1
|
Rizkala T, Menini M, Massimi D, Repici A. Role of Artificial Intelligence for Colon Polyp Detection and Diagnosis and Colon Cancer. Gastrointest Endosc Clin N Am 2025; 35:389-400. [PMID: 40021235 DOI: 10.1016/j.giec.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The broad use of artificial intelligence (AI) and its various applications have already shown significant impact in medicine and in everyday life. In gastroenterology, the most studied AI tools at present are computer-aided detection (CADe) and computer-aided diagnosis (CADx). These tools have been mainly assessed during colonoscopy for the detection of polyps and for the prediction of their histology based on their appearance. Their use aims to improve colonoscopy quality, standardize procedures, and potentially reduce costs. Data on CADe demonstrate clear benefits that are applicable to clinical practice. While CADx shows good diagnostic performance, its additional benefits in assisting endoscopists remain unclear.
Collapse
Affiliation(s)
- Tommy Rizkala
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Maddalena Menini
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Davide Massimi
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro Repici
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy.
| |
Collapse
|
2
|
Ang TL, Hang DV, Li JW, Ho JCL, Sy-Janairo ML, Raja Ali RA, Makharia GK, Sundaram S, Chantarojanasiri T, Kim HG, Isayama H, Pausawasdi N, Wu K, Syam AF, Aye TT, Rehman S, Niriella MA, Jurawan R, Wang L, Leung WK, Liou JM, Rizan C, Wu JCY, Ooi CJ. APAGE Position Statements on Green and Sustainability in Gastroenterology, Hepatology, and Gastrointestinal Endoscopy. J Gastroenterol Hepatol 2025; 40:821-831. [PMID: 39888113 DOI: 10.1111/jgh.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND AIM The APAGE Position Statements aimed to provide guidance to healthcare practitioners on clinical practices aligned with climate sustainability. METHODS A taskforce convened by APAGE proposed provisional statements. Twenty-two gastroenterologists from the Asian Pacific region participated in online voting and consensus was assessed through an anonymized and iterative Delphi process. RESULTS There were five sections that addressed the rationale for climate action, the importance of adopting principles of waste management, clinical practice, gastrointestinal endoscopy, and issues related to advocacy and research. Sixteen statements achieved consensus and included the following: 1. APAGE recommends adopting prompt measures to reduce the carbon footprint of clinical practice due to the importance of climate action and its health cobenefits. 5. APAGE recommends adherence to professional clinical guidelines to optimize clinical care delivery in gastroenterology and hepatology to avoid the environmental impact of unnecessary procedures and tests. 8. APAGE recommends an emphasis on health promotion, disease prevention, and appropriate screening and surveillance, when resources are available, to reduce the environmental impact of managing more advanced diseases that require more intensive resources. 12. APAGE recommends that technological advances in endoscopic imaging and artificial intelligence, when available, be used to improve the precision of endoscopic diagnosis to reduce the risk of missed lesions and need for unnecessary biopsies. 13. APAGE recommends against the routine use of single-use endoscopes. CONCLUSION The position statements provide guidance to healthcare practitioners on clinical practices in gastroenterology, hepatology, and endoscopy that promote climate sustainability.
Collapse
Affiliation(s)
- Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Duke-NUS Medical School, Yong Loo Lin School of Medicine, National University of Singapore, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Dao Viet Hang
- Endoscopy Centre, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Duke-NUS Medical School, Yong Loo Lin School of Medicine, National University of Singapore, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jacky Chiu Leung Ho
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Sridhar Sundaram
- Department of Digestive Diseases and Clinical Nutrition, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Tanyaporn Chantarojanasiri
- Division of Gastroenterology, Department of Internal Medicine, Rajavithi Hospital, Rangsit University, Bangkok, Thailand
| | - Hyun-Gun Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nonthalee Pausawasdi
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kaichun Wu
- Fourth Military Medical University, Xijing Hospital, Xian, China
| | - Ari Fahrial Syam
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Than Than Aye
- Department of Gastroenterology, Yangon General Hospital. University of Medicine 1, Yangon, Myanmar
| | - Sher Rehman
- Department of Gastroenterology, Khyber Girls Medical College, Hayat Abad Medical Complex, Peshawar, Pakistan
| | - Madunil Anuk Niriella
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Ricardo Jurawan
- Taranaki Base Hospital, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Liangjing Wang
- Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, China
| | - Wai Keung Leung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Jyh-Ming Liou
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chantelle Rizan
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Che Yuen Wu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Choon Jin Ooi
- Duke-NUS Medical School, Gleneagles Medical Centre, Singapore
| |
Collapse
|
3
|
Hassan C, Bisschops R, Sharma P, Mori Y. Colon Cancer Screening, Surveillance, and Treatment: Novel Artificial Intelligence Driving Strategies in the Management of Colon Lesions. Gastroenterology 2025:S0016-5085(25)00478-0. [PMID: 40054749 DOI: 10.1053/j.gastro.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
Colonoscopy, a crucial procedure for detecting and removing colorectal polyps, has seen transformative advancements through the integration of artificial intelligence, specifically in computer-aided detection (CADe) and diagnosis (CADx). These tools enhance real-time detection and characterization of lesions, potentially reducing human error, and standardizing the quality of colonoscopy across endoscopists. CADe has proven effective in increasing adenoma detection rate, potentially reducing long-term colorectal cancer incidence. However, CADe's benefits are accompanied by challenges, such as potentially longer procedure times, increased non-neoplastic polyp resections, and a higher surveillance burden. CADx, although promising in differentiating neoplastic and non-neoplastic diminutive polyps, encounters limitations in accuracy, particularly in the proximal colon. Real-world data also revealed gaps between trial efficacy and practical outcomes, emphasizing the need for further research in uncontrolled settings. Moreover, CADx limited specificity and binary output underscore the necessity for explainable artificial intelligence to gain endoscopists' trust. This review aimed to explore the benefits, harms, and limitations of artificial intelligence for colon cancer screening, surveillance, and treatment focusing on CADe and CADx systems for lesion detection and characterization, respectively, while addressing challenges in integrating these technologies into clinical practice.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Department of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Rozzano, Italy.
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research Center in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Rizkala T, Hassan C, Mori Y, Spadaccini M, Antonelli G, Dekker E, Houwen BBSL, Pech O, Baumer S, Rondonotti E, Radaelli F, Li JW, von Renteln D, Misawa M, Facciorusso A, Maselli R, Carrara S, Fugazza A, Capogreco A, Khalaf K, Patel H, Sharma P, Rex D, Repici A. Accuracy of Computer-aided Diagnosis in Colonoscopy Varies According to Polyp Location: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2025; 23:531-541. [PMID: 39209199 DOI: 10.1016/j.cgh.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Computer-aided diagnosis (CADx) assists endoscopists in differentiating between neoplastic and non-neoplastic polyps during colonoscopy. This study aimed to evaluate the impact of polyp location (proximal vs. distal colon) on the diagnostic performance of CADx for ≤5 mm polyps. METHODS We searched for studies evaluating the performance of real-time CADx alone (ie, independently of endoscopist judgement) for predicting the histology of colorectal polyps ≤5 mm. The primary endpoints were CADx sensitivity and specificity in the proximal and distal colon. Secondary outcomes were the negative predictive value (NPV), positive predictive value (PPV), and the accuracy of the CADx alone. Distal colon was limited to the rectum and sigmoid. RESULTS We included 11 studies for analysis with a total of 7782 polyps ≤5 mm. CADx specificity was significantly lower in the proximal colon compared with the distal colon (62% vs 85%; risk ratio (RR), 0.74; 95% confidence interval [CI], 0.72-0.84). Conversely, sensitivity was similar (89% vs 87%); RR, 1.00; 95% CI, 0.97-1.03). The NPV (64% vs 93%; RR, 0.71; 95% CI, 0.64-0.79) and accuracy (81% vs 86%; RR, 0.95; 95% CI, 0.91-0.99) were significantly lower in the proximal than distal colon, whereas PPV was higher in the proximal colon (87% vs 76%; RR, 1.11; 95% CI, 1.06-1.17). CONCLUSION The diagnostic performance of CADx for polyps in the proximal colon is inadequate, exhibiting significantly lower specificity compared with its performance for distal polyps. Although current CADx systems are suitable for use in the distal colon, they should not be employed for proximal polyps until more performant systems are developed specifically for these lesions.
Collapse
Affiliation(s)
- Tommy Rizkala
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cesare Hassan
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; University of Oslo, Clinical Effectiveness Research Group, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, Rome, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, "Sapienza" University of Rome, Italy
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Bergman Clinics Maag and Darm Amsterdam, Amsterdam, The Netherlands
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Sebastian Baumer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | | | | | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
| | - Daniel von Renteln
- Montreal University Hospital Research Center, Montreal, Quebec, Canada; Division of Gastroenterology, Montreal University Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Antonio Facciorusso
- University of Foggia, Department of Medical Sciences, Section of Gastroenterology, Foggia, Italy
| | - Roberta Maselli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carrara
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | | | - Kareem Khalaf
- Division of Gastroenterology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harsh Patel
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, Missouri
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, Missouri
| | - Douglas Rex
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alessandro Repici
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
5
|
Halvorsen N, Barua I, Kudo SE, Gulati S, Misawa M, Mori K, Hayee B, Olabintan O, Nilsen JA, Frigstad SO, East JE, Rastogi A, Hassan C, Kalager M, Løberg M, Holme Ø, Haji A, Bretthauer M, Mori Y. Leaving colorectal polyps in situ with endocytoscopy assisted by computer-aided diagnosis: a cost-effectiveness study. Endoscopy 2025. [PMID: 39999970 DOI: 10.1055/a-2532-9282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND Computer-aided diagnosis (CADx) enables the distinction between neoplastic and non-neoplastic polyps during colonoscopy. We aimed to estimate the patient-level benefit and harm of CADx. METHODS We conducted a comparative analysis on data from the EndoBRAIN international clinical trial, evaluating the effect of optical diagnosis during colonoscopy with and without CADx. Three hypothetical scenarios were compared: "endoscopist-alone" and "CADx-assisted" leave-in-situ strategies (leaving non-neoplastic rectosigmoid polyps ≤ 5 mm), and "total removal" (removing all detected polyps). Primary outcomes included patient-level colonoscopy-related cost and surveillance interval agreement (colorectal cancer risk category). Estimates were calculated based on national reimbursement rates and guidelines in four countries. RESULTS We analyzed 1134 patients (59 % men, median age 67 years) with 1716 polyps. Compared with total removal, the endoscopist-alone and CADx-assisted leave-in-situ strategies reduced the removed polyps per patient from 1.51 (95 %CI 1.48-1.54) to 1.18 (95 %CI 1.16-1.20) and 1.12 (95 %CI 1.00-1.14), respectively; however, 0.023 (95 %CI 0.015-0.033) and 0.021 (95 %CI 0.014-0.031) neoplasms per patient were left in situ, respectively. The mean colonoscopy cost decreased by $44 (endoscopist alone) and $46 (CADx assistance) in the USA, $22 and $19 in the UK, $21 and $19 in Japan, and $32 and $30 in Norway, respectively. Surveillance interval agreement decreased to 99.2 % (endoscopist alone) and 99.0 % (CADx assistance) in the USA, 99.8 % and 99.8 % in the UK, 97.9 % and 97.1 % in Japan, and 99.9 % and 99.9 % in Norway, respectively. CONCLUSIONS Both endoscopist-alone and CADx-assisted optical diagnosis reduce colonoscopy costs. The risk of missed adenomas and surveillance interval deviations appear marginal.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Ishita Barua
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Shraddha Gulati
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Bu'Hussain Hayee
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Olaolu Olabintan
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Jens Aksel Nilsen
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
- Department of Medicine, Baerum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Svein Oskar Frigstad
- Department of Medicine, Baerum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Amit Rastogi
- Division of Gastroenterology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mette Kalager
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Øyvind Holme
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
- Department of Research, Sørlandet Hospital Health Trust, Kristiansand, Norway
| | - Amyn Haji
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Michael Bretthauer
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
6
|
Babu B, Singh J, Salazar González JF, Zalmai S, Ahmed A, Padekar HD, Eichemberger MR, Abdallah AI, Ahamed S I, Nazir Z. A Narrative Review on the Role of Artificial Intelligence (AI) in Colorectal Cancer Management. Cureus 2025; 17:e79570. [PMID: 40144438 PMCID: PMC11940584 DOI: 10.7759/cureus.79570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The role of artificial intelligence (AI) tools and deep learning in medical practice in the management of colorectal cancer has gathered significant attention in recent years. Colorectal cancer, being the third most common type of malignancy, requires an innovative approach to augment early detection and advanced surgical techniques to reduce morbidity and mortality. With its emerging potential, AI improves colorectal cancer management by assisting with accuracy in screening, pathology evaluation, precision, and postoperative care. Evidence suggests that AI minimizes missed cases during colorectal cancer screening, plays a promising role in pathology and imaging diagnoses, and facilitates accurate staging. In surgical management, AI demonstrates comparable or superior outcomes to laparoscopic approaches, with reduced hospital stays and conversion rates. However, these outcomes are influenced by clinical expertise and other dependable factors, including expertise in implementing AI-based software and detecting possible errors. Despite these advancements, limited multicenter studies and randomized trials restrict the comprehensive evaluation of AI's true potential and integration into standard practice. We used Pubmed, Google Scholar, Cochrane Library, and Scopus databases for this review. The final number of articles selected, depending on inclusion and exclusion criteria, is 122. We included papers published in the English language, literature published in the last 10 years, and adult patient populations above 35 years with colorectal cancer. We thoroughly included randomized controlled trials, cohort studies, meta-analyses, systematic reviews, narrative reviews, and case-control studies. The use of AI paves the way for the adoption of more personalized medicine. This review highlights the advantages of AI at various disease stages for colorectal cancer patients and evaluates its potential for cost-effective implementation in clinical practice.
