 Salt, Spain;
| | - Sira Ausellé-Bosch
- New Therapeutic Targets Laboratory (TargetsLab)–Oncology Unit, Medical Science Department, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (F.P.-B.); (S.A.-B.); (G.O.)
| | - Glòria Oliveras
- New Therapeutic Targets Laboratory (TargetsLab)–Oncology Unit, Medical Science Department, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (F.P.-B.); (S.A.-B.); (G.O.)
- Pathological Anatomy Department, Dr. Josep Trueta University Hospital, 17007 Girona, Spain;
| | - Gemma Viñas
- Medical Oncology Department, Catalan Institute of Oncology Girona, 17007 Girona, Spain;
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), 17190 Salt, Spain;
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)–Oncology Unit, Medical Science Department, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (F.P.-B.); (S.A.-B.); (G.O.)
| |
Collapse
|
37
|
Yan Y, Wang Y, Tang J, Liu X, Wang J, Song G, Li H. Comprehensive Analysis of Oncogenic Somatic Alterations of Mismatch Repair Gene in Breast Cancer Patients. Bioengineering (Basel) 2025; 12:426. [PMID: 40281786 PMCID: PMC12025084 DOI: 10.3390/bioengineering12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Recent clinical trials have suggested that solid cancers with mismatch repair (MMR) deficiency are highly responsive to immunotherapy, regardless of cancer types. Previous MMR-related studies on breast cancer have predominantly focused on germline variants. However, the somatic MMR alterations have not been comprehensively characterized in breast cancer. In this study, we integrated genomic, transcriptomic, and clinical data from over 3000 breast cancer cases across six public cohorts. Our findings revealed that 1.2% of breast cancers harbored oncogenic somatic MMR alterations, with triple-negative breast cancer (TNBC) demonstrating the highest mutation rate at 3.1%. Additionally, somatic MMR alterations were significantly associated with microsatellite instability-high (MSI-H) and MMR-related mutational signatures, indicating that somatic MMR alterations led to impaired function of the MMR system. Biallelic inactivation of MMR genes resulted in a more pronounced loss of MMR function compared to monoallelic inactivation. Importantly, these MMR alterations significantly increased the tumor mutational burden (TMB) and neoantigen load in breast cancer, regardless of MSI-H status. These findings indicate that the frequency of MMR alterations is highest in TNBC and that MMR alterations in breast cancer can lead to MMR functional deficiencies, suggesting that some patients harboring such alterations may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yin Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (Y.Y.); (X.L.)
| | - Yang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Comprehensive Clinical Trial Ward, Peking University Cancer Hospital & Institute, Beijing 100142, China;
| | - Junjie Tang
- The First Clinical Medical School, Nanjing Medical University, Nanjing 211166, China;
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (Y.Y.); (X.L.)
| | - Jichuan Wang
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing 100041, China;
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (Y.Y.); (X.L.)
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (Y.Y.); (X.L.)
| |
Collapse
|
38
|
Schmid P, Oliveira M, O’Shaughnessy J, Cristofanilli M, Graff SL, Im SA, Loi S, Saji S, Wang S, Cescon DW, Hovey T, Nawrot A, Tse K, Vukovic P, Curigliano G. TROPION-Breast05: a randomized phase III study of Dato-DXd with or without durvalumab versus chemotherapy plus pembrolizumab in patients with PD-L1-high locally recurrent inoperable or metastatic triple-negative breast cancer. Ther Adv Med Oncol 2025; 17:17588359251327992. [PMID: 40297626 PMCID: PMC12035291 DOI: 10.1177/17588359251327992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/28/2025] [Indexed: 04/30/2025] Open
Abstract
Background Standard of care (SoC) for patients with advanced triple-negative breast cancer (TNBC) whose tumors express PD-L1 (combined positive score ⩾ 10) is chemotherapy plus anti-PD-(L)1 inhibitors; however, prognosis and survival for most patients is poor. Datopotamab deruxtecan (Dato-DXd), a novel antibody-drug conjugate comprising a humanized anti-TROP2 IgG1 monoclonal antibody conjugated to a potent topoisomerase I inhibitor payload via a plasma-stable, cleavable, tetrapeptide-based linker, has shown preliminary activity as mono or combination therapy in advanced/metastatic TNBC. Objectives TROPION-Breast05 is an ongoing randomized, open-label, multicenter phase III study. The primary objective is to demonstrate the superiority of Dato-DXd in combination with durvalumab (an anti-PD-L1 antibody) versus SoC treatment in patients with PD-L1-high locally recurrent inoperable or metastatic TNBC. Methods and design Patients (⩾18 years) will be randomized 1:1 to receive Dato-DXd (6 mg/kg intravenously (IV) every 3 weeks (Q3W)) plus