1
|
Wang Z, Mou R, Jin S, Wang Q, Ju Y, Sun P, Xie R, Wang K. Streptococcus anginosus promotes gastric cancer progression via GSDME-mediated pyroptosis pathway: Molecular mechanisms of action of GSDME, cleaved caspase-3, and NLRP3 proteins. Int J Biol Macromol 2025; 307:142341. [PMID: 40118413 DOI: 10.1016/j.ijbiomac.2025.142341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Streptococcus vasculosus is a common oral and intestinal symbiotic bacteria, but it can transform into a pathogen under certain conditions, affecting the host's immune response. Studies have shown that Streptococcus vasculosus may promote tumor growth and metastasis by activating host inflammatory responses. This study simulated the environment of Streptococcus vascularis infection through in vitro cell culture experiment, and observed the influence of streptococcus vascularis at different time points and different concentrations on cancer cells. The expression and activity of GSDME, cleaved caspase-3 and NLRP3 proteins were detected by Western blot, immunofluorescence and flow cytometry. By constructing gene knockout and overexpression cell models, the role of these protein molecules in promoting cancer progression of Streptococcus vascularis was further verified. It was found that GSDME activation is a key step in Pyroptosis occurrence, and cleaved caspase-3 plays an important role in GSDME cleavage activation. The activation of NLRP3 inflammatome is closely related to the inflammatory response induced by Streptococcus vasculosus, and thus affects the tumor microenvironment.
Collapse
Affiliation(s)
- Zeshen Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Ruishu Mou
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Shiyang Jin
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Qiancheng Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Yuming Ju
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Pengcheng Sun
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China
| | - Rui Xie
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China.
| | - Kuan Wang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150076, Heilongjiang, China.
| |
Collapse
|
2
|
Yan Y, Satoh-Takayama N. New perspectives on gastric disorders: the relationship between innate lymphoid cells and microbes in the stomach. Cell Mol Life Sci 2025; 82:113. [PMID: 40074935 PMCID: PMC11904066 DOI: 10.1007/s00018-025-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
A growing number of studies in recent years have revealed the changes in the gastric microbiota during the development of gastric diseases, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. After a decade of intensive research, the discovery of innate lymphoid cells (ILCs) has provided a new perspective on the immune response in many diseases. In the context of defense against infectious pathogens, the pre-existing innate defense mechanism of tissue-resident ILCs can rapidly recognize and respond to microbes to eliminate infection at the earliest stages. Here, we outline the basic function of ILCs in the gastric mucosa and in shaping the gastric microbiome. We discuss the interactions between the gastric microbiota and ILCs, explaining how the ILCs actively drive the immune response against bacterial pathogens that can lead to the development of the gastric disease.
Collapse
Affiliation(s)
- Yunzi Yan
- Precision Immune Regulation RIKEN ECL Research Unit, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Naoko Satoh-Takayama
- Precision Immune Regulation RIKEN ECL Research Unit, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
3
|
Carneiro KDO, Araújo TMT, Da Silva Mourão RM, Casseb SMM, Demachki S, Moreira FC, Dos Santos ÂKCR, Ishak G, Da Costa DDSA, Magalhães L, Vidal AF, Burbano RMR, de Assumpção PP. Transcriptional and microbial profile of gastric cancer patients infected with Epstein-Barr virus. Front Oncol 2025; 15:1530430. [PMID: 40110195 PMCID: PMC11919665 DOI: 10.3389/fonc.2025.1530430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Gastric cancer (GC), which has low survival rates and high mortality, is a major concern, particularly in Asia and South America, with over one million annual cases. Epstein-Barr virus (EBV) is recognized as a carcinogen that may trigger gastric carcinogenesis by infecting the stomach epithelium via reactivated B cells, with growing evidence linking it to GC. This study investigates the transcriptional and microbial profiles of EBV-infected versus EBV-non-infected GC patients. Methods Using Illumina NextSeq, cDNA libraries were sequenced, and reads were aligned to the human genome and analyzed with DESeq2. Kegg and differential analyses revealed key genes and pathways. Gene sensitivity and specificity were assessed using ROC curves (p < 0.05, AUC > 0.8). Non-aligned reads were used for microbiome analysis with Kraken2 for bacterial identification. Microbial analysis included LDA score, Alpha and Beta diversity metrics, with significance set at p ≤ 0.05. Spearman's correlation between differentially expressed genes (DEGs) and bacteria were also examined. Results The data revealed a gene expression pattern in EBV-positive gastric cancer, highlighting immune response, inflammation, and cell proliferation genes (e.g., GBP4, ICAM1, IL32, TNFSF10). ROC analysis identified genes with high specificity and sensitivity for discriminating EBV+ gastric cancer, including GBP5, CMKLR1, GM2A and CXCL11 that play pivotal roles in immune response, inflammation, and cancer. Functional enrichment pointed to cytokine-cytokine receptor interactions, antigen processing, and Th17 immune response, emphasizing the role of the tumor microenvironment, shaped by inflammation and immunomodulation, in EBV-associated GC. Microbial analysis revealed changes in the gastric microbiota in EBV+ samples, with a significant reduction in bacterial taxa. The genera Choristoneura and Bartonella were more abundant in EBV+ GC, while more abundant bacteria in EBV- GC included Citrobacter, Acidithiobacillus and Biochmannia. Spearman's correlation showed a strong link between DE bacterial genera and DEGs involved in processes like cell differentiation, cytokine production, digestion, and cell death. Conclusion These findings suggest a complex interaction between the host (EBV+ GC) and the microbiota, possibly influencing cancer progression, and offering potential therapeutic targets such as microbiota modulation or gene regulation. Comparing with EBV- samples further highlights the specific impact of EBV and the microbiota on gastric cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Samia Demachki
- Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Geraldo Ishak
- Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Wizenty J, Sigal M. Helicobacter pylori, microbiota and gastric cancer - principles of microorganism-driven carcinogenesis. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01042-2. [PMID: 40011753 DOI: 10.1038/s41575-025-01042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The demonstration that Helicobacter pylori is a pathogenic bacterium with marked carcinogenic potential has paved the way for new preventive approaches for gastric cancer. Although decades of research have uncovered complex interactions of H. pylori with epithelial cells, current insights have refined our view on H. pylori-associated carcinogenesis. Specifically, the cell-type-specific effects on gastric stem and progenitor cells deep in gastric glands provide a new view on the ability of the bacteria to colonize long-term, manipulate host responses and promote gastric pathology. Furthermore, new, large-scale epidemiological data have shed light on factors that determine why only a subset of carriers progress to gastric cancer. Currently, technological advances have brought yet another revelation: H. pylori is far from the only microorganism able to colonize the stomach. Instead, the stomach is colonized by a diverse gastric microbiota, and there is emerging evidence for the occurrence and pathological effect of dysbiosis resulting from an aberrant interplay between H. pylori and the gastric mucosa. With the weight of this evidence mounting, here we consider how the lessons learned from H. pylori research inform and synergize with this emerging field to bring a more comprehensive understanding of the role of microbes in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy and BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
5
|
Mahdavi M, Kim TY, Prévost K, Balthazar P, Gagné-Ouellet V, Hus IFP, Duchesne É, Harvey S, Gagnon C, Laforest-Lapointe I, Dumont NA, Massé E. Influence of CTG repeats from the human DM1 locus on murine gut microbiota. Comput Struct Biotechnol J 2025; 27:733-743. [PMID: 40092662 PMCID: PMC11908463 DOI: 10.1016/j.csbj.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the 3' untranslated region of the DMPK gene. This expansion leads to the production of toxic RNA transcripts, which accumulate in the nucleus and interfere with normal RNA processing. DM1 affects a broad range of tissues and systems such as the skeletal muscle, the central nervous system, cardiac, visual, reproductive, and gastrointestinal (GI) system. GI dysfunction is a significant but poorly understood aspect of DM1. Particularly, it is unknown if there are alterations in the intestinal microbiome in DM1. Here, we used a transgenic humanized mouse model (DMSXL) to explore how the gut microbiome may be linked to GI issues in DM1. For this purpose, 68 stool samples from Homozygous, Heterozygous, and Wild-Type (WT) mice were collected. These samples were sequenced by MiSeq and analyzed with DADA2 to generate taxonomic profiles. Our analysis indicated that the overexpression of CTG repeats significantly influences the bacterial structure of the gut microbiome in Homozygous mice samples, especially in terms of the relative abundance of the Patescibacteria and Defferibacterota Phyla. These results provide valuable information about the gut microbiota structure thus improving the understanding of the role of these changes in the pathogenicity as well as GI problems of DM1 patients.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Tae-Yeon Kim
- Department of microbiology, infectiology and immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Valérie Gagné-Ouellet
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Fissette-Paul Hus
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Élise Duchesne
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
- Neuromuscular Diseases Interdisciplinary Research Group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, Quebec, Canada
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Capitale-Nationale Integrated University Health and Social Services Center, Quebec, Quebec, Canada
- CHU de Québec - Université Laval Research Center, Québec, Québec, Canada
| | - Séréna Harvey
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Cynthia Gagnon
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Laforest-Lapointe
- Départment de Biologie, Faculté des Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du Centre Hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A. Dumont
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
6
|
Gong D, Gao Y, Shi R, Xu X, Yu M, Zhang S, Wang L, Dong Q. The gastric microbiome altered by A4GNT deficiency in mice. Front Microbiol 2025; 16:1541800. [PMID: 40012782 PMCID: PMC11861098 DOI: 10.3389/fmicb.2025.1541800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Background Selective antimicrobial effects have been found for α1,4-linked N-acetylglucosamine residues at the terminus of O-glycans attached to a core protein of gastric gland mucin. A4gnt encodes α1,4-N-acetylglucosaminyl transferase, which is responsible for the biosynthesis of α1,4-linked N-acetylglucosamine. The impact of A4GNT on the establishment and homeostasis of the gastric microbiome remains to be clarified. The aim of this study was to characterize the gastric microbiome in mice deficient for the production of α1,4-linked N-acetylglucosamine. Methods The gastric microbiome within A4gnt -/- mice and wild-type mice was analyzed using high-throughput sequencing of bacterial 16S rRNA. Results In A4gnt -/- mice, which spontaneously develop gastric cancer, the community structure of the gastric microbiome was altered. The relative abundance of mutagenic Desulfovibrio and proinflammatory Prevotellamassilia in these mice was significantly increased, especially 4 weeks after birth. The co-occurrence network appeared to be much more complex. Functional prediction demonstrated considerable decreases in the relative frequencies of functions associated with polysaccharide metabolism and transportation. Conclusion The distinct profile in A4gnt -/- mice demonstrated a vital role of A4GNT in the establishment of the gastric microbiome. A dysbiotic gastric microbiome may contribute to the spontaneous development of gastric cancer in mice.