Collapse
Affiliation(s)
- Bijily Babu
- Clinical Research, Network Cancer Aid and Research Foundation, Cochin, IND
| | - Jyoti Singh
- Department of Medicine, American University of Barbados, Bridgetown, BRB
| | | | - Sadaf Zalmai
- Emergency Medicine, New York Presbyterian Hospital, New York, USA
| | - Adnan Ahmed
- Medicine and Surgery, York University, Bradford, CAN
| | - Harshal D Padekar
- General Surgery, Grant Medical College and Sir Jamshedjee Jeejeebhoy Group of Hospitals, Mumbai, IND
| | | | - Abrar I Abdallah
- Medicine and Surgery, Sulaiman Al Rajhi University, Al Bukayriyah, SAU
| | - Irshad Ahamed S
- General Surgery, Pondicherry Institute of Medical Sciences, Pondicherry, IND
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
7
|
Parikh M, Tejaswi S, Girotra T, Chopra S, Ramai D, Tabibian JH, Jagannath S, Ofosu A, Barakat MT, Mishra R, Girotra M. Use of Artificial Intelligence in Lower Gastrointestinal and Small Bowel Disorders: An Update Beyond Polyp Detection. J Clin Gastroenterol 2025; 59:121-128. [PMID: 39774596 DOI: 10.1097/mcg.0000000000002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Machine learning and its specialized forms, such as Artificial Neural Networks and Convolutional Neural Networks, are increasingly being used for detecting and managing gastrointestinal conditions. Recent advancements involve using Artificial Neural Network models to enhance predictive accuracy for severe lower gastrointestinal (LGI) bleeding outcomes, including the need for surgery. To this end, artificial intelligence (AI)-guided predictive models have shown promise in improving management outcomes. While much literature focuses on AI in early neoplasia detection, this review highlights AI's role in managing LGI and small bowel disorders, including risk stratification for LGI bleeding, quality control, evaluation of inflammatory bowel disease, and video capsule endoscopy reading. Overall, the integration of AI into routine clinical practice is still developing, with ongoing research aimed at addressing current limitations and gaps in patient care.
Collapse
Affiliation(s)
| | - Sooraj Tejaswi
- University of California, Davis
- Sutter Health, Sacramento
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hiratsuka Y, Hisabe T, Ohtsu K, Yasaka T, Takeda K, Miyaoka M, Ono Y, Kanemitsu T, Imamura K, Takeda T, Nimura S, Yao K. Evaluation of Artificial Intelligence: Computer-aided Detection of Colorectal Polyps. J Anus Rectum Colon 2025; 9:79-87. [PMID: 39882222 PMCID: PMC11772790 DOI: 10.23922/jarc.2024-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Colonoscopy is the gold standard for screening cancer and precancerous lesions in the large intestine. Recently, remarkable advances in artificial intelligence (AI) have led to the development of various computer-aided detection (CADe) systems for colonoscopy. This study aimed to evaluate the usefulness of AI for colonoscopy using CAD-EYEⓇ (Fujifilm, Tokyo, Japan) to calculate the adenoma miss rate (AMR). Methods This randomized, open-label, single-center, tandem study was conducted at Fukuoka University Chikushi Hospital from February 2022 to November 2022. Patients were randomly assigned to the CADe or non-CADe group. Immediately after the completion of the first endoscopy by an endoscopist, a new endoscopist was assigned to perform the second endoscopy. As a result, different endoscopists performed the examinations in a tandem fashion. A missed lesion was defined as a newly detected colorectal polyp by the second endoscopy. Finally, the AMR was compared between the two groups. Results The study population comprised 48 patients in the CADe group and 46 patients in the non-CADe group. The AMR was 17.4% in the CADe group and 30.3% in the non-CADe group. Therefore, the AMR in the CADe group was statistically significantly lower than that in the non-CADe group (P=0.009). Conclusions The application of CAD-EYEⓇ to colonoscopy reduced the AMR. Overall, CAD-EYEⓇ might be useful for reducing missed colorectal adenomas.
Collapse
Affiliation(s)
- Yuya Hiratsuka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takashi Hisabe
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kensei Ohtsu
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tatsuhisa Yasaka
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuhiro Takeda
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Masaki Miyaoka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Yoichiro Ono
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takao Kanemitsu
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kentaro Imamura
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Teruyuki Takeda
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Satoshi Nimura
- Department of Pathology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
9
|
Ogata N, Maeda Y, Misawa M, Takenaka K, Takabayashi K, Iacucci M, Kuroki T, Takishima K, Sasabe K, Niimura Y, Kawashima J, Ogawa Y, Ichimasa K, Nakamura H, Matsudaira S, Sasanuma S, Hayashi T, Wakamura K, Miyachi H, Baba T, Mori Y, Ohtsuka K, Ogata H, Kudo SE. Artificial Intelligence-assisted Video Colonoscopy for Disease Monitoring of Ulcerative Colitis: A Prospective Study. J Crohns Colitis 2025; 19:jjae080. [PMID: 38828734 PMCID: PMC11725525 DOI: 10.1093/ecco-jcc/jjae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUNDS AND AIMS The Mayo endoscopic subscore [MES] is the most popular endoscopic disease activity measure of ulcerative colitis [UC]. Artificial intelligence [AI]-assisted colonoscopy is expected to reduce diagnostic variability among endoscopists. However, no study has been conducted to ascertain whether AI-based MES assignments can help predict clinical relapse, nor has AI been verified to improve the diagnostic performance of non-specialists. METHODS This open-label, prospective cohort study enrolled 110 patients with UC in clinical remission. The AI algorithm was developed using 74 713 images from 898 patients who underwent colonoscopy at three centres. Patients were followed up after colonoscopy for 12 months, and clinical relapse was defined as a partial Mayo score > 2. A multi-video, multi-reader analysis involving 124 videos was conducted to determine whether the AI system reduced the diagnostic variability among six non-specialists. RESULTS The clinical relapse rate for patients with AI-based MES = 1 (24.5% [12/49]) was significantly higher [log-rank test, p = 0.01] than that for patients with AI-based MES = 0 (3.2% [1/31]). Relapse occurred during the 12-month follow-up period in 16.2% [13/80] of patients with AI-based MES = 0 or 1 and 50.0% [10/20] of those with AI-based MES = 2 or 3 [log-rank test, p = 0.03]. Using AI resulted in better inter- and intra-observer reproducibility than endoscopists alone. CONCLUSIONS Colonoscopy using the AI-based MES system can stratify the risk of clinical relapse in patients with UC and improve the diagnostic performance of non-specialists.
Collapse
Affiliation(s)
- Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kento Takenaka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kazumi Takishima
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Keisuke Sasabe
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yu Niimura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Jiro Kawashima
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hiroki Nakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Shingo Matsudaira
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Seiko Sasanuma
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kunihiko Wakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, OsloNorway
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Endoscopic Unit, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Clinical Medical Research Center, International University of Health and Welfare, Narita, Japan
- Center for Diagnostic and Therapeutic Endoscopy, San-no Medical Center, Tokyo, Japan
| | - Shin-ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Maeda Y, Kudo SE, Kuroki T, Iacucci M. Automated Endoscopic Diagnosis in IBD: The Emerging Role of Artificial Intelligence. Gastrointest Endosc Clin N Am 2025; 35:213-233. [PMID: 39510689 DOI: 10.1016/j.giec.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The emerging role of artificial intelligence (AI) in automated endoscopic diagnosis represents a significant advancement in managing inflammatory bowel disease (IBD). AI technologies are increasingly being applied to endoscopic imaging to enhance the diagnosis, prediction of severity, and progression of IBD and dysplasia-associated colitis surveillance. These AI-assisted endoscopy aim to improve diagnostic accuracy, reduce variability of endoscopy imaging interpretations, and assist clinicians in decision-making processes. By leveraging AI, healthcare providers have the potential to offer more personalized and effective treatments, ultimately improving patient outcomes in IBD care.
Collapse
Affiliation(s)
- Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan; APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland.
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
11
|
Misawa M, Kudo SE. Current Status of Artificial Intelligence Use in Colonoscopy. Digestion 2024; 106:138-145. [PMID: 39724867 DOI: 10.1159/000543345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedures. SUMMARY Colonoscopy is essential for colorectal cancer screening but often misses a significant percentage of adenomas. AI-assisted systems employing deep learning offer improved detection and differentiation of colorectal polyps, potentially increasing adenoma detection rates by 8%-10%. The main benefit of CADe is in detecting small adenomas, whereas it has a limited impact on advanced neoplasm detection. Recent advancements include real-time CADe systems and CADx for histopathological predictions, aiding in the differentiation of neoplastic and nonneoplastic lesions. Biases such as the Hawthorne effect and potential overdiagnosis necessitate large-scale clinical trials to validate the long-term benefits of AI. Additionally, novel concepts such as computer-aided quality improvement systems are emerging to address limitations facing current CADe systems. KEY MESSAGES Despite the potential of AI for enhancing colonoscopy outcomes, its effectiveness in reducing colorectal cancer incidence and mortality remains unproven. Further prospective studies are essential to establish the overall utility and clinical benefits of AI in colonoscopy.
Collapse
Affiliation(s)
- Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Tsuzuki, Yokohama, Japan
| |
Collapse
|
12
|
van der Zander QEW, Roumans R, Kusters CHJ, Dehghani N, Masclee AAM, de With PHN, van der Sommen F, Snijders CCP, Schoon EJ. Appropriate trust in artificial intelligence for the optical diagnosis of colorectal polyps: the role of human/artificial intelligence interaction. Gastrointest Endosc 2024; 100:1070-1078.e10. [PMID: 38942330 DOI: 10.1016/j.gie.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND AIMS Computer-aided diagnosis (CADx) for the optical diagnosis of colorectal polyps is thoroughly investigated. However, studies on human-artificial intelligence interaction are lacking. Our aim was to investigate endoscopists' trust in CADx by evaluating whether communicating a calibrated algorithm confidence score improved trust. METHODS Endoscopists optically diagnosed 60 colorectal polyps. Initially, endoscopists diagnosed the polyps without CADx assistance (initial diagnosis). Immediately afterward, the same polyp was again shown with a CADx prediction: either only a prediction (benign or premalignant) or a prediction accompanied by a calibrated confidence score (0-100). A confidence score of 0 indicated a benign prediction, 100 a (pre)malignant prediction. In half of the polyps, CADx was mandatory, and for the other half, CADx was optional. After reviewing the CADx prediction, endoscopists made a final diagnosis. Histopathology was used as the reference standard. Endoscopists' trust in CADx was measured as CADx prediction utilization: the willingness to follow CADx predictions when the endoscopists initially disagreed with the CADx prediction. RESULTS Twenty-three endoscopists participated. Presenting CADx predictions increased the endoscopists' diagnostic accuracy (69.3% initial vs 76.6% final diagnosis, P < .001). The CADx prediction was used in 36.5% (n = 183 of 501) of disagreements. Adding a confidence score led to lower CADx prediction utilization, except when the confidence score surpassed 60. Mandatory CADx decreased CADx prediction utilization compared to optional CADx. Appropriate trust-using correct or disregarding incorrect CADx predictions-was 48.7% (n = 244 of 501). CONCLUSIONS Appropriate trust was common, and CADx prediction utilization was highest for the optional CADx without confidence scores. These results express the importance of a better understanding of human-artificial intelligence interaction.
Collapse
Affiliation(s)
- Quirine E W van der Zander
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands; GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Rachel Roumans
- Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven The Netherlands
| | - Nikoo Dehghani
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven The Netherlands
| | - Ad A M Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter H N de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven The Netherlands
| | - Chris C P Snijders
- Human-Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Erik J Schoon
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Hassan C, Rizkala T, Mori Y, Spadaccini M, Misawa M, Antonelli G, Rondonotti E, Dekker E, Houwen BBSL, Pech O, Baumer S, Li JW, von Renteln D, Haumesser C, Maselli R, Facciorusso A, Correale L, Menini M, Schilirò A, Khalaf K, Patel H, Radadiya DK, Bhandari P, Kudo SE, Sultan S, Vandvik PO, Sharma P, Rex DK, Foroutan F, Repici A. Computer-aided diagnosis for the resect-and-discard strategy for colorectal polyps: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2024; 9:1010-1019. [PMID: 39303733 DOI: 10.1016/s2468-1253(24)00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The resect-and-discard strategy allows endoscopists to replace post-polypectomy pathology with real-time prediction of polyp histology during colonoscopy (optical diagnosis). We aimed to investigate the benefits and harms of implementing computer-aided diagnosis (CADx) for polyp pathology into the resect-and-discard strategy. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, and Scopus from database inception to June 5, 2024, without language restrictions, for diagnostic accuracy studies that assessed the performance of real-time CADx systems, compared with histology, for the optical diagnosis of diminutive polyps (≤5 mm) in the entire colon. We synthesised data for three strategies: CADx-alone, CADx-unassisted, and CADx-assisted; when the endoscopist was involved in the optical diagnosis, we synthesised data exclusively from diagnoses for which confidence in the prediction was reported as high. The primary outcomes were the proportion of polyps that would have avoided pathological assessment (ie, the proportion optically diagnosed with high confidence; main benefit) and the proportion of polyps incorrectly predicted due to false positives and false negatives (main harm), directly compared between CADx-assisted and CADx-unassisted strategies. We used DerSimonian and Laird's random-effects model to calculate all outcomes. We used Higgins I2 to assess heterogeneity, the Grading of Recommendations, Assessment, Development, and Evaluation approach to rate certainty, and funnel plots and Egger's test to examine publication bias. This study is registered with PROSPERO, CRD42024508440. FINDINGS We found 1019 studies, of which 11 (7400 diminutive polyps, 3769 patients, and 185 endoscopists) were included in the final meta-analysis. Three studies (1817 patients and 4086 polyps [2148 neoplastic and 1938 non-neoplastic]) provided data to directly compare the primary outcome measures between the CADx-unassisted and CADx-assisted strategies. We found no significant difference between the CADx-assisted and CADx-unassisted strategies for the proportion of polyps that would have avoided pathological assessment (90% [88-93], 3653 [89·4%] of 4086 polyps diagnosed with high confidence vs 90% [95% CI 85-94], 3588 [87·8%] of 4086 polyps diagnosed with high confidence; risk ratio 1·01 [95% CI 0·99-1·04; I2=53·49%; low-certainty evidence; Egger's test p=0·18). The proportion of incorrectly predicted polyps was lower with the CADx-assisted strategy than with the CADx-unassisted strategy (12% [95% CI 7-17], 523 [14·3%] of 3653 polyps incorrectly predicted with a CADx-assisted strategy vs 13% [6-20], 582 [16·2%] of 3588 polyps incorrectly diagnosed with a CADx-unassisted strategy; risk ratio 0·88 [95% CI 0·79-0·98]; I2=0·00%; low-certainty evidence; Egger's test p=0·18). INTERPRETATION CADx did not produce benefit nor harm for the resect-and-discard strategy, questioning its value in clinical practice. Improving the accuracy and explainability of CADx is desired. FUNDING European Commission (Horizon Europe), the Japan Society of Promotion of Science, and Associazione Italiana per la Ricerca sul Cancro.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Tommy Rizkala
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.
| | - Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Rome, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands; Bergman Clinics Maag and Darm Amsterdam, Amsterdam, Netherlands
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Sebastian Baumer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
| | - Daniel von Renteln
- Montreal University Hospital Research Center, Montreal, QC, Canada; Division of Gastroenterology, Montreal University Hospital Center, Montreal, QC, Canada
| | - Claire Haumesser
- Montreal University Hospital Research Center, Montreal, QC, Canada
| | - Roberta Maselli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Antonio Facciorusso
- Department of Medical Sciences, Section of Gastroenterology, University of Foggia, Foggia, Italy
| | - Loredana Correale
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Maddalena Menini
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Alessandro Schilirò
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Kareem Khalaf
- Division of Gastroenterology St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Harsh Patel
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, MO, USA
| | - Dhruvil K Radadiya
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, MO, USA
| | - Pradeep Bhandari
- Department of Gastroenterology, Queen Alexandra Hospital, Portsmouth, UK
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA; Veterans Affairs Healthcare System, Minneapolis, MN, USA
| | - Per Olav Vandvik
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Prateek Sharma
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, MO, USA
| | - Douglas K Rex
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Farid Foroutan
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, ON, Canada
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| |
Collapse
|
14
|
Park DK, Kim EJ, Im JP, Lim H, Lim YJ, Byeon JS, Kim KO, Chung JW, Kim YJ. A prospective multicenter randomized controlled trial on artificial intelligence assisted colonoscopy for enhanced polyp detection. Sci Rep 2024; 14:25453. [PMID: 39455850 PMCID: PMC11512038 DOI: 10.1038/s41598-024-77079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Colon polyp detection and removal via colonoscopy are essential for colorectal cancer screening and prevention. This study aimed to develop a colon polyp detection program based on the RetinaNet algorithm and verify its clinical utility. To develop the AI-assisted program, the dataset was fully anonymized and divided into 10 folds for 10-fold cross-validation. Each fold consisted of 9,639 training images and 1,070 validation images. Video data from 56 patients were used for model training, and transfer learning was performed using the developed still image-based model. The final model was developed as a real-time polyp-detection program for endoscopy. To evaluate the model's performance, a prospective randomized controlled trial was conducted at six institutions to compare the polyp detection rates (PDR). A total of 805 patients were included. The group that utilized the AI model showed significantly higher PDR and adenoma detection rate (ADR) than the group that underwent colonoscopy without AI assistance. Multivariate analysis revealed an OR of 1.50 for cases where polyps were detected. The AI-assisted polyp-detection program is clinically beneficial for detecting polyps during colonoscopy. By utilizing this AI-assisted program, clinicians can improve adenoma detection rates, ultimately leading to enhanced cancer prevention.
Collapse
Affiliation(s)
- Dong Kyun Park
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
- Health IT Research Center, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Oh Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
- Health IT Research Center, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
15
|
Sato K, Kuramochi M, Tsuchiya A, Yamaguchi A, Hosoda Y, Yamaguchi N, Nakamura N, Itoi Y, Hashimoto Y, Kasuga K, Tanaka H, Kuribayashi S, Takeuchi Y, Uraoka T. Multicentre study to assess the performance of an artificial intelligence instrument to support qualitative diagnosis of colorectal polyps. BMJ Open Gastroenterol 2024; 11:e001553. [PMID: 39438054 PMCID: PMC11499753 DOI: 10.1136/bmjgast-2024-001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Computer-aided diagnosis (CAD) using artificial intelligence (AI) is expected to support the characterisation of colorectal lesions, which is clinically relevant for efficient colorectal cancer prevention. We conducted this study to assess the diagnostic performance of commercially available CAD systems. METHODS This was a multicentre, prospective performance evaluation study. The endoscopist diagnosed polyps using white light imaging, followed by non-magnified blue light imaging (non-mBLI) and mBLI. AI subsequently assessed the lesions using non-mBLI (non-mAI), followed by mBLI (mAI). Eventually, endoscopists made the final diagnosis by integrating the AI diagnosis (AI+endoscopist). The primary endpoint was the accuracy of the AI diagnosis of neoplastic lesions. The diagnostic performance of each modality (sensitivity, specificity and accuracy) and confidence levels were also assessed. RESULTS Overall, 380 lesions from 139 patients were included in the analysis. The accuracy of non-mAI was 83%, 95% CI (79% to 87%), which was inferior to that of mBLI (89%, 95% CI (85% to 92%)) and mAI (89%, 95% CI (85% to 92%)). The accuracy (95% CI) of diagnosis by expert endoscopists using mAI (91%, 95% CI (87% to 94%)) was comparable to that of expert endoscopists using mBLI (91%, 95% CI (87% to 94%)) but better than that of non-expert endoscopists using mAI (83%, 95% CI (75% to 90%)). The level of confidence in making a correct diagnosis was increased when using magnification and AI. CONCLUSIONS The diagnostic performance of mAI for differentiating colonic lesions is comparable to that of endoscopists, regardless of their experience. However, it can be affected by the use of magnification as well as the endoscopists' level of experience.
Collapse
Affiliation(s)
- Keigo Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Mizuki Kuramochi
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | | | - Akihiro Yamaguchi
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | - Yasuo Hosoda
- Department of Gastroenterology, National Hospital Organization Saitama Hospital, Wako, Saitama, Japan
| | | | | | - Yuki Itoi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Yu Hashimoto
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Kengo Kasuga
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Hirohito Tanaka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Shiko Kuribayashi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Yoji Takeuchi
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine School of Medicine Faculty of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
16
|
Nardone OM, Maeda Y, Iacucci M. AI and endoscopy/histology in UC: the rise of machine. Therap Adv Gastroenterol 2024; 17:17562848241275294. [PMID: 39435049 PMCID: PMC11491880 DOI: 10.1177/17562848241275294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 10/23/2024] Open
Abstract
The gap between endoscopy and histology is getting closer with the introduction of sophisticated endoscopic technologies. Furthermore, unprecedented advances in artificial intelligence (AI) have enabled objective assessment of endoscopy and digital pathology, providing accurate, consistent, and reproducible evaluations of endoscopic appearance and histologic activity. These advancements result in improved disease management by predicting treatment response and long-term outcomes. AI will also support endoscopy in raising the standard of clinical trial study design by facilitating patient recruitment and improving the validity of endoscopic readings and endoscopy quality, thus overcoming the subjective variability in scoring. Accordingly, AI will be an ideal adjunct tool for enhancing, complementing, and improving our understanding of ulcerative colitis course. This review explores promising AI applications enabled by endoscopy and histology techniques. We further discuss future directions, envisioning a bright future where AI technology extends the frontiers beyond human limits and boundaries.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Division of Gastroenterology, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Marietta Iacucci
- Mercy/Cork University Hospitals, Room 1.07, Clinical Sciences Building, Cork, Ireland
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork T12YT20, Ireland
| |
Collapse
|
17
|
Cheng Y, Li L, Bi Y, Su S, Zhang B, Feng X, Wang N, Zhang W, Yao Y, Ru N, Xiang J, Sun L, Hu K, Wen F, Wang Z, Bai L, Wang X, Wang R, Lv X, Wang P, Meng F, Xiao W, Linghu E, Chai N. Computer-aided diagnosis system for optical diagnosis of colorectal polyps under white light imaging. Dig Liver Dis 2024; 56:1738-1745. [PMID: 38744557 DOI: 10.1016/j.dld.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study presents a novel computer-aided diagnosis (CADx) designed for optically diagnosing colorectal polyps using white light imaging (WLI).We aimed to evaluate the effectiveness of the CADx and its auxiliary role among endoscopists with different levels of expertise. METHODS We collected 2,324 neoplastic and 3,735 nonneoplastic polyp WLI images for model training, and 838 colorectal polyp images from 740 patients for model validation. We compared the diagnostic accuracy of the CADx with that of 15 endoscopists under WLI and narrow band imaging (NBI). The auxiliary benefits of CADx for endoscopists of different experience levels and for identifying different types of colorectal polyps was also evaluated. RESULTS The CADx demonstrated an optical diagnostic accuracy of 84.49%, showing considerable superiority over all endoscopists, irrespective of whether WLI or NBI was used (P < 0.001). Assistance from the CADx significantly improved the diagnostic accuracy of the endoscopists from 68.84% to 77.49% (P = 0.001), with the most significant impact observed among novice endoscopists. Notably, novices using CADx-assisted WLI outperform junior and expert endoscopists without such assistance. CONCLUSIONS The CADx demonstrated a crucial role in substantially enhancing the precision of optical diagnosis for colorectal polyps under WLI and showed the greatest auxiliary benefits for novice endoscopists.
Collapse
Affiliation(s)
- Yaxuan Cheng
- Chinese PLA Medical School, Beijing, 100853, PR China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Longsong Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yawei Bi
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Song Su
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Bo Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Xiuxue Feng
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Nanjun Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wengang Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yi Yao
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Jingyuan Xiang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Lihua Sun
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Kang Hu
- Department of Gastroenterology, The 987 Hospital of PLA Joint Logistic Support Force, Baoji, 721004, PR China
| | - Feng Wen
- Department of Gastroenterology, General Hospital of Central Theater Command of PLA,Wuhan 430070, PR China
| | - Zixin Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Lu Bai
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Xueting Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Runzi Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Xingping Lv
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Pengju Wang
- Chinese PLA Medical School, Beijing, 100853, PR China; Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Fanqi Meng
- Medical Department, HighWise Medical Technology Co, Ltd, Changsha, 410000, PR China
| | - Wen Xiao
- Medical Department, HighWise Medical Technology Co, Ltd, Changsha, 410000, PR China
| | - Enqiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China.
| | - Ningli Chai
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
18
|
Thijssen A, Schreuder RM, Dehghani N, Schor M, de With PH, van der Sommen F, Boonstra JJ, Moons LM, Schoon EJ. Improving the endoscopic recognition of early colorectal carcinoma using artificial intelligence: current evidence and future directions. Endosc Int Open 2024; 12:E1102-E1117. [PMID: 39398448 PMCID: PMC11466514 DOI: 10.1055/a-2403-3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background and study aims Artificial intelligence (AI) has great potential to improve endoscopic recognition of early stage colorectal carcinoma (CRC). This scoping review aimed to summarize current evidence on this topic, provide an overview of the methodologies currently used, and guide future research. Methods A systematic search was performed following the PRISMA-Scr guideline. PubMed (including Medline), Scopus, Embase, IEEE Xplore, and ACM Digital Library were searched up to January 2024. Studies were eligible for inclusion when using AI for distinguishing CRC from colorectal polyps on endoscopic imaging, using histopathology as gold standard, reporting sensitivity, specificity, or accuracy as outcomes. Results Of 5024 screened articles, 26 were included. Computer-aided diagnosis (CADx) system classification categories ranged from two categories, such as lesions suitable or unsuitable for endoscopic resection, to five categories, such as hyperplastic polyp, sessile serrated lesion, adenoma, cancer, and other. The number of images used in testing databases varied from 69 to 84,585. Diagnostic performances were divergent, with sensitivities varying from 55.0% to 99.2%, specificities from 67.5% to 100% and accuracies from 74.4% to 94.4%. Conclusions This review highlights that using AI to improve endoscopic recognition of early stage CRC is an upcoming research field. We introduced a suggestions list of essential subjects to report in research regarding the development of endoscopy CADx systems, aiming to facilitate more complete reporting and better comparability between studies. There is a knowledge gap regarding real-time CADx system performance during multicenter external validation. Future research should focus on development of CADx systems that can differentiate CRC from premalignant lesions, while providing an indication of invasion depth.
Collapse
Affiliation(s)
- Ayla Thijssen
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Gastroenterology and Hepatology, Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands
| | - Ramon-Michel Schreuder
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, Netherlands
| | - Nikoo Dehghani
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marieke Schor
- University Library, Department of Education and Support, Maastricht University, Maastricht, Netherlands
| | - Peter H.N. de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology and Hepatology, Leids Universitair Medisch Centrum, Leiden, Netherlands
| | - Leon M.G. Moons
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Erik J. Schoon
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, Netherlands
| |
Collapse
|
19
|
Jukema JB, Kusters CHJ, Jong MR, Fockens KN, Boers T, van der Putten JA, Pouw RE, Duits LC, Weusten BLAM, Herrero LA, Houben MHMG, Nagengast WB, Westerhof J, Alkhalaf A, Mallant-Hent R, Scholten P, Ragunath K, Seewald S, Elbe P, Silva FB, Barret M, Ortiz Fernández-Sordo J, Moral Villarejo G, Pech O, Beyna T, Montazeri NSM, der Sommen FV, de With PH, de Groof AJ, Bergman JJ. Computer-aided diagnosis improves characterization of Barrett's neoplasia by general endoscopists (with video). Gastrointest Endosc 2024; 100:616-625.e8. [PMID: 38636819 DOI: 10.1016/j.gie.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND AIMS Characterization of visible abnormalities in patients with Barrett's esophagus (BE) can be challenging, especially for inexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor interobserver agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists. We aimed to develop, validate, and benchmark a CADx system for BE neoplasia. METHODS The CADx system received pretraining with ImageNet and then consecutive domain-specific pretraining with GastroNet, which includes 5 million endoscopic images. It was subsequently trained and internally validated using 1758 narrow-band imaging (NBI) images of early BE neoplasia (352 patients) and 1838 NBI images of nondysplastic BE (173 patients) from 8 international centers. CADx was tested prospectively on corresponding image and video test sets with 30 cases (20 patients) of BE neoplasia and 60 cases (31 patients) of nondysplastic BE. The test set was benchmarked by 44 general endoscopists in 2 phases (phase 1, no CADx assistance; phase 2, with CADx assistance). Ten international BE experts provided additional benchmark performance. RESULTS Stand-alone sensitivity and specificity of the CADx system were 100% and 98% for images and 93% and 96% for videos, respectively. CADx outperformed general endoscopists without CADx assistance in terms of sensitivity (P = .04). Sensitivity and specificity of general endoscopists increased from 84% to 96% and 90% to 98% with CAD assistance (P < .001). CADx assistance increased endoscopists' confidence in characterization (P < .001). CADx performance was similar to that of the BE experts. CONCLUSIONS CADx assistance significantly increased characterization performance of BE neoplasia by general endoscopists to the level of expert endoscopists. The use of this CADx system may thereby improve daily Barrett surveillance.
