1
|
Moore LL, Houchen CW. Epigenetic Landscape and Therapeutic Implication of Gene Isoforms of Doublecortin-Like Kinase 1 for Cancer Stem Cells. Int J Mol Sci 2023; 24:16407. [PMID: 38003596 PMCID: PMC10671580 DOI: 10.3390/ijms242216407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While significant strides have been made in understanding cancer biology, the enhancement in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifications characterized by hereditary shifts in gene expression without changes to the DNA sequence play a critical role in producing alternative gene isoforms. When these processes go awry, they influence cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach, harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs, may prove more effective than therapies that solely target DCLK1.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Gao A, Bai P, Zhang M, Yao Y, Herman JG, Guo M. RASSF1A promotes ATM signaling and RASSF1A methylation is a synthetic lethal marker for ATR inhibitors. Epigenomics 2023; 15:1205-1220. [PMID: 38093706 DOI: 10.2217/epi-2023-0306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Aim: The mechanism of RASSF1A in DNA damage repair remains to be further clarified for applying to synthetic lethal strategy. Materials & methods: Eight esophageal cancer cell lines, 181 cases of esophageal dysplasia and 1066 cases of primary esophageal squamous cell carcinoma (ESCC) were employed. Methylation-specific PCR, the CRISPR/Cas9 technique, immunoprecipitation assay and a xenograft mouse model were used. Results: RASSF1A was methylated in 2.21% of esophageal dysplasia and 11.73% of ESCC. RASSF1A was also involved in DNA damage repair through activating Hippo signaling. Loss of RASSF1A expression sensitized esophageal cancer cell lines to ataxia telangiectasia mutated and rad3-related (ATR) inhibitor (VE-822) both in vitro and in vivo. Conclusion: RASSF1A methylation is a synthetic lethal marker for ATR inhibitors.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Panpan Bai
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Henan Advanced Technology Research Institute, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuanxin Yao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
3
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
4
|
Dhanaraman T, Singh S, Killoran RC, Singh A, Xu X, Shifman JM, Smith MJ. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci Signal 2020; 13:13/653/eabb4778. [PMID: 33051258 DOI: 10.1126/scisignal.abb4778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small guanosine triphosphatases (GTPases) of the RAS superfamily signal by directly binding to multiple downstream effector proteins. Effectors are defined by a folded RAS-association (RA) domain that binds exclusively to GTP-loaded (activated) RAS, but the binding specificities of most RA domains toward more than 160 RAS superfamily GTPases have not been characterized. Ten RA domain family (RASSF) proteins comprise the largest group of related effectors and are proposed to couple RAS to the proapoptotic Hippo pathway. Here, we showed that RASSF1-6 formed complexes with the Hippo kinase ortholog MST1, whereas RASSF7-10 formed oligomers with the p53-regulating effectors ASPP1 and ASPP2. Moreover, only RASSF5 bound directly to activated HRAS and KRAS, and RASSFs did not augment apoptotic induction downstream of RAS oncoproteins. Structural modeling revealed that expansion of the RASSF effector family in vertebrates included amino acid substitutions to key residues that direct GTPase-binding specificity. We demonstrated that the tumor suppressor RASSF1A formed complexes with the RAS-related GTPases GEM, REM1, REM2, and the enigmatic RASL12. Furthermore, interactions between RASSFs and RAS GTPases blocked YAP1 nuclear localization. Thus, these simple scaffolds link the activation of diverse RAS family small G proteins to Hippo or p53 regulation.
Collapse
Affiliation(s)
- Thillaivillalan Dhanaraman
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Anamika Singh
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Xingjian Xu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Julia M Shifman
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
5
|
Hossain MS, Roy AS, Islam MS. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Sci Rep 2020; 10:14542. [PMID: 32884013 PMCID: PMC7471297 DOI: 10.1038/s41598-020-71457-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ras association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as predict the structural changes associated with the mutants that hamper the normal protein-protein interactions. We adopted both sequence and structure based approaches to analyze the SNPs of RASSF5 protein. We also analyzed the putative post translational modification sites as well as the altered protein-protein interactions that encompass various cascades of signals. Out of all the SNPs obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R shows the most remarkable deviation. Protein-protein interaction analysis revealed that RASSF5 acts as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sajedul Islam
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh.