durvalumab (1120 mg IV Q3W) or investigator's choice of chemotherapy (ICC; paclitaxel, nab-paclitaxel, or gemcitabine plus carboplatin) plus pembrolizumab (200 mg IV Q3W). In selected countries, patients will also be randomized (1:1:1) to a third arm of Dato-DXd monotherapy. The primary study endpoint is progression-free survival (PFS) per blinded independent central review (Dato-DXd plus durvalumab arm vs ICC plus pembrolizumab arm). Overall survival is a key secondary endpoint; other secondary endpoints include PFS (investigator-assessed), objective response rate, duration of response, clinical benefit rate at Week 24 (all assessed in the Dato-DXd plus durvalumab arm vs ICC plus pembrolizumab arm), patient-reported outcomes, and safety. Ethics The study is approved by independent ethics committees or institutional review boards at each study site. All patients will provide written informed consent. Discussion TROPION-Breast05 will assess the potential role of Dato-DXd with or without durvalumab in patients with PD-L1-high advanced or metastatic TNBC. The findings of this trial could lead to a new treatment option for these patients. Trial registration ClinicalTrials.gov identifier: NCT06103864 (Date of registration: 27 October 2023).
Collapse
Affiliation(s)
- Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London EC1M 6AU, UK
| | - Mafalda Oliveira
- Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Stephanie L. Graff
- Brown University Health Cancer Institute, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Shusen Wang
- Department of Medical Oncology, Cancer Center of Sun Yat-sen University, Guangzhou, China
| | - David W. Cescon
- Department of Medical Oncology, Princess Margaret Cancer Centre/UHN, Toronto, ON, Canada
| | - Tina Hovey
- Biostatistics, Phastar UK (under contract to AstraZeneca), London, UK
| | | | - Karson Tse
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
39
|
Emara HM, Allam NK, Youness RA. A comprehensive review on targeted therapies for triple negative breast cancer: an evidence-based treatment guideline. Discov Oncol 2025; 16:547. [PMID: 40244488 PMCID: PMC12006628 DOI: 10.1007/s12672-025-02227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by limited therapeutic options and poor prognosis. Despite advancements in precision oncology, conventional chemotherapy remains the cornerstone of TNBC treatment, often accompanied by debilitating side effects and suboptimal outcomes. This review presents a comprehensive analysis of clinical trials on targeted therapies, aiming to establish a novel, evidence-based treatment strategy exclusively leveraging molecularly targeted agents. By integrating patient-specific genetic profiles with therapeutic responses observed across various clinical trial phases, this approach seeks to optimize efficacy while minimizing toxicity. The proposed targeted therapy combinations hold significant potential to revolutionize TNBC treatment, offering a paradigm shift toward precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Hadir M Emara
- Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| | - Nageh K Allam
- Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt.
| |
Collapse
|
40
|
Tian Y, Yang Y, He L, Yu X, Zhou H, Wang J. Exploring the tumor microenvironment of breast cancer to develop a prognostic model and predict immunotherapy responses. Sci Rep 2025; 15:12569. [PMID: 40221624 PMCID: PMC11993623 DOI: 10.1038/s41598-025-97784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Breast cancer is the most prevalent malignancy in women and exhibits significant heterogeneity. The tumor microenvironment (TME) plays a critical role in tumorigenesis, progression, and response to therapy. However, its impact on the prognosis and immunotherapy responses is incompletely understood. Using public databases, we conducted a comprehensive investigation of transcriptome and single-cell sequencing data. After performing immune infiltration analysis, we conducted consensus clustering, weighted gene co-expression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (Lasso) regression to identify independent prognostic genes in breast cancer. Subsequently, we developed a prognostic model for patients with breast cancer. Tumor Immune Dysfunction and Exclusion (TIDE) values were used to assess patient's responsiveness to breast cancer. Based on single-cell RNA-sequencing data, we identified various cell types through cluster analysis and investigated the expression of prognostic model genes in each cell type. The drug sensitivity of targeted therapeutic agents for breast cancer treatment was analyzed in different cell types. We identified 12 independent prognostic genes associated with breast cancer and used these genes to construct a prognostic model. The prognostic model accurately discriminated between patients classified as high- and low-risk, providing precise prognostic predictions for individual patients. Additionally, our model exhibited a robust capacity to predict the immunotherapeutic response in breast cancer patients. Our investigation revealed a notable association between the proportion of endothelial cells (ECs) and patient prognosis in breast cancer. A prognostic model for breast cancer was formulated that showed close associations between prognosis and response to immunotherapy. For patients predicted by our model to not respond effectively to immunotherapeutic agents, it may be considered to combine immunotherapeutic agents with targeted therapeutic agents identified through our drug sensitivity analysis, which could potentially enhance treatment efficacy.