Collapse
Affiliation(s)
- Dawei Gong
- Department of Gastroenterology, The Forth People's Hospital of Jinan, Jinan, China
- Central Laboratories, The Affiliated Qingdao Municipal Hospital of Dalian Medical University, Qingdao, China
| | - Yuqiang Gao
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Rui Shi
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaona Xu
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shumin Zhang
- Department of Gastroenterology, The Forth People's Hospital of Jinan, Jinan, China
| | - Lili Wang
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
7
|
Wang Y, Qiu X, Chu A, Chen J, Wang L, Sun X, Wang B, Yuan Y, Gong Y. Advances in 16S rRNA-Based Microbial Biomarkers for Gastric Cancer Diagnosis and Prognosis. Microb Biotechnol 2025; 18:e70115. [PMID: 39992270 PMCID: PMC11849407 DOI: 10.1111/1751-7915.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumour with high morbidity and mortality worldwide, and there is an urgent need for early diagnosis and precision treatment. In recent years, the role of microbiota in the occurrence and development of GC has drawn extensive attention. Particularly, the in-depth study of GC-related microbiota by 16S rRNA sequencing technology has offered valuable tools and new perspectives for exploring the microbial characteristics of GC patients. This review systematically summarises the microbial diversity and composition of GC and non-GC samples based on 16S rRNA data, outlines the progress in identifying GC-related microbial biomarkers, explores the potential mechanisms by which diagnostic microbial biomarkers influence the development of GC, and reflects on the limitations of present studies. By integrating the current evidence, this review intends to offer a new theoretical foundation and further direction for the clinical translation of microbiota research in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yingying Wang
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Xunan Qiu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Jijun Chen
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Lu Wang
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaohu Sun
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Bengang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
8
|
Ye Y, Bin B, Chen P, Chen J, Meng A, Yu L, Yang F, Cui H. Advances in the study of the role of gastric microbiota in the progression of gastric cancer. Microb Pathog 2025; 199:107240. [PMID: 39708981 DOI: 10.1016/j.micpath.2024.107240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Gastric cancer (GC) is a common malignant tumor and the third most common cancer in China in terms of mortality. Stomach microorganisms play complex roles in the development of GC. The carcinogenic mechanism of Helicobacter pylori has been elucidated, and there is much evidence that other microorganisms in the gastric mucosa are also heavily involved in the disease progression of this cancer. However, their carcinogenic mechanisms have not yet been fully elucidated. The microbial compositions associated with the normal stomach, precancerous lesions, and GC are distinctly different and have a complex evolutionary mechanism. The dysregulation of gastric microbiota may play a key role in the oncogenic process from precancerous lesions to malignant gastric tumors. In this review, we explore the potential translational and clinical implications of intragastric microbes in the diagnosis, prognosis, and treatment of GC. Finally, we summarize the research dilemmas and solutions concerning intragastric microbes, emphasizing that they should be at the forefront of strategies for GC prevention and treatment.
Collapse
Affiliation(s)
- Yu Ye
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Ba Bin
- Department of Oncology, Ordos Hospital of Traditional Chinese Medicine, No 5, Yongning Street, Kangbashi District, Ordos City, Inner Mongolia Autonomous Region, PR China
| | - Pengfei Chen
- The Affiliated Hospital of Inner Mongolia Medical University, PR China
| | - Jing Chen
- Medical Department of Ordos College of Applied Technology, PR China
| | - Aruna Meng
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, 010020, PR China
| | - Fan Yang
- Inner Mongolia Autonomous Region Blood Central, PR China.
| | - Hongwei Cui
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No 42, Zhao Wu Da Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
9
|
Wang B, Luan J, Zhao W, Yu J, Li A, Li X, Zhong X, Cao H, Wang R, Liu B, Lu S, Shi M. Comprehensive multiomics analysis of the signatures of gastric mucosal bacteria and plasma metabolites across different stomach microhabitats in the development of gastric cancer. Cell Oncol (Dordr) 2025; 48:139-159. [PMID: 38963518 PMCID: PMC11850404 DOI: 10.1007/s13402-024-00965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis. METHODS Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches. RESULTS The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer. CONCLUSION The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.
Collapse
Affiliation(s)
- Bingsen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Jiahui Luan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
| | - Weidong Zhao
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Junbao Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Anqing Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Xinxin Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Xiaoqin Zhong
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Hongyun Cao
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
| | - Ruicai Wang
- Department of Pathology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Bo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Shiyong Lu
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
10
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
11
|
Zaramella A, Arcidiacono D, Duci M, Benna C, Pucciarelli S, Fantin A, Rosato A, De Re V, Cannizzaro R, Fassan M, Realdon S. Predictive Value of a Gastric Microbiota Dysbiosis Test for Stratifying Cancer Risk in Atrophic Gastritis Patients. Nutrients 2024; 17:142. [PMID: 39796578 PMCID: PMC11722812 DOI: 10.3390/nu17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with Helicobacter pylori (Hp) infection, passing through intestinal metaplasia and dysplasia steps. Since Hp eradication does not exclude GC development, further investigations are needed. New data suggest the possible role of unexplored gastric microbiota beyond Hp in the progression from AG to GC. Aimed to develop a score that could be used in clinical practice to stratify GC progression risk, here was investigate gastric microbiota in AG Hp-negative patients with or without high-grade dysplasia (HGD) or GC. METHODS Consecutive patients undergoing upper endoscopy within an endoscopic follow-up for AG were considered. The antrum and corpus biopsies were used to assess the microbiota composition along the disease progression by sequencing the 16S ribosomal RNA gene. Statistical differences between HGD/GC and AG patients were included in a multivariate analysis. RESULTS HGD/GC patients had a higher percentage of Bacillus in the antrum and a low abundance of Rhizobiales, Weeksellaceae and Veillonella in the corpus. These data were used to calculate a multiparametric score (Resident Gastric Microbiota Dysbiosis Test, RGM-DT) to predict the risk of progression toward HGD/GC. The performance of RGM-DT in discriminating patients with HGD/GC showed a specificity of 88.9%. CONCLUSIONS The microbiome-based risk prediction model for GC could clarify the role of gastric microbiota as a cancer risk biomarker to be used in clinical practice. The proposed test might be used to personalize follow-up program thanks to a better cancer risk stratification.