Collapse
Affiliation(s)
- Jelmer B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Martijn R Jong
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki N Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Boers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost A van der Putten
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Roos E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lucas C Duits
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas L A M Weusten
- Department of Gastroenterology and Hepatology, UMC Utrecht, University of Utrecht, Utrecht, the Netherlands; Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Lorenza Alvarez Herrero
- Department of Gastroenterology and Hepatology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Martin H M G Houben
- Department of Gastroenterology and Hepatology, HagaZiekenhuis Den Haag, Den Haag, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessie Westerhof
- Department of Gastroenterology and Hepatology, UMC Groningen, University of Groningen, Groningen, the Netherlands
| | - Alaa Alkhalaf
- Department of Gastroenterology and Hepatology, Isala Hospital Zwolle, Zwolle, the Netherlands
| | - Rosalie Mallant-Hent
- Department of Gastroenterology and Hepatology, Flevoziekenhuis Almere, Almere, the Netherlands
| | - Pieter Scholten
- Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Krish Ragunath
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Curtin University, Perth, WA, Australia
| | - Stefan Seewald
- Department of Gastroenterology and Hepatology, Hirslanden Klinik, Zurich, Switzerland
| | - Peter Elbe
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Division of Surgery, Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Baldaque Silva
- Department of Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Advanced Endoscopy Carlos Moreira da Silva, Gastroenterology Department, Pedro Hispano Hospital, ULSM Matosinhos, Portugal
| | - Maximilien Barret
- Department of Gastroenterology and Hepatology, Cochin Hospital Paris, Paris, France
| | - Jacobo Ortiz Fernández-Sordo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Guiomar Moral Villarejo
- Department of Gastroenterology and Hepatology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Oliver Pech
- Department of Gastroenterology and Hepatology, St. John of God Hospital, Regensburg, Germany
| | - Torsten Beyna
- Department of Gastroenterology and Hepatology, Evangalisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - Nahid S M Montazeri
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter H de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Jeroen de Groof
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Martinez M, Bartel MJ, Chua T, Dakhoul L, Fatima H, Jensen D, Lara LF, Tadros M, Villa E, Yang D, Saltzman JR. The 2023 top 10 list of endoscopy topics in medical publishing: an annual review by the American Society for Gastrointestinal Endoscopy Editorial Board. Gastrointest Endosc 2024; 100:537-548. [PMID: 38729314 DOI: 10.1016/j.gie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Using a systematic literature search of original articles published during 2023 in Gastrointestinal Endoscopy (GIE) and other high-impact medical and gastroenterology journals, the GIE Editorial Board of the American Society for Gastrointestinal Endoscopy compiled a list of the top 10 most significant topic areas in general and advanced GI endoscopy during the year. Each GIE Editorial Board member was directed to consider 3 criteria in generating candidate topics-significance, novelty, and impact on global clinical practice-and subject matter consensus was facilitated by the Chair through electronic voting and a meeting of the entire GIE Editorial Board. The 10 identified areas collectively represent advances in the following endoscopic spheres: GI bleeding, endohepatology, endoscopic palliation, artificial intelligence and polyp detection, artificial intelligence beyond the colon, better polypectomy and EMR, how to make endoscopy units greener, high-quality upper endoscopy, endoscopic tissue apposition and closure devices, and endoscopic submucosal dissection. Each board member was assigned a topic area around which to summarize relevant important articles, thereby generating this overview of the "top 10" endoscopic advances of 2023.
Collapse
Affiliation(s)
- Melissa Martinez
- Digestive Health Institute, Carle Foundation Hospital, Urbana, Illinois, USA
| | | | - Tiffany Chua
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Lara Dakhoul
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Hala Fatima
- Department of Internal Medicine, Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dennis Jensen
- Ronald Reagan UCLA Medical Center and The VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Luis F Lara
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Tadros
- Division of Gastroenterology, Albany Medical Center, Albany, New York, USA
| | | | - Dennis Yang
- Center of Interventional Endoscopy, Advent Health, Orlando, Florida, USA
| | - John R Saltzman
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Peng C, Tian CX, Mu Y, Ma M, Zhang Z, Wan M, Liu J, Li Z, Zuo X, Li W, Li Y. Hyperspectral imaging facilitating resect-and-discard strategy through artificial intelligence-assisted diagnosis of colorectal polyps: A pilot study. Cancer Med 2024; 13:e70195. [PMID: 39320133 PMCID: PMC11423483 DOI: 10.1002/cam4.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND AIMS The resect-and-discard strategy for colorectal polyps based on accurate optical diagnosis remains challenges. Our aim was to investigate the feasibility of hyperspectral imaging (HSI) for identifying colorectal polyp properties and diagnosis of colorectal cancer in fresh tissues during colonoscopy. METHODS 144,900 two dimensional images generated from 161 hyperspectral images of colorectal polyp tissues were prospectively obtained from patients undergoing colonoscopy. A residual neural network model was trained with transfer learning to automatically differentiate colorectal polyps, validated by histopathologic diagnosis. The diagnostic performances of the HSI-AI model and endoscopists were calculated respectively, and the auxiliary efficiency of the model was evaluated after a 2-week interval. RESULTS Quantitative HSI revealed histological differences in colorectal polyps. The HSI-AI model showed considerable efficacy in differentiating nonneoplastic polyps, non-advanced adenomas, and advanced neoplasia in vitro, with sensitivities of 96.0%, 94.0%, and 99.0% and specificities of 99.0%, 99.0%, and 96.5%, respectively. With the assistance of the model, the median negative predictive value of neoplastic polyps increased from 50.0% to 88.2% (p = 0.013) in novices. CONCLUSION This study demonstrated the feasibility of using HSI as a diagnostic tool to differentiate neoplastic colorectal polyps in vitro and the potential of AI-assisted diagnosis synchronized with colonoscopy. The tool may improve the diagnostic performance of novices and facilitate the application of resect-and-discard strategy to decrease the cost.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Chong Xuan Tian
- Department of Biomedical Engineering Institute, School of Control Science and EngineeringShandong UniversityJinanChina
| | - Yijun Mu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Mingjun Ma
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhenlei Zhang
- Department of Biomedical Engineering Institute, School of Control Science and EngineeringShandong UniversityJinanChina
| | - Meng Wan
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jing Liu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Digestive DiseaseJinanChina
| | - Wei Li
- Department of Biomedical Engineering Institute, School of Control Science and EngineeringShandong UniversityJinanChina
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Digestive DiseaseJinanChina
| |
Collapse
|
22
|
Bou Jaoude J, Al Bacha R, Abboud B. Will artificial intelligence reach any limit in gastroenterology? Artif Intell Gastroenterol 2024; 5:91336. [DOI: 10.35712/aig.v5.i2.91336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 08/08/2024] Open
Abstract
Endoscopy is the cornerstone in the management of digestive diseases. Over the last few decades, technology has played an important role in the development of this field, helping endoscopists in better detecting and characterizing luminal lesions. However, despite ongoing advancements in endoscopic technology, the incidence of missed pre-neoplastic and neoplastic lesions remains high due to the operator-dependent nature of endoscopy and the challenging learning curve associated with new technologies. Artificial intelligence (AI), an operator-independent field, could be an invaluable solution. AI can serve as a “second observer”, enhancing the performance of endoscopists in detecting and characterizing luminal lesions. By utilizing deep learning (DL), an innovation within machine learning, AI automatically extracts input features from targeted endoscopic images. DL encompasses both computer-aided detection and computer-aided diagnosis, assisting endoscopists in reducing missed detection rates and predicting the histology of luminal digestive lesions. AI applications in clinical gastrointestinal diseases are continuously expanding and evolving the entire digestive tract. In all published studies, real-time AI assists endoscopists in improving the performance of non-expert gastroenterologists, bringing it to a level comparable to that of experts. The development of DL may be affected by selection biases. Studies have utilized different AI-assisted models, which are heterogeneous. In the future, algorithms need validation through large, randomized trials. Theoretically, AI has no limit to assist endoscopists in increasing the accuracy and the quality of endoscopic exams. However, practically, we still have a long way to go before standardizing our AI models to be accepted and applied by all gastroenterologists.
Collapse
Affiliation(s)
- Joseph Bou Jaoude
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Rose Al Bacha
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Bassam Abboud
- Department of General Surgery, Geitaoui Hospital, Faculty of Medicine, Lebanese University, Lebanon, Beirut 166830, Lebanon
| |
Collapse
|
23
|
Rex DK, Bhavsar-Burke I, Buckles D, Burton J, Cartee A, Comar K, Edwards A, Fennimore B, Fischer M, Gerich M, Gilmore A, Hamdeh S, Hoffman J, Ibach M, Jackson M, James-Stevenson T, Kaltenbach T, Kaplan J, Kapur S, Kohm D, Kriss M, Kundumadam S, Kyanam Kabir Baig KR, Menard-Katcher P, Kraft C, Langworthy J, Misra B, Molloy E, Munoz JC, Norvell J, Nowak T, Obaitan I, Patel S, Patel M, Peter S, Reid BM, Rogers N, Ross J, Ryan J, Sagi S, Saito A, Samo S, Sarkis F, Scott FI, Siwiec R, Sullivan S, Wieland A, Zhang J, Repici A, Hassan C, Byrne MF, Rastogi A. Artificial Intelligence for Real-Time Prediction of the Histology of Colorectal Polyps by General Endoscopists. Ann Intern Med 2024; 177:911-918. [PMID: 38768450 DOI: 10.7326/m24-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Real-time prediction of histologic features of small colorectal polyps may prevent resection and/or pathologic evaluation and therefore decrease colonoscopy costs. Previous studies showed that computer-aided diagnosis (CADx) was highly accurate, though it did not outperform expert endoscopists. OBJECTIVE To assess the diagnostic performance of histologic predictions by general endoscopists before and after assistance from CADx in a real-life setting. DESIGN Prospective, multicenter, single-group study. (ClinicalTrials.gov: NCT04437615). SETTING 6 centers across the United States. PARTICIPANTS 1252 consecutive patients undergoing colonoscopy and 49 general endoscopists with variable experience in real-time prediction of polyp histologic features. INTERVENTION Real-time use of CADx during routine colonoscopy. MEASUREMENTS The primary end points were the sensitivity and specificity of CADx-unassisted and CADx-assisted histologic predictions for adenomas measuring 5 mm or less. For clinical purposes, additional estimates according to location and confidence level were provided. RESULTS The CADx device made a diagnosis for 2695 polyps measuring 5 mm or less (96%) in 1252 patients. There was no difference in sensitivity between the unassisted and assisted groups (90.7% vs. 90.8%; P = 0.52). Specificity was higher in the CADx-assisted group (59.5% vs. 64.7%; P < 0.001). Among all 2695 polyps measuring 5 mm or less, 88.2% and 86.1% (P < 0.001) in the CADx-assisted and unassisted groups, respectively, could be resected and discarded without pathologic evaluation. Among 743 rectosigmoid polyps measuring 5 mm or less, 49.5% and 47.9% (P < 0.001) in the CADx-assisted and unassisted groups, respectively, could be left in situ without resection. LIMITATION Decision making based on CADx might differ outside a clinical trial. CONCLUSION CADx assistance did not result in increased sensitivity of optical diagnosis. Despite a slight increase, the specificity of CADx-assisted diagnosis remained suboptimal. PRIMARY FUNDING SOURCE Olympus America Corporation served as the clinical study sponsor.
Collapse
Affiliation(s)
- Douglas K Rex
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Indira Bhavsar-Burke
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Daniel Buckles
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - James Burton
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Amanda Cartee
- University of Alabama at Birmingham, Birmingham, Alabama (A.C., A.E., K.R.K.K.B., S.P., F.S.)
| | - Kevin Comar
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Adam Edwards
- University of Alabama at Birmingham, Birmingham, Alabama (A.C., A.E., K.R.K.K.B., S.P., F.S.)
| | - Blair Fennimore
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Monika Fischer
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Mark Gerich
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Ashley Gilmore
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Shadi Hamdeh
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Jeffrey Hoffman
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Michael Ibach
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Mollie Jackson
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Toyia James-Stevenson
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Tonya Kaltenbach
- San Francisco VA Medical Center, San Francisco, California (T.K., C.K., J.R.)
| | - Jeffrey Kaplan
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Saurabh Kapur
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Daniel Kohm
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Michael Kriss
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Shanker Kundumadam
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | | | - Paul Menard-Katcher
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Cary Kraft
- San Francisco VA Medical Center, San Francisco, California (T.K., C.K., J.R.)
| | - James Langworthy
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Bharat Misra
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Eric Molloy
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Juan Carlos Munoz
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - John Norvell
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Thomas Nowak
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Itegbemie Obaitan
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Swati Patel
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Mitesh Patel
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Shajan Peter
- University of Alabama at Birmingham, Birmingham, Alabama (A.C., A.E., K.R.K.K.B., S.P., F.S.)
| | - B Marie Reid
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - Nicholas Rogers
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Jason Ross
- Borland Groover, Jacksonville, Florida (K.C., J.H., M.I., D.K., B.M., J.C.M., B.M.R., J.R.)
| | - James Ryan
- San Francisco VA Medical Center, San Francisco, California (T.K., C.K., J.R.)
| | - Sashidhar Sagi
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Akira Saito
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Salih Samo
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| | - Fayez Sarkis
- University of Alabama at Birmingham, Birmingham, Alabama (A.C., A.E., K.R.K.K.B., S.P., F.S.)
| | - Frank I Scott
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Robert Siwiec
- Indiana University School of Medicine, Indianapolis, Indiana (D.K.R., I.B., M.F., A.G., T.J., S.K., T.N., I.O., N.R., S.S., A.S., R.S.)
| | - Shelby Sullivan
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Amanda Wieland
- University of Colorado Boulder, Boulder, Colorado (J.B., B.F., M.G., J.K., M.K., P.M., J.N., S.P., F.S., S.S., A.W.)
| | - Jianying Zhang
- Department of Statistics, Olympus America Corporation, Center Valley, Pennsylvania (J.Z.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy, and Endoscopy Unit and Humanitas Clinical and Research Hospital, IRCCS, Rozzano, Italy (A.R., C.H.)
