1
|
Liu X, Lv M, Feng B, Gong Y, Min Q, Wang Y, Wu Q, Chen J, Zhao D, Li J, Zhang W, Zhan Q. SQLE amplification accelerates esophageal squamous cell carcinoma tumorigenesis and metastasis through oncometabolite 2,3-oxidosqualene repressing Hippo pathway. Cancer Lett 2025; 621:217528. [PMID: 39924077 DOI: 10.1016/j.canlet.2025.217528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide, characterized by a dismal prognosis and elusive therapeutic targets. Dysregulated cholesterol metabolism is a critical hallmark of cancer cells, facilitating tumor progression. Here, we used whole genome sequencing data from several ESCC cohorts to identify the important role of squalene epoxidase (SQLE) in promoting ESCC tumorigenesis and metastasis. Specifically, our findings highlight the significance of 2,3-oxidosqualene, an intermediate metabolite of cholesterol biosynthesis, synthesized by SQLE and metabolized by lanosterol synthase (LSS), as a key regulator of ESCC progression. Mechanistically, the interaction between 2,3-oxidosqualene and vinculin enhances the nuclear accumulation of Yes-associated protein 1 (YAP), thereby increasing YAP/TEAD-dependent gene expression and accelerating both tumor growth and metastasis. In a 4-nitroquinoline 1-oxide (4-NQO)-induced ESCC mouse model, overexpression of Sqle resulted in accelerated tumorigenesis compared to wild-type controls, highlighting the pivotal role of SQLE in vivo. Furthermore, elevated SQLE expression in ESCC patients correlates with a poorer prognoses, suggesting potential therapeutic avenues for treatment. In conclusion, our study elucidates the oncogenic function of 2,3-oxidosqualene as a naturally occurring metabolite and proposes modulation of its levels as a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Bicong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Soochow University Cancer Institute, Suzhou, 215127, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
2
|
Deng X, Luo X, Fang Z, Chen X, Luo Q. Effect of tristetraprolin on esophageal squamous cell carcinoma cell proliferation. Tissue Cell 2025; 94:102785. [PMID: 39954564 DOI: 10.1016/j.tice.2025.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Tristetraprolin (TTP) can inhibit the abnormal proliferation of malignant tumors but there are no studies involving TTP and esophageal squamous cell carcinoma (ESCC). We aimed to determine the effect of TTP on ESCC cell proliferation and to elucidate the underlying mechanism. METHODS The human ESCC cell line, KYSE-510, and the human ESCC cell line, KYSE-150, stably infected with tetracycline-inducible expression (Tet-on-TTP and Tet-on-EV, respectively) were screened with puromycin. After Tet-on-TTP KYSE-150 cells were treated with different concentrations of doxycycline [Dox] (0, 0.5, and 1 ug/mL), the levels of TTP mRNA and protein expression were detected by real-time fluorescent quantitative PCR and western blotting, respectively. The effects of TTP on proliferation and migration were estimated by CCK-8 and Transwell assays, respectively. Cell apoptosis and cell cycle were measured by flow cytometry. Cellular apoptosis-related gene protein expression was determined by western blotting. RESULTS TTP overexpression significantly inhibited KYSE-510 and KYSE-150 proliferation. TTP overexpression also significantly inhibited KYSE-150 migration. In addition, TTP expression upregulation promoted the KYSE-150 apoptosis and induced cell cycle arrest in the G2 phase, downregulated Bcl-2 expression, and upregulated Bax expression. CONCLUSION TTP inhibited ESCC cell proliferation, promoted ESCC cell apoptosis, and arrested cell cycle progression in the G2 phase.
Collapse
Affiliation(s)
- Xiaoya Deng
- Department of Respiratory Medicine, Shapingba Hospital affiliated to Chongqing University (Shapingba District People's Hospital of Chongqing), Chongqing 400016, China
| | - Xiaoqin Luo
- Out-patient department, Chongqing MingXing Hospital, Chongqing 405200, China
| | - Zhanglan Fang
- General Internal Medicine Department, Chongqing University Cancer Hospital, Chongqing, China
| | - Xinyu Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qinli Luo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Song Q, Gao M, Weng Y, Zhuang X, Wu Y, Cui H, Ding N, Wang L, Bi S, Zhang L, Zhang W, Cui Y. Evolutionary adaptation and asymmetric inheritance of polyploid giant cancer cells in esophageal squamous cell carcinoma. Cancer Lett 2025:217818. [PMID: 40414521 DOI: 10.1016/j.canlet.2025.217818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Polyploid Giant Cancer Cells (PGCCs) play a critical role in tumor progression due to their distinctive biological behaviors. However, the mechanisms by which PGCCs regulate their composition and structure to adapt to dynamic environments during their formation remain poorly understood. In this study, we used multicolor labeling of major organelles in esophageal squamous cell carcinoma (ESCC) cells combined with high- and super-resolution time-lapse imaging to monitor induced PGCCs in three dimensions. In addition to abnormal PGCC division, we observed nuclear dynamics and transient cell-in-cell formations. PGCCs exhibited cell cycle abnormalities, including prolonged G1/S transitions, asynchronous micronuclei, and intranuclear mitosis. Notably, early progeny continued dividing despite cell cycle dysregulation, resulting in asymmetric offspring. Quantitative analysis of subcellular structures revealed asymmetric inheritance of organelles, particularly mitochondria and the Golgi apparatus, in recurrent cells. These adaptive mechanisms in PGCCs may also be relevant in the context of anticancer treatments, contributing to the heterogeneity of recurrent tumors arising from early PGCC progeny populations.
Collapse
Affiliation(s)
- Qiqin Song
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Mingwei Gao
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yongjia Weng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yueguang Wu
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Heyang Cui
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, 999077, SAR, Hong Kong, China
| | - Ning Ding
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Longlong Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Shanshan Bi
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Li Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Weimin Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China; State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China.
| | - Yongping Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China.
| |
Collapse
|
4
|
Liu XS, Xu Y, Dai LS, Li A, Liu J, Zhang Y, Xie J, Pei ZJ. The potential of MCM8 as a biomarker in esophageal carcinoma: a comprehensive analysis integrating m6a methylation and angiogenesis. Eur J Med Res 2025; 30:373. [PMID: 40346692 PMCID: PMC12063286 DOI: 10.1186/s40001-025-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Effective biomarkers for esophageal carcinoma (ESCA) are currently lacking. Here, we examined the role of minichromosome maintenance complex component 8 (MCM8) as a diagnostic and prognostic marker in ESCA and its association with m6a methylation and angiogenesis, and constructed a competing endogenous RNA (ceRNA) network. METHODS Clinical data and gene expression profiles were obtained from The Cancer Genome Atlas and Gene Expression Omnibus datasets. Differential gene expression analysis was performed using DESeq2 and limma packages. The prognostic significance of MCM8 expression regarding overall survival (OS) was examined using the Cox proportional hazards model. Receiver Operating Characteristic (ROC) analysis was used to assess the diagnostic potential of MCM8. MCM8 expression in ESCA tissues was evaluated by immunohistochemical staining on a tissue microarray. Pearson correlation analysis identified co-expressed genes, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. The GEPIA online tool was used to examine the relationship between MCM8 and m6a methylation as well as angiogenesis-related genes. MicroRNA and long noncoding RNA predictions were made using miRWalk, MicroT-CDS, ENCORI, and miRNet tools to construct the ceRNA network. RESULTS MCM8 was significantly overexpressed in tumor tissues and showed high diagnostic accuracy in the ROC analysis with an area under the curve of 0.920. Kaplan-Meier survival analysis revealed that high MCM8 expression correlated with poorer OS and disease-specific survival. Pearson correlation analysis identified a significant correlation between MCM8 and several m6a methylation-related genes such as HNRNPA2B1 and YTHDF1, as well as PTK2, an angiogenesis-related gene. A ceRNA network including MCM8, PURPL/hsa-miR- 135a- 5p/MCM8 was successfully predicted and constructed. CONCLUSIONS MCM8 is a promising biomarker in ESCA and it is associated with m6a methylation and angiogenesis, showing potential as a therapeutic target. The ceRNA network provided insight into the pathogenesis of ESCA.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yong Xu
- Department of Neurological Rehabilitation Area 3, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Li-Song Dai
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ao Li
- Department of Outpatient, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jin Xie
- Department of Rehabilitation Medicine Center, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
5
|
Kondo Y, Ohashi S, Katada C, Nakai Y, Yamamoto Y, Tamaoki M, Kikuchi O, Yamada A, Hirohashi K, Mitani Y, Kataoka S, Saito T, Vu THN, Kondo T, Uneno Y, Sunami T, Yokoyama A, Matsubara J, Matsuda T, Naganuma S, Oryu K, Flashner S, Shimonosono M, Nakagawa H, Muto M. Aldh2 and the tumor suppressor Trp53 play important roles in alcohol-induced squamous field cancerization. J Gastroenterol 2025; 60:546-560. [PMID: 39909947 PMCID: PMC12014750 DOI: 10.1007/s00535-024-02210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Field cancerization defined by multiple development of squamous cell carcinomas (SCCs) in upper aerodigestive tract was explained by excessive alcohol intake. A dysfunctional mitochondrial aldehyde dehydrogenase 2 (Aldh2) delays the clearance of acetaldehyde, a genotoxic alcohol metabolite, and increases SCC risks. TP53 plays key roles in squamous carcinogenesis. However, the mechanism of alcohol-mediated squamous field cancerization has not been clearly elucidated. METHODS We developed a novel genetically engineered mouse strain KTPA-/- (Krt5CreERT2; Trp53loxp/loxp; Aldh2-/-) featuring Aldh2-loss concurrent with epithelial-specific Trp53 deletion. These mice were given 10%-EtOH, and we evaluated the development of squamous cell carcinogenesis histologically and genetically. RESULTS Widespread multifocal rete ridges (RRs), characterized by downward growth of proliferative preneoplastic cells, were found only in Aldh2+/- and Aldh2-/- mice with keratin5-specific Trp53 deletion (KTPA+/- and KTPA-/- mice, respectively), and alcohol drinking apparently increased RR formation rate. SCC occurred only in KTPA-/- (Aldh2 loss/TP53 loss) mice with alcohol drinking (15/18: 83%). Total alcohol consumption volume was significantly higher in KTPA-/- (Aldh2 loss/TP53 loss) mice with SCCs than those without SCCs. Further, target sequence revealed the occurrence of genetic abnormalities including Trp53 mutations in the esophageal epithelium of Aldh2-/- mice with alcohol drinking, suggesting direct mutagenic effects of alcohol drinking to the esophageal epithelium. CONCLUSION This study provides for the first time the evidence that alcohol drinking, Aldh2 dysfunction and Trp53 loss cooperate in squamous field cancerization. Alcohol consumption volume affects the SCCs development, even in the same genotype.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shinya Ohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Kyoto, Japan.