Collapse
Affiliation(s)
- Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Miriam Duci
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Pediatric Surgery Unit, Division of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- UOC Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Via Gabelli 61, 35121 Padua, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
12
|
Verma J, Anwar MT, Linz B, Backert S, Pachathundikandi SK. The Influence of Gastric Microbiota and Probiotics in Helicobacter pylori Infection and Associated Diseases. Biomedicines 2024; 13:61. [PMID: 39857645 PMCID: PMC11761556 DOI: 10.3390/biomedicines13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The role of microbiota in human health and disease is becoming increasingly clear as a result of modern microbiome studies in recent decades. The gastrointestinal tract is the major habitat for microbiota in the human body. This microbiota comprises several trillion microorganisms, which is equivalent to almost ten times the total number of cells of the human host. Helicobacter pylori is a known pathogen that colonizes the gastric mucosa of almost half of the world population. H. pylori is associated with several gastric diseases, including gastric cancer (GC) development. However, the impact of the gastric microbiota in the colonization, chronic infection, and pathogenesis is still not fully understood. Several studies have documented qualitative and quantitative changes in the microbiota's composition in the presence or absence of this pathogen. Among the diverse microflora in the stomach, the Firmicutes represent the most notable. Bacteria such as Prevotella sp., Clostridium sp., Lactobacillus sp., and Veillonella sp. were frequently found in the healthy human stomach. In contrast, H.pylori is very dominant during chronic gastritis, increasing the proportion of Proteobacteria in the total microbiota to almost 80%, with decreasing relative proportions of Firmicutes. Likewise, H. pylori and Streptococcus are the most abundant bacteria during peptic ulcer disease. While the development of H. pylori-associated intestinal metaplasia is accompanied by an increase in Bacteroides, the stomachs of GC patients are dominated by Firmicutes such as Lactobacillus and Veillonella, constituting up to 40% of the total microbiota, and by Bacteroidetes such as Prevotella, whereas the numbers of H. pylori are decreasing. This review focuses on some of the consequences of changes in the gastric microbiota and the function of probiotics to modulate H. pylori infection and dysbiosis in general.
Collapse
Affiliation(s)
- Jagriti Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Md Tanveer Anwar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Bodo Linz
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
13
|
WANG Y, LIU J, XIONG Y, ZHANG Y, WEN Y, XUE M, GUO H, QIU J. Analysis of composition of gut microbial community in a rat model of functional dyspepsia treated with Simo Tang. J TRADIT CHIN MED 2024; 44:1168-1176. [PMID: 39617702 PMCID: PMC11589550 DOI: 10.19852/j.cnki.jtcm.20240927.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate composition of gut microbial community in a rat model of functional dyspepsia (FD) and to explore the interventional effects of Simo Tang (, SMT). METHODS A rat model of FD was established through the tail-clamping stimulation method. The rat model of FD was assessed by the state of rats, their weight, sucrose preference rate, and intestinal propulsion rate. The DNA was extracted from stool samples after treatment with SMT. Amplified polymerase chain reaction (PCR) products of the 16S rDNA were sequenced using NovaseQ6000 after construction of libraries. Composition of gut microbial community in the stool samples was determined and analyzed by cluster analysis, bioinformatic analysis, and analysis of α-diversity and β-diversity. RESULTS The rat model of FD was successfully established using the tail-clamping stimulation method. The statistical results of cluster analysis of operational taxonomic units (OTUs) showed that the relative abundance of OTUs in the FD group was the lowest, while it was the highest in the normal (N) group. The composition of microbiome in the four groups was similar at phyla level. Compared with the FD group, the abundance of Firmicutes was downregulated, and the abundance of Proteobacteria and Bacteroidetes was upregulated in the Simo Tang (SMT) and high-dose Simo Tang (SMT.G) groups. The ratio of Bacteroidetes/ Firmicutes was also elevated. According to the analysis of α-diversity and β-diversity, the abundance of flora in FD rats was significantly reduced. The treatment using SMT appeared beneficial to improve the diversity of flora. SMT could improve the intestinal flora in FD rats. The results showed that FD rats had intestinal flora imbalance, and species diversity increased. The results suggested that SMT could regulate the disorders of intestinal flora caused by FD. CONCLUDIONS SMT could restore gut homeostasis and maintain gut flora diversity by modulating the gut microbiota and its associated metabolites in rats, thereby treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Yiying WANG
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jianjun LIU
- 2 Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongjian XIONG
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongli ZHANG
- 3 Department of Critical Care Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuqi WEN
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Mengli XUE
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Huishu GUO
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Juanjuan QIU
- 1 Centralab, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
14
|
Mahdavi M, Prévost K, Balthazar P, Hus IFP, Duchesne É, Dumont N, Gagné-Ouellet V, Gagnon C, Laforest-Lapointe I, Massé E. Disturbance of the human gut microbiota in patients with Myotonic Dystrophy type 1. Comput Struct Biotechnol J 2024; 23:2097-2108. [PMID: 38803516 PMCID: PMC11128782 DOI: 10.1016/j.csbj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a rare autosomal dominant genetic disorder. Although DM1 is primarily characterized by progressive muscular weakness, it exhibits many multisystemic manifestations, such as cognitive deficits, cardiac conduction abnormalities, and cataracts, as well as endocrine and reproductive issues. Additionally, the gastrointestinal (GI) tract is frequently affected, encompassing the entire digestive tract. However, the underlying causes of these GI symptoms remain uncertain, whether it is biomechanical problems of the intestine, involvement of bacterial communities, or both. The primary objective of this study is to investigate the structural changes in the gut microbiome of DM1 patients. To achieve this purpose, 35 patients with DM1 were recruited from the DM-Scope registry of the neuromuscular clinic in the Saguenay-Lac-St-Jean region of the province of Québec, Canada. Stool samples from these 35 patients, including 15 paired samples with family members living with them as controls, were collected. Subsequently, these samples were sequenced by 16S MiSeq and were analyzed with DADA2 to generate taxonomic signatures. Our analysis revealed that the DM1 status correlated with changes in gut bacterial community. Notably, there were differences in the relative abundance of Bacteroidota, Euryarchaeota, Fusobacteriota, and Cyanobacteria Phyla compared to healthy controls. However, no significant shift in gut microbiome community structure was observed between DM1 phenotypes. These findings provide valuable insights into how the gut bacterial community, in conjunction with biomechanical factors, could potentially influence the gastrointestinal tract of DM1 patients.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Fisette-Paul Hus
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Élise Duchesne
- Physiotherapy teaching unit, Université du Québec à Chicoutimi, Chicoutimi, G7H 2B1, Canada
| | - Nicolas Dumont
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Valérie Gagné-Ouellet
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Cynthia Gagnon
- Department of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
15
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
16
|
Wu M, Tian C, Zou Z, Jin M, Liu H. Gastrointestinal Microbiota in Gastric Cancer: Potential Mechanisms and Clinical Applications-A Literature Review. Cancers (Basel) 2024; 16:3547. [PMID: 39456641 PMCID: PMC11506470 DOI: 10.3390/cancers16203547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Emerging evidence highlights the crucial role of gastrointestinal microbiota in the pathogenesis of gastric cancer. Helicobacter pylori (H. pylori) infection stands out as a primary pathogenic factor. However, interventions such as anti-H. pylori therapy, gastric surgeries, immunotherapy, and chronic inflammation significantly remodel the gastric microbiome, implicating a broader spectrum of microorganisms in cancer development. These microbial populations can modulate gastric carcinogenesis through various mechanisms, including sustained chronic inflammation, bacterial genotoxins, alterations in short-chain fatty acids, elevated gastrointestinal bile acids, impaired mucus barrier function, and increased concentrations of N-nitrosamines and lactic acid. The dynamic changes in gut microbiota also critically influence the outcomes of anti-cancer therapies by modifying drug bioavailability and metabolism, thus affecting therapeutic efficacy and side effect profiles. Additionally, the effectiveness of radiotherapy can be significantly impacted by gut microbiota alterations. Novel therapeutic strategies targeting the microbiome, such as dietary interventions, probiotic and synbiotic supplementation, and fecal microbiota transplantation, are showing promise in cancer treatment. Understanding the intricate relationship between the gut microbiota and gastric cancer is essential for developing new, evidence-based approaches to the prevention and treatment of this malignancy.