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Wang S, Wang X, Xia J, Mu Q. Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning. Sci Rep 2025; 15:12525. [PMID: 40216945 PMCID: PMC11992169 DOI: 10.1038/s41598-025-96917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screened the differentially expressed genes from The Cancer Genome Atlas-Breast cancer database and analyzed the relationship between immune cell infiltration and differentially expressed genes using weighted gene co-expression network analysis. By constructing a module-trait relationships heatmap, the red module, which had the highest correlation value with M1 macrophages, was selected. Twenty hub genes were selected based on a protein-protein interaction network. Then, four overlapping M1 macrophage infiltration-related genes (M1 MIRGs), namely CCDC69, PPP1R16B, IL21R, and FOXP3, were obtained using five machine-learning algorithms. Subsequently, nomogram models were constructed to predict the incidence of Her2-positive breast cancer patients. The outer datasets and receiver operating characteristic curve analysis were used to validate the accuracy of the four M1 MIRGs and nomogram models. The average value of the area under the curve for the nomogram models was higher than 0.75 in both the training and testing sets. After that, survival analysis showed that higher expression of CCDC69, PPP1R16B, and IL21R were associated with overall survival of Her2-positive breast cancer patients. The expression of CCDC69 and PPP1R16B could lead to more benefits than the expression of IL21R and FOXP3 for immunotherapy. Lastly, we conducted immunohistochemistry staining to validate the aforementioned results. In conclusion, we found four M1 MIRGs that may be helpful for the diagnosis, prognosis, and immunotherapy of Her2-positive breast cancer.
Collapse
Affiliation(s)
- Sizhang Wang
- Qingdao Medical College of Qingdao University, Qingdao, 266042, Shandong, China
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Xiaoyan Wang
- General Practice Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Jing Xia
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Qiang Mu
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China.
| |
Collapse
|
42
|
Chen IP, Henning S, Bender M, Degenhardt S, Mhamdi Ghodbani M, Bergmann AK, Volkmer B, Brockhoff G, Wege AK, Greinert R. Detection of Human Circulating and Extracellular Vesicle-Derived miRNAs in Serum of Humanized Mice Transplanted with Human Breast Cancer (HER2 + and TNBC) Cells-A Proof of Principle Investigation. Int J Mol Sci 2025; 26:3629. [PMID: 40332177 PMCID: PMC12026515 DOI: 10.3390/ijms26083629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Humanized tumor mice (HTM) allow for preclinical cancer treatment studies of breast cancer (BC) under human-like conditions. This study utilized HTM for the first time to investigate potential miRNA biomarker candidates for treatment response in sera and extracellular vesicles (EVs), following X-irradiation and atezolizumab (anti-PD-L1) treatment. We identified the changes of human-specific miRNAs (miR-23b-3p and miR-155-5p) after irradiation and anti-PD-L1 treatment in HTMs with human epidermal growth factor receptor 2 positive (HER2+ BC) and triple-negative breast cancer (TNBC). The high degree of conserved, circulating free miRNA in mice and men represents a challenge of our assay; however, miRNAs with ≥2 nucleotide mismatches can be employed for human-specific analysis, and even conserved miRNAs may be utilized under clearly defined conditions of human tumor growth in HTM. A comparative analysis of extracellular vesicle miRNA cargo and free-circulating serum miRNAs revealed several exosome-specific miRNAs (miR-29b-3p, miR-34c-5p, miR-203a-3p, miR-378g, and miR-382-5p) in HTMs, which are known to play roles in BC. Our findings demonstrate that HTMs are a suitable model to identify treatment-induced changes in free-circulating and exosomal miRNAs that influence tumor progression and immunological tumor defense, both locally and at distant sites. This study presents a proof-of-principle approach to analyzing cell-free nucleotides and exosomes in a human-like, preclinical in vivo setting. Further refinements are necessary to enhance the sensitivity and the specificity of the HTM-based approach.