| | - Chikatoshi Katada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukie Nakai
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamamoto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Tamaoki
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Osamu Kikuchi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Atsushi Yamada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kenshiro Hirohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yosuke Mitani
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shigeki Kataoka
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoki Saito
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Trang H Nguyen Vu
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiro Kondo
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yu Uneno
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiko Sunami
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akira Yokoyama
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Junichi Matsubara
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomonari Matsuda
- Environment Health Division, Kyoto University Graduate School of Engineering, Kyoto, Japan
| | - Seiji Naganuma
- Faculty of Health Sciences, Department of Medical Laboratory Science, Kochi Gakuen University, Kochi, Japan
| | - Kohei Oryu
- Faculty of Health Sciences, Department of Nutrition, Kochi Gakuen University, Kochi, Japan
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Manabu Muto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Nakao A, Kawakubo H, Takeuchi M, Matsuda S, Fukuda K, Kitagawa Y. Risk factors for pneumonia after endoscopic laryngopharyngeal surgery in cases with prior esophageal cancer treatment. Ann Gastroenterol Surg 2025; 9:456-463. [PMID: 40385341 PMCID: PMC12080194 DOI: 10.1002/ags3.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 05/20/2025] Open
Abstract
Background and Study Aims Endoscopic laryngopharyngeal surgery is an effective treatment for superficial laryngopharyngeal cancer, particularly in cases with prior esophageal cancer treatment. Despite its frequent application, reports on the risk factors for postoperative complications are limited. This study aimed to identify the risk factors for pneumonia after endoscopic laryngopharyngeal surgery and to examine the variations in pneumonia incidence among the types of prior esophageal cancer treatment. Methods Patients who had a history of esophageal cancer treatment and subsequently underwent endoscopic laryngopharyngeal surgery for superficial pharyngolaryngeal cancer were retrospectively analyzed. We examined the association between postoperative pneumonia and several factors, including number of lesions; diameter of the resected lesion; and type of previous esophageal cancer treatment, such as endoscopic submucosal dissection, chemoradiotherapy, and esophagectomy. Results The study included 79 patients who had a mean age of 67.4 years. Postoperative pneumonia occurred in 16.4%. Multivariate analysis showed that the pneumonia incidence significantly increased in cases with multiple lesions (OR 4.794, 95% CI 1.133-20.288, p = 0.033) and larger diameter of the resected lesion (OR 7.047, 95% CI 1.791-27.730, p = 0.005). Importantly, compared with other treatments, prior esophagectomy for esophageal cancer did not increase the pneumonia incidence. Conclusions Multiple lesions and larger lesion diameter were the significant predictors of postoperative pneumonia. Moreover, endoscopic laryngopharyngeal surgery can be safely performed even in patients who have previously undergone esophageal cancer surgery, although careful monitoring remains necessary.
Collapse
Affiliation(s)
- Atsushi Nakao
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | | | - Masashi Takeuchi
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Satoru Matsuda
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Kazumasa Fukuda
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yuko Kitagawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| |
Collapse
|
7
|
Yokoyama A, Watanabe K, Inoue Y, Hirano T, Tamaoki M, Hirohashi K, Kawaguchi S, Ishida Y, Takeuchi Y, Kishimoto Y, Kim SK, Katada C, Nannya Y, Seno H, Ogawa S, Muto M, Kakiuchi N. Somatic mosaicism in the buccal mucosa reflects lifestyle and germline risk factors for esophageal squamous cell carcinoma. Sci Transl Med 2025; 17:eadq6740. [PMID: 40305574 DOI: 10.1126/scitranslmed.adq6740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/31/2024] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Clones harboring cancer driver mutations can expand in normal tissues, known as somatic mosaicism, and can be influenced by age and environmental and germline factors. Somatic mosaicism in the blood predicts the risk of hematological malignancies; however, the relevance of somatic mosaicism to solid tumors remains unclear, in part because of limited sample availability. Lifestyle habits, including alcohol consumption and tobacco smoking, and pathogenic germline variants increase the risk of developing esophageal squamous cell carcinoma (ESCC). Because somatic mosaicism in the esophagus is known to be associated with aging and lifestyle habits and considering the contiguity of squamous epithelium from the esophagus to the oral cavity, we noninvasively collected buccal mucosa samples from patients with and without ESCC using swabs of different sizes and conducted deep error-corrected sequencing of 26 cancer driver genes to obtain comprehensive landscapes of tissue remodeling by driver-mutant clones. We found that the number of mutations increased with drinking, but only in individuals with germline risks. Moreover, across positively selected genes in the buccal mucosa, mutations increased with age and smoking regardless of germline risks, whereas drinking affected only those with germline risks. The buccal mucosa of patients with ESCC was extensively remodeled, and models predicting the presence of ESCC demonstrated high accuracy with smaller swab sizes, possibly because of their higher sensitivity in detecting small mutant clones. In conclusion, we showed that buccal mucosal remodeling reflects lifestyle and germline risks, as well as age, which might be exploited for noninvasive risk assessment of ESCC.
Collapse
Affiliation(s)
- Akira Yokoyama
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Koichi Watanabe
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masashi Tamaoki
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kenshiro Hirohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shun Kawaguchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshihiro Ishida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-0801, Japan
| | - Chikatoshi Katada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Manabu Muto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
AlMaazmi FI, Bou Malhab LJ, ElDohaji L, Saber-Ayad M. Deciphering the Controversial Role of TP53 Inducible Glycolysis and Apoptosis Regulator (TIGAR) in Cancer Metabolism as a Potential Therapeutic Strategy. Cells 2025; 14:598. [PMID: 40277923 PMCID: PMC12025843 DOI: 10.3390/cells14080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor metabolism has emerged as a critical target in cancer therapy, revolutionizing our understanding of how cancer cells grow, survive, and respond to treatment. Historically, cancer research focused on genetic mutations driving tumorigenesis, but in recent decades, metabolic reprogramming has been recognized as a hallmark of cancer. The TP53 inducible glycolysis and apoptosis regulator, or TIGAR, affects a wide range of cellular and molecular processes and plays a key role in cancer cell metabolism by regulating the balance between glycolysis and antioxidant defense mechanisms. Cancer cells often exhibit a shift towards aerobic glycolysis (the Warburg effect), which allows rapid energy production and gives rise to biosynthetic intermediates for proliferation. By inhibiting glycolysis, TIGAR can reduce the proliferation rate of cancer cells, particularly in early-stage tumors or specific tissue types. This metabolic shift may limit the resources available for rapid cell division, thereby exerting a tumor-suppressive effect. However, this metabolic shift also leads to increased levels of reactive oxygen species (ROS), which can damage the cell if not properly managed. TIGAR helps protect cancer cells from excessive ROS by promoting the pentose phosphate pathway (PPP), which generates NADPH-a key molecule involved in antioxidant defense. Through its actions, TIGAR decreases the glycolytic flux while increasing the diversion of glucose-6-phosphate into the PPP. This reduces ROS levels and supports biosynthesis and cell survival by maintaining the balance of nucleotides and lipids. The role of TIGAR has been emerging as a prognostic and potential therapeutic target in different types of cancers. This review highlights the role of TIGAR in different types of cancer, evaluating its potential role as a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Fatima I. AlMaazmi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Immunology and NAT, Dubai Blood Donation Center, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Leen ElDohaji
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Li B, Du YY, Tan WM, He DL, Qi ZP, Yu HH, Shi Q, Ren Z, Cai MY, Yan B, Cai SL, Zhong YS. Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists. NPJ Digit Med 2025; 8:160. [PMID: 40082585 PMCID: PMC11906877 DOI: 10.1038/s41746-025-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
A computer-aided detection (CAD) system for early esophagus carcinoma identification during endoscopy with narrow-band imaging (NBI) was evaluated in a large-scale, prospective, tandem, randomized controlled trial to assess its effectiveness. The study was registered at the Chinese Clinical Trial Registry (ChiCTR2100050654, 2021/09/01). Involving 3400 patients were randomly assigned to either routine (routine-first) or CAD-assisted (CAD-first) NBI endoscopy, followed by the other procedure, with targeted biopsies taken at the end of the second examination. The primary outcome was the diagnosis of 1 or more neoplastic lesion of esophagus during the first examination. The CAD-first group demonstrated a significantly higher neoplastic lesion detection rate (3.12%) compared to the routine-first group (1.59%) with a relative detection ratio of 1.96 (P = 0.0047). Subgroup analysis revealed a higher detection rate in junior endoscopists using CAD-first, while no significant difference was observed for senior endoscopists. The CAD system significantly improved esophageal neoplasm detection, particularly benefiting junior endoscopists.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Yun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ming-Yan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
10
|
Kojima S, Kuribayashi N, Goda H, Nakashiro KI, Uchida D. Oral cancer driver gene mutations in oral potentially malignant disorders: clinical significance and diagnostic implications. Discov Oncol 2025; 16:174. [PMID: 39946003 PMCID: PMC11825417 DOI: 10.1007/s12672-025-01923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Oral potentially malignant disorders (OPMDs), such as oral lichen planus (OLP) and oral leukoplakia (OLK), are clinical conditions associated with the risk of developing oral squamous cell carcinoma; however, no standardized treatment guidelines exist. Mutations in specific genes, known as oral cancer driver gene mutations (ODGMs), are responsible for carcinogenesis. We aimed to analyze the ODGMs in OPMDs and investigate their clinical correlations. We investigated 41 cases of OPMDs, including OLP and OLK, and performed next-generation sequencing using a custom gene panel targeting whole exons of TP53, HRAS, PIK3CA, NOTCH1, CDKN2A, FBXW7, and BRAF. We detected ODGMs in four OLK cases and one OLP case. All ODGM-positive OLK cases were located in the tongue, a site associated with a higher risk of malignant transformation compared with those in other oral sites. Moreover, ODGMs were significantly associated with alcohol consumption. While there was a tendency for mutations to increase with higher grades, we found no significant correlation between the presence of ODGMs and oral epithelial dysplasia (OED) grade. Notably, in the case of OLP with ODGM, the lesion histopathologically developed OED during the follow-up period, indicating an increased risk of cancer development and that cases with identified ODGMs require early surgical excision. These findings suggest that ODGM analysis may predict the risk of cancer development in OPMDs that are difficult to diagnose using histopathological examination alone.
Collapse
Affiliation(s)
- Sayaka Kojima
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Hiroyuki Goda
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
11
|
Waki K, Nagaoka K, Okubo K, Kiyama M, Gushima R, Ohno K, Honda M, Yamasaki A, Matsuno K, Furuta Y, Miyamoto H, Naoe H, Amagasaki M, Tanaka Y. Optimizing AI models to predict esophageal squamous cell carcinoma risk by incorporating small datasets of soft palate images. Sci Rep 2025; 15:4003. [PMID: 39893225 PMCID: PMC11787386 DOI: 10.1038/s41598-025-86829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
There is a currently an unmet need for non-invasive methods to predict the risk of esophageal squamous cell carcinoma (ESCC). Previously, we found that specific soft palate morphologies are strongly associated with increased ESCC risk. However, there is currently no artificial intelligence (AI) system that utilizes oral images for ESCC risk assessment. Here, we evaluated three AI models and three fine-tuning approaches with regard to their ESCC predictive power. Our dataset contained 539 cases, which were subdivided into 221 high-risk cases (2491 images) and 318 non-high-risk cases (2524 images). We used 480 cases (4295 images) for the training dataset, and the rest for validation. The Bilinear convolutional neural network (CNN) model (especially when pre-trained on fractal images) demonstrated diagnostic precision that was comparable to or better than other models for distinguishing between high-risk and non-high-risk groups. In addition, when tested with a small number of images containing soft palate data, the model showed high precision: the best AUC model had 0.91 (sensitivity 0.86, specificity 0.79). This study presents a significant advance in the development of an AI-based non-invasive screening tool for the identification of high-risk ESCC patients. The approach may be particularly suitable for institutes with limited medical imaging resources.