Collapse
Affiliation(s)
- Mengjiao Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenjun Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The Eighth Hospital of Wuhan, Wuhan 430012, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.W.); (Z.Z.)
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Mi S, Cai S, Lou G, Xue M. Two-sample Mendelian randomization analysis of the relationship between periodontitis and risk of upper gastrointestinal cancers. Postgrad Med J 2024; 100:820-826. [PMID: 38840504 DOI: 10.1093/postmj/qgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The aim of the present study is to explore the possible association between periodontitis and upper gastrointestinal (UGI) cancers, including esophageal and gastric cancers, utilizing the Mendelian randomization method. METHODS In this research, we utilized the Mendelian randomization method to examine the causal association between periodontitis and UGI cancers. Genome-wide association studies data for periodontitis were obtained from the Gene-Lifestyle Interactions in Dental Endpoints consortium, while UGI cancers' data were accessed from FinnGen's Biobank. After rigorously screening instrumental variables for periodontitis, we analyzed them with UGI cancers primarily using the inverse variance weighted. Finally, to identify outliers, the results were subjected to a leave-one-out sensitivity analysis. RESULTS Inverse variance weighted (fixed effect) results revealed that periodontitis is a risk factor for gastric cancer (OR = 1.7735, 95% CI: 1.1576 to 2.7170, P = 0.0085). As for esophageal cancer, no statistically significant correlation was observed. Furthermore, no outliers were detected in any of the results. CONCLUSION Our two-sample Mendelian randomization study obviously demonstrates a significant positive association between periodontitis and gastric cancer, while no statistically significant correlation was found for esophageal cancer.
Collapse
Affiliation(s)
- Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shangwen Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Guochun Lou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
18
|
Petkevicius V, Lehr K, Kupcinskas J, Link A. Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis. World J Gastroenterol 2024; 30:3972-3984. [PMID: 39351058 PMCID: PMC11438658 DOI: 10.3748/wjg.v30.i35.3972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative anaerobic bacterium that plays a key role in the development of oral inflammation, such as periodontitis and gingivitis. In the last 10 years, F. nucleatum has been identified as a prevalent bacterium associated with colorectal adenocarcinoma and has also been linked to cancer progression, metastasis and poor disease outcome. While the role of F. nucleatum in colon carcinogenesis has been intensively studied, its role in gastric carcinogenesis is still poorly understood. Although Helicobacter pylori infection has historically been recognized as the strongest risk factor for the development of gastric cancer (GC), with recent advances in DNA sequencing technology, other members of the gastric microbial community, and F. nucleatum in particular, have received increasing attention. In this review, we summarize the existing knowledge on the involvement of F. nucleatum in gastric carcinogenesis and address the potential translational and clinical significance of F. nucleatum in GC.
Collapse
Affiliation(s)
- Vytenis Petkevicius
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| |
Collapse
|
19
|
Qian ST, Zhao HY, Xie FF, Liu QS, Cai DL. Streptococcus anginosus in the development and treatment of precancerous lesions of gastric cancer. World J Gastrointest Oncol 2024; 16:3771-3780. [PMID: 39350992 PMCID: PMC11438778 DOI: 10.4251/wjgo.v16.i9.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024] Open
Abstract
The microbiota is strongly association with cancer. Studies have shown significant differences in the gastric microbiota between patients with gastric cancer (GC) patients and noncancer patients, suggesting that the microbiota may play a role in the development of GC. Although Helicobacter pylori (H. pylori) infection is widely recognized as a primary risk factor for GC, recent studies based on microbiota sequencing technology have revealed that non-H. pylori microbes also have a significant impact on GC. A recent study discovered that Streptococcus anginosus (S. anginosus) is more prevalent in the gastric mucosa of patients with GC than in that of those without GC. S. anginosus infection can spontaneously induce chronic gastritis, mural cell atrophy, mucoid chemotaxis, and heterotrophic hyperplasia, which promote the development of precancerous lesions of GC (PLGC). S. anginosus also disrupts the gastric barrier function, promotes the proliferation of GC cells, and inhibits apoptosis. However, S. anginosus is underrepresented in the literature. Recent reports suggest that it may cause precancerous lesions, indicating its emerging pathogenicity. Modern novel molecular diagnostic techniques, such as polymerase chain reaction, genetic testing, and Ultrasensitive Chromosomal Aneuploidy Detection, can be used to gastric precancerous lesions via microbial markers. Therefore, we present a concise summary of the relationship between S. anginosus and PLGC. Our aim was to further investigate new methods of preventing and treating PLGC by exploring the pathogenicity of S. anginosus on PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
20
|
Huma Arya P, Vadhwana B, Tarazi M. Microbial dysbiosis in gastric cancer: Association or causation? Best Pract Res Clin Gastroenterol 2024; 72:101961. [PMID: 39645283 DOI: 10.1016/j.bpg.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Pallavi Huma Arya
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| | - Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| |
Collapse
|
21
|
Lee HK, Shin CM, Chang YH, Yoon H, Park YS, Kim N, Lee DH. Gastric microbiome signature for predicting metachronous recurrence after endoscopic resection of gastric neoplasm. Gastric Cancer 2024; 27:1031-1045. [PMID: 38970748 DOI: 10.1007/s10120-024-01532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Changes in gastric microbiome are associated with gastric carcinogenesis. Studies on the association between gastric mucosa-associated gastric microbiome (MAM) and metachronous gastric cancer are limited. This study aimed to identify gastric MAM as a predictive factor for metachronous recurrence following endoscopic resection of gastric neoplasms. METHOD Microbiome analyses were conducted for 81 patients in a prospective cohort to investigate surrogate markers to predict metachronous recurrence. Gastric MAM in non-cancerous corporal biopsy specimens was evaluated using Illumina MiSeq platform targeting 16S ribosomal DNA. RESULTS Over a median follow-up duration of 53.8 months, 16 metachronous gastric neoplasms developed. Baseline gastric MAM varied with Helicobacter pylori infection status, but was unaffected by initial pathologic diagnosis, presence of atrophic gastritis, intestinal metaplasia, or synchronous lesions. The group with metachronous recurrence did not exhibit distinct phylogenetic diversity compared with the group devoid of recurrence but showed significant difference in β-diversity. The study population could be classified into two distinct gastrotypes based on baseline gastric MAM: gastrotype 1, Helicobacter-abundant; gastrotype 2: Akkermansia-abundant. Patients in gastrotype 2 showed higher risk of metachronous recurrence than gastrotype (Cox proportional hazard analysis, adjusted hazard ratio [95% confidence interval]: 5.10 [1.09-23.79]). CONCLUSIONS Gastric cancer patients can be classified into two distinct gastrotype groups by their MAM profiles, which were associated with different risk of metachronous recurrence.
Collapse
Affiliation(s)
- Ho-Kyoung Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea.
| | - Young Hoon Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13620, South Korea
| |
Collapse
|
22
|
Kim MJ, Kim HN, Jacobs JP, Yang HJ. Combined DNA Methylation and Gastric Microbiome Marker Predicts Helicobacter pylori-Negative Gastric Cancer. Gut Liver 2024; 18:611-620. [PMID: 38509701 PMCID: PMC11249944 DOI: 10.5009/gnl230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Background/Aims While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Hyo-Joon Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Unravelling the role of intratumoral bacteria in digestive system cancers: current insights and future perspectives. J Transl Med 2024; 22:545. [PMID: 38849871 PMCID: PMC11157735 DOI: 10.1186/s12967-024-05320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Liu S, Wang S, Zhang N, Li P. The oral microbiome and oral and upper gastrointestinal diseases. J Oral Microbiol 2024; 16:2355823. [PMID: 38835339 PMCID: PMC11149586 DOI: 10.1080/20002297.2024.2355823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Background Microbiomes are essential components of the human body, and their populations are substantial. Under normal circumstances, microbiomes coexist harmoniously with the human body, but disturbances in this equilibrium can lead to various diseases. The oral microbiome is involved in the occurrence and development of many oral and gastrointestinal diseases. This review focuses on the relationship between oral microbiomes and oral and upper gastrointestinal diseases, and therapeutic strategies aiming to provide valuable insights for clinical prevention and treatment. Methods To identify relevant studies, we conducted searches in PubMed, Google Scholar, and Web of Science using keywords such as "oral microbiome," "oral flora, " "gastrointestinal disease, " without any date restrictions. Subsequently, the retrieved publications were subject to a narrative review. Results In this review, we found that oral microbiomes are closely related to oral and gastrointestinal diseases such as periodontitis, dental caries, reflux esophagitis, gastritis, and upper gastrointestinal tumors (mainly the malignant ones). Oral samples like saliva and buccal mucosa are not only easy to collect, but also display superior sample stability compared to gastrointestinal tissues. Consequently, analysis of the oral microbiome could potentially serve as an efficient preliminary screening method for high-risk groups before undergoing endoscopic examination. Besides, treatments based on the oral microbiomes could aid early diagnosis and treatment of these diseases. Conclusions Oral microbiomes are essential to oral and gastrointestinal diseases. Therapies centered on the oral microbiomes could facilitate the early detection and management of these conditions.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shidong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
25
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
26
|
Sgamato C, Rocco A, Compare D, Priadko K, Romano M, Nardone G. Exploring the Link between Helicobacter pylori, Gastric Microbiota and Gastric Cancer. Antibiotics (Basel) 2024; 13:484. [PMID: 38927151 PMCID: PMC11201017 DOI: 10.3390/antibiotics13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) still represents one of the leading causes of cancer-related mortality and is a major public health issue worldwide. Understanding the etiopathogenetic mechanisms behind GC development holds immense potential to revolutionize patients' treatment and prognosis. Within the complex web of genetic predispositions and environmental factors, the connection between Helicobacter pylori (H. pylori) and gastric microbiota emerges as a focus of intense research investigation. According to the most recent hypotheses, H. pylori triggers inflammatory responses and molecular alterations in gastric mucosa, while non-Helicobacter microbiota modulates disease progression. In this review, we analyze the current state of the literature on the relationship between H. pylori and non-Helicobacter gastric microbiota in gastric carcinogenesis, highlighting the mechanisms by which microecological dysbiosis can contribute to the malignant transformation of the mucosa.