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy, and Endoscopy Unit and Humanitas Clinical and Research Hospital, IRCCS, Rozzano, Italy (A.R., C.H.)
| | - Michael F Byrne
- Division of Gastroenterology, Vancouver General Hospital; University of British Columbia; and Satisfai Health, Vancouver, British Columbia, Canada (M.F.B.)
| | - Amit Rastogi
- University of Kansas Medical Center, Kansas City, Kansas (D.B., S.H., M.J., S.K., J.L., E.M., M.P., S.S., A.R.)
| |
Collapse
|
24
|
Mori Y, Jin EH, Lee D. Enhancing artificial intelligence-doctor collaboration for computer-aided diagnosis in colonoscopy through improved digital literacy. Dig Liver Dis 2024; 56:1140-1143. [PMID: 38105144 DOI: 10.1016/j.dld.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Establishing appropriate trust and maintaining a balanced reliance on digital resources are vital for accurate optical diagnoses and effective integration of computer-aided diagnosis (CADx) in colonoscopy. Active learning using diverse polyp image datasets can help in developing precise CADx systems. Enhancing doctors' digital literacy and interpreting their results is crucial. Explainable artificial intelligence (AI) addresses opacity, and textual descriptions, along with AI-generated content, deepen the interpretability of AI-based findings by doctors. AI conveying uncertainties and decision confidence aids doctors' acceptance of results. Optimal AI-doctor collaboration requires improving algorithm performance, transparency, addressing uncertainties, and enhancing doctors' optical diagnostic skills.
Collapse
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Eun Hyo Jin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea.
| | - Dongheon Lee
- Department of Biomedical Engineering, College of Medicine, Chungnam National University, Daejeon, South Korea; Department of Biomedical Engineering, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
25
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
26
|
Hassan C, Misawa M, Rizkala T, Mori Y, Sultan S, Facciorusso A, Antonelli G, Spadaccini M, Houwen BBSL, Rondonotti E, Patel H, Khalaf K, Li JW, Fernandez GM, Bhandari P, Dekker E, Gross S, Berzin T, Vandvik PO, Correale L, Kudo SE, Sharma P, Rex DK, Repici A, Foroutan F. Computer-Aided Diagnosis for Leaving Colorectal Polyps In Situ : A Systematic Review and Meta-analysis. Ann Intern Med 2024; 177:919-928. [PMID: 38768453 DOI: 10.7326/m23-2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Computer-aided diagnosis (CADx) allows prediction of polyp histology during colonoscopy, which may reduce unnecessary removal of nonneoplastic polyps. However, the potential benefits and harms of CADx are still unclear. PURPOSE To quantify the benefit and harm of using CADx in colonoscopy for the optical diagnosis of small (≤5-mm) rectosigmoid polyps. DATA SOURCES Medline, Embase, and Scopus were searched for articles published before 22 December 2023. STUDY SELECTION Histologically verified diagnostic accuracy studies that evaluated the real-time performance of physicians in predicting neoplastic change of small rectosigmoid polyps without or with CADx assistance during colonoscopy. DATA EXTRACTION The clinical benefit and harm were estimated on the basis of accuracy values of the endoscopist before and after CADx assistance. The certainty of evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) framework. The outcome measure for benefit was the proportion of polyps predicted to be nonneoplastic that would avoid removal with the use of CADx. The outcome measure for harm was the proportion of neoplastic polyps that would be not resected and left in situ due to an incorrect diagnosis with the use of CADx. Histology served as the reference standard for both outcomes. DATA SYNTHESIS Ten studies, including 3620 patients with 4103 small rectosigmoid polyps, were analyzed. The studies that assessed the performance of CADx alone (9 studies; 3237 polyps) showed a sensitivity of 87.3% (95% CI, 79.2% to 92.5%) and specificity of 88.9% (CI, 81.7% to 93.5%) in predicting neoplastic change. In the studies that compared histology prediction performance before versus after CADx assistance (4 studies; 2503 polyps), there was no difference in the proportion of polyps predicted to be nonneoplastic that would avoid removal (55.4% vs. 58.4%; risk ratio [RR], 1.06 [CI, 0.96 to 1.17]; moderate-certainty evidence) or in the proportion of neoplastic polyps that would be erroneously left in situ (8.2% vs. 7.5%; RR, 0.95 [CI, 0.69 to 1.33]; moderate-certainty evidence). LIMITATION The application of optical diagnosis was only simulated, potentially altering the decision-making process of the operator. CONCLUSION Computer-aided diagnosis provided no incremental benefit or harm in the management of small rectosigmoid polyps during colonoscopy. PRIMARY FUNDING SOURCE European Commission. (PROSPERO: CRD42023402197).
Collapse
Affiliation(s)
- Cesare Hassan
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, and Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Italy (C.H., M.S., A.R.)
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan (M.M., S.K.)
| | - Tommy Rizkala
- Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Italy (T.R., L.C.)
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; University of Oslo, Clinical Effectiveness Research Group, and Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway (Y.M.)
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, and VA Health Care System, Minneapolis, Minnesota (S.S.)
| | - Antonio Facciorusso
- University of Foggia, Department of Medical Sciences, Section of Gastroenterology, Foggia, Italy (A.F.)
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, and Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy (G.A.)
| | - Marco Spadaccini
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, and Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Italy (C.H., M.S., A.R.)
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands (B.B.S.L.H.)
| | | | - Harsh Patel
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, Missouri (H.P., P.S.)
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada (K.K.)
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, and Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore (J.W.L.)
| | - Gloria M Fernandez
- Endoscopy Unit, Gastroenterology Department, Clinical Institute of Digestive and Metabolic Disease, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain (G.M.F.)
| | - Pradeep Bhandari
- Queen Alexandra Hospital, Department of Gastroenterology, Portsmouth, United Kingdom (P.B.)
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, and Bergman Clinics Maag and Darm Amsterdam, Amsterdam, the Netherlands (E.D.)
| | - Seth Gross
- Department of Gastroenterology, Tisch Hospital, New York University Langone Medical Center, New York, New York (S.G.)
| | - Tyler Berzin
- Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts (T.B.)
| | - Per Olav Vandvik
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway (P.O.V.)
| | - Loredana Correale
- Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Italy (T.R., L.C.)
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan (M.M., S.K.)
| | - Prateek Sharma
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, Missouri (H.P., P.S.)
| | - Douglas K Rex
- Indiana University School of Medicine, Division of Gastroenterology, Indianapolis, Indiana (D.K.R.)
| | - Alessandro Repici
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, and Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Italy (C.H., M.S., A.R.)
| | - Farid Foroutan
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada (F.F.)
| |
Collapse
|
27
|
Mandarino FV, Danese S, Uraoka T, Parra-Blanco A, Maeda Y, Saito Y, Kudo SE, Bourke MJ, Iacucci M. Precision endoscopy in colorectal polyps' characterization and planning of endoscopic therapy. Dig Endosc 2024; 36:761-777. [PMID: 37988279 DOI: 10.1111/den.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Precision endoscopy in the management of colorectal polyps and early colorectal cancer has emerged as the standard of care. It includes optical characterization of polyps and estimation of submucosal invasion depth of large nonpedunculated colorectal polyps to select the appropriate endoscopic resection modality. Over time, several imaging modalities have been implemented in endoscopic practice to improve optical performance. Among these, image-enhanced endoscopy systems and magnification endoscopy represent now well-established tools. New advanced technologies, such as endocytoscopy and confocal laser endomicroscopy, have recently shown promising results in predicting the histology of colorectal polyps. In recent years, artificial intelligence has continued to enhance endoscopic performance in the characterization of colorectal polyps, overcoming the limitations of other imaging modes. In this review we retrace the path of precision endoscopy, analyzing the yield of various endoscopic imaging techniques in personalizing management of colorectal polyps and early colorectal cancer.
Collapse
Affiliation(s)
- Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Hospital IRCSS, Milan, Italy
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gumma, Japan
| | - Adolfo Parra-Blanco
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Michael J Bourke
- Department of Gastrointestinal Endoscopy, Westmead Hospital, Sydney, NSW, Australia
| | - Marietta Iacucci
- Department of Gastroenterology, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Djinbachian R, Haumesser C, Taghiakbari M, Pohl H, Barkun A, Sidani S, Liu Chen Kiow J, Panzini B, Bouchard S, Deslandres E, Alj A, von Renteln D. Autonomous Artificial Intelligence vs Artificial Intelligence-Assisted Human Optical Diagnosis of Colorectal Polyps: A Randomized Controlled Trial. Gastroenterology 2024; 167:392-399.e2. [PMID: 38331204 DOI: 10.1053/j.gastro.2024.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Artificial intelligence (AI)-based optical diagnosis systems (CADx) have been developed to allow pathology prediction of colorectal polyps during colonoscopies. However, CADx systems have not yet been validated for autonomous performance. Therefore, we conducted a trial comparing autonomous AI to AI-assisted human (AI-H) optical diagnosis. METHODS We performed a randomized noninferiority trial of patients undergoing elective colonoscopies at 1 academic institution. Patients were randomized into (1) autonomous AI-based CADx optical diagnosis of diminutive polyps without human input or (2) diagnosis by endoscopists who performed optical diagnosis of diminutive polyps after seeing the real-time CADx diagnosis. The primary outcome was accuracy in optical diagnosis in both arms using pathology as the gold standard. Secondary outcomes included agreement with pathology for surveillance intervals. RESULTS A total of 467 patients were randomized (238 patients/158 polyps in the autonomous AI group and 229 patients/179 polyps in the AI-H group). Accuracy for optical diagnosis was 77.2% (95% confidence interval [CI], 69.7-84.7) in the autonomous AI group and 72.1% (95% CI, 65.5-78.6) in the AI-H group (P = .86). For high-confidence diagnoses, accuracy for optical diagnosis was 77.2% (95% CI, 69.7-84.7) in the autonomous AI group and 75.5% (95% CI, 67.9-82.0) in the AI-H group. Autonomous AI had statistically significantly higher agreement with pathology-based surveillance intervals compared to AI-H (91.5% [95% CI, 86.9-96.1] vs 82.1% [95% CI, 76.5-87.7]; P = .016). CONCLUSIONS Autonomous AI-based optical diagnosis exhibits noninferior accuracy to endoscopist-based diagnosis. Both autonomous AI and AI-H exhibited relatively low accuracy for optical diagnosis; however, autonomous AI achieved higher agreement with pathology-based surveillance intervals. (ClinicalTrials.gov, Number NCT05236790).
Collapse
Affiliation(s)
- Roupen Djinbachian
- Montreal University Hospital Research Center, Montreal, Quebec, Canada; Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Claire Haumesser
- Montreal University Hospital Research Center, Montreal, Quebec, Canada
| | - Mahsa Taghiakbari
- Montreal University Hospital Research Center, Montreal, Quebec, Canada; Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Heiko Pohl
- Section of Gastroenterology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Gastroenterology, Veterans Affairs White River Junction, Vermont
| | - Alan Barkun
- Division of Gastroenterology, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Sacha Sidani
- Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Jeremy Liu Chen Kiow
- Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Benoit Panzini
- Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Simon Bouchard
- Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Erik Deslandres
- Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Abla Alj
- Division of Internal Medicine, Montreal University Hospital Center, Montreal, Quebec, Canada
| | - Daniel von Renteln
- Montreal University Hospital Research Center, Montreal, Quebec, Canada; Division of Gastroenterology, Montreal University Hospital Center, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Rondonotti E, Bergna IMB, Paggi S, Amato A, Andrealli A, Scardino G, Tamanini G, Lenoci N, Mandelli G, Terreni N, Rocchetto SI, Piagnani A, Di Paolo D, Bina N, Filippi E, Ambrosiani L, Hassan C, Correale L, Radaelli F. White light computer-aided optical diagnosis of diminutive colorectal polyps in routine clinical practice. Endosc Int Open 2024; 12:E676-E683. [PMID: 38774861 PMCID: PMC11108657 DOI: 10.1055/a-2303-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Background and study aims Artificial Intelligence (AI) systems could make the optical diagnosis (OD) of diminutive colorectal polyps (DCPs) more reliable and objective. This study was aimed at prospectively evaluating feasibility and diagnostic performance of AI-standalone and AI-assisted OD of DCPs in a real-life setting by using a white light-based system (GI Genius, Medtronic Co, Minneapolis, Minnesota, United States). Patients and methods Consecutive colonoscopy outpatients with at least one DCP were evaluated by 11 endoscopists (5 experts and 6 non-experts in OD). DCPs were classified in real time by AI (AI-standalone OD) and by the endoscopist with the assistance of AI (AI-assisted OD), with histopathology as the reference standard. Results Of the 480 DCPs, AI provided the outcome "adenoma" or "non-adenoma" in 81.4% (95% confidence interval [CI]: 77.5-84.6). Sensitivity, specificity, positive and negative predictive value, and accuracy of AI-standalone OD were 97.0% (95% CI 94.0-98.6), 38.1% (95% CI 28.9-48.1), 80.1% (95% CI 75.2-84.2), 83.3% (95% CI 69.2-92.0), and 80.5% (95% CI 68.7-82.8%), respectively. Compared with AI-standalone, the specificity of AI-assisted OD was significantly higher (58.9%, 95% CI 49.7-67.5) and a trend toward an increase was observed for other diagnostic performance measures. Overall accuracy and negative predictive value of AI-assisted OD for experts and non-experts were 85.8% (95% CI 80.0-90.4) vs. 80.1% (95% CI 73.6-85.6) and 89.1% (95% CI 75.6-95.9) vs. 80.0% (95% CI 63.9-90.4), respectively. Conclusions Standalone AI is able to provide an OD of adenoma/non-adenoma in more than 80% of DCPs, with a high sensitivity but low specificity. The human-machine interaction improved diagnostic performance, especially when experts were involved.