Collapse
Affiliation(s)
- Kotaro Waki
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Keishi Okubo
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Masato Kiyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ryosuke Gushima
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Kento Ohno
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Munenori Honda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akira Yamasaki
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Kenshi Matsuno
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yoki Furuta
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hideaki Miyamoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hideaki Naoe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Motoki Amagasaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Guo J, Wu Z, Chang X, Huang M, Wang Y, Liu R, Li J. Network Pharmacology Analysis and In Vitro Validation of the Active Ingredients and Potential Mechanisms of Gynostemma Pentaphyllum Against Esophageal Cancer. Comb Chem High Throughput Screen 2025; 28:500-513. [PMID: 38243957 DOI: 10.2174/0113862073280183240108113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Esophageal cancer (EC) is one of the deadliest malignancies worldwide. Gynostemma pentaphyllum Thunb. Makino (GpM) has been used in traditional Chinese medicine as a treatment for tumors and hyperlipidemia. Nevertheless, the active components and underlying mechanisms of anti-EC effects of GpM remain elusive. OBJECTIVE This study aims to determine the major active ingredients of GpM in the treatment of EC and to explore their molecular mechanisms by using network pharmacology, molecular docking, and in vitro experiments. METHODS Firstly, active ingredients and potential targets of GpM, as well as targets of EC, were screened in relevant databases to construct a compound-target network and a protein-protein interaction (PPI) network that narrowed down the pool of ingredients and targets. This was followed by gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, molecular docking, ADME and toxicity risk prediction, cell viability assays, in vitro scratch assays, Transwell cell invasion assays, and Western blotting analysis were subsequently applied to validate the results of the network analysis. RESULTS The screening produced a total of 21 active ingredients and 167 ingredient-related targets for GpM, along with 2653 targets for EC. The PPI network analysis highlighted three targets of interest, namely AKT1, TP53, and VEGFA, and the compound-target network identified three possible active ingredients: quercetin, rhamnazin, and isofucosterol. GO and EKGG indicated that the mechanism of action might be related to the PI3K/AKT signaling pathway as well as the regulation of cell motility and cell migration. Molecular docking and pharmacokinetic analyses suggest that quercetin and isoprostanoid sterols may have therapeutic value and safety for EC. The in vitro experiments confirmed that GpM can inhibit EC cell proliferation, migration, and invasion and suppress PI3K and AKT phosphorylation. CONCLUSION Our findings indicate that GpM exerts its anti-tumor effect on EC by inhibiting EC cell migration and invasion via downregulation of the PI3K/AKT signaling pathway. Hence, we have reason to believe that GpM could be a promising candidate for the treatment of EC.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Renping Liu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050011, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 05001l, China
| |
Collapse
|
13
|
Liu Y, Lan S, Duan Z. circ-TTC17 Promotes Esophagus Squamous Cell Carcinoma Cell Growth, Metastasis, and Inhibits Autophagy-Mediated Radiosensitivity Through miR-145-5p/SIRT1 Axis. Thorac Cancer 2025; 16:e15494. [PMID: 39621506 PMCID: PMC11729993 DOI: 10.1111/1759-7714.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Circular RNA (circRNA) plays a significant role in esophagus squamous cell carcinoma (ESCC) progression. Nevertheless, circ-TTC17 roles in ESCC have not fully understood. METHODS The levels of circ-TTC17, miR-145-5p and sirtuin 1 (SIRT1) were determined using qRT-PCR. ESCC cell functions were examined by CCK8 assay, flow cytometry, transwell assay and colony formation assay. The relative protein levels of autophagy marker and SIRT1 were determined by western blot (WB). The interactions among circ-TTC17, miR-145-5p, and SIRT1 were verified by dual-luciferase reporter assay and RIP assay. RESULTS circ-TTC17 was overexpressed and miR-145-5p was underexpressed in ESCC. circ-TTC17 knockdown restrained ESCC cell proliferation and metastasis, while enhance apoptosis and autophagy-mediated radiosensitivity. Circ-TTC17 could sponge miR-145-5p, and its inhibitor reversed the inhibitory effect of circ-TTC17 knockdown on ESCC cell progression. Additionally, SIRT1 was targeted by miR-145-5p, and SIRT1 overexpression abolished miR-145-5p-mediated the suppressive effect on ESCC cell progression. Also, circ-TTC17 interference reduced ESCC tumor growth via miR-145-5p/SIRT1 axis. CONCLUSION circ-TTC17 promoted ESCC cell growth, metastasis and inhibited autophagy-mediated radiosensitivity by miR-145-5p/SIRT1 axis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Shengmin Lan
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Zhihui Duan
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
14
|
Mulisa G, Pero-Gascon R, McCormack V, Bisanz JE, Talukdar FR, Abebe T, De Boevre M, De Saeger S. Multiple mycotoxin exposure assessment through human biomonitoring in an esophageal cancer case-control study in the Arsi-Bale districts of Oromia region of Ethiopia. Int J Hyg Environ Health 2025; 263:114466. [PMID: 39306897 PMCID: PMC11635094 DOI: 10.1016/j.ijheh.2024.114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Esophageal cancer (EC) is a malignancy with a poor prognosis and a five-year survival rate of less than 20%. It is the ninth most frequent cancer globally and the sixth leading cause of cancer-related deaths. The incidence of EC has been found to vary significantly by geography, indicating the importance of environmental and lifestyle factors along with genetic factors in the onset of the disease. In this work, we investigated mycotoxin exposure in a case-control study from the Arsi-Bale districts of Oromia regional state in Ethiopia, where there is a high incidence of EC while alcohol and tobacco use - two established risk factors for EC - are very rare. METHODS Internal exposure to 39 mycotoxins and metabolites was assessed by liquid chromatography-tandem mass spectrometry in plasma samples of EC cases (n = 166) and location-matched healthy controls (n = 166) who shared similar dietary sources. Demographic and lifestyle data were collected using structured questionnaires. Principal Component Analysis and machine learning models were used to identify the most relevant demographic, lifestyle, and mycotoxin (co-)exposure variables associated with EC. Multivariate binary logistic regression analysis was used to assess EC risk. RESULT Evidence of mycotoxin exposure was observed in all plasma samples, with 10 different mycotoxins being detected in samples from EC cases, while only 6 different mycotoxins were detected in samples from healthy controls. Ochratoxin A was detected in plasma from all cases and controls, while tenuazonic acid was detected in plasma of 145 (87.3%) cases and 71 (42.8%) controls. Using multivariable logistic regression analysis, exposure to tenuazonic acid (AOR = 1.88 [95% CI: 1.68-2.11]) and to multiple mycotoxins (AOR = 2.54 [95% CI: 2.10-3.07]) were positively associated with EC. CONCLUSION All cases and controls were exposed to at least one mycotoxin. Cases were exposed to a statistically significantly higher number of mycotoxins than controls. Exposure to tenuazonic acid and to multiple mycotoxins were associated with increased risk of EC in the study population. Although aflatoxin B1-lysine and the ratio of sphinganine to sphingosine (as a biomarker of effect to fumonisin exposure) were not assessed in this study, our result emphasizes the need to characterize the effect of mycotoxin co-exposure as part of the exposome and include it in risk assessment, since the current mycotoxin safety levels do not consider the additive or synergistic effects of mycotoxin co-exposure. Moreover, a prospective study design with regular sampling should be considered in this high incidence area of EC in Ethiopia to obtain conclusive results on the role of mycotoxin exposure in the onset and development of the disease.
Collapse
Affiliation(s)
- Girma Mulisa
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia; Department of Biomedical Sciences, Adama Hospital Medical College, Adama, Ethiopia
| | - Roger Pero-Gascon
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium.
| | | | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA
| | - Fazlur Rahman Talukdar
- International Agency for Research on Cancer, Lyon, France; Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, South Africa.
| |
Collapse
|
15
|
Liu Z, Kim MO. Evolving Therapeutic Strategies in Esophageal Squamous Cell Carcinoma: Advances and Perspectives. J Cancer Prev 2024; 29:99-104. [PMID: 39790226 PMCID: PMC11706721 DOI: 10.15430/jcp.24.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most prevalent forms of esophageal cancer globally, with a particularly high incidence in developing countries. Notably, Asia accounts for approximately 80% of global esophageal cancer cases, with China alone contributing to 54% of this burden. The primary treatment modality for ESCC remains esophagectomy, primarily employed for locally advanced disease, often in combination with chemotherapy and radiotherapy for advanced-stage cases. Despite significant advancements in surgical techniques and the advent of precision medicine, which has facilitated the development of targeted and immune-based therapies, critical challenges persist, including suboptimal therapeutic efficacy and the emergence of drug resistance. A comprehensive understanding of the current treatment landscape for ESCC is essential to overcoming these barriers and improving patient outcomes.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|
16
|
Li R, Li N, Yang Q, Tong X, Wang W, Li C, Zhao J, Jiang D, Huang H, Fang C, Xie K, Yuan J, Chen S, Li G, Luo H, Gao Z, Wu D, Cui X, Jiang W, Guo L, Ma H, Feng Y. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis. Genome Med 2024; 16:148. [PMID: 39696540 DOI: 10.1186/s13073-024-01422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Understanding the stepwise progression of esophageal squamous cell carcinoma (ESCC) is crucial for developing customized strategies for early detection and optimal clinical management. Herein, we aimed to unravel the transcriptional and immunologic alterations occurring during malignant transformation and identify clinically significant biomarkers of ESCC. METHODS Digital spatial profiling (DSP) was performed on 11 patients with early-stage ESCC (pT1) to explore the transcriptional alterations in epithelial, immune cell, and non-immune cell stromal compartments across regions of distinct histology, including normal tissues, low- and high-grade dysplasia, and cancerous tissues. Furthermore, single-cell spatial transcriptomics was performed using the CosMx Spatial Molecular Imaging (SMI) system on 4 additional patients with pT1 ESCC. Immunohistochemical (IHC) analysis was performed on consecutive histological sections of 20 pT1 ESCCs. Additionally, public bulk and single-cell RNA-sequencing (scRNA-seq) datasets were analyzed, and in vitro and in vivo functional studies were conducted. RESULTS Spatial transcriptional reprogramming and dynamic cell signaling pathways that determined ESCC progression were delineated. Increased infiltration of macrophages from normal tissues through dysplasia to cancerous tissues occurred. Macrophage subtypes were characterized using the scRNA-seq dataset. Cell-cell communication analysis of scRNA-seq and SMI data indicated that the migration inhibitory factor (MIF)-CD74 axis may exhibit pro-tumor interactions between macrophages and epithelial cells. DSP, SMI, and IHC data demonstrated that DTX3L expression in epithelial cells and BST2 expression in stromal cells increased gradually with ESCC progression. Functional studies demonstrated that DTX3L or BST2 knockdown inhibited ESCC proliferation and migration and decreased M2 polarization of tumor-associated macrophages. CONCLUSIONS Spatial profiling comprehensively characterized the molecular and immunological hallmarks from normal tissue to ESCC, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease and contributing to the prevention of ESCC. Within this exploration, we uncovered biomarkers that exhibit a robust correlation with ESCC progression, offering potential new avenues for insightful therapeutic approaches.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China.
| | - Qianqian Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xing Tong
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dong Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chen Fang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Kai Xie
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shaomu Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Wei Jiang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Haitao Ma
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China.