Collapse
Affiliation(s)
- Costantino Sgamato
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Alba Rocco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Debora Compare
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| | - Kateryna Priadko
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Marco Romano
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (K.P.); (M.R.)
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy; (C.S.); (D.C.); (G.N.)
| |
Collapse
|
27
|
Santacroce L, Topi S, Bottalico L, Charitos IA, Jirillo E. Current Knowledge about Gastric Microbiota with Special Emphasis on Helicobacter pylori-Related Gastric Conditions. Curr Issues Mol Biol 2024; 46:4991-5009. [PMID: 38785567 PMCID: PMC11119845 DOI: 10.3390/cimb46050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The gastric milieu, because of its very low acidic pH, is very harsh for bacterial growth. The discovery of Helicobacter pylori (H.p.) has opened a new avenue for studies on the gastric microbiota, thus indicating that the stomach is not a sterile environment. Nowadays, new technologies of bacterial identification have demonstrated the existence of other microorganisms in the gastric habitat, which play an important role in health and disease. This bacterium possesses an arsenal of compounds which enable its survival but, at the same time, damage the gastric mucosa. Toxins, such as cytotoxin-associated gene A, vacuolar cytotoxin A, lipopolysaccharides, and adhesins, determine an inflammatory status of the gastric mucosa which may become chronic, ultimately leading to a gastric carcinoma. In the initial stage, H.p. persistence alters the gastric microbiota with a condition of dysbiosis, predisposing to inflammation. Probiotics and prebiotics exhibit beneficial effects on H.p. infection, and, among them, anti-inflammatory, antioxidant, and antibacterial activities are the major ones. Moreover, the association of probiotics with prebiotics (synbiotics) to conventional anti-H.p. therapy contributes to a more efficacious eradication of the bacterium. Also, polyphenols, largely present in the vegetal kingdom, have been demonstrated to alleviate H.p.-dependent pathologies, even including the inhibition of tumorigenesis. The gastric microbiota composition in health and disease is described. Then, cellular and molecular mechanisms of H.p.-mediated damage are clarified. Finally, the use of probiotics, prebiotics, and polyphenols in experimental models and in patients infected with H.p. is discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
28
|
Zhang R, Qin X, Liu Y. Exploration of the intestinal flora to reveal the important contribution of Radix Astragali to Huangqi Jianzhong Tang in treating chronic atrophic gastritis rats. J Pharm Biomed Anal 2024; 242:116067. [PMID: 38417324 DOI: 10.1016/j.jpba.2024.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Radix Astragali (Huangqi in Chinese, HQ) is a commonly used Chinese herbal medicine for thousands of years. In this study, A classic prescription Huangqi Jianzhong tang (HQJZ) was selected to evaluate the important effect of HQ on rats with chronic atrophic gastritis (CAG) from the perspective of intestinal flora in cecal contents samples. Traditional pharmacological indicators, including weight change, pathological examination and biochemical indicators showed that HQ exerted favorable contribution to HQJZ against CAG, where the efficiencies of HQ and HQJZ were better than HY (HQJZ prepared without HQ). An accurate strategy was adopted to screen out the differential metabolites in the metabolomis analysis of intestinal flora in cecal contents samples based on the optimal screening factors, including VIP (importance of variables in projection), FC (fold change), AUROC (area under the receiver operating characteristic curve) and -ln(p-value), which were evaluated based on their interpreting, grouping, and predicting abilities of the performed orthogonal partial least-squares-discriminate analysis (OPLS-DA) models. Ten altered differential metabolites were obtained and associated with the intestinal flora, which HQ exerted the important metabolic contributions to HQJZ. The efficacy on the diversity of intestinal flora and their correlations with the altered metabolites further showed the important role of HQ in HQJZ composition. This work provided valuable approach for looking for potential biomarkers associated with metabolomics research with more accuracy, and provided new insights into the mechanisms to explain the efficacy of HQ contributing to HQJZ formula.
Collapse
Affiliation(s)
- Ruonan Zhang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China.
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
29
|
Zhang R, Wu Y, Ju W, Wang S, Liu Y, Zhu H. Gut microbiome alterations during gastric cancer: evidence assessment of case-control studies. Front Microbiol 2024; 15:1406526. [PMID: 38812681 PMCID: PMC11133546 DOI: 10.3389/fmicb.2024.1406526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives The study aims to systematically identify the alterations in gut microbiota that observed in gastric cancer through comprehensive assessment of case-control studies. Methods The systematic literature search of PubMed, Embase, Cochrane Library, and Web of Science was conducted to identify case-control studies that compared the microbiomes of individuals with and without gastric cancer. Quality of included studies was evaluated with the Newcastle-Ottawa Quality Assessment Scale (NOS). Meta-analyses utilized a random-effects model, and subgroup and sensitivity analyses were performed to assess study heterogeneity. All data analyses were performed using the "metan" package in Stata 17.0, and the results were described using log odds ratios (log ORs) with 95% confidence intervals (CIs). Results A total of 33 studies involving 4,829 participants were eligible for analysis with 29 studies provided changes in α diversity and 18 studies reported β diversity. Meta-analysis showed that only the Shannon index demonstrated statistical significance for α-diversity [-5.078 (-9.470, -0.686)]. No significant differences were observed at the phylum level, while 11 bacteria at genus-level were identified significant changed, e.g., increasing in Lactobacillus [5.474, (0.949, 9.999)] and Streptococcus [5.095, (0.293, 9.897)] and decreasing in Porphyromonas and Rothia with the same [-8.602, (-11.396, -5.808)]. Sensitivity analysis indicated that the changes of 9 bacterial genus were robust. Subgroup analyses on countries revealed an increasing abundance of Helicobacter and Streptococcus in Koreans with gastric cancer, whereas those with gastric cancer from Portugal had a reduced Neisseria. Regarding the sample sources, the study observed an increase in Lactobacillus and Bacteroides in the gastric mucosa of people with gastric cancer, alongside Helicobacter and Streptococcus. However, the relative abundance of Bacteroides decreased compared to the non-gastric cancer group, which was indicated in fecal samples. Conclusion This study identified robust changes of 9 bacterial genus in people with gastric cancer, which were country-/sample source-specific. Large-scale studies are needed to explore the mechanisms underlying these changes. Systematic Review Unique Identifier: CRD42023437426 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023437426.