| |
Collapse
|
6
|
Ko KP, Jeong SI, Lim JS, Lee KW, Lee MG, Chi SG. NORE1A directs apoptotic switch of TNF signaling through reciprocal modulation of ITCH-mediated destruction of TNFRI and BAX. Oncogene 2020; 39:5675-5689. [PMID: 32690868 DOI: 10.1038/s41388-020-01392-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
NORE1A (RASSF5) is a tumor suppressor of the Ras-association domain family (RASSF) that is commonly inactivated in multiple human cancers. However, the molecular mechanism underlying its growth inhibition function remains largely undefined. Here we report that NORE1A antagonizes tumor necrosis factor receptor I (TNFRI) through the assembly of ITCH-mediated destruction complex to suppress TNF-NF-κB signaling and tumorigenesis. Moreover, NORE1A is identified as a transcription target of NF-κB, which directs an apoptotic switch of TNF effect by blocking ITCH interaction with and ubiquitination of BAX. Mechanistically, NORE1A binds directly to TNFRI and ITCH via the C1 and PPXY domains, respectively to facilitate the formation of ITCH-mediated destruction complex followed by ubiquitination-mediated lysosomal degradation of TNFRI. Through this function, NORE1A suppresses TNF-induced NF-κB-mediated transcription of pro-inflammatory and tumor-promoting genes, epithelial-to-mesenchymal transition, invasion and migration of tumor cells, and also debilitates tumor cell activation of macrophage and fibroblast. While NORE1A suppresses TNF receptor-mediated apoptosis, it activates TNF-induced apoptosis through BAX activation by protecting BAX from ITCH binding and ubiquitination. Cytotoxic response to TNF is substantially attenuated in NORE1A-depleted cells and tumors, and NORE1A-induced tumor regression is highly impeded in BAX-depleted tumors. An inverse correlation is shown between NORE1A and TNFRI expression in both cancer cell lines and primary tumors, and NORE1A effect on survival of cancer patients is strongly associated with expression status of ITCH. Collectively, this study uncovers that NORE1A directs a substrate switch of ITCH favoring TNFRI over BAX to terminate TNF signaling and accelerate apoptosis, illuminating the mechanistic consequence of NORE1A inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Kyung-Phil Ko
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ji-Sun Lim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Kyung-Woo Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
7
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
8
|
Ta TV, Nguyen QN, Chu HH, Truong VL, Vuong LD. RAS/RAF mutations and their associations with epigenetic alterations for distinct pathways in Vietnamese colorectal cancer. Pathol Res Pract 2020; 216:152898. [PMID: 32089414 DOI: 10.1016/j.prp.2020.152898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
KRAS, NRAS, and BRAF are potential tumor-driven genes that are involved in the RAS/RAF/MAPK signaling pathway. RAS/RAF mutations importantly contribute to colorectal tumorigenesis since they remain the activated status of downstream pathways without regulation of the upstream EGFR signal. However, it has not been unclear how epigenetic alterations involved in colorectal tumorigenesis mediated by KRAS, NRAS, or BRAF mutations. Therefore, in this study, we investigated the frequency and distribution of KRAS/NRAS/BRAF mutations in Vietnamese colorectal cancer (CRC) and explored the relationship between genetic and epigenetic abnormalities in 156 tumors of CRC. Somatic mutations of KRAS (exon 2, codon 12/13; exon 3, codon 61), NRAS (exon 2, codon 12/13; exon 3, codon 61), and BRAF (exon 15, codon 600) was determined by Cobas® KRAS Mutation Test, Therascreen NRAS Pyro Kit and Cobas® 4800 BRAF V600 Mutation Test, respectively. Methylation status of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC was detected by methylation-specific PCR. Distribution of each abnormality in clinicopathological features was also analyzed. Results showed the mutation rates of KRAS, NRAS, and BRAF were 41.0 %, 9.6 %, 8.3 % respectively, while the methylation rates of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC were 16.7 %, 16.7 %, 32.7 %, 30.1 %, 30.1 %, and 37.2 % respectively. The distribution of KRAS mutation was mutually exclusive against that of NRAS (p < 0.001) and BRAF (p < 0.001) mutations in CRC. RAS/RAF mutations were more common in adenocarcinoma subtype (p = 0.020), whereas RASSF1A methylation was more frequent in mucinous adenocarcinoma subtype (p = 0.007). In addition, the frequency of having KRAS mutations was significantly higher in MGMT (p = 0.035) or RASSF1A (p = 0.043) methylated cases than in those without methylation. BRAF mutations were positively associated with MLH1 hypermethylation (p = 0.028) but were inversely associated with APC hypermethylation (p = 0.032). Overall, our results show specific interactions of genetic and epigenetic alterations and suggest the presence of independent oncogenic pathways in tumorigenesis of CRC.