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
17
|
Fang S, Xu P, Wu S, Chen Z, Yang J, Xiao H, Ding F, Li S, Sun J, He Z, Ye J, Lin LL. Raman fiber-optic probe for rapid diagnosis of gastric and esophageal tumors with machine learning analysis or similarity assessments: a comparative study. Anal Bioanal Chem 2024; 416:6759-6772. [PMID: 39322799 DOI: 10.1007/s00216-024-05545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Gastric and esophageal cancers, the predominant forms of upper gastrointestinal malignancies, contribute significantly to global cancer mortality. Routine detection methods, including medical imaging, endoscopic examination, and pathological biopsy, often suffer from drawbacks such as low sensitivity and laborious and complex procedures. Raman spectroscopy is a non-invasive and label-free optical technique that provides highly sensitive biomolecular information to facilitate effective tumor identification. In this work, we report the use of fiber-optic Raman spectroscopy for the accurate and rapid diagnosis of gastric and esophageal cancers. Using a database of 14,000 spectra from 140 ex vivo tissue pieces of both tumor and normal tissue samples, we compare the random forest (RF) and our established Euclidean distance Raman spectroscopy (EDRS) model. The RF analysis achieves a sensitivity of 85.23% and an accuracy of 83.05% in diagnosing gastric tumors. The EDRS algorithm with improved diagnostic transparency further increases the sensitivity to 92.86% and accuracy to 89.29%. When these diagnostic protocols are extended to esophageal tumors, the RF and EDRS models achieve accuracies of 71.27% and 93.18%, respectively. Finally, we demonstrate that fewer than 20 spectra are sufficient to achieve good Raman diagnostic accuracy for both tumor tissues. This optimizes the balance between acquisition time and diagnostic performance. Our work, although conducted on ex vivo tissue models, offers valuable insights for in vivo in situ endoscopic Raman diagnosis of gastric and esophageal cancer lesions in the future. Our study provides a robust, rapid, and convenient method as a new paradigm in in vivo endoscopic medical diagnostics that integrates spectroscopic techniques and a Raman probe for detecting upper gastrointestinal malignancies.
Collapse
Affiliation(s)
- Shiyan Fang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Zhou Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Junqing Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jin Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Linley Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
18
|
Mulisa G, Abebe T, Gutema B, Mahmuda J, Khan MAA, Gheit T, Herceg Z, Talukdar FR. Exploring Oesophageal Cancer in Ethiopia: Elevated Incidence in Females and Younger Cases. Cancer Rep (Hoboken) 2024; 7:e70048. [PMID: 39665274 PMCID: PMC11635477 DOI: 10.1002/cnr2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Oesophageal cancer is a public health concern in Ethiopia. Identifying the incidence and demographic profile of the two histological subtypes: oesophageal squamous cell carcinoma (ESCC) and oesophageal adenocarcinoma (EAC) are the key steps in recognizing the disease burden and potential aetiopathological associations. AIM The aim of this study is to identify the age and gender-specific incidence patterns of the most common subtype of oesophageal cancer in a high-incidence area of Ethiopia. METHODS A retrospective cross-sectional study from a high-incidence oesophageal cancer district in Ethiopia identified 630 cases from the pathology registry of nine hospitals. The patient records were carefully reviewed and data on age, gender, tumour location and histological types was systematically compiled. The patient data were retrieved and descriptive statistics were used to generate results. RESULTS ESCC subtype, accounted for constituting 500 (79.437%) cases. A gender disparity was observed, with 62.80% of cases occurring in females and 37.20% in males. This distribution of higher female ESCC incidences aligns with previous findings indicating a regional consistency and probable aetiological factor. Furthermore, ESCC incidence peaked at 40-50 years in females, highlighting an age-related incidence trend. EAC was observed in 67 (51.5%) females and 63 (48.5%) males showing similar prevalence. Spatial analysis revealed that the majority of ESCC cases were located in the lower oesophagus, followed by the middle part, with fewer instances in the upper oesophagus. CONCLUSION This study from Ethiopia identified ESCC as the predominant subtype, with a marked female predominance and age-related gender disparities. EAC with a lesser proportion identified with consistent spatial distribution patterns in both genders provide valuable insights into the epidemiological landscape of this disease. These findings emphasize the urgency of targeted research to uncover the underlying factors.
Collapse
Affiliation(s)
- Girma Mulisa
- Department of Microbiology, Immunology & ParasitologyAddis Ababa UniversityAddis AbabaAddis AbabaEthiopia
- Department of Biomedical ScienceAdama Hospital Medical CollegeAdamaEthiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology & ParasitologyAddis Ababa UniversityAddis AbabaAddis AbabaEthiopia
| | - Bekele Gutema
- Department of Medical Laboratory ScienceArsi UniversityAsellaEthiopia
| | | | - Md. Al Amin Khan
- Shahjalal University of Science and TechnologySylhetBangladesh
- Toxicology Society of BangladeshBangladesh
| | - Tarik Gheit
- International Agency for Research on CancerLyonFrance
| | - Zdenko Herceg
- International Agency for Research on CancerLyonFrance
| | - Fazlur Rahman Talukdar
- International Agency for Research on CancerLyonFrance
- Cancer Research UK Cambridge Institute, Li ka Shing Centre, University of CambridgeCambridgeUK
- Cancer Research UK Cambridge Centre, University of Cambridge, Li ka Shing CentreCambridgeUK
| |
Collapse
|
19
|
Wang J, Du J, Luo X, Guo L, Liu Y, Zhou J, Zou Y, Lu Z, Pan X, Chen X, Zhong A, Wan X, Wang L, Liu H, Dai S, Zhang S, Xiong X, Tan P, Wang M, Wu B, Zhang Q, Wang Y, Zhang M, Lu R, Lin H, Li Y, Li Y, Han Z, Chen L, Hu B, Liu Y, Na F, Chen C. A platform of functional studies of ESCC-associated gene mutations identifies the roles of TGFBR2 in ESCC progression and metastasis. Cell Rep 2024; 43:114952. [PMID: 39527477 DOI: 10.1016/j.celrep.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/31/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Genomics studies have detected numerous genetic alterations in esophageal squamous cell carcinoma (ESCC). However, the functions of these mutations largely remain elusive, partially due to a lack of feasible animal models. Here, we report a convenient platform with CRISPR-Cas9-mediated introduction of genetic alterations and orthotopic transplantation to generate a series of primary ESCC models in mice. With this platform, we validate multiple frequently mutated genes, including EP300, FAT1/2/4, KMT2D, NOTCH2, and TGFBR2, as tumor-suppressor genes in ESCC. Among them, TGFBR2 loss dramatically promotes tumorigenesis and multi-organ metastasis. Paradoxically, TGFBR2 deficiency leads to Smad3 activation, and disruption of Smad3 partially restrains the progression of Tgfbr2-mutated tumors. Drug screening with tumor organoids identifies that pinaverium bromide represses Smad3 activity and restrains Tgfbr2-deficient ESCC. Our studies provide a highly efficient platform to investigate the in vivo functions of ESCC-associated mutations and develop potential treatments for this miserable malignancy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajia Du
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangmeng Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linjie Guo
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Zou
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenghao Lu
- Chengdu OrganoidMed Medical Laboratory, West China Health Valley, Chengdu, Sichuan 610041, China
| | - Xiangyu Pan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuelan Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ailing Zhong
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xudong Wan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Dai
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manli Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Baohong Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingjie Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengsha Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Runda Lu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huahang Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaxin Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zongkai Han
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Bing Hu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Feifei Na
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chong Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, No387-201 Hemin st., Chengdu, Sichuan 610212, China; Children's Medicine Key Laboratory of Sichuan Province, Sichuan 610041, China.
| |
Collapse
|
20
|
Fu C, Jiang W, Wang C, Song SJ, Tao H, Zhang XG, Li WT, Jin X, Yu BB, Hao JJ, Sun WJ, Bai J, Shi ZZ. AP001885.4 promotes the proliferation of esophageal squamous cell carcinoma cells by histone lactylation- and NF-κB (p65)-dependent transcription activation and METTL3-mediated mRNA stability of c-myc. Anim Cells Syst (Seoul) 2024; 28:536-550. [PMID: 39502790 PMCID: PMC11536669 DOI: 10.1080/19768354.2024.2417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant neoplasm, and up to now, the role of long non-coding RNA (lncRNA) AP001885.4 in cancer, including ESCC, is absolutely unclear. The GEPIA database was applied to identify differentially expressed and prognosis-associated genes in esophageal cancer (ESCA). CCK-8, colony formation, Western blot, and qRT-PCR methods were harnessed to investigate the role and mechanism of AP001885.4 in esophageal carcinogenesis. By analyzing TCGA data in the GEPIA database, two lncRNAs were selected. AP001885.4 was overexpressed and positively associated with the unfavorable outcome of ESCC patients, and LINC001786 was under-expressed and negatively linked with the poor prognosis. Knockdown of AP001885.4 suppressed the proliferation and colony formation of ESCC cells. Importantly, the silence of AP001885.4 downregulated c-myc. Mechanically, the knockdown of AP001885.4 reduced METTL3 expression and m6A modification in c-myc mRNA, and METTL3 positively regulated c-myc. Furthermore, the knockdown of AP001885.4 diminished histone lactylation and NF-κB (p65) expression, and the protein lactylation inhibitors (2-DG, 2-deoxy-D-glucose and oxamate) and the NF-κB inhibitor (JSH-23) also lessened c-myc expression. Consequently, our findings suggested that AP001885.4 promoted the proliferation of esophageal squamous cell carcinoma cells by histone lactylation- and NF-κB (p65)-dependent transcription activation and METTL3-mediated mRNA stability of c-myc.
Collapse
Affiliation(s)
- Chuang Fu
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Wen Jiang
- Department of Thoracic Surgery, the Affiliated Hospital of Kunming University of Science and Technology and First People's Hospital of Yunnan Province, Kunming, People’s Republic of China
| | - Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xin-Guo Zhang
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Bin-Bing Yu
- Department of Anus & Intestine Surgery, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, People’s Republic of China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Wen-Juan Sun
- Nephrology Division, Pu'er People’s Hospital, Pu'er, People’s Republic of China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
21
|
Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H, Zhao M, Zhang Z, Cheng L, Huang Y, Guo W. Neutrophils' dual role in cancer: from tumor progression to immunotherapeutic potential. Int Immunopharmacol 2024; 140:112788. [PMID: 39083923 DOI: 10.1016/j.intimp.2024.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The tumor microenvironment (TME) is intricately associated with cancer progression, characterized by dynamic interactions among various cellular and molecular components that significantly impact the carcinogenic process. Notably, neutrophils play a crucial dual role in regulating this complex environment. These cells oscillate between promoting and inhibiting tumor activity, responding to a multitude of cytokines, chemokines, and tumor-derived factors. This response modulates immune reactions and affects the proliferation, metastasis, and angiogenesis of cancer cells. A significant aspect of their influence is their interaction with the endoplasmic reticulum (ER) stress responses in cancer cells, markedly altering tumor immunodynamics by modulating the phenotypic plasticity and functionality of neutrophils. Furthermore, neutrophil extracellular traps (NETs) exert a pivotal influence in the progression of malignancies by enhancing inflammation, metastasis, immune suppression, and thrombosis, thereby exacerbating the disease. In the realm of immunotherapy, checkpoint inhibitors targeting PD-L1/PD-1 and CTLA-4 among others have underscored the significant role of neutrophils in enhancing therapeutic responses. Recent research has highlighted the potential of using neutrophils for targeted drug delivery through nanoparticle systems, which precisely control drug release and significantly enhance antitumor efficacy. This review thoroughly examines the diverse functions of neutrophils in cancer treatment, emphasizing their potential in regulating immune therapy responses and as drug delivery carriers, offering innovative perspectives and profound implications for the development of targeted diagnostic and therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobin Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, China
| | - Lin Cheng
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI), Galway, Ireland.