Collapse
Affiliation(s)
- Ruimin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yingxin Wu
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Wantao Ju
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Senlin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Yanjun Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, China
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Hongmei Zhu
- Section for Gastrointestinal Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Aliated Hospital of Southwest Jiaotong University & The Second Aliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
- Medical Research Center, The Third People’s Hospital of Chengdu, The Aliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
30
|
Zhang J, Dong C, Lin Y, Shang L, Ma J, Hu R, Wang H. Causal relationship between gut microbiota and gastric cancer: A two‑sample Mendelian randomization analysis. Mol Clin Oncol 2024; 20:38. [PMID: 38628559 PMCID: PMC11019462 DOI: 10.3892/mco.2024.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
The gut microbiota is associated with GC; however, the causal association between the gut microbiota and GC remains to be determined. The aim of the present study was to investigate the causal association between gut microbiota and gastric cancer (GC) from the perspective of Mendelian randomization (MR). The present study performed MR analysis using summary statistics from a genome-wide association study of the gut microbiome and GC. Inverse-variance weighted, MR-Egger and weighted median methods were used to investigate the causal relationship between gut microbiota and GC. Heterogeneity tests were performed using Cochrane's Q statistic. Horizontal polytropy was detected using Mendelian Randomization Pleiotropy RESidual Sum and Outlier were eliminated. Estimates from MR indicated that nine gut microorganism remained stable with regard to acceptance of heterogeneity and sensitivity methods. Among them, the genera Prevotella 7, Roseburia and Ruminococcaceae UCG014 were associated with an increased risk of GC; by contrast, the family Enterobacteriaceae, the genera Allisonella, Lachnospiraceae FCS020, Ruminococcaceae UCG004 and Ruminococcaceae UCG009, and the order Enterobacteriales decreased the risk of GC development. The present study demonstrated the potential importance of modulating the abundance of gut microbiota for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Jianling Zhang
- General Surgery Ward 5, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chunlu Dong
- General Surgery Ward 3, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanyan Lin
- General Surgery Ward 3, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lifeng Shang
- Department of General Surgery, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Junming Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750000, P.R. China
| | - Ruiping Hu
- Department of Endocrinology, The Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Hejing Wang
- Department of Healthcare-Associated Infection Control, The Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
31
|
Ding W, Chen L, Xia J, Dong G, Song B, Pei B, Li X. Causal relationships between gut microbrome and digestive system diseases: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37735. [PMID: 38669367 PMCID: PMC11049755 DOI: 10.1097/md.0000000000037735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
Growing evidences of recent studies have shown that gut microbrome are causally related to digestive system diseases (DSDs). However, causal relationships between the gut microbiota and the risk of DSDs still remain unclear. We utilized identified gut microbiota based on class, family, genus, order and phylum information and digestive system diseases genome-wide association study (GWAS) dataset for two-sample Mendelian randomization (MR) analysis. The inverse variance weighted (IVW) method was used to evaluate causal relationships between gut microbiota and 7 DSDs, including chronic gastritis, colorectal cancer, Crohn's disease, gastric cancer, gastric ulcer, irritable bowel syndrome and esophageal cancer. Finally, we verified the robustness of MR results based on heterogeneity and pleiotropy analysis. We discovered 15 causal associations with genetic liabilities in the gut microbiota and DSDs, such as genus Victivallis, genus RuminococcaceaeUCG005, genus Ruminococcusgauvreauiigroup, genus Oxalobacter and so on. Our MR analysis revealed that the gut microbiota is causally associated with DSDs. Further researches of the gut microbiota and the pathogenesis of DSDs are still significant and provide new methods for the prevention and treatment of DSDs.
Collapse
Affiliation(s)
- Wenjing Ding
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Liangliang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianguo Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Gang Dong
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Biao Song
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bei Pei
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
32
|
Jeong S, Liao YT, Tsai MH, Wang YK, Wu IC, Liu CJ, Wu MS, Chan TS, Chen MY, Hu PJ, Kao WY, Liu HC, Tsai MJ, Liu CY, Chang CC, Wu DC, Hsu YH. Microbiome signatures associated with clinical stages of gastric Cancer: whole metagenome shotgun sequencing study. BMC Microbiol 2024; 24:139. [PMID: 38658841 PMCID: PMC11040827 DOI: 10.1186/s12866-024-03219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the global health concerns. A series of studies on the stomach have confirmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures to distinguish chronic gastritis from gastric cancer will provide a non-invasive preventative and treatment strategy. In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinformatics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric cancer from chronic gastritis. RESULTS A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric cancer. Within each group, the chronic gastritis group was sub-grouped into intestinal metaplasia (n = 15) and non-intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient groups. However, in a two-group univariate comparison, higher Fusobacteria abundance was identified in phylum; Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex-adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful features; Bacteria_caccae was the most contributing species toward gastric cancer and late-stage cancer (beta:2.43, se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis (beta:-1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI-adjusted MasAsLin on metabolic pathway analysis showed that GLCMANNANAUT-PWY degradation was higher in gastric cancer and one of the contributing species was Fusobacterium_varium. CONCLUSION Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_caccae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers against gastric cancer.
Collapse
Affiliation(s)
- Sohyun Jeong
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yi-Tyng Liao
- Development Center for Biotechnology, Taipei, Taiwan
| | - Min-Hsuan Tsai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
| | - Yao-Kuang Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tze-Sian Chan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Jen Hu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
| | | | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA
| | | | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan.
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan.
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Ke Y, Tan C, Zhen J, Dong W. Global status and trends of gastric cancer and gastric microbiota research: a bibliometric analysis. Front Microbiol 2024; 15:1341012. [PMID: 38655079 PMCID: PMC11037409 DOI: 10.3389/fmicb.2024.1341012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Background Numerous studies have cast light on the relationship between the gastric microbiota and gastric carcinogenesis. In this study, we conducted a bibliometric analysis of the relevant literature in the field of gastric cancer and the gastric microbiota and clarified its research status, hotspots, and development trends. Materials and methods Publications were retrieved from the Web of Science Core Collection on 18 July 2023. CiteSpace 6.2.R4, VOSviewer 1.6.19.0, and Biblioshiny were used for the co-occurrence and cooperation analyses of countries, institutions, authors, references, and keywords. A keyword cluster analysis and an emergence analysis were performed, and relevant knowledge maps were drawn. Results The number of published papers in this field totaled 215 and showed an increasing trend. The analysis of funding suggested that the input in this field is increasing steadily. China had the highest number of publications, while the United States had the highest betweenness centrality. Baylor College of Medicine published the most articles cumulatively. Both Ferreira RM and Cooker OO had the highest citation frequency. The journal Helicobacter showed the most interest in this field, while Gut provided a substantial research foundation. A total of 280 keywords were obtained using CiteSpace, which were primarily focused on the eradication and pathogenic mechanisms of Helicobacter pylori, as well as the application of the gastric microbiota in the evaluation and treatment of gastric cancer. The burst analysis suggested that in the future, research may focus on the application of gastric microorganisms, particularly Fusobacterium nucleatum, in the diagnosis and treatment of gastric cancer, along with their pathogenic mechanisms. Conclusion Current studies have been tracking the eradication of Helicobacter pylori and its pathogenic mechanisms, as well as changes in the gastric microbiota during gastric carcinogenesis. Future research may focus on the clinical application and pathogenesis of stomach microorganisms through bacteria such as Fusobacterium nucleatum.