Collapse
Affiliation(s)
| | - Irene Maria Bambina Bergna
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
- Gastroenterology and Digestive Endoscopy Unit, Alessandro Manzoni Hospital, Lecco, Italy
| | - Silvia Paggi
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | - Arnaldo Amato
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Gastroenterology and Digestive Endoscopy Unit, Alessandro Manzoni Hospital, Lecco, Italy
| | | | | | | | | | | | | | - SImone Rocchetto
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
| | - Alessandra Piagnani
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- University of Milan, Milano, Italy
| | | | - Niccolò Bina
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | | | | | - Cesare Hassan
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Loredana Correale
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | |
Collapse
|
30
|
Rey JF. As how artificial intelligence is revolutionizing endoscopy. Clin Endosc 2024; 57:302-308. [PMID: 38454543 PMCID: PMC11133999 DOI: 10.5946/ce.2023.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Institut Arnaut Tzanck Gastrointestinal Unt, Saint Laurent du Var, France
| |
Collapse
|
31
|
Kobayashi R, Yoshida N, Tomita Y, Hashimoto H, Inoue K, Hirose R, Dohi O, Inada Y, Murakami T, Morimoto Y, Zhu X, Itoh Y. Detailed Superiority of the CAD EYE Artificial Intelligence System over Endoscopists for Lesion Detection and Characterization Using Unique Movie Sets. J Anus Rectum Colon 2024; 8:61-69. [PMID: 38689788 PMCID: PMC11056537 DOI: 10.23922/jarc.2023-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 05/02/2024] Open
Abstract
Objectives Detailed superiority of CAD EYE (Fujifilm, Tokyo, Japan), an artificial intelligence for polyp detection/diagnosis, compared to endoscopists is not well examined. We examined endoscopist's ability using movie sets of colorectal lesions which were detected and diagnosed by CAD EYE accurately. Methods Consecutive lesions of ≤10 mm were examined live by CAD EYE from March-June 2022 in our institution. Short unique movie sets of each lesion with and without CAD EYE were recorded simultaneously using two recorders for detection under white light imaging (WLI) and linked color imaging (LCI) and diagnosis under blue laser/light imaging (BLI). Excluding inappropriate movies, 100 lesions detected and diagnosed with CAD EYE accurately were evaluated. Movies without CAD EYE were evaluated first by three trainees and three experts. Subsequently, movies with CAD EYE were examined. The rates of accurate detection and diagnosis were evaluated for both movie sets. Results Among 100 lesions (mean size: 4.7±2.6 mm; 67 neoplastic/33 hyperplastic), mean accurate detection rates of movies without or with CAD EYE were 78.7%/96.7% under WLI (p<0.01) and 91.3%/97.3% under LCI (p<0.01) for trainees and 85.3%/99.0% under WLI (p<0.01) and 92.6%/99.3% under LCI (p<0.01) for experts. Mean accurate diagnosis rates of movies without or with CAD EYE for BLI were 85.3%/100% for trainees (p<0.01) and 92.3%/100% for experts (p<0.01), respectively. The significant risk factors of not-detected lesions for trainees were right-sided, hyperplastic, not-reddish, in the corner, halation, and inadequate bowel preparation. Conclusions Unique movie sets with and without CAD EYE could suggest it's efficacy for lesion detection/diagnosis.
Collapse
Affiliation(s)
- Reo Kobayashi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuri Tomita
- Department of Gastroenterology, Kosekai Takeda Hosptal, Kyoto, Japan
| | - Hikaru Hashimoto
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Inada
- Department of Gastroenterology, Kyoto First Red Cross Hospital, Kyoto, Japan
| | - Takaaki Murakami
- Department of Gastroenterology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Yasutaka Morimoto
- Department of Gastroenterology, Kyoto Saiseikai Hospital, Kyoto, Japan
| | - Xin Zhu
- Graduate School of Computer Science and Engineering, The University of Aizu, Fukushima, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Groza AL, Miutescu B, Tefas C, Popa A, Ratiu I, Sirli R, Popescu A, Motofelea AC, Tantau M. Evaluating the Efficacy of Resect-and-Discard and Resect-and-Retrieve Strategies for Diminutive Colonic Polyps. Life (Basel) 2024; 14:532. [PMID: 38672802 PMCID: PMC11051488 DOI: 10.3390/life14040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Diminutive polyps present a unique challenge in colorectal cancer (CRC) prevention strategies. This study aims to assess the characteristics and variables of diminutive polyps in a Romanian cohort, intending to develop a combined resect-and-retrieve or resect-and-discard strategy that reduces the need for an optical diagnosis. MATERIALS AND METHODS A prospective cohort study was conducted at two endoscopy centers in Romania from July to December 2021. Adult patients undergoing colonoscopies where polyps were identified and resected were included. Endoscopic procedures employed advanced diagnostic features, including blue-light imaging (BLI) and narrow-band imaging (NBI). Logistic regression analysis was utilized to determine factors impacting the probability of adenomatous polyps with high-grade dysplasia (HGD). RESULTS A total of 427 patients were included, with a mean age of 59.42 years (±11.19), predominantly male (60.2%). The most common indication for a colonoscopy was lower gastrointestinal symptoms (42.6%), followed by screening (28.8%). Adequate bowel preparation was achieved in 87.8% of cases. The logistic regression analysis revealed significant predictors of HGD in adenomatous polyps: age (OR = 1.05, 95% CI: 1.01-1.08, p = 0.01) and polyp size (>5 mm vs. ≤5 mm, OR = 4.4, 95% CI: 1.94-10.06, p < 0.001). Polyps classified as Paris IIa, Ip, and Isp were significantly more likely to harbor HGD compared to the reference group (Is), with odds ratios of 6.05, 3.68, and 2.7, respectively. CONCLUSIONS The study elucidates significant associations between the presence of HGD in adenomatous polyps and factors such as age, polyp size, and Paris classification. These findings support the feasibility of a tailored approach in the resect-and-discard and resect-and-retrieve strategies for diminutive polyps, potentially optimizing CRC prevention and intervention practices. Further research is warranted to validate these strategies in broader clinical settings.
Collapse
Affiliation(s)
- Andrei Lucian Groza
- 3rd Department of Internal Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.L.G.); (C.T.); (M.T.)
| | - Bogdan Miutescu
- Advanced Regional Research Center in Gastroenterology and Hepatology, Department VII: Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.P.); (I.R.); (R.S.); (A.P.)
| | - Cristian Tefas
- 3rd Department of Internal Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.L.G.); (C.T.); (M.T.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Alexandru Popa
- Advanced Regional Research Center in Gastroenterology and Hepatology, Department VII: Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.P.); (I.R.); (R.S.); (A.P.)
| | - Iulia Ratiu
- Advanced Regional Research Center in Gastroenterology and Hepatology, Department VII: Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.P.); (I.R.); (R.S.); (A.P.)
| | - Roxana Sirli
- Advanced Regional Research Center in Gastroenterology and Hepatology, Department VII: Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.P.); (I.R.); (R.S.); (A.P.)
| | - Alina Popescu
- Advanced Regional Research Center in Gastroenterology and Hepatology, Department VII: Internal Medicine II, Discipline of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.P.); (I.R.); (R.S.); (A.P.)
| | - Alexandru Catalin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Marcel Tantau
- 3rd Department of Internal Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.L.G.); (C.T.); (M.T.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Lopes SR, Martins C, Santos IC, Teixeira M, Gamito É, Alves AL. Colorectal cancer screening: A review of current knowledge and progress in research. World J Gastrointest Oncol 2024; 16:1119-1133. [PMID: 38660635 PMCID: PMC11037045 DOI: 10.4251/wjgo.v16.i4.1119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally. Despite the progress in screening, early diagnosis, and treatment, approximately 20%-25% of CRC patients still present with metastatic disease at the time of their initial diagnosis. Furthermore, the burden of disease is still expected to increase, especially in individuals younger than 50 years old, among whom early-onset CRC incidence has been increasing. Screening and early detection are pivotal to improve CRC-related outcomes. It is well established that CRC screening not only reduces incidence, but also decreases deaths from CRC. Diverse screening strategies have proven effective in decreasing both CRC incidence and mortality, though variations in efficacy have been reported across the literature. However, uncertainties persist regarding the optimal screening method, age intervals and periodicity. Moreover, adherence to CRC screening remains globally low. In recent years, emerging technologies, notably artificial intelligence, and non-invasive biomarkers, have been developed to overcome these barriers. However, controversy exists over the actual impact of some of the new discoveries on CRC-related outcomes and how to effectively integrate them into daily practice. In this review, we aim to cover the current evidence surrounding CRC screening. We will further critically assess novel approaches under investigation, in an effort to differentiate promising innovations from mere novelties.
Collapse
Affiliation(s)
- Sara Ramos Lopes
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Claudio Martins
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Inês Costa Santos
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Madalena Teixeira
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Élia Gamito
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Ana Luisa Alves
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| |
Collapse
|
34
|
Rondonotti E, Radaelli F. Machines Advancing: Marginalization of Human Beings on the Horizon? Gastroenterology 2024:S0016-5085(24)00295-6. [PMID: 38499163 DOI: 10.1053/j.gastro.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
|
35
|
van der Zander QEW, Schreuder RM, Thijssen A, Kusters CHJ, Dehghani N, Scheeve T, Winkens B, van der Ende - van Loon MCM, de With PHN, van der Sommen F, Masclee AAM, Schoon EJ. Artificial intelligence for characterization of diminutive colorectal polyps: A feasibility study comparing two computer-aided diagnosis systems. Artif Intell Gastrointest Endosc 2024; 5:90574. [DOI: 10.37126/aige.v5.i1.90574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) has potential in the optical diagnosis of colorectal polyps.
AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system (CADx) AI for ColoRectal Polyps (AI4CRP) for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYETM (Fujifilm, Tokyo, Japan). CADx influence on the optical diagnosis of an expert endoscopist was also investigated.
METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm. Both CADx-systems exploit convolutional neural networks. Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard. AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value (range 0.0-1.0). A predefined cut-off value of 0.6 was set with values < 0.6 indicating benign and values ≥ 0.6 indicating premalignant colorectal polyps. Low confidence characterizations were defined as values 40% around the cut-off value of 0.6 (< 0.36 and > 0.76). Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.
RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps. Self-critical AI4CRP, excluding 14 low confidence characterizations [27.5% (14/51)], had a diagnostic accuracy of 89.2%, sensitivity of 89.7%, and specificity of 87.5%, which was higher compared to AI4CRP. CAD EYE had a 83.7% diagnostic accuracy, 74.2% sensitivity, and 100.0% specificity. Diagnostic performances of the endoscopist alone (before AI) increased non-significantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE (AI-assisted endoscopist). Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems, except for specificity for which CAD EYE performed best.
CONCLUSION Real-time use of AI4CRP was feasible. Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
Collapse
Affiliation(s)
- Quirine Eunice Wennie van der Zander
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
| | - Ramon M Schreuder
- Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven 5602 ZA, Netherlands
| | - Ayla Thijssen
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Nikoo Dehghani
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Thom Scheeve
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, Maastricht University, Postbus 616, 6200 MD Maastricht, Netherlands
- School for Public Health and Primary Care, Maastricht University, Maastricht 6200 MD, Netherlands
| | | | - Peter H N de With
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Ad A M Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht 6202 AZ, Netherlands
| | - Erik J Schoon
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht 6200 MD, Netherlands
- Division of Gastroenterology and Hepatology, Catharina Hospital Eindhoven, Eindhoven 5602 ZA, Netherlands
| |
Collapse
|
36
|
Kato S, Kudo SE, Minegishi Y, Miyata Y, Maeda Y, Kuroki T, Takashina Y, Mochizuki K, Tamura E, Abe M, Sato Y, Sakurai T, Kouyama Y, Tanaka K, Ogawa Y, Nakamura H, Ichimasa K, Ogata N, Hisayuki T, Hayashi T, Wakamura K, Miyachi H, Baba T, Ishida F, Nemoto T, Misawa M. Impact of computer-aided characterization for diagnosis of colorectal lesions, including sessile serrated lesions: Multireader, multicase study. Dig Endosc 2024; 36:341-350. [PMID: 37937532 DOI: 10.1111/den.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES Computer-aided characterization (CADx) may be used to implement optical biopsy strategies into colonoscopy practice; however, its impact on endoscopic diagnosis remains unknown. We aimed to evaluate the additional diagnostic value of CADx when used by endoscopists for assessing colorectal polyps. METHODS This was a single-center, multicase, multireader, image-reading study using randomly extracted images of pathologically confirmed polyps resected between July 2021 and January 2022. Approved CADx that could predict two-tier classification (neoplastic or nonneoplastic) by analyzing narrow-band images of the polyps was used to obtain a CADx diagnosis. Participating endoscopists determined if the polyps were neoplastic or not and noted their confidence level using a computer-based, image-reading test. The test was conducted twice with a 4-week interval: the first test was conducted without CADx prediction and the second test with CADx prediction. Diagnostic performances for neoplasms were calculated using the pathological diagnosis as reference and performances with and without CADx prediction were compared. RESULTS Five hundred polyps were randomly extracted from 385 patients and diagnosed by 14 endoscopists (including seven experts). The sensitivity for neoplasia was significantly improved by referring to CADx (89.4% vs. 95.6%). CADx also had incremental effects on the negative predictive value (69.3% vs. 84.3%), overall accuracy (87.2% vs. 91.8%), and high-confidence diagnosis rate (77.4% vs. 85.8%). However, there was no significant difference in specificity (80.1% vs. 78.9%). CONCLUSIONS Computer-aided characterization has added diagnostic value for differentiating colorectal neoplasms and may improve the high-confidence diagnosis rate.