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Wang D, Shang Z, Chen R, Yang Y, Su Y, Jia P, Liu Y, Yang F. Texture analysis based on CT for predicting the differentiation of esophageal squamous cancer: An observational study. Medicine (Baltimore) 2024; 103:e39683. [PMID: 39312368 PMCID: PMC11419497 DOI: 10.1097/md.0000000000039683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
To explore the feasibility and application value of texture analysis based on computed tomography (CT) for predicting the differentiation of esophageal squamous cell carcinoma (ESCC). Patients diagnosed with ESCC who underwent chest contrast-enhanced CT before treatment were selected. Based on the pathological results, the patients were stratified into poorly differentiated and moderately well-differentiated groups. FireVoxel software was used to analyze the region of interest based on venous phase CT images. Texture parameters including the mean, median, standard deviation (SD), inhomogeneity, skewness, kurtosis, and entropy were obtained automatically. Differences in the texture parameters and their relationship with the degree of differentiation between the 2 groups were analyzed. The value of CT texture parameters in identifying poor differentiation and moderate-well differentiation of esophageal cancer was analyzed using the ROC curve. A total of 48 patients with ESCC were included, including 24 patients in the poorly differentiated group and 24 patients in the moderate-well-differentiated group. There were negative correlations between SD, inhomogeneity, entropy, and the degree of differentiation of esophageal cancer (P < .05). The correlation of inhomogeneity was the highest (r = -0.505, P < .001). SD, inhomogeneity, and entropy could effectively distinguish between the poorly and moderately well-differentiated groups, with statistically significant differences between the 2 groups (P < .05). The best critical values for SD, inhomogeneity, and entropy were 17.538, 0.017, and 3.917, respectively. The areas under the ROC curve were 0.793, 0.792, and 0.729, respectively, with the SD and inhomogeneity being the best. The application of texture analysis on venous phase CT images holds promise as a method for forecasting the degree of differentiation in esophageal cancers, which could significantly contribute to the preoperative noninvasive evaluation of tumor differentiation.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zeyu Shang
- University College London, London, United Kingdom
| | - Rong Chen
- Department of Medicine, Hebei North University, Zhangjiakou, China
| | - Yue Yang
- Department of Medicine, Hebei North University, Zhangjiakou, China
| | - Yaying Su
- Department of Nuclear medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Peng Jia
- Department of Medical Imaging, Beijing Huairou Hospital, Beijing, China
| | - Yanfang Liu
- Department of Operating rooms, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fei Yang
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
23
|
Yang J, Xu P, Wu S, Chen Z, Fang S, Xiao H, Hu F, Jiang L, Wang L, Mo B, Ding F, Lin LL, Ye J. Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124461. [PMID: 38759393 DOI: 10.1016/j.saa.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.
Collapse
Affiliation(s)
- Junqing Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhou Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiyan Fang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Bin Mo
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China.
| | - Linley Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
24
|
Shijimaya T, Tahara T, Yamazaki J, Kobayashi S, Matsumoto Y, Nakamura N, Takahashi Y, Tomiyama T, Fukui T, Shibata T, Naganuma M. Microbiome of esophageal endoscopic wash samples is associated with resident flora in the esophagus and incidence of cancer. Sci Rep 2024; 14:19525. [PMID: 39174555 PMCID: PMC11341785 DOI: 10.1038/s41598-024-67410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
Change in mucosal microbiome is associated with various types of cancer in digestive tract. We hypothesized that microbial communities in the esophageal endoscopic wash fluids reflects resident flora in esophageal mucosa that is associated with esophageal carcinoma (EC) risk and/or directly correlates microbiome derived from EC tumor tissue. Studying microbial communities in esophageal endoscopic wash samples would be therefore useful to predict the incidence or risk of EC. We examined microbial communities of the endoscopic wash samples from 45 primary EC and 20 respective non-EC controls using 16S rRNA V3-V4 amplicon sequencing. The result was also compared with microbial communities in matched endoscopic biopsies from EC and non-cancerous esophageal mucosa. Compared with non-EC controls, 6 discriminative bacterial genera were detected in EC patients. Among them, relative abundance ratio of Prevotella and Shuttlewarthia, as well as decrease of genus Prevotella presented good prognostic performance to discriminate EC from controls (area under curve, 0.86, 0.82, respectively). Multivariate analysis showed occurrence of EC was an independent factor associated with decrease of this bacteria. Abundance of genus Prevotella in the esophageal endoscopic wash samples was significantly correlated with the abundance of this bacteria in the matched endoscopic biopsies from non-cancerous esophageal mucosa but not in the EC tissues. Our findings suggest that microbiome composition in the esophageal endoscopic wash samples reflects resident flora in the esophagus and significantly correlates with the incidence of EC.
Collapse
Affiliation(s)
- Takuya Shijimaya
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| | - Jumpei Yamazaki
- Translational Research Unit, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yu Takahashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
25
|
Zhang T, Yin K, Niu X, Bai X, Wang Z, Ji M, Yuan B. Development of Bivalent Aptamer-DNA Carrier-Doxorubicin Conjugates for Targeted Killing of Esophageal Squamous Cell Carcinoma Cells. Int J Mol Sci 2024; 25:7959. [PMID: 39063201 PMCID: PMC11276760 DOI: 10.3390/ijms25147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Esophageal cancer ranks the seventh in cancer incidence and the sixth in cancer death. Esophageal squamous cell carcinoma (ESCC) accounts for approximately 90% of the total cases of esophageal cancer. Chemotherapy is the most effective drug-based method for treatment of esophageal cancer. However, severe side effects of traditional chemotherapy limit its treatment efficacy. Targeted chemotherapy can deliver chemotherapeutic drugs to cancer cells and specifically kill these cells with reduced side effects. In the work, the bivalent aptamer-DNA carrier (BAD) was designed by using an ESCC cell-specific aptamer as the recognition molecule and a GC base-rich DNA sequence as the drug carrier. With doxorubicin (Dox) as chemotherapeutic drugs, the bivalent aptamer-DNA-Dox conjugate (BADD) was constructed for targeted killing of ESCC cells. Firstly, the truncated A2(35) aptamer with a retained binding ability was obtained through optimization of an intact A2(80) aptamer and was used to fuse with DNA carrier sequences for constructing the BAD through simple DNA hybridization. The results of gel electrophoresis and flow cytometry analysis showed that the BAD was successfully constructed and had a stronger binding affinity than monovalent A2(35). Then, the BAD was loaded with Dox drugs to construct the BADD through noncovalent intercalation. The results of fluorescence spectra and flow cytometry assays showed that the BADD was successfully constructed and can bind to target cells strongly. Confocal imaging further displayed that the BADD can be specifically internalized into target cells and release Dox. The results of CCK-8 assays, Calcein AM/PI staining, and wound healing assays demonstrated that the BADD can specifically kill target cells, but not control cells. Our results demonstrate that the developed BADD can specifically deliver doxorubicin to target ESCC cells and selectively kill these cells, offering a potentially effective strategy for targeted chemotherapy of ESCC.
Collapse
Affiliation(s)
- Tianlu Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Kai Yin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xidong Niu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xue Bai
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Zhaoting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Mengmeng Ji
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Baoyin Yuan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Jia J, Liu Z, Wang F, Bai G. Consensus Clustering Analysis Based on Enhanced-CT Radiomic Features: Esophageal Squamous Cell Carcinoma patients' 3-Year Progression-Free Survival. Acad Radiol 2024; 31:2807-2817. [PMID: 38199900 DOI: 10.1016/j.acra.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
RATIONALE AND OBJECTIVES To assess the efficacy of consensus cluster analysis based on CT radiomics in stratifying risk and predicting postoperative progression-free survival (PFS) in patients diagnosed with esophageal squamous cell carcinoma (ESC). MATERIALS AND METHODS We conducted a retrospective study involving 546 patients diagnosed with ESC between January 2016 and March 2021. All patients underwent preoperative enhanced CT examinations. From the enhanced CT images, radiomics features were extracted, and a consensus clustering algorithm was applied to group the patients based on these features. Statistical analysis was performed to examine the relationship between the clustering results and gene protein expression, histopathological features, and patients' 3-year PFS. We applied the Kruskal-Wallis test for continuous data, chi-square or Fisher's exact tests for categorical data, and the log-rank test for PFS. RESULTS This study identified four groups: Cluster 1 (n = 100, 18.3%), Cluster 2 (n = 197, 36.1%), Cluster 3 (n = 205, 37.5%), and Cluster 4 (n = 44, 8.1%). The cancer gene Breast Cancer Susceptibility Gene 1 (BRCA1) was most highly expressed in Cluster 4 (75%), showing significant differences between the four subtypes with a P-value of 0.035. The expression of programmed death-1 (PD-1) was highest in Cluster 1 (51%), with a P-value of 0.022. Vascular invasion occurred most frequently in Cluster 2 (28.9%), with a P-value of 0.022. The majority of patients with stage T3-4 were in Cluster 2 (67%), with a P-value of 0.003. Kaplan-Meier survival analysis revealed significant differences in PFS between the four groups (P = 0.013). Among them, patients in Cluster 1 had the best prognosis, while those in Cluster 2 had the worst. CONCLUSION This study highlights the effectiveness of consensus clustering analysis based on enhanced CT radiomics features in identifying associations between radiomics features, histopathological characteristics, and prognosis in different clusters. These findings provide valuable insights for clinicians in accurately and effectively evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Jianye Jia
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Ziyan Liu
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Fen Wang
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China
| | - Genji Bai
- The Department of Medical Imaging Center, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, No. 1 West Huanghe Road, Huaian, 223300, Jiangsu, PR China.