Collapse
Affiliation(s)
- Yujia Ke
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
36
|
Raoul P, Maccauro V, Cintoni M, Scarpellini E, Ianiro G, Gasbarrini A, Mele MC, Rinninella E. Microbiota-Gastric Cancer Interactions and the Potential Influence of Nutritional Therapies. Int J Mol Sci 2024; 25:1679. [PMID: 38338956 PMCID: PMC10855965 DOI: 10.3390/ijms25031679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer deaths, and GC treatments represent a large area of research. Although initially regarded as a sterile organ and unsuitable for microbial communities, the discovery of Helicobacter pylori made us realize that some microbes can colonize the stomach. In recent years, growing interest in gastric bacteria has expanded to the gut microbiota and, more recently, to the oral microbiota. Indeed, the oral-gastric-gut microbiota axis may play a crucial role in maintaining homeostasis, while changes in microbiota composition in GC patients can influence clinical outcomes. On the one hand, the microbiota and its metabolites may significantly influence the progression of GC, while anti-GC treatments such as gastrectomy and chemotherapy may significantly impact the oral-gastric-gut microbiota axis of GC patients. In this context, the role of nutritional therapies, including diet, prebiotics, and probiotics, in treating GC should not be underestimated. Wit this review, we aim to highlight the main role of the gastric, oral, and gut microbiota in GC onset and progression, representing potential future biomarkers for early GC detection and a target for efficient nutritional therapies during the course of GC.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
| | - Valeria Maccauro
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Gianluca Ianiro
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
37
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
38
|
Yu YY, Wu LY, Sun X, Gu Q, Zhou QQ. Effect of Lactobacillus plantarum ZFM4 in Helicobacter pylori-infected C57BL/6 mice: prevention is better than cure. Front Cell Infect Microbiol 2024; 13:1320819. [PMID: 38235493 PMCID: PMC10791759 DOI: 10.3389/fcimb.2023.1320819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Objectives This study was performed to explore the preventive and therapeutic effects of Lactobacillus plantarum ZFM4 on H. pylori infections of the stomach tissue in C57BL/6 mice. Methods In this study, 40 specific-pathogen-free female C57BL/6 mice were randomly divided into five groups, namely, the control, ZFM4 pretreatment) ZFM4 pretreatment before H. pylori infected), model (H. pylori infected), triple therapy (H. pylori infected and treated with triple therapy), and ZFM4 treatment groups (H. pylori infected and treated with ZFM4). The preventive and therapeutic effects of Lactobacillus plantarum ZFM4 were evaluated in H. pylori-infected C57BL/6 mice by assessing gastric tissue morphology, inflammatory cytokine levels, microbial composition, and microbial diversity. Results Lactobacillus plantarum ZFM4 was able to survive in low gastric pH and play a role in preventing H. pylori infection. This was evident from a reduction in both, the gastric inflammatory response and expression of inflammatory factors caused by H. pylori infection. Lactobacillus plantarum ZFM4 could also inhibit the growth of H. pylori via its beneficial impact on the gastric microbiota. Conclusion Our findings suggest that Lactobacillus plantarum ZFM4 offers superior preventive effects against H. pylori infections when used alone. However, the therapeutic effect on established infections is weaker. Further clinical trials are needed to confirm the specific dosage, duration, and other aspects of administration.
Collapse
Affiliation(s)
- Ying-ying Yu
- Department of general practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ling-yan Wu
- Department of general practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xue Sun
- Department of general practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qing-qing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Wang G, Wang H, Ji X, Wang T, Zhang Y, Jiang W, Meng L, Wu HJ, Xing X, Ji J. Intratumoral microbiome is associated with gastric cancer prognosis and therapy efficacy. Gut Microbes 2024; 16:2369336. [PMID: 38944840 PMCID: PMC11216101 DOI: 10.1080/19490976.2024.2369336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
The role of the intratumoral microbiome in gastric cancer (GC) has not been comprehensively assessed. Here, we explored the relationship between the microbial community and GC prognosis and therapy efficacy. Several cancer-associated microbial characteristics were identified, including increased α-diversity, differential β-diversity, and decreased Helicobacter pylori abundance. After adjusting for clinical features, prognostic analysis revealed 2 phyla, 14 genera, and 5 species associated with the overall survival of patients with GC. Additionally, 2 phyla, 14 genera, and 6 species were associated with adjuvant chemotherapy (ACT) efficacy in patients with stage II - III GC. Furthermore, we classified GC microbiome structures into three microbial subtypes (MS1, MS2 and MS3) with distinguishing features. The MS1 subtype exhibited high immune activity and enrichment of microbiota related to immunotherapy and butyric acid-producing, as well as potential benefits in immunotherapy. MS2 featured the highest α-diversity and activation of the TFF pathway, MS3 was characterized by epithelial-mesenchymal transition and was associated with poor prognosis and reduced ACT efficacy. Collectively, the results of this study provide valuable insights into the microbial characteristics associated with GC prognosis and therapy efficacy.
Collapse
Affiliation(s)
- Gangjian Wang
- Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Haojie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Ye Zhang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Wenjie Jiang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hua-Jun Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Xiaofang Xing
- Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
40
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
41
|
Nakano T, Dohi O, Takagi T, Naito Y, Fukui H, Miyazaki H, Yasuda T, Yoshida T, Azuma Y, Ishida T, Kitae H, Matsumura S, Takayama S, Mizuno N, Kashiwagi S, Mizushima K, Inoue R, Doi T, Hirose R, Inoue K, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Konishi H, Itoh Y. Characteristics of Gastric Mucosa-Associated Microbiota in Patients with Early Gastric Cancer After Successful Helicobacter pylori Eradication. Dig Dis Sci 2023; 68:4398-4406. [PMID: 37875607 DOI: 10.1007/s10620-023-08154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is widely recognized as a definite carcinogen in gastric cancer (GC). Although H. pylori eradication reduces the risk of GC, GC recurrence has been detected even after successful H. pylori eradication. Recently, the analysis of gut microbiota was reported. AIMS This study aimed to evaluate the correlation between gastric mucosa-associated microbiota (G-MAM) and early gastric cancer (EGC) after successful H. pylori eradication. METHODS In this pilot study, G-MAM were collected during the esophagogastroduodenoscopy of 17 patients, receiving H. pylori eradication therapy at least 5 years ago. The patients were divided into those with EGC (the EGC group, 8 patients) and those without EGC (the NGC group, 9 patients). Microbial samples in the greater curvature of the pyloric site were obtained using an endoscopic cytology brush, and the G-MAM profiles of each sample were analyzed using 16S rRNA V3-V4 gene sequencing. RESULTS Between the two groups, there was no significant difference in the median age, sex, median period after successful eradication of H. pylori, the α diversity, and the average abundance at the phylum level. At the genus level, the average abundance of Unclassified Oxalobacteraceae, Capnocytophaga, and Haemophilus was significantly lower in the EGC group than in the NGC group (0.89 vs. 0.14%, P < 0.01, 0.28 vs. 0.00%, P < 0.01 and 5.84 vs. 2.16%, P = 0.034, respectively). CONCLUSIONS We demonstrated alternations in the profiles of G-MAM between the two groups. Our results suggest that G-MAM may influence carcinogenesis after successful H. pylori eradication.
Collapse
Affiliation(s)
- Takahiro Nakano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Gastroenterology and Hepatology, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Fukui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Miyazaki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yasuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuka Azuma
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsugitaka Ishida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Kitae
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinya Matsumura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shun Takayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naoki Mizuno
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryohei Hirose
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
42
|
Wong PY, Yip C, Lemberg DA, Day AS, Leach ST. Evolution of a Pathogenic Microbiome. J Clin Med 2023; 12:7184. [PMID: 38002796 PMCID: PMC10672640 DOI: 10.3390/jcm12227184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The process of microbiome development arguably begins before birth. Vertical transmission of bacteria from the mother to the infant is a keystone event in microbiome development. Subsequent to birth, the developing microbiome is vulnerable to influence from a wide range of factors. Additionally, the microbiome can influence the health and development of the host infant. This intricate interaction of the gastrointestinal microbiome and the host has been described as both symbiotic and dysbiotic. Defining these terms, a symbiotic microbiome is where the microbiome and host provide mutual benefit to each other. A pathogenic microbiome, or more precisely a gastrointestinal microbiome associated with disease, is increasing described as dysbiotic. This review seeks to investigate the factors that contribute to evolving a disease-causing or 'dysbiotic' microbiome. This review covers the development of the gastrointestinal microbiome in infants, the interaction of the microbiome with the host, and its contribution to host immunity and investigates specific features of the gastrointestinal microbiome that are associated with disease.
Collapse
Affiliation(s)
- Pui Yin Wong
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| | - Carmen Yip
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| | - Daniel A. Lemberg
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia;
| | - Andrew S. Day
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia;
- Department of Paediatrics, University of Otago, Christchurch 8011, New Zealand
| | - Steven T. Leach
- Discipline of Paediatrics, School of Clinical Medicine, University of NSW, Sydney 2052, Australia; (P.Y.W.); (C.Y.); (A.S.D.)
| |
Collapse
|
43
|
Chattopadhyay I, Gundamaraju R, Rajeev A. Diversification and deleterious role of microbiome in gastric cancer. Cancer Rep (Hoboken) 2023; 6:e1878. [PMID: 37530125 PMCID: PMC10644335 DOI: 10.1002/cnr2.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Collapse
Affiliation(s)
| | - Rohit Gundamaraju
- ER stress and Mucosal Immunology TeamSchool of Health Sciences, University of TasmaniaLauncestonTasmaniaAustralia
| | - Ashwin Rajeev
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurIndia
| |
Collapse
|
44
|
Shin WS, Xie F, Chen B, Yu J, Lo KW, Tse GMK, To KF, Kang W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers (Basel) 2023; 15:4993. [PMID: 37894360 PMCID: PMC10605912 DOI: 10.3390/cancers15204993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
While previous research has primarily focused on the impact of H. pylori and Epstein-Barr virus (EBV), emerging evidence suggests that other microbial influences, including viral and fungal infections, may also contribute to gastric cancer (GC) development. The intricate interactions between these microbes and the host's immune response provide a more comprehensive understanding of gastric cancer pathogenesis, diagnosis, and treatment. The review highlights the roles of established players such as H. pylori and EBV and the potential impacts of gut bacteria, mainly Lactobacillus, Streptococcus, hepatitis B virus, hepatitis C virus, and fungi such as Candida albicans. Advanced sequencing technologies offer unprecedented insights into the complexities of the gastric microbiome, from microbial diversity to potential diagnostic applications. Furthermore, the review highlights the potential for advanced GC diagnosis and therapies through a better understanding of the gut microbiome.