Collapse
Affiliation(s)
- To Van Ta
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Van-Long Truong
- Department of Smart Food and Drug, College of BNIT, Inje University, Gimhae 50834, South Korea.
| | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam.
| |
Collapse
|
9
|
Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis 2019; 10:928. [PMID: 31804463 PMCID: PMC6895193 DOI: 10.1038/s41419-019-2169-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The Ras association domain family protein1 isoform A (RASSF1A) is a well-known tumor-suppressor protein frequently inactivated in various human cancers. Consistent with its function as a molecular scaffold protein, referred to in many studies, RASSF1A prevents initiation of tumorigenesis, growth, and dissemination through different biological functions, including cell cycle arrest, migration/metastasis inhibition, microtubular stabilization, and apoptosis promotion. As a regulator of key cancer pathways, namely Ras/Rho GTPases and Hippo signaling without ignoring strong interaction with microtubules, RASSF1A is indeed one of the guardians of cell homeostasis. To date, as we approach the two decade anniversary of RASSF1A's discovery, this review will summarize our current knowledge on the RASSF1A key interactions as a tumor suppressor and discuss their impact on cell fate during carcinogenesis. This could facilitate a deeper understanding of tumor development and provide us with new strategies in cancer treatment by targeting the RASSF1A pathway.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- U830 INSERM "Genetics and biology of cancers, A.R.T group", Curie Institute, Paris, France
- Department of Thoracic Oncology & CIC1425, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
| |
Collapse
|
10
|
Dubois F, Bergot E, Levallet G. Cancer and RASSF1A/RASSF1C, the Two Faces of Janus. Trends Cancer 2019; 5:662-665. [DOI: 10.1016/j.trecan.2019.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
|
11
|
Zinatizadeh MR, Momeni SA, Zarandi PK, Chalbatani GM, Dana H, Mirzaei HR, Akbari ME, Miri SR. The Role and Function of Ras-association domain family in Cancer: A Review. Genes Dis 2019; 6:378-384. [PMID: 31832517 PMCID: PMC6889020 DOI: 10.1016/j.gendis.2019.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Ras gene mutation has been observed in more than 30% of cancers, and 90% of pancreatic, lung and colon cancers. Ras proteins (K-Ras, H-Ras, N-Ras) act as molecular switches which are activated by binding to GTP. They play a role in the cascade of cell process control (proliferation and cell division). In the inactive state, transforming GTP to GDP leads to the activation of GTpase in Ras gene. However, the mutation in Ras leads to the loss of internal GTPase activity and permanent activation of the protein. The activated Ras can promote the cell death or stop cell growth, which are facilitated by Ras-association domain family. Various studies have been conducted to determine the importance of losing RASSF proteins in Ras-induced tumors. This paper examines the role of Ras and RASSF proteins. In general, RASSF proteins can be used as a suitable means for targeting a large group of Ras-induced tumors.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Ali Momeni
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Francisco J, Byun J, Zhang Y, Kalloo OB, Mizushima W, Oka S, Zhai P, Sadoshima J, Del Re DP. The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. J Biol Chem 2019; 294:13131-13144. [PMID: 31311858 DOI: 10.1074/jbc.ra119.008970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammation is a central feature of cardiovascular disease, including myocardial infarction and heart failure. Reperfusion of the ischemic myocardium triggers a complex inflammatory response that can exacerbate injury and worsen heart function, as well as prevent myocardial rupture and mediate wound healing. Therefore, a more complete understanding of this process could contribute to interventions that properly balance inflammatory responses for improved outcomes. In this study, we leveraged several approaches, including global and regional ischemia/reperfusion (I/R), genetically modified mice, and primary cell culture, to investigate the cell type-specific function of the tumor suppressor Ras association domain family member 1 isoform A (RASSF1A) in cardiac inflammation. Our results revealed that genetic inhibition of RASSF1A in cardiomyocytes affords cardioprotection, whereas myeloid-specific deletion of RASSF1A exacerbates inflammation and injury caused by I/R in mice. Cell-based studies revealed that RASSF1A negatively regulates NF-κB and thereby attenuates inflammatory cytokine expression. These findings indicate that myeloid RASSF1A antagonizes I/R-induced myocardial inflammation and suggest that RASSF1A may be a promising target in immunomodulatory therapy for the management of acute heart injury.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Olivia Berman Kalloo
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103.