Collapse
Affiliation(s)
- Shun Kato
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yosuke Minegishi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuki Miyata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yasuharu Maeda
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takanori Kuroki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuki Takashina
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kenichi Mochizuki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Eri Tamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masahiro Abe
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Sato
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tatsuya Sakurai
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yuta Kouyama
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kenta Tanaka
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hiroki Nakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Katsuro Ichimasa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
- Department of Gastroenterology and Hepatology, National University Hospital, Singapore City, Singapore
| | - Noriyuki Ogata
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tomokazu Hisayuki
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Takemasa Hayashi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Kunihiko Wakamura
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hideyuki Miyachi
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Toshiyuki Baba
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Fumio Ishida
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Tetsuo Nemoto
- Department of Diagnostic Pathology and Laboratory Medicine, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
37
|
Antonelli G, Voiosu AM, Pawlak KM, Gonçalves TC, Le N, Bronswijk M, Hollenbach M, Elshaarawy O, Beilenhoff U, Mascagni P, Voiosu T, Pellisé M, Dinis-Ribeiro M, Triantafyllou K, Arvanitakis M, Bisschops R, Hassan C, Messmann H, Gralnek IM. Training in basic gastrointestinal endoscopic procedures: a European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) Position Statement. Endoscopy 2024; 56:131-150. [PMID: 38040025 DOI: 10.1055/a-2205-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
This ESGE Position Statement provides structured and evidence-based guidance on the essential requirements and processes involved in training in basic gastrointestinal (GI) endoscopic procedures. The document outlines definitions; competencies required, and means to their assessment and maintenance; the structure and requirements of training programs; patient safety and medicolegal issues. 1: ESGE and ESGENA define basic endoscopic procedures as those procedures that are commonly indicated, generally accessible, and expected to be mastered (technically and cognitively) by the end of any core training program in gastrointestinal endoscopy. 2: ESGE and ESGENA consider the following as basic endoscopic procedures: diagnostic upper and lower GI endoscopy, as well as a limited range of interventions such as: tissue acquisition via cold biopsy forceps, polypectomy for lesions ≤ 10 mm, hemostasis techniques, enteral feeding tube placement, foreign body retrieval, dilation of simple esophageal strictures, and India ink tattooing of lesion location. 3: ESGE and ESGENA recommend that training in GI endoscopy should be subject to stringent formal requirements that ensure all ESGE key performance indicators (KPIs) are met. 4: Training in basic endoscopic procedures is a complex process and includes the development and acquisition of cognitive, technical/motor, and integrative skills. Therefore, ESGE and ESGENA recommend the use of validated tools to track the development of skills and assess competence. 5: ESGE and ESGENA recommend incorporating a multimodal approach to evaluating competence in basic GI endoscopic procedures, including procedural thresholds and the measurement and documentation of established ESGE KPIs. 7: ESGE and ESGENA recommend the continuous monitoring of ESGE KPIs during GI endoscopy training to ensure the trainee's maintenance of competence. 9: ESGE and ESGENA recommend that GI endoscopy training units fulfil the ESGE KPIs for endoscopy units and, furthermore, be capable of providing the dedicated personnel, infrastructure, and sufficient case volume required for successful training within a structured training program. 10: ESGE and ESGENA recommend that trainers in basic GI endoscopic procedures should be endoscopists with formal educational training in the teaching of endoscopy, which allows them to successfully and safely teach trainees.
Collapse
Affiliation(s)
- Giulio Antonelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, "Sapienza" University of Rome, Italy
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Ariccia, Rome, Italy
| | - Andrei M Voiosu
- Department of Gastroenterology, Colentina Clinical Hospital, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Katarzyna M Pawlak
- Endoscopy Unit, Gastroenterology Department, Hospital of the Ministry of Interior and Administration, Szczecin, Poland
- The Center for Therapeutic Endoscopy and Endoscopic Oncology, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Tiago Cúrdia Gonçalves
- Gastroenterology Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Nha Le
- Gastroenterology Division, Internal Medicine and Hematology Department, Semmelweis University, Budapest, Hungary
| | - Michiel Bronswijk
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Belgium
- Department of Gastroenterology and Hepatology, Imelda General Hospital, Bonheiden, Belgium
| | - Marcus Hollenbach
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Center, Leipzig, Germany
| | - Omar Elshaarawy
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Menoufia, Egypt
| | | | - Pietro Mascagni
- IHU Strasbourg, Strasbourg, France
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Theodor Voiosu
- Department of Gastroenterology, Colentina Clinical Hospital, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Pellisé
- Department of Gastroenterology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
- MEDCIDS/Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Marianna Arvanitakis
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, TARGID, Leuven, Belgium
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, TARGID, Leuven, Belgium
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Helmut Messmann
- Department of Gastroenterology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ian M Gralnek
- Institute of Gastroenterology and Hepatology, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Halvorsen N, Mori Y. Computer-aided polyp characterization in colonoscopy: sufficient performance or not? Clin Endosc 2024; 57:18-23. [PMID: 38178329 PMCID: PMC10834281 DOI: 10.5946/ce.2023.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 01/06/2024] Open
Abstract
Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
39
|
Yamaguchi D, Shimoda R, Miyahara K, Yukimoto T, Sakata Y, Takamori A, Mizuta Y, Fujimura Y, Inoue S, Tomonaga M, Ogino Y, Eguchi K, Ikeda K, Tanaka Y, Takedomi H, Hidaka H, Akutagawa T, Tsuruoka N, Noda T, Tsunada S, Esaki M. Impact of an artificial intelligence-aided endoscopic diagnosis system on improving endoscopy quality for trainees in colonoscopy: Prospective, randomized, multicenter study. Dig Endosc 2024; 36:40-48. [PMID: 37079002 DOI: 10.1111/den.14573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE This study was performed to evaluate whether the use of CAD EYE (Fujifilm, Tokyo, Japan) for colonoscopy improves colonoscopy quality in gastroenterology trainees. METHODS The patients in this multicenter randomized controlled trial were divided into Group A (observation using CAD EYE) and Group B (standard observation). Six trainees performed colonoscopies using a back-to-back method in pairs with gastroenterology experts. The primary end-point was the trainees' adenoma detection rate (ADR), and the secondary end-points were the trainees' adenoma miss rate (AMR) and Assessment of Competency in Endoscopy (ACE) tool scores. Each trainee's learning curve was evaluated using a cumulative sum (CUSUM) control chart. RESULTS We analyzed data for 231 patients (Group A, n = 113; Group B, n = 118). The ADR was not significantly different between the two groups. Group A had a significantly lower AMR (25.6% vs. 38.6%, P = 0.033) and number of missed adenomas per patient (0.5 vs. 0.9, P = 0.004) than Group B. Group A also had significantly higher ACE tool scores for pathology identification (2.26 vs. 2.07, P = 0.030) and interpretation and identification of pathology location (2.18 vs. 2.00, P = 0.038). For the CUSUM learning curve, Group A showed a trend toward a lower number of cases of missed multiple adenomas by the six trainees. CONCLUSION CAD EYE did not improve ADR but decreased the AMR and improved the ability to accurately locate and identify colorectal adenomas. CAD EYE can be assumed to be beneficial for improving colonoscopy quality in gastroenterology trainees. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry (UMIN000044031).
Collapse
Affiliation(s)
- Daisuke Yamaguchi
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryo Shimoda
- Department of Endoscopic Diagnostics and Therapeutics, Saga University Hospital, Saga, Japan
| | - Koichi Miyahara
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Takahiro Yukimoto
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuhisa Sakata
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Yumi Mizuta
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Yutaro Fujimura
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Suma Inoue
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Michito Tomonaga
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuya Ogino
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Kohei Eguchi
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Kei Ikeda
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Yuichiro Tanaka
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Hironobu Takedomi
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenori Hidaka
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Takashi Akutagawa
- Department of Endoscopic Diagnostics and Therapeutics, Saga University Hospital, Saga, Japan
| | - Nanae Tsuruoka
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takahiro Noda
- Department of Internal Medicine, Karatsu Red Cross Hospital, Saga, Japan
| | - Seiji Tsunada
- Department of Gastroenterology, National Hospital Organization Ureshino Medical Center, Ureshino, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
40
|
Ueda T, Li JW, Ho SH, Singh R, Uedo N. Precision endoscopy in the era of climate change and sustainability. J Gastroenterol Hepatol 2024; 39:18-27. [PMID: 37881033 DOI: 10.1111/jgh.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Global warming caused by increased greenhouse gas (GHG) emissions has a direct impact on human health. Gastrointestinal (GI) endoscopy contributes significantly to GHG emissions due to energy consumption, reprocessing of endoscopes and accessories, production of equipment, safe disposal of biohazardous waste, and travel by patients. Moreover, GHGs are also generated in histopathology through tissue processing and the production of biopsy specimen bottles. The reduction in unnecessary surveillance endoscopies and biopsies is a practical approach to decrease GHG emissions without affecting disease outcomes. This narrative review explores the role of precision medicine in GI endoscopy, such as image-enhanced endoscopy and artificial intelligence, with a focus on decreasing unnecessary endoscopic procedures and biopsies in the surveillance and diagnosis of premalignant lesions in the esophagus, stomach, and colon. This review offers strategies to minimize unnecessary endoscopic procedures and biopsies, decrease GHG emissions, and maintain high-quality patient care, thereby contributing to sustainable healthcare practices.
Collapse
Affiliation(s)
- Tomoya Ueda
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - James Weiquan Li
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore, Singapore
| | - Shiaw-Hooi Ho
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rajvinder Singh
- Department of Gastroenterology, Lyell McEwin and Modbury Hospitals, University of Adelaide, Adelaide, Australia
| | - Noriya Uedo
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
41
|
Dao HV, Nguyen BP, Nguyen TT, Lam HN, Nguyen TTH, Dang TT, Hoang LB, Le HQ, Dao LV. Application of artificial intelligence in gastrointestinal endoscopy in Vietnam: a narrative review. Ther Adv Gastrointest Endosc 2024; 17:26317745241306562. [PMID: 39734422 PMCID: PMC11672465 DOI: 10.1177/26317745241306562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
The utilization of artificial intelligence (AI) in gastrointestinal (GI) endoscopy has witnessed significant progress and promising results in recent years worldwide. From 2019 to 2023, the European Society of Gastrointestinal Endoscopy has released multiple guidelines/consensus with recommendations on integrating AI for detecting and classifying lesions in practical endoscopy. In Vietnam, since 2019, several preliminary studies have been conducted to develop AI algorithms for GI endoscopy, focusing on lesion detection. These studies have yielded high accuracy results ranging from 86% to 92%. For upper GI endoscopy, ongoing research directions comprise image quality assessment, detection of anatomical landmarks, simulating image-enhanced endoscopy, and semi-automated tools supporting the delineation of GI lesions on endoscopic images. For lower GI endoscopy, most studies focus on developing AI algorithms for colorectal polyps' detection and classification based on the risk of malignancy. In conclusion, the application of AI in this field represents a promising research direction, presenting challenges and opportunities for real-world implementation within the Vietnamese healthcare context.
Collapse
Affiliation(s)
- Hang Viet Dao
- Research and Education Department, Institute of Gastroenterology and Hepatology, 09 Dao Duy Anh Street, Dong Da District, Hanoi City, Vietnam
- Department of Internal Medicine, Hanoi Medical University, Hanoi, Vietnam
- Endoscopy Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | | | | | - Hoa Ngoc Lam
- Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | | | - Thao Thi Dang
- Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Long Bao Hoang
- Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| | - Hung Quang Le
- Endoscopy Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Long Van Dao
- Department of Internal Medicine, Hanoi Medical University, Hanoi, Vietnam
- Endoscopy Center, Hanoi Medical University Hospital, Hanoi, Vietnam
- Institute of Gastroenterology and Hepatology, Hanoi, Vietnam
| |
Collapse
|
42
|
Leśniewska M, Patryn R, Kopystecka A, Kozioł I, Budzyńska J. Third Eye? The Assistance of Artificial Intelligence (AI) in the Endoscopy of Gastrointestinal Neoplasms. J Clin Med 2023; 12:6721. [PMID: 37959187 PMCID: PMC10650785 DOI: 10.3390/jcm12216721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Gastrointestinal cancers are characterized by high incidence and mortality. However, there are well-established methods of screening. The endoscopy exam provides the macroscopical image and enables harvesting the tissue samples for further histopathological diagnosis. The efficiency of endoscopies relies not only on proper patient preparation, but also on the skills of the personnel conducting the exam. In recent years, a number of reports concerning the application of artificial intelligence (AI) in medicine have arisen. Numerous studies aimed to assess the utility of deep learning/ neural network systems supporting endoscopies. In this review, we summarized the most recent reports and randomized clinical trials regarding the application of AI in screening and surveillance of gastrointestinal cancers among patients suffering from esophageal, gastric, and colorectal cancer, along with the advantages, limitations, and controversies of those novel solutions.
Collapse
Affiliation(s)
- Magdalena Leśniewska
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (A.K.); (I.K.); (J.B.)