Collapse
Affiliation(s)
- I-Peng Chen
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Stefan Henning
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Marc Bender
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Sarah Degenhardt
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Mouna Mhamdi Ghodbani
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Ann Kathrin Bergmann
- Core Facility of Electron Microscopy, University Clinics Duesseldorf, 40225 Duesseldorf, Germany;
| | - Beate Volkmer
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, Medical Center Regensburg, 93053 Regensburg, Germany; (G.B.); (A.K.W.)
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, Medical Center Regensburg, 93053 Regensburg, Germany; (G.B.); (A.K.W.)
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Rüdiger Greinert
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbekliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (I.-P.C.); (S.H.); (M.B.); (M.M.G.); (B.V.)
| |
Collapse
|
43
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
44
|
Li H, Chang Y, Jin T, Zhang M. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int 2025; 25:139. [PMID: 40211301 PMCID: PMC11987362 DOI: 10.1186/s12935-025-03769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/28/2025] [Indexed: 04/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous cancer with substantial recurrence potential. Currently, surgery and chemotherapy are the main treatments for this disease. However, chemotherapy is often limited by several factors, including low bioavailability, significant systemic toxicity, inadequate targeting, and multidrug resistance. Immune checkpoint inhibitors (ICIs), including those targeting programmed death protein-1 (PD-1) and its ligand (PD-L1), have been proven effective in the treatment of various tumours. In particular, in the treatment of TNBC with PD-1/PD-L1 inhibitors, both monotherapy and combination chemotherapy, as well as targeted drugs and other therapeutic strategies, have broad therapeutic prospects. In addition, these inhibitors can participate in the tumour immune microenvironment (TIME) through blocking PD-1/PD-L1 binding, which can improve immune efficacy. This article provides an overview of the use of PD-1/PD-L1 inhibitors in the treatment of TNBC and the progress of multiple therapeutic studies. To increase the survival of TNBC patients, relevant biomarkers for predicting the efficacy of PD-1/PD-L1 inhibitor therapy have been explored to identify new strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Hongshu Li
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China
| | - Ying Chang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China.
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China.
| | - Meihua Zhang
- Department of Ultrasound Medicine, Yanbian University Hospital, Yanji, 133000, P. R. China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Gong Yuan Road No. 977, Yanji, 133002, P. R. China.
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, P. R. China.
| |
Collapse
|
45
|
Wang X, Wang Z, Liao Q, Yuan P, Mei J, Zhang Y, Wu C, Kang X, Zheng S, Yang C, Liu J, Shang Q, Li J, Wang B, Li L, Liu H, Hu W, Dong Z, Zhao J, Wang L, Liu T, Den Y, Wang C, Han L, Chen Q, Yang H, Xu X, He J, Yue Z, Sun N, Fang X, Ying J. Spatially resolved atlas of breast cancer uncovers intercellular machinery of venular niche governing lymphocyte extravasation. Nat Commun 2025; 16:3348. [PMID: 40199901 PMCID: PMC11978809 DOI: 10.1038/s41467-025-58511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancers present intricate microenvironments comprising heterotypic cellular interactions, yet a comprehensive spatial map remained to be established. Here, we employed the DNA nanoball-based genome-wide in situ sequencing (Stereo-seq) to visualize the geospatial architecture of 30 primary breast tumors and metastatic lymph nodes across different molecular subtypes. This unprecedented high-resolution atlas unveils the fine structure of the tumor vasculature, highlighting heterogeneity in phenotype, spatial distribution, and intercellular communication within both endothelial and perivascular cells. In particular, venular smooth muscle cells are identified as the primary source of CCL21/CCL19 within the microenvironment. In collaboration with ACKR1-positive endothelial cells, they create a chemokine-rich venular niche to synergistically promote lymphocyte extravasation into tumors. High venule density predicts increased immune infiltration and improved clinical outcomes. This study provides a detailed spatial landscape of human breast cancer, offering key insights into the venular regulation of tumor immune infiltration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qijun Liao
- BGI Research, Shenzhen, 518083, P. R. China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, 518083, P. R. China
| | - Pei Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Junpu Mei
- BGI Research, Sanya, 572025, P. R. China
| | - Yin Zhang
- BGI Research, Shenzhen, 518083, P. R. China
| | - Chao Wu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Xiyu Kang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Liangyu Li