| |
Collapse
|
13
|
Du N, Bao W, Zhang K, Lu X, Crew R, Wang X, Liu G, Wang F. Cytogenetic characterization of the malignant primitive neuroectodermal SK-PN-DW tumor cell line. BMC Cancer 2019; 19:412. [PMID: 31046733 PMCID: PMC6498632 DOI: 10.1186/s12885-019-5625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background The SK-PN-DW cell line was established in 1979 and is commercially available. Despite the use of this cell line as an in vitro model for functional and therapeutic studies of malignant primitive neuroectodermal tumor (PNET), there is a lack of complete information about the genetic alterations that are present at the cytogenetic level. Thus, the current study aimed to characterize the cytogenetic profile of this cell line. Methods Routine G-banded chromosome analysis, fluorescence in situ hybridization, and oligonucleotide array comparative genomic hybridization assays were performed to characterize the chromosomal changes in this cell line. Results The G-banded karyotype analysis showed that the number of chromosomes in this cell line ranged between 36 and 41. Importantly, all cells displayed a loss of chromosomes Y, 11, 13, and 18. However, some cells showed an additional loss of chromosome 10. Additionally, the observed structural changes indicated: a) unbalanced translocation between chromosomes 1 and 7; b) translocation between chromosomes 11 and 22 at breakpoints 11q24 and 22q12, which is a classical translocation that is associated with Ewing sarcoma; c) a derivative chromosome due to a whole arm translocation between chromosomes 16 and 17 at likely breakpoints 16p10 and 17q10; and d) possible rearrangement in the short arm of chromosome 18. Moreover, a variable number of double minutes were also observed in each metaphase cell. Furthermore, the microarray assay results not only demonstrated genomic-wide chromosomal imbalance in this cell line and precisely placed chromosomal breakpoints on unbalanced, rearranged chromosomes, but also revealed information about subtle chromosomal changes and the chromosomal origin of double minutes. Finally, the fluorescence in situ hybridization assay confirmed the findings of the routine cytogenetic analysis and microarrays. Conclusion The accurate determination of the cytogenetic profile of the SK-PN-DW cell line is helpful in enabling the research community to utilize this cell line for future identity and comparability studies, in addition to demonstrating the utility of the complete cytogenetic profile, as a public resource.
Collapse
Affiliation(s)
- Na Du
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wanguo Bao
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Kaiyu Zhang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebecca Crew
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xianfu Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Guangming Liu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Gastroenterology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Feng Wang
- Department of Infectious Diseases, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
14
|
Szimler T, Gráczer É, Györffy D, Végh B, Szilágyi A, Hajdú I, Závodszky P, Vas M. New type of interaction between the SARAH domain of the tumour suppressor RASSF1A and its mitotic kinase Aurora A. Sci Rep 2019; 9:5550. [PMID: 30944388 PMCID: PMC6447619 DOI: 10.1038/s41598-019-41972-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The tumour suppressor protein RASSF1A is phosphorylated by Aurora A kinase, thereby impairing its tumour suppressor function. Consequently, inhibiting the interaction between Aurora A and RASSF1A may be used for anti-tumour therapy. We used recombinant variants of RASSF1A to map the sites of interaction with Aurora A. The phosphorylation kinetics of three truncated RASSF1A variants has been analysed. Compared to the RASSF1A form lacking the 120 residue long N-terminal part, the Km value of the phosphorylation is increased from 10 to 45 μM upon additional deletion of the C-terminal SARAH domain. On the other hand, deletion of the flexible loop (Δ177-197) that precedes the phosphorylation site/s (T202/S203) results in a reduction of the kcat value from about 40 to 7 min-1. Direct physical interaction between the isolated SARAH domain and Aurora A was revealed by SPR. These data demonstrate that the SARAH domain of RASSF1A is involved in the binding to Aurora A kinase. Structural modelling confirms that a novel complex is feasible between the SARAH domain and the kinase domain of Aurora A. In addition, a regulatory role of the loop in the catalytic phosphorylation reaction has been demonstrated both experimentally and by structural modelling.