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (A.K.); (I.K.); (J.B.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (A.K.); (I.K.); (J.B.)
| | - Julia Budzyńska
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (A.K.); (I.K.); (J.B.)
| |
Collapse
|
43
|
Young E, Edwards L, Singh R. The Role of Artificial Intelligence in Colorectal Cancer Screening: Lesion Detection and Lesion Characterization. Cancers (Basel) 2023; 15:5126. [PMID: 37958301 PMCID: PMC10647850 DOI: 10.3390/cancers15215126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer remains a leading cause of cancer-related morbidity and mortality worldwide, despite the widespread uptake of population surveillance strategies. This is in part due to the persistent development of 'interval colorectal cancers', where patients develop colorectal cancer despite appropriate surveillance intervals, implying pre-malignant polyps were not resected at a prior colonoscopy. Multiple techniques have been developed to improve the sensitivity and accuracy of lesion detection and characterisation in an effort to improve the efficacy of colorectal cancer screening, thereby reducing the incidence of interval colorectal cancers. This article presents a comprehensive review of the transformative role of artificial intelligence (AI), which has recently emerged as one such solution for improving the quality of screening and surveillance colonoscopy. Firstly, AI-driven algorithms demonstrate remarkable potential in addressing the challenge of overlooked polyps, particularly polyp subtypes infamous for escaping human detection because of their inconspicuous appearance. Secondly, AI empowers gastroenterologists without exhaustive training in advanced mucosal imaging to characterise polyps with accuracy similar to that of expert interventionalists, reducing the dependence on pathologic evaluation and guiding appropriate resection techniques or referrals for more complex resections. AI in colonoscopy holds the potential to advance the detection and characterisation of polyps, addressing current limitations and improving patient outcomes. The integration of AI technologies into routine colonoscopy represents a promising step towards more effective colorectal cancer screening and prevention.
Collapse
Affiliation(s)
- Edward Young
- Faculty of Health and Medical Sciences, University of Adelaide, Lyell McEwin Hospital, Haydown Rd, Elizabeth Vale, SA 5112, Australia
| | - Louisa Edwards
- Faculty of Health and Medical Sciences, University of Adelaide, Queen Elizabeth Hospital, Port Rd, Woodville South, SA 5011, Australia
| | - Rajvinder Singh
- Faculty of Health and Medical Sciences, University of Adelaide, Lyell McEwin Hospital, Haydown Rd, Elizabeth Vale, SA 5112, Australia
| |
Collapse
|
44
|
Vadhwana B, Tarazi M, Patel V. The Role of Artificial Intelligence in Prospective Real-Time Histological Prediction of Colorectal Lesions during Colonoscopy: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3267. [PMID: 37892088 PMCID: PMC10606449 DOI: 10.3390/diagnostics13203267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Artificial intelligence (AI) presents a novel platform for improving disease diagnosis. However, the clinical utility of AI remains limited to discovery studies, with poor translation to clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore the role of artificial intelligence in real-time histological prediction of colorectal lesions during colonoscopy. A systematic search using MeSH headings relating to "AI", "machine learning", "computer-aided", "colonoscopy", and "colon/rectum/colorectal" identified 2290 studies. Thirteen studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy. The current literature demonstrates that despite the promise of new endoscopic AI models, they remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities and time efficiency.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Vanash Patel
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0HS, UK
- West Hertfordshire Hospital NHS Trust, Vicarage Road, Watford WD18 0HB, UK
| |
Collapse
|
45
|
Sung JJY, Savulescu J, Ngiam KY, An B, Ang TL, Yeoh KG, Cham TJ, Tsao S, Chua TS. Artificial intelligence for gastroenterology: Singapore artificial intelligence for Gastroenterology Working Group Position Statement. J Gastroenterol Hepatol 2023; 38:1669-1676. [PMID: 37277693 DOI: 10.1111/jgh.16241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Successful implementation of artificial intelligence in gastroenterology and hepatology practice requires more than technology. There are ethical, legal, and social issues that need to be settled. AIM A group consisting of AI developers (engineer), AI users (gastroenterologist, hepatologist, and surgeon) and AI regulators (ethicist and administrator) formed a Working Group to draft these Positions Statements with the objective of arousing public and professional interest and dialogue, to promote ethical considerations when implementing AI technology, to suggest to policy makers and health authorities relevant factors to take into account when approving and regulating the use of AI tools, and to engage the profession in preparing for change in clinical practice. STATEMENTS These series of Position Statements point out the salient issues to maintain the trust between care provider and care receivers, and to legitimize the use of a non-human tool in healthcare delivery. It is based on fundamental principles such as respect, autonomy, privacy, responsibility, and justice. Enforcing the use of AI without considering these factor risk damaging the doctor-patient relationship.
Collapse
Affiliation(s)
- Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Julian Savulescu
- Centre for Biomedical Ethics, National University of Singapore, Singapore
| | - K Y Ngiam
- Department of Surgery, National University Hospital, Singapore
| | - Bo An
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Tiing Leong Ang
- Singapore Health Service, Changi General Hospital, Singapore
| | - K G Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore
| | - Tat-Jen Cham
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Stephen Tsao
- National Healthcare Group, Tan Tock Seng Hospital Singapore, Singapore
- Gastroenterological Society of Singapore, Singapore
| | - T S Chua
- Gastroenterology Chapter, Academy of Medicine, Singapore
| |
Collapse
|
46
|
Hassan C, Mori Y, Sharma P. The Pros and Cons of Artificial Intelligence in Endoscopy. Am J Gastroenterol 2023; 118:1720-1722. [PMID: 37052360 DOI: 10.14309/ajg.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
47
|
Baumer S, Streicher K, Alqahtani SA, Brookman-Amissah D, Brunner M, Federle C, Muehlenberg K, Pfeifer L, Salzberger A, Schorr W, Zustin J, Pech O. Accuracy of polyp characterization by artificial intelligence and endoscopists: a prospective, non-randomized study in a tertiary endoscopy center. Endosc Int Open 2023; 11:E818-E828. [PMID: 37727511 PMCID: PMC10506867 DOI: 10.1055/a-2096-2960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background and study aims Artificial intelligence (AI) in gastrointestinal endoscopy is developing very fast. Computer-aided detection of polyps and computer-aided diagnosis (CADx) for polyp characterization are available now. This study was performed to evaluate the diagnostic performance of a new commercially available CADx system in clinical practice. Patients and methods This prospective, non-randomized study was performed at a tertiary academic endoscopy center from March to August 2022. We included patients receiving a colonoscopy. Polypectomy had to be performed in all polyps. Every patient was examined concurrently by an endoscopist and AI using two opposing screens. The AI system, overseen by a second observer, was not visible to the endoscopist. The primary outcome was accuracy of the AI classifying the polyps into "neoplastic" and "non-neoplastic." The secondary outcome was accuracy of the classification by the endoscopists. Sessile serrated lesions were classified as neoplastic. Results We included 156 patients (mean age 65; 57 women) with 262 polyps ≤10 mm. Eighty-four were hyperplastic polyps (32.1%), 158 adenomas (60.3%), seven sessile serrated lesions (2.7%) and 13 other entities (normal/inflammatory colonmucosa, lymphoidic polyp) (4.9%) on histological diagnosis. Sensitivity, specificity and accuracy of AI were 89.70% (95% confidence interval [CI]: 84.02%-93.88%), 75.26% (95% CI: 65.46%-83.46%) and 84.35% (95% CI:79.38%-88.53%), respectively. Sensitivity, specificity and accuracy for less experienced endoscopists (2-5 years of endoscopy) were 95.56% (95% CI: 84.85%-99.46%), 61.54% (95% CI: 40.57%-79.77%) and 83.10% (95% CI: 72.34%-90.95%) and for experienced endoscopists 90.83% (95% CI: 84.19%-95.33%), 71.83% (95% CI: 59.90%-81.87%) and 83.77% (95% CI: 77.76%-88.70%), respectively. Conclusion Accuracy for polyp characterization by a new commercially available AI system is high, but does not fulfill the criteria for a "resect-and-discard" strategy.
Collapse
Affiliation(s)
- Sebastian Baumer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Kilian Streicher
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Saleh A. Alqahtani
- Department of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, United States
- Liver Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dominic Brookman-Amissah
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Monika Brunner
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Christoph Federle
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Klaus Muehlenberg
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Lukas Pfeifer
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Andrea Salzberger
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Wolfgang Schorr
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Jozef Zustin
- Private Practice, Histopathology Service Private Practice, Regensburg, Germany
- Gerhard-Domagk-Institute of Pathology, Universitätsklinikum Münster, Munster, Germany
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Li JW, Wu CCH, Lee JWJ, Liang R, Soon GST, Wang LM, Koh XH, Koh CJ, Chew WD, Lin KW, Thian MY, Matthew R, Kim G, Khor CJL, Fock KM, Ang TL, So JBY. Real-World Validation of a Computer-Aided Diagnosis System for Prediction of Polyp Histology in Colonoscopy: A Prospective Multicenter Study. Am J Gastroenterol 2023; 118:1353-1364. [PMID: 37040553 DOI: 10.14309/ajg.0000000000002282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Computer-aided diagnosis (CADx) of polyp histology could support endoscopists in clinical decision-making. However, this has not been validated in a real-world setting. METHODS We performed a prospective, multicenter study comparing CADx and endoscopist predictions of polyp histology in real-time colonoscopy. Optical diagnosis based on visual inspection of polyps was made by experienced endoscopists. After this, the automated output from the CADx support tool was recorded. All imaged polyps were resected for histological assessment. Primary outcome was difference in diagnostic performance between CADx and endoscopist prediction of polyp histology. Subgroup analysis was performed for polyp size, bowel preparation, difficulty of location of the polyps, and endoscopist experience. RESULTS A total of 661 eligible polyps were resected in 320 patients aged ≥40 years between March 2021 and July 2022. CADx had an overall accuracy of 71.6% (95% confidence interval [CI] 68.0-75.0), compared with 75.2% (95% CI 71.7-78.4) for endoscopists ( P = 0.023). The sensitivity of CADx for neoplastic polyps was 61.8% (95% CI 56.9-66.5), compared with 70.3% (95% CI 65.7-74.7) for endoscopists ( P < 0.001). The interobserver agreement between CADx and endoscopist predictions of polyp histology was moderate (83.1% agreement, κ 0.661). When there was concordance between CADx and endoscopist predictions, the accuracy increased to 78.1%. DISCUSSION The overall diagnostic accuracy and sensitivity for neoplastic polyps was higher in experienced endoscopists compared with CADx predictions, with moderate interobserver agreement. Concordance in predictions increased this diagnostic accuracy. Further research is required to improve the performance of CADx and to establish its role in clinical practice.
Collapse
Affiliation(s)
- James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Clement Chun Ho Wu
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore Health Services, Singapore
| | - Jonathan Wei Jie Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Raymond Liang
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Gwyneth Shook Ting Soon
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Lai Mun Wang
- Department of Laboratory Medicine, Changi General Hospital, Singapore Health Services, Singapore
| | - Xuan Han Koh
- Department of Health Sciences Research, Changi General Hospital, Singapore
| | - Calvin Jianyi Koh
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, National University Health System, Singapore
| | - Wei Da Chew
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Kenneth Weicong Lin
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Mann Yie Thian
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Ronnie Matthew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore Health Services, Singapore
| | - Guowei Kim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- University Surgical Cluster, National University Hospital, Singapore
| | - Christopher Jen Lock Khor
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore Health Services, Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
- Duke-NUS Academic Medicine Centre, Singapore Health Services, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- University Surgical Cluster, National University Hospital, Singapore
| |
Collapse
|
49
|
van Bokhorst QNE, Houwen BBSL, Hazewinkel Y, Fockens P, Dekker E. Advances in artificial intelligence and computer science for computer-aided diagnosis of colorectal polyps: current status. Endosc Int Open 2023; 11:E752-E767. [PMID: 37593158 PMCID: PMC10431975 DOI: 10.1055/a-2098-1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/08/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Querijn N E van Bokhorst
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Yark Hazewinkel
- Department of Gastroenterology and Hepatology, Tergooi Medical Center, Hilversum, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Houwen BBSL, Hazewinkel Y, Giotis I, Vleugels JLA, Mostafavi NS, van Putten P, Fockens P, Dekker E. Computer-aided diagnosis for optical diagnosis of diminutive colorectal polyps including sessile serrated lesions: a real-time comparison with screening endoscopists. Endoscopy 2023; 55:756-765. [PMID: 36623839 PMCID: PMC10374350 DOI: 10.1055/a-2009-3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND : We aimed to compare the accuracy of the optical diagnosis of diminutive colorectal polyps, including sessile serrated lesions (SSLs), between a computer-aided diagnosis (CADx) system and endoscopists during real-time colonoscopy. METHODS : We developed the POLyp Artificial Recognition (POLAR) system, which was capable of performing real-time characterization of diminutive colorectal polyps. For pretraining, the Microsoft-COCO dataset with over 300 000 nonpolyp object images was used. For training, eight hospitals prospectively collected 2637 annotated images from 1339 polyps (i. e. publicly available online POLAR database). For clinical validation, POLAR was tested during colonoscopy in patients with a positive fecal immunochemical test (FIT), and compared with the performance of 20 endoscopists from eight hospitals. Endoscopists were blinded to the POLAR output. Primary outcome was the comparison of accuracy of the optical diagnosis of diminutive colorectal polyps between POLAR and endoscopists (neoplastic [adenomas and SSLs] versus non-neoplastic [hyperplastic polyps]). Histopathology served as the reference standard. RESULTS : During clinical validation, 423 diminutive polyps detected in 194 FIT-positive individuals were included for analysis (300 adenomas, 41 SSLs, 82 hyperplastic polyps). POLAR distinguished neoplastic from non-neoplastic lesions with 79 % accuracy, 89 % sensitivity, and 38 % specificity. The endoscopists achieved 83 % accuracy, 92 % sensitivity, and 44 % specificity. The optical diagnosis accuracy between POLAR and endoscopists was not significantly different (P = 0.10). The proportion of polyps in which POLAR was able to provide an optical diagnosis was 98 % (i. e. success rate). CONCLUSIONS : We developed a CADx system that differentiated neoplastic from non-neoplastic diminutive polyps during endoscopy, with an accuracy comparable to that of screening endoscopists and near-perfect success rate.
Collapse
Affiliation(s)
- Britt B. S. L. Houwen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Yark Hazewinkel
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | | | - Jasper L. A. Vleugels
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nahid S. Mostafavi
- Department of Gastroenterology and Hepatology, Subdivision Statistics, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul van Putten
- Department of Gastroenterology and Hepatology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Bergman Clinics Maag and Darm Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|