- BGI Research, Shenzhen, 518083, P. R. China
| | - Hui Liu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Weining Hu
- BGI Research, Shenzhen, 518083, P. R. China
| | | | - Jie Zhao
- BGI Research, Shenzhen, 518083, P. R. China
| | | | - Tao Liu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Yusheng Den
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Chengrui Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Lijuan Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Qianjun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhen Yue
- BGI Research, Sanya, 572025, P. R. China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | | | - Jianming Ying
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|
46
|
Lu ZM, Qiu ZW, Li YM, Zhang KY, Wu YY, Yan N, Cheng H. PD-L1-Targeting Autophagy Modulator to Upregulate MHC-I and Activate Photo-Immunotherapy for Metastatic Tumor Eradication. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20820-20832. [PMID: 40132080 DOI: 10.1021/acsami.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Breast cancer cells are characterized by heightened autophagy, which impairs tumor-associated antigen presentation and represents a significant barrier to the antitumor immunity. In this study, a PD-L1-targeting autophagy modulator (PFC@CQ) is fabricated to activate the photoimmunotherapy against breast cancer. Specifically, the hydrophobic photosensitizer protoporphyrin IX (PpIX) is covalently linked to the hydrophobic peptide FFVLK and a PD-L1-targeting peptide sequence CLQKTPKQC, resulting in the formation of an amphiphilic photosensitizer-peptide conjugate (PpIX-FFVLK-CLQKTPKQC, called PFC), which is capable of encapsulating the autophagy inhibitor chloroquine (CQ). PFC@CQ can not only facilitate the targeted drug codelivery to PD-L1-overexpressing breast cancer cells, but also effectively disrupt their immune evasion by blocking PD-1/PD-L1 pathway. Upon light irradiation, the photodynamic therapy (PDT) of PFC@CQ induces tumor cell destruction and immunogenic cell death (ICD), causing the release of damage-associated molecular patterns (DAMPs). Simultaneously, PFC@CQ can inhibit autophagy pathway to mediate the upregulation of MHC-I, thereby enhancing antigen presentation. This cascade immunomodulation promotes the dendritic cell maturation and CD8+ T cell activation, leading to a synergistic suppression of both primary and metastatic tumors. This work introduces an innovative autophagy modulation strategy with potent immunomodulatory capability, demonstrating a potential to trigger systemic antitumor immune responses through local treatment.
Collapse
Affiliation(s)
- Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
47
|
Chen M, Huang R, Rong Q, Yang W, Shen X, Sun Q, Shu D, Jiang K, Xue C, Peng J, An X, Li H, Xu F, Shi Y. Bevacizumab, tislelizumab and nab-paclitaxel for previously untreated metastatic triple-negative breast cancer: a phase II trial. J Immunother Cancer 2025; 13:e011314. [PMID: 40199609 PMCID: PMC11979599 DOI: 10.1136/jitc-2024-011314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Optimal first-line therapy for metastatic triple-negative breast cancer (mTNBC) varied in different situations. This phase II trial explores the efficacy and safety of combination regimens with bevacizumab, tislelizumab and nab-paclitaxel (BETINA) in first-line setting for mTNBC. METHODS Patients with previously untreated advanced TNBC received tislelizumab 200 mg and bevacizumab on day 1 and nab-paclitaxel 125 mg/m2 on day 1, day 8 in 3-week cycles. Patients were randomized to bevacizumab 7.5 mg/kg or 15 mg/kg. The primary endpoint was investigator-assessed objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors V.1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. The trial was registered at the Chinese Clinical Trial Registry (No. ChiCTR2200058567). RESULTS 30 female patients were enrolled from March 11, 2021 to February 5, 2024. Nine patients receiving bevacizumab 15 mg/kg experienced significantly higher hypertension rates versus 7.5 mg/kg (55.5% vs 0%), prompting subsequent enrollment of 12 additional patients at 7.5 mg/kg. By November 30, 2024, the ORR was 73.3% and the disease control rate was 90.0%, while the median PFS was 6.0 months and the median OS was 19.8 months. No new safety signal was reported. Common treatment-related adverse events (AEs) included peripheral sensory neuropathy (83.3%), dyspepsia (70.0%), anemia (70.0%), leukocytopenia (66.7%), and pruritus (53.3%). Hypothyroidism (30.0%) was the most frequent immune-related AE. Biomarker analysis indicated that lower baseline interleukin (IL)-1α was associated with poor survival, while IL-2, vascular endothelial growth factor-A and insulin-like growth factor binding protein-7 levels significantly decreased at progression. RNA sequencing highlighted the enrichment of the fatty acid metabolism pathway in poor responders. CONCLUSIONS BETINA study demonstrated promising efficacy and favorable tolerance in treating patients with mTNBC with bevacizumab with tislelizumab and nab-paclitaxel.