Collapse
Affiliation(s)
- T Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - É Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - D Györffy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - B Végh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - A Szilágyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - I Hajdú
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary.
| | - P Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - M Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117, Budapest, Hungary.
| |
Collapse
|
15
|
Young LC, Rodriguez-Viciana P. MRAS: A Close but Understudied Member of the RAS Family. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033621. [PMID: 29311130 DOI: 10.1101/cshperspect.a033621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member.
Collapse
Affiliation(s)
- Lucy C Young
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94158
| | - Pablo Rodriguez-Viciana
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Iwasa H, Hossain S, Hata Y. Tumor suppressor C-RASSF proteins. Cell Mol Life Sci 2018; 75:1773-1787. [PMID: 29353317 PMCID: PMC11105443 DOI: 10.1007/s00018-018-2756-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
17
|
Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. Int J Mol Sci 2017; 18:ijms18102160. [PMID: 29039788 PMCID: PMC5666841 DOI: 10.3390/ijms18102160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the Ras Association Domain Family 1A (RASSF1A) gene. Aberrant methylation of RASSF1A has been reported in melanoma, sarcoma and carcinoma of different tissues. RASSF1A hypermethylation has been correlated with tumor progression and poor prognosis. Reactivation of epigenetically silenced TSG has been suggested as a therapy in cancer treatment. In particular, natural compounds isolated from herbal extracts have been tested for their capacity to induce RASSF1A in cancer cells, through demethylation. Here, we review the treatment of cancer cells with natural supplements (e.g., methyl donors, vitamins and polyphenols) that have been utilized to revert or prevent the epigenetic silencing of RASSF1A. Moreover, we specify pathways that were involved in RASSF1A reactivation. Several of these compounds (e.g., reseveratol and curcumin) act by inhibiting the activity or expression of DNA methyltransferases and reactive RASSF1A in cancer. Thus natural compounds could serve as important agents in tumor prevention or cancer therapy. However, the exact epigenetic reactivation mechanism is still under investigation.
Collapse
|
18
|
Barnoud T, Schmidt ML, Donninger H, Clark GJ. The role of the NORE1A tumor suppressor in Oncogene-Induced Senescence. Cancer Lett 2017; 400:30-36. [PMID: 28455242 PMCID: PMC5502528 DOI: 10.1016/j.canlet.2017.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
The Ras genes are the most frequently mutated oncogenes in human cancer. However, Ras biology is quite complex. While Ras promotes tumorigenesis by regulating numerous growth promoting pathways, activated Ras can paradoxically also lead to cell cycle arrest, death, and Oncogene-Induced Senescence (OIS). OIS is thought to be a critical pathway that serves to protect cells against aberrant Ras signaling. Multiple reports have highlighted the importance of the p53 and Rb tumor suppressors in Ras mediated OIS. However, until recently, the molecular mechanisms connecting Ras to these proteins remained unknown. The RASSF family of tumor suppressors has recently been identified as direct effectors of Ras. One of these members, NORE1A (RASSF5), may be the missing link between Ras-induced senescence and the regulation of p53 and Rb. This occurs both quantitatively, by promoting protein stability, as well as qualitatively via promoting critical pro-senescent post-translational modifications. Here we review the mechanisms by which NORE1A can activate OIS as a barrier against Ras-mediated transformation, and how this could lead to improved therapeutic strategies against cancers having lost NORE1A expression.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia PA 19104, USA
| | - M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | | | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
19
|
Oh MH, Lockwood WW. RASSF1A methylation, YAP1 activation and metastasis: a new role for an old foe in lung cancer. J Thorac Dis 2017; 9:1165-1167. [PMID: 28616262 DOI: 10.21037/jtd.2017.04.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Min Hee Oh
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Promoter Hypermethylation Analysis of the Tumor Suppressor Genes RASSF1A and RASSF2A in Iranian Endometrial Carcinoma Patients. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
22
|
Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 2016; 384:86-93. [PMID: 27725226 DOI: 10.1016/j.canlet.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023]
Abstract
Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.
Collapse
|
23
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ. Ras signaling through RASSF proteins. Semin Cell Dev Biol 2016; 58:86-95. [PMID: 27288568 DOI: 10.1016/j.semcdb.2016.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
There are six core RASSF family proteins that contain conserved Ras Association domains and may serve as Ras effectors. They lack intrinsic enzymatic activity and appear to function as scaffolding and localization molecules. While initially being associated with pro-apoptotic signaling pathways such as Bax and Hippo, it is now clear that they can also connect Ras to a surprisingly broad range of signaling pathways that control senescence, inflammation, autophagy, DNA repair, ubiquitination and protein acetylation. Moreover, they may be able to impact the activation status of pro-mitogenic Ras effector pathways, such as the Raf pathway. The frequent epigenetic inactivation of RASSF genes in human tumors disconnects Ras from pro-death signaling systems, enhancing Ras driven transformation and metastasis. The best characterized members are RASSF1A and RASSF5 (NORE1A).