| |
Collapse
|
27
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhao Q, Sun J, Zheng F, Dan Han, Fu C, Sun H, Liu C, Wang Z, Huang W, Wang R, Li B. Accurate location describe and management of lymph node recurrence after esophagectomy for thoracic esophageal squamous cell carcinoma: a retrospective cohort study. Int J Surg 2024; 110:3440-3449. [PMID: 38498405 PMCID: PMC11175758 DOI: 10.1097/js9.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Describe the accurate locations of lymph node recurrence (LNR) of Chinese patients with postoperative thoracic esophageal squamous cell carcinoma (ESCC) is essential for determining the need for further surveillance protocols and treatments. The authors aimed to evaluate the patterns of postoperative ESCC and its current risk stratification with LNR. METHODS This population-based cohort study included a retrospective review of the medical records and image material of patients with ESCC who underwent LNR after radical surgery between January 2013 and September 2022, with a median follow-up time of 5.71 years. Clinical features were extracted from these records, and survival analysis was performed. The primary endpoint was the accurate location and range of LNR according to the nomenclature of the Japanese Society for Esophageal Diseases. The second endpoints was to explore the related factors of recurrence range and overall survival. RESULTS A total of 3268 lymph node regions were recurrence from 1129 patients, with a mean of 2.89 regions per patient. No.104, 106, and 107 was the most common recurrence of thoracic ESCC with an LNR rate higher than 15%. In upper thoracic ESCC, No.105 was a common recurrence site and abdominal LNR was rare. In lower thoracic ESCC, retroperitoneal lymph node was a unique regions (15.4%). Anastomotic recurrence is an important recurrence pattern in patients with postoperative esophageal cancer, with an incidence of 24.5%. Rates of LNR in range of lymph node dissection was low (13.9%). The median time of LRT was 20.0 (1.5-184.0) months. High range of recurrence was associated with significantly poorer OS in patients. Multiple linear regression analysis identified demonstrated N stage, tumor differentiation, adjuvant radiotherapy, and total lymph nodes removed were association with recurrence range for patients. CONCLUSIONS Supraclavicular and upper mediastinums lymph nodes were common recurrence site for ESCC patients, and careful initial staging and surveillance are needed. Thorough lymph node dissection may reduce the range of regional recurrence.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Jinglong Sun
- Department of Rehabilitation, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan
| | - Feng Zheng
- Department of oncology, Linyi People’s Hospital, Linyi, Shandong
| | - Dan Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Chengrui Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Hongfu Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Zhongtang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| | - Ruozheng Wang
- The Third Affillated Teaching Hospital of Xinjiang Medical University/Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute/Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan
| |
Collapse
|
29
|
Zhou J, Zhang MY, Gao AA, Zhu C, He T, Herman JG, Guo MZ. Epigenetic silencing schlafen-11 sensitizes esophageal cancer to ATM inhibitor. World J Gastrointest Oncol 2024; 16:2060-2073. [PMID: 38764821 PMCID: PMC11099458 DOI: 10.4251/wjgo.v16.i5.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo. CONCLUSION SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mei-Ying Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ai-Ai Gao
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng Zhu
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Tao He
- Departments of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, United States
| | - Ming-Zhou Guo
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
30
|
Huang H, Jiang Y, Liu J, Luo D, Yuan J, Mu R, Yu X, Sun D, Lin J, Chen Q, Li X, Jiang M, Xu J, Chu B, Yin C, Zhang L, Ye Y, Cao B, Wang Q, Zhang Y. Jag1/2 maintain esophageal homeostasis and suppress foregut tumorigenesis by restricting the basal progenitor cell pool. Nat Commun 2024; 15:4124. [PMID: 38750026 PMCID: PMC11096375 DOI: 10.1038/s41467-024-48347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.
Collapse
Affiliation(s)
- Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiang Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Donglei Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ming Jiang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, PR China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, PR China
| | - Lei Zhang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, PR China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, PR China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
31
|
Zheng W, Yuan H, Fu Y, Deng G, Zheng X, Xu L, Fan H, Jiang W, Yu X. An effective two-stage NMBzA-induced rat esophageal tumor model revealing that the FAT-Hippo-YAP1 axis drives the progression of ESCC. Cancer Lett 2024; 588:216813. [PMID: 38499266 DOI: 10.1016/j.canlet.2024.216813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Rat model of N-nitrosomethylbenzylamine (NMBzA)-induced esophageal squamous cell carcinoma (ESCC) is routinely used to study ESCC initiation, progression and new therapeutic strategies. However, the model is time-consuming and malignant tumor incidences are low. Here, we report the usage of multi-kinase inhibitor sorafenib as a tumor promoter to establish an efficient two-stage NMBzA-induced rat ESCC carcinogenesis model, resulting in increments of tumor incidences and shortened tumor formation times. By establishing the model and applying whole-genome sequencing, we discover that benign papillomas and malignant ESCCs harbor most of the "driver" events found in rat ESCCs (e.g. recurrent mutations in Ras family, the Hippo and Notch pathways and histone modifier genes) and the mutational landscapes of rat and human ESCCs overlap extensively. We generate tumor cell lines derived from NMBzA-induced papillomas and ESCCs, showing that papilloma cells retain more characteristics of normal epithelial cells than carcinoma cells, especially their exhibitions of normal rat cell karyotypes and inabilities of forming tumors in immunodeficient mice. Three-dimensional (3-D) organoid cultures and single cell RNA sequencing (scRNA-seq) indicate that, when compared to control- and papilloma-organoids, ESCC-organoids display salient abnormalities at tissue and single-cell levels. Multi-omic analyses indicate that NMBzA-induced rat ESCCs are accompanied by progressive hyperactivations of the FAT-Hippo-YAP1 axis and siRNA or inhibitors of YAP1 block the growth of rat ESCCs. Taken together, these studies provide a framework of using an effective rat ESCC model to investigate multilevel functional genomics of ESCC carcinogenesis, which justify targeting YAP1 as a therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxia Fu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guodong Deng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejing Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Xu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongjun Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
32
|
Du R, Xiao N, Han L, Guo K, Li K, Chen Z, Zhang H, Zhou Z, Huang Y, Zhao X, Bian H. Dexrazoxane inhibits the growth of esophageal squamous cell carcinoma by attenuating SDCBP/MDA-9/syntenin-mediated EGFR-PI3K-Akt pathway activation. Sci Rep 2024; 14:9167. [PMID: 38649770 PMCID: PMC11035576 DOI: 10.1038/s41598-024-59665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| | - Nan Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - KeLei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Hui Zhang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Xulin Zhao
- Oncology Department, Nanyang First People's Hospital, Nan Yang, 473004, Henan, People's Republic of China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| |
Collapse
|
33
|
Chen Y, Fan P, Chen Z, Zheng Z, He M, Zhao X, Chen R, Yao J, Yang Z. Long non-coding RNA SRA1 suppresses radiotherapy resistance in esophageal squamous cell carcinoma by modulating glycolytic reprogramming. Open Med (Wars) 2024; 19:20240946. [PMID: 38584841 PMCID: PMC10998669 DOI: 10.1515/med-2024-0946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metabolic reprogramming as a prominent feature. Specifically, the Warburg effect, marked by enhanced glycolysis, has emerged as a hallmark of cancer, offering potential therapeutic targets. In this study, we comprehensively analyzed bulk RNA-seq data from ESCC patients, uncovering elevated SRA1 expression in ESCC development and a poorer prognosis. Silencing of SRA1 led to a modulation of glycolysis-related products and a shift in PKM2 expression. Our findings shed light on the intricate molecular landscape of ESCC, highlighting SRA1 as a potential therapeutic target to disrupt glycolysis-dependent energy production. This metabolic reprogramming may hold the key to innovative treatment strategies for ESCC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Yurao Chen
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Peng Fan
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Zhenhai Chen
- Department of Thoracic Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Zemao Zheng
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Ming He
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Xiang Zhao
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Ronghuai Chen
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| | - Juan Yao
- Department of Radiation Oncology, Huaian Cancer Hospital, Huaian, 223299, Jiangsu, China
| | - Zhaodong Yang
- Department of Thoracic Surgery, Huaian Hospital of Huaian City, Huaian, 223299, Jiangsu, China
| |
Collapse
|
34
|
Li P, Ding H, Han S, Ding S, Yang Y. Long noncoding RNA LINC00858 aggravates the progression of esophageal squamous cell carcinoma via regulating the miR-425-5p/ABL2 axis. Heliyon 2024; 10:e27337. [PMID: 38496838 PMCID: PMC10944188 DOI: 10.1016/j.heliyon.2024.e27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Songze Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yuxiu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
35
|
Nowak KM, Chetty R. Predictive and prognostic biomarkers in gastrointestinal tract tumours. Pathology 2024; 56:205-213. [PMID: 38238239 DOI: 10.1016/j.pathol.2023.12.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 02/18/2024]
Abstract
Tumours of the gastrointestinal tract represent nearly a quarter of all newly diagnosed tumours diagnosed in 2019. Various treatment modalities for gastrointestinal cancers exist, some of which may be guided by biomarkers. Biomarkers act as gauges of either normal or pathogenic processes or responses to an exposure or intervention. They come in many forms. This review explores established and potential molecular/immunohistochemical (IHC) predictive and prognostic biomarkers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | | |
Collapse
|
36
|
Ma Y, Hua Y, Yin X, Jiao Y, Xu E, Yan T, Yang J, Zhang L. MBIP promotes ESCC metastasis by activating MAPK pathway. Cell Signal 2024; 115:111040. [PMID: 38199596 DOI: 10.1016/j.cellsig.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
MBIP is a component of the Ada2A containing complex (ATAC) and has been identified as a susceptibility gene in several cancers. However, the role and molecular mechanism of MBIP in esophageal squamous cell carcinoma (ESCC) remain unclear. Our finding indicated that the expression level of MBIP in ESCC was higher than that in normal tissue (P < 0.05) based on the data from the Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO). Kaplan-Meier analysis showed that high MBIP expression was closely associated with deeper invasion and worse prognosis. Transwell assay and mouse xenograft assay demonstrated that MBIP overexpression promoted migration and invasion in vitro and in vivo, while MBIP knockdown played the opposite role. Furthermore, the results of RNA-seq, qRT-PCR, western blotting and rescue experiments revealed that MBIP promoted epithelial-mesenchymal transition (EMT) via the phosphorylation JNK/p38 in ESCC. Our study indicates that MBIP plays a significant role in the prognosis and metastasis of ESCC, suggesting that MBIP might serve as an ESCC prognostic biomarker.
Collapse
Affiliation(s)
- Yanchun Ma
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.
| | - Yuyan Hua
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - XiaoJie Yin
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ye Jiao
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
37
|
Lu G, Fang W, Lin Y, Huang H. Development of a Survival Nomogram for Esophageal Squamous Cell Carcinoma Patients: a Population-Based Analysis. J Gastrointest Cancer 2024; 55:391-401. [PMID: 37804459 DOI: 10.1007/s12029-023-00975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE In this study, we developed a prognostic nomogram for esophageal squamous cell carcinoma (ESCC) patients. METHODS Patients diagnosed with ESCC from the Surveillance, Epidemiology, and End Results (SEER) database (1975-2017) and a local hospital were enrolled in this retrospective cohort study. Prognoses were analyzed using the R language software, and the predictive power of the model was then assessed by the Harrell concordance index (C-index) and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS In total, 2915 ESCC patients from SEER database were divided into training and validation cohorts. Multivariate analysis revealed that sex, marital status, tumor-node-metastasis (TNM) stage, surgery, chemotherapy, and radiation all showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (also with tumor grade). These characteristics were employed to build a nomogram. The C-index of the nomogram for OS and CSS prediction was 0.743 and 0.748 for the training cohort, which were superior to the predictive power of the 7th TNM staging system. The AUCs of the nomogram for predicting 2- and 5-year OS were 0.805 and 0.812, respectively, and the AUCs for CSS were 0.811 and 0.821, respectively. ROC and calibration curves of data from the SEER internal validation set and of data from our hospital showed that this model had good accuracy for predicting the prognosis of ESCC patient. CONCLUSION The nomogram developed in this study provides a useful tool for accurately estimating OS and CSS for ESCC patients.