Collapse
Affiliation(s)
- Wing Sum Shin
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Fuda Xie
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Bonan Chen
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kwok Wai Lo
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Gary M. K. Tse
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Ka Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wei Kang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
45
|
Komori E, Kato-Kogoe N, Imai Y, Sakaguchi S, Taniguchi K, Omori M, Ohmichi M, Nakamura S, Nakano T, Lee SW, Ueno T. Changes in salivary microbiota due to gastric cancer resection and its relation to gastric fluid microbiota. Sci Rep 2023; 13:15863. [PMID: 37740058 PMCID: PMC10516953 DOI: 10.1038/s41598-023-43108-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Gastric cancer is one of the leading causes of death worldwide, and resections are performed to cure the disease. We have previously reported the changes in the gastric microbiota after gastric cancer resection, which may be associated with the oral microbiota; however, the changes in the oral microbiota remain uncharacterized. This study aimed to characterize the changes in the salivary microbiota caused by gastric cancer resection and to evaluate their association with the gastric fluid microbiota. Saliva and gastric fluid samples were collected from 63 patients who underwent gastrectomy before and after surgery, and a 16S rRNA metagenomic analysis was performed to compare the microbiota composition. The number of bacterial species in the salivary microbiota decreased, and the bacterial composition changed after the resection of gastric cancer. In addition, we identified several bacterial genera that varied significantly in the salivary microbiota, some of which also showed similar changes in the gastric fluid microbiota. These findings indicate that changes in the gastric environment affect the oral microbiota, emphasizing the close association between the oral and gastric fluid microbiota. Our study signifies the importance of focusing on the oral microbiota in the perioperative period of gastrectomy in patients with gastric cancer.
Collapse
Affiliation(s)
- Eri Komori
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Nahoko Kato-Kogoe
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Yoshiro Imai
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Michi Omori
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Mayu Ohmichi
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
46
|
Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K, Das R. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-A systematic review. 3 Biotech 2023; 13:303. [PMID: 37588796 PMCID: PMC10425313 DOI: 10.1007/s13205-023-03734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Gastroduodenal diseases have prevailed for a long time and more so due to dominance of gut bacteria Helicobacter pylori in most of the cases. But habitation by other gut microbiota in gastroduodenal diseases and the relationship between Helicobacter pylori and gastrointestinal microbiota in different gastroduodenal diseases is somewhat being unravelled in the current times. For this systematic review, we did a literature search of various gastroduodenal diseases and the effect on gut microbiota pertaining to it. A search of the online bibliographic databases PUBMED and PUBMED CENTRAL was carried out to identify articles published between 1977 and May 2022. The analysis of these selected studies highlighted the inhabitation of other gut microbiota such as Fusobacteria, Bacteroidetes, Streptococcaceae, Prevotellaceae, Fusobacteriaceae, and many others. Interplay between these microbiota and H. pylori have also been noted which suggested that gastroduodenal diseases and gut microbiota are intertwined by a symbiotic association regardless of the H. pylori status. The relationship between the gut microbiota and many gastroduodenal diseases, such as gastritis, gastric cancer, lymphomas, and ulcers, demonstrates the dysbiosis of the gut microbiota in both the presence and absence of H. pylori. The evolving ways for eliminating H. pylori are provided along with inhibiting qualities of other species on H. pylori. Most significant member of our gut system is Helicobacter pylori which has been associated with numerous diseases like gastric cancer, gastritis, duodenal ulcer.
Collapse
Affiliation(s)
- Prateek Sharma
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shravani M. Phatak
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Prisha Warikoo
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Akshita Mathur
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shweta Mahant
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Super Speciality Hospital, Kaushambi, Ghaziabad, Uttar Pradesh India
| | - Rajashree Das
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| |
Collapse
|
47
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Su Q, Jin C, Bo Z, Yang Y, Wang J, Wang J, Zhou J, Chen Y, Zeng H, Chen G, Wang Y. Association between gut microbiota and gastrointestinal cancer: a two-sample bi-directional Mendelian randomization study. Front Microbiol 2023; 14:1181328. [PMID: 37533836 PMCID: PMC10390774 DOI: 10.3389/fmicb.2023.1181328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Background The gut microbiome is closely related to gastrointestinal (GI) cancer, but the causality of gut microbiome with GI cancer has yet to be fully established. We conducted this two-sample Mendelian randomization (MR) study to reveal the potential causal effect of gut microbiota on GI cancer. Materials and methods Summary-level genetic data of gut microbiome were derived from the MiBioGen consortium and the Dutch Microbiome Project. Summary statistics of six GI cancers were drawn from United Kingdom Biobank. Inverse-variance-weighted (IVW), MR-robust adjusted profile score (MR-RAPS), and weighted-median (WM) methods were used to evaluate the potential causal link between gut microbiota and GI cancer. In addition, we performed sensitivity analyses and reverse MR analyses. Results We identified potential causal associations between 21 bacterial taxa and GI cancers (values of p < 0.05 in all three MR methods). Among them, phylum Verrucomicrobia (OR: 0.17, 95% CI: 0.05-0.59, p = 0.005) retained a strong negative association with intrahepatic cholangiocarcinoma after the Bonferroni correction, whereas order Bacillales (OR: 1.67, 95% CI: 1.23-2.26, p = 0.001) retained a strong positive association with pancreatic cancer. Reverse MR analyses indicated that GI cancer was associated with 17 microbial taxa in all three MR methods, among them, a strong inverse association between colorectal cancer and family Clostridiaceae1 (OR: 0.91, 95% CI: 0.86-0.96, p = 0.001) was identified by Bonferroni correction. Conclusion Our study implicates the potential causal effects of specific microbial taxa on GI cancer, potentially providing new insights into the prevention and treatment of GI cancer through specific gut bacteria.
Collapse
Affiliation(s)
- Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Wang M, Yang G, Tian Y, Zhang Q, Liu Z, Xin Y. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy. Front Immunol 2023; 14:1183331. [PMID: 37457738 PMCID: PMC10348752 DOI: 10.3389/fimmu.2023.1183331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, leading to the deaths of millions of people worldwide. Therefore, early detection and effective therapeutic strategies are of great value for decreasing the occurrence of advanced GC. The human microbiota is involved not only in the maintenance of physiological conditions, but also in human diseases such as obesity, diabetes, allergic and atopic diseases, and cancer. Currently, the composition of the bacteria in the host, their functions, and their influence on disease progression and treatment are being discussed. Previous studies on the gut microbiome have mostly focused on Helicobacter pylori (Hp) owing to its significant role in the development of GC. Nevertheless, the enrichment and diversity of other bacteria that can modulate the tumor microenvironment are involved in the progression of GC and the efficacy of immunotherapy. This review provides systematic insight into the components of the gut microbiota and their application in GC, including the specific bacteria of GC, their immunoregulatory effect, and their diagnostic value. Furthermore, we discuss the relationship between the metabolism of microbes and their potential applications, which may serve as a new approach for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ge Yang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yuan Tian
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihe Zhang
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xin
- College of Basic Medical Sciences and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
50
|
Yang HJ. [Gastric Cancer and Gastric Microbiome]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:235-242. [PMID: 37350518 DOI: 10.4166/kjg.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Gastric cancer remains a significant disease burden in Korea, with Helicobacter pylori infections being the most crucial risk factor. With the advent of next-generation sequencing, the role of gastric microbiota in gastric cancer has attracted increasing attention. Studies have shown that the gastric microbiota of patients with gastric cancer differs in composition from that of the controls, with reduced microbial diversity. Lactic acid bacteria and oral microflora are often enriched in gastric cancer and are believed to induce chronic inflammation or promote the production of nitroso compounds. This review focuses on recent studies comparing the gastric microbiome in gastric cancer patients and controls.
Collapse
Affiliation(s)
- Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|