Collapse
Affiliation(s)
- Meiting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Riqing Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Qixiang Rong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Wei Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Qi Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Ditian Shu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Kuikui Jiang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Cong Xue
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Jing Peng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Xin An
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Haifeng Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
48
|
Habibi S, Bahramian S, Saeedeh ZJ, Mehri S, Ababzadeh S, Kavianpour M. Novel strategies in breast cancer management: From treatment to long-term remission. Crit Rev Oncol Hematol 2025; 211:104715. [PMID: 40187709 DOI: 10.1016/j.critrevonc.2025.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related mortality worldwide. Although improvements in early detection and therapy have been made, metastatic breast cancer (mBC) continues to be an incurable disease. Although existing treatments can prolong survival and enhance quality of life, they do not provide a definitive cure. Targeted therapies have significantly improved outcomes, particularly for subtypes such as human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor (HR)-positive (HR+) BC. Key innovations include antibodydrug conjugates (ADCs) and next-generation endocrine therapies. ADCs combine monoclonal antibodies with cytotoxic agents, allowing targeted delivery to tumor cells while minimizing systemic toxicity. Immunotherapy is emerging as a promising approach for aggressive subtypes, such as triple-negative breast cancer (TNBC). Strategies under investigation include chimeric antigen receptor T-cell (CAR-T) therapy, tumor-infiltrating lymphocyte (TIL) therapies, and natural killer (NK) cell treatments, all aimed at enhancing the ability of the immune system to target and eliminate resistant tumor cells. Tissue engineering, particularly hydrogel-based delivery systems, offers the potential for localized treatment. These systems enable the controlled release of therapeutic agents or immune cells directly to the tumor site, supporting tissue regeneration and enhancing immune surveillance to reduce recurrence. Despite these advancements, challenges remain, including treatment resistance, the immunosuppressive tumor microenvironment, and high costs. Overcoming these barriers requires further innovation in drug delivery systems and a deeper understanding of tumor biology.
Collapse
Affiliation(s)
- Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabbou Bahramian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Zare Jalise Saeedeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
49
|
Nevala WK, Geng L, Xie H, Stueven NA, Markovic SN. PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model. Int J Mol Sci 2025; 26:3295. [PMID: 40244130 PMCID: PMC11989481 DOI: 10.3390/ijms26073295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin's lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC.
Collapse
Affiliation(s)
- Wendy K. Nevala
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Liyi Geng
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Hui Xie
- Vivasor, 9380 Judicial Dr., San Diego, CA 92121, USA;
| | - Noah A. Stueven
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Svetomir N. Markovic
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| |
Collapse
|
50
|
Jiao B, Hsieh YL, Li M, Verguet S. Value-Based Pricing for Drugs With Uncertain Clinical Benefits. HEALTH ECONOMICS 2025; 34:780-790. [PMID: 39810308 DOI: 10.1002/hec.4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
Policymakers can use cost-effectiveness analysis to set value-based prices (VBP) for new pharmaceuticals. However, the uncertainty of investigational drug benefits complicates this pricing strategy. Such complexity stems from decision-makers' risk aversion and the potential change in the estimated value with emerging evidence. The recent surge in drugs approved via the Accelerated Approval (AA) pathway in the U.S. has made incorporating uncertainty into VBP crucial. We propose to estimate risk-adjusted VBP (rVBP) for drugs with uncertain benefits via integrating value of information and expected utility theory. Our approach involves two assessment points: an initial assessment with existing evidence; and a reassessment with new evidence that reduces uncertainty. This approach enables decision-makers to set rVBP in the initial assessment such that the expected utility, from the exisiting evidence, aligns with the benchmark uncertainty. We evaluate two benchmarks: one with no uncertainty, and one with a decision-maker's acceptable uncertainty level. We show in a case study of a hypothetical AA drug that rVBP may be lower than traditional VBP, especially under high risk aversion or low acceptable uncertainty. Our methodology adjusts VBP to account for uncertainty, supporting decision-makers in balancing timely market access with the risks associated with uncertainty in the benefits of new pharmaceuticals.
Collapse
Affiliation(s)
- Boshen Jiao
- Department of Pharmaceutical and Health Economics, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, USA
| | - Yuli Lily Hsieh
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Interfaculty Initiative in Health Policy, Harvard University, Cambridge, Massachusetts, USA
| | - Meng Li
- Center for the Evaluation of Value and Risk in Health, Tufts Medical Center, Boston, Massachusetts, USA
| | - Stéphane Verguet
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|