Collapse
Affiliation(s)
- Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Weiyue Fang
- Department of Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325000, Zhejiang, China
| | - Ying Lin
- Department of Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325000, Zhejiang, China
| | - He Huang
- Department of Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
38
|
Lu H, Bei Y, Wang C, Deng X, Hu Q, Guo W, Zhang X. A retrospective cohort study to observe the efficacy and safety of Endoscopic Submucosal Dissection (ESD) with adjuvant radiotherapy for T1a-MM/T1b-SM Esophageal Squamous Cell Carcinoma (ESCC). PLoS One 2024; 19:e0298792. [PMID: 38386660 PMCID: PMC10883569 DOI: 10.1371/journal.pone.0298792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND AIM The clinical outcome of endoscopy submucosal dissection with subsequent radiotherapy for esophageal squamous cell carcinoma remain unclear. In this study we aim to investigate the efficacy and safety of endoscopic submucosal dissection with adjuvant radiotherapy in the treatment of superficial esophageal squamous cell carcinoma involving the muscularis mucosae (T1a-MM) or the submucosa < 200 μm (T1b-SM1). METHODS We analyzed 20 patients with pathologically confirmed T1a-MM or T1b-SM1 esophageal squamous cell carcinoma treated by endoscopic submucosal dissection from 2016 to 2020 in Lihuili Hospital, 9 patients received adjuvant radiotherapy (RT group) and 11 patients received did not (non-RT group). RESULTS All 20 patients underwent en bloc resection, and both the vertical and horizontal margins were negative. There was no recurrence or lymph node metastasis in the RT group, and no serious complications or death were observed. In the non-RT group, 2 patients had local recurrence and 1 had distant metastasis. None of the 20 patients died of esophageal carcinoma. CONCLUSIONS Adjuvant radiotherapy following endoscopic submucosal dissection may be a safe and effective method for the treatment of T1a-MM/T1b-SM1 superficial esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Hongna Lu
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yanping Bei
- Department of Radiotherapy, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chunnian Wang
- Ningbo Clinical and Pathological Diagnosis Center, Ningbo, Zhejiang, China
| | - Xi Deng
- Ningbo Clinical and Pathological Diagnosis Center, Ningbo, Zhejiang, China
| | - QinQin Hu
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Wenying Guo
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuesong Zhang
- Endoscopy Center, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Wang H. The RNA m6A writer RBM15 contributes to the progression of esophageal squamous cell carcinoma by regulating miR-3605-5p/KRT4 pathway. Heliyon 2024; 10:e24459. [PMID: 38312624 PMCID: PMC10835169 DOI: 10.1016/j.heliyon.2024.e24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer progression can be modulated by N6-methyladenosine (m6A) modification. RNA binding motif protein 15 (RBM15) is an essential RNA m6A writer that influences carcinogenesis, however its significance in esophageal squamous cell carcinoma (ESCC) is uncertain. This research is intended to examine how RBM15 regulates the development of ESCC. We performed qRT-PCR analysis to evaluate the expression of RBM15, microRNA (miR-3605-5p) as well as keratin 4 (KRT4) in ESCC. Target relationship between miR-3605-5p and KRT4 was validated by dual luciferase reporter assay. Western blotting analyzed the protein levels of KRT4, p53, and p21. To demonstrate that RBM15 is responsible for the m6A alteration of miR-3605-5p, RIP and Me-RIP experiments were carried out concurrently. m6A content was measured by m6A quantification assay. Cell growth and migration were assessed using the CCK-8 and transwell assays. In addition, the role of RBM15 in vivo was examined using a mouse tumor xenograft model. RBM15 and miR-3605-5p were both substantially expressed in ESCC, however KRT4 was not expressed highly. Overexpressed RBM15 triggered cell proliferation and migration in ESCC. Besides, RBM15/m6A could mediate pri-3605-5p to form the mature miR-3605-5p, and miR-3605-5p further targeted KRT4. Further investigations showed that upregulation of KRT4 overturned the promoting impact of RBM15 overexpression on cell proliferation as well as on cell migration in ESCC by activating p53 signaling pathway. This work implied the carcinogenic activity of RBM15/m6A in ESCC via miR-3605-5p/KRT4 pathway, providing a novel m6A modification pattern in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Huan Wang
- General practice section, Wuhan University of Science and Technology Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
40
|
Tao H, Song SJ, Fan ZW, Li WT, Jin X, Jiang W, Bai J, Shi ZZ. PKCiota Inhibits the Ferroptosis of Esophageal Cancer Cells via Suppressing USP14-Mediated Autophagic Degradation of GPX4. Antioxidants (Basel) 2024; 13:114. [PMID: 38247539 PMCID: PMC10812620 DOI: 10.3390/antiox13010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors, and the mechanisms underlying the anti-ferroptosis of esophageal cancer cells are still largely unclear. This study aims to explore the roles of amplified protein kinase C iota (PKCiota) in the ferroptosis of ESCC cells. Cell viability, colony formation, MDA assay, Western blotting, co-IP, PLA, and RNA-seq technologies are used to reveal the roles and mechanisms underlying the PKCiota-induced resistance of ESCC cells to ferroptosis. We showed here that PKCiota was amplified and overexpressed in ESCC and decreased during RSL3-induced ferroptosis of ESCC cells. PKCiota interacted with GPX4 and the deubiquitinase USP14 and improved the protein stability of GPX4 by suppressing the USP14-mediated autophagy-lysosomal degradation pathway. PKCiota was negatively regulated by miR-145-5p, which decreased in esophageal cancer, and also regulated by USP14 and GPX4 by a positive feedback loop. PKCiota silencing and miR-145-5p overexpression suppressed tumor growth of ESCC cells in vivo, respectively; even a combination of silencing PKCiota and RSL3 treatment showed more vital suppressive roles on tumor growth than silencing PKCiota alone. Both PKCiota silencing and miR-145-5p overexpression sensitized ESCC cells to RSL3-induced ferroptosis. These results unveiled that amplified and overexpressed PKCiota induced the resistance of ESCC cells to ferroptosis by suppressing the USP14-mediated autophagic degradation of GPX4. Patients with PKCiota/USP14/GPX4 pathway activation might be sensitive to GPX4-targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen Jiang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650000, China;
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| |
Collapse
|
41
|
Sun W, Kou H, Fang Y, Xu F, Xu Z, Wang X, Yin R, Zhang Q, Jiang Q, Xu Y. FOXO3a-regulated arginine metabolic plasticity adaptively promotes esophageal cancer proliferation and metastasis. Oncogene 2024; 43:216-223. [PMID: 38049565 DOI: 10.1038/s41388-023-02906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with a poor prognosis due to a lack of early detection. Indeed, the mechanisms underlying ESCC progression remain unclear. Here, we discovered that abnormal arginine metabolism contributes to ESCC progression. Based on transcriptomic and metabolomic analyses, we found that argininosuccinate synthetase 1 (ASS1) and argininosuccinate lyase (ASL) levels were increased in primary tumor tissues but decreased in lymph-metastatic tumor tissues. Intriguingly, FOXO3a was inversely correlated with ASS1 and ASL in primary and metastatic tumor tissues, suggesting that FOXO3a dissimilarly regulates ASS1 and ASL at different stages of ESCC. Silencing ASS1/ASL inhibited primary tumor growth and promoted metastasis. Conversely, overexpression of ASS1/ASL or increased arginine supply promoted tumor proliferation but suppressed metastasis. In addition, FOXO3a activation inhibited primary tumor growth by repressing ASS1 and ASL transcription, whereas inactivation of FOXO3a impeded metastasis by releasing ASS1 and ASL transcription. Together, the finding sheds light on metastatic reprogramming in ESCC.
Collapse
Affiliation(s)
- Wenbo Sun
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hengyuan Kou
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Yao Fang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Fan Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhi Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Xiumei Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China
| | - Rong Yin
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qin Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Qin Jiang
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China.
| | - Yong Xu
- Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing, 210029, China.
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longman Avenue, Nanjing, 211166, China.
| |
Collapse
|
42
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
43
|
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, Wu C, Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023; 8:453. [PMID: 38097539 PMCID: PMC10721848 DOI: 10.1038/s41392-023-01710-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and proliferation play important roles in epithelial cancer formation and progression, but what molecules and how they trigger EMT is largely unknown. Here we performed spatial transcriptomic and functional analyses on samples of multistage esophageal squamous-cell carcinoma (ESCC) from mice and humans to decipher these critical issues. By investigating spatiotemporal gene expression patterns and cell-cell interactions, we demonstrated that the aberrant epithelial cell interaction via EFNB1-EPHB4 triggers EMT and cell cycle mediated by downstream SRC/ERK/AKT signaling. The aberrant epithelial cell interaction occurs within the basal layer at early precancerous lesions, which expands to the whole epithelial layer and strengthens along the cancer development and progression. Functional analysis revealed that the aberrant EFNB1-EPHB4 interaction is caused by overexpressed ΔNP63 due to TP53 mutation, the culprit in human ESCC tumorigenesis. Our results shed new light on the role of TP53-TP63/ΔNP63-EFNB1-EPHB4 axis in EMT and cell proliferation in epithelial cancer formation.
Collapse
Affiliation(s)
- Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Hu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, 100006, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
44
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
45
|
Nguyen Vu TH, Kikuchi O, Ohashi S, Saito T, Ida T, Nakai Y, Cao Y, Yamamoto Y, Kondo Y, Mitani Y, Kataoka S, Kondo T, Katada C, Yamada A, Matsubara J, Muto M. Combination therapy with WEE1 inhibition and trifluridine/tipiracil against esophageal squamous cell carcinoma. Cancer Sci 2023; 114:4664-4676. [PMID: 37724648 PMCID: PMC10728021 DOI: 10.1111/cas.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Despite advanced therapeutics, esophageal squamous cell carcinoma (ESCC) remains one of the deadliest cancers. Here, we propose a novel therapeutic strategy based on synthetic lethality combining trifluridine/tipiracil and MK1775 (WEE1 inhibitor) as a treatment for ESCC. This study demonstrates that trifluridine induces single-strand DNA damage in ESCC cells, as evidenced by phosphorylated replication protein 32. The DNA damage response includes cyclin-dependent kinase 1 (CDK1) (Tyr15) phosphorylation as CDK1 inhibition and a decrease of the proportion of phospho-histone H3 (p-hH3)-positive cells, indicating cell cycle arrest at the G2 phase before mitosis entry. The WEE1 inhibitor remarkedly suppressed CDK1 phosphorylation (Try15) and reactivated CDK1, and also increased the proportion of p-hH3-positive cells, which indicates an increase of the number of cells into mitosis. Trifluridine combined with a WEE1 inhibitor increased trifluridine-mediated DNA damage, namely DNA double-strand breaks, as shown by increased γ-H2AX expression. Moreover, the combination treatment with trifluridine/tipiracil and a WEE1 inhibitor significantly suppressed tumor growth of ESCC-derived xenograft models. Hence, our novel combination treatment with trifluridine/tipiracil and a WEE1 inhibitor is considered a candidate treatment strategy for ESCC.
Collapse
Affiliation(s)
- Trang H. Nguyen Vu
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Endoscopy DepartmentCho Ray HospitalHo Chi Minh CityVietnam
| | - Osamu Kikuchi
- Department of Clinical Bio‐Resource CenterKyoto University HospitalKyotoJapan
- Division of Clinical Pharmacology and Cancer ImmunotherapyKyoto University Center for Cancer Immunotherapy and ImmunobiologyKyotoJapan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Preemptive Medicine and Lifestyle Disease Research CenterKyoto University HospitalKyotoJapan
| | - Tomoki Saito
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomomi Ida
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yukie Nakai
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yang Cao
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuki Kondo
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yosuke Mitani
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeki Kataoka
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomohiro Kondo
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Chikatoshi Katada
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsushi Yamada
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Junichi Matsubara
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Clinical Bio‐Resource CenterKyoto University HospitalKyotoJapan
| |
Collapse
|
46
|
Heng J, Li Z, Liu L, Zheng Z, Zheng Y, Xu X, Liao L, Xu H, Huang H, Li E, Xu L. Acetyl-CoA Acetyltransferase 2 Confers Radioresistance by Inhibiting Ferroptosis in Esophageal Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2023; 117:966-978. [PMID: 37244629 DOI: 10.1016/j.ijrobp.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The overall survival of patients with esophageal squamous cell carcinoma (ESCC) is not high due to the lack of markers to evaluate concurrent chemoradiation therapy (CCRT) resistance. The aim of this study is to use proteomics to identify a protein related to radiation therapy resistance and explore its molecular mechanisms. METHODS AND MATERIALS Proteomic data for pretreatment biopsy tissues from 18 patients with ESCC who underwent CCRT (complete response [CR] group, n = 8; incomplete response [ RESULTS Enrichment analysis of differentially expressed proteins ( CONCLUSION ACAT2 overexpression confers radioresistance by inhibiting ferroptosis in ESCC, suggesting ACAT2 could be a potential biomarker of poor radiotherapeutic response and a therapeutic target for enhancing the radiosensitivity of ESCC.
Collapse
Affiliation(s)
- Jinghua Heng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Zhimao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Luxin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Zhenyuan Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China; Guangdong Esophageal Cancer Research Institute, Shantou Subcenter, Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Yaqi Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Xiue Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Liandi Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Hongyao Xu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - Hecheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China; Guangdong Esophageal Cancer Research Institute, Shantou Subcenter, Cancer Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
47
|
Wu X, Zhang X, Ge J, Li X, Shi C, Zhang M. Development and validation of a prognostic model for esophageal cancer patients with liver metastasis: a cohort study based on surveillance, epidemiology, and end results database. J Cancer Res Clin Oncol 2023; 149:13501-13510. [PMID: 37493687 DOI: 10.1007/s00432-023-05175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Our objective is to examine the independent prognostic risk factors for patients with Esophageal Cancer with Liver Metastasis (ECLM) and to develop a predictive model. METHODS In this study, clinical data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Cox regression analysis was employed to identify independent prognostic factors and construct nomograms based on the results of multivariate regression. The predictive performance of the nomograms was assessed using several methods, including the consistency index (C-index), calibration curve, time-dependent receiver-operating characteristic curve (ROC), and decision curve analysis (DCA). Additionally, Kaplan-Meier survival curves were generated to demonstrate the variation in overall survival between groups. RESULTS A total of 1163 ECLM patients were included in the study. Multivariate Cox analysis revealed that age, tumor differentiation grade, bone metastasis, therapy, and income were independently associated with overall survival (OS) in the training set. Subsequently, a prognostic nomogram was constructed based on these independent predictors. The C-index values were 0.739 and 0.715 in the training and validation sets, respectively. The area under the curve (AUC) values at 0.5, 1, and 2 years were all higher than 0.700. Calibration curves indicated that the nomogram accurately predicted OS. Decision curve analysis (DCA) showed moderately positive net benefits. Kaplan-Meier survival curves demonstrated significant differences in survival between high- and low-risk groups, which were divided based on the nomogram risk score. CONCLUSIONS The nomogram we developed for ECLM patients has demonstrated good predictive capability, allowing clinicians to accurately evaluate patient prognosis and identify those at high risk, thereby facilitating the development of personalized treatment plans.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jingjing Ge
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Cunzhen Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
48
|
Qu Y, Xue S, Zheng Y, Du Y, Zhang G, Huang L, Li H, Li H. Upregulated miR‑378a‑3p expression suppresses energy metabolism and promotes apoptosis by targeting a GLUT‑1/ALDOA/PKM2 axis in esophageal carcinoma. Oncol Lett 2023; 26:421. [PMID: 37664650 PMCID: PMC10472027 DOI: 10.3892/ol.2023.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy of the digestive system with increasing incidence and mortality rates. The biological roles of microRNA (miR)-378a-3p in tumor cells remain contested, and the mechanisms underlying the functions, energy metabolism, and cell survival mechanisms in ESCC cells are yet to be fully elucidated. In the present study, miR-378a-3p overexpression and negative control plasmids were transfected into ECA-109 cells using electroporation. Western blotting was used to detect the relative expression of proteins, and flow cytometry was used to detect cell apoptosis. Subsequently, ELISA assays were performed to determine enzyme activity, and an ATP detection kit was used to measure ATP content. Dual-luciferase reporter assays were performed to identify the target genes of miR-378a-3p. The results of the present study demonstrated that miR-378a-3p inhibited the gene expression and enzyme activities of glucose transporter protein 1 (GLUT-1), Aldolase A (ALDOA), and pyruvate kinase M2 (PKM2), all of which are involved in the glycolytic pathway of cells. Energy metabolism was suppressed by miR-378a-3p by reducing ATP content, and this downregulated the expression of Bcl-2 and Survivin. Moreover, increased miR-378a-3p expression promoted cell apoptosis in the early stages by increasing the expression levels and the activity of Bad and Caspase-3, while inhibiting the expression levels of Bcl-2 and Survivin. The results of the present study also demonstrated that GLUT-1/ALDOA/PKM2 were target genes of miR-378a-3p. Notably, miR-378a-3p blocked energy production and promoted the apoptosis of tumor cells via the downregulation of glycolytic enzyme expression and by reducing the mitochondrial membrane potential in ESCC. Bad, Caspase-3, Survivin, and Bcl-2 may be associated with blocking energy production and promoting apoptosis via miR-378a-3p in ESCC cells.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shan Xue
- Medical Research Center, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Yujian Zheng
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yajing Du
- Medical Research Center, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Guoping Zhang
- Tumor Department, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Liting Huang
- Medical Research Center, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huiwu Li
- Medical Research Center, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| |
Collapse
|
49
|
Sasaki F, Mawatari S, Oda K, Yano H, Maeda H, Tanaka A, Arima S, Kumagai K, Tanoue S, Hashimoto S, Kanmura S, Ido A. Usefulness of the aldehyde breath test for predicting metachronous recurrence in patients with esophageal squamous cell carcinoma and hypopharyngeal squamous cell carcinoma. Esophagus 2023; 20:749-756. [PMID: 37552454 DOI: 10.1007/s10388-023-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The rate of metachronous recurrence after endoscopic submucosal dissection for early-stage esophageal squamous cell carcinoma and hypopharynx squamous cell carcinoma is as high (10-15%). The acetaldehyde breath test may detect acetaldehyde dehydrogenase 2 gene polymorphisms. Therefore, we evaluated its usefulness in assessing metachronous recurrence in patients with esophageal squamous cell carcinoma and hypopharynx squamous cell carcinoma. METHODS A total of 76 patients underwent endoscopic submucosal dissection for esophageal squamous cell carcinoma and hypopharynx squamous cell carcinoma and were followed up for at least 3 years (non-recurrence group: 52 patients; recurrence group: 24 patients). The risk factors for carcinogenesis were compared between the recurrence and non-recurrence groups, and the acetaldehyde-to-ethanol ratio was assessed. The cutoff acetaldehyde-to-ethanol ratio that correlated with recurrence was established, and the cumulative recurrence rate was evaluated. RESULTS The recurrence group had a higher acetaldehyde-to-ethanol ratio, daily alcohol consumption, and Lugol-voiding lesion grade than the non-recurrence group in the univariate analysis. The cutoff acetaldehyde-to-ethanol ratio for recurrence was 28.1 based on the receiver operating characteristic curve. The multivariate analysis revealed an acetaldehyde-to-ethanol ratio of > 28.1 and a Lugol-voiding lesion grade associated with carcinogenesis. Patients with an acetaldehyde-to-ethanol ratio of ≥ 28.1 had a significantly high recurrence rate using the Kaplan-Meier method. CONCLUSIONS The acetaldehyde-to-ethanol ratio detected using the acetaldehyde breath test could be a novel biomarker of metachronous recurrence after endoscopic submucosal dissection in patients with esophageal squamous cell carcinoma and hypopharynx squamous cell carcinoma. TRIAL REGISTRATION NUMBER UMIN000040615.
Collapse
Affiliation(s)
- Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroki Yano
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hidehito Maeda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihito Tanaka
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiho Arima
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
50
|
Chiang H, Hughes M, Chang W. The role of microbiota in esophageal squamous cell carcinoma: A review of the literature. Thorac Cancer 2023; 14:2821-2829. [PMID: 37675608 PMCID: PMC10542467 DOI: 10.1111/1759-7714.15096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) exhibits high incidence with poor prognosis. Alcohol drinking, cigarette smoking, and betel nut chewing are well-known risk factors. Dysbiosis, an imbalance of the microbiota residing in a local environment, is known to be associated with human diseases, especially cancer. This article reviews the current evidence of esophageal microbiota in ESCC carcinogenesis, including initiation, progression, and drug resistance. Articles involving the esophageal microbiota, diagnosis, treatment, and the progression of esophageal cancer were acquired using a comprehensive literature search in PubMed in recent 10 years. Based on 16S rRNA sequencing of human samples, cell, and animal studies, current evidence suggests dysbiosis of the esophagus promotes ESCC progression and chemotherapy resistance, leading to a poor prognosis. Smoking and drinking are associated with esophageal dysbiosis. Specific bacteria have been reported to promote carcinogenesis, involving either progression or drug resistance in ESCC, for example Porphyromonas gingivalis and Fusobacterium nucleatum. These bacteria promote ESCC cell proliferation and migration via the TLR4/NF-κB and IL-6/STAT3 pathways. F. nucleatum induces cisplatin resistance via the enrichment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Correcting the dysbiosis and reducing the abundance of specific esophageal pathogens may help in suppressing cancer progression. In conclusion, esophageal dysbiosis is associated with ESCC progression and chemoresistance. Screening the oral and esophageal microbiota is a potential diagnostic tool for predicting ESCC development or drug-resistance. Repairing esophageal dysbiosis is a novel treatment for ESCC. Clinical trials with probiotics in addition to current chemotherapy are warranted to study the therapeutic effects.
Collapse
Affiliation(s)
- Hsueh‐Chien Chiang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Michael Hughes
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and Regeneration (iWRR), College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Wei‐Lun Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|