Collapse
Affiliation(s)
- Howard Donninger
- Department of Medicine, University of Louisville, KY, 40202, USA
| | - M Lee Schmidt
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA
| | - Jessica Mezzanotte
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Geoffrey J Clark
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Darlington TM, McCarthy RD, Cox RJ, Miyamoto-Ditmon J, Gallego X, Ehringer MA. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling. GENES BRAIN AND BEHAVIOR 2016; 15:474-90. [PMID: 27063791 DOI: 10.1111/gbb.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Abstract
Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Current address: Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - R D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - R J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - J Miyamoto-Ditmon
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - X Gallego
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
27
|
Lee MG, Jeong SI, Ko KP, Park SK, Ryu BK, Kim IY, Kim JK, Chi SG. RASSF1A Directly Antagonizes RhoA Activity through the Assembly of a Smurf1-Mediated Destruction Complex to Suppress Tumorigenesis. Cancer Res 2016; 76:1847-59. [DOI: 10.1158/0008-5472.can-15-1752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
Abstract
Abstract
RASSF1A is a tumor suppressor implicated in many tumorigenic processes; however, the basis for its tumor suppressor functions are not fully understood. Here we show that RASSF1A is a novel antagonist of protumorigenic RhoA activity. Direct interaction between the C-terminal amino acids (256–277) of RASSF1A and active GTP-RhoA was critical for this antagonism. In addition, interaction between the N-terminal amino acids (69-82) of RASSF1A and the ubiquitin E3 ligase Smad ubiquitination regulatory factor 1 (Smurf1) disrupted GTPase activity by facilitating Smurf1-mediated ubiquitination of GTP-RhoA. We noted that the RhoA-binding domain of RASSF1A displayed high sequence homology with Rho-binding motifs in other RhoA effectors, such as Rhotekin. As predicted on this basis, RASSF1A competed with Rhotekin to bind RhoA and to block its activation. RASSF1A mutants unable to bind RhoA or Smurf1 failed to suppress RhoA-induced tumor cell proliferation, drug resistance, epithelial–mesenchymal transition, migration, invasion, and metastasis. Clinically, expression levels of RASSF1A and RhoA were inversely correlated in many types of primary and metastatic tumors and tumor cell lines. Collectively, our findings showed how RASSF1A may suppress tumorigenesis by intrinsically inhibiting the tumor-promoting activity of RhoA, thereby illuminating the potential mechanistic consequences of RASSF1A inactivation in many cancers. Cancer Res; 76(7); 1847–59. ©2016 AACR.
Collapse
Affiliation(s)
- Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Kyung-Phil Ko
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Soon-Ki Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Byung-Kyu Ryu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ick-Young Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jeong-Kook Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
28
|
Zhang X, Guo C, Wu X, Li AX, Liu L, Tsark W, Dammann R, Shen H, Vonderfecht SL, Pfeifer GP. Analysis of Liver Tumor-Prone Mouse Models of the Hippo Kinase Scaffold Proteins RASSF1A and SAV1. Cancer Res 2016; 76:2824-35. [PMID: 26980762 DOI: 10.1158/0008-5472.can-15-3010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/25/2016] [Indexed: 01/13/2023]
Abstract
The tumor suppressor gene RASSF1A is epigenetically silenced in most human cancers. As a binding partner of the kinases MST1 and MST2, the mammalian orthologs of the Drosophila Hippo kinase, RASSF1A is a potential regulator of the Hippo tumor suppressor pathway. RASSF1A shares these properties with the scaffold protein SAV1. The role of this pathway in human cancer has remained enigmatic inasmuch as Hippo pathway components are rarely mutated in tumors. Here we show that Rassf1a homozygous knockout mice develop liver tumors. However, heterozygous deletion of Sav1 or codeletion of Rassf1a and Sav1 produced liver tumors with much higher efficiency than single deletion of Rassf1a. Analysis of RASSF1A-binding partners by mass spectrometry identified the Hippo kinases MST1, MST2, and the oncogenic IκB kinase TBK1 as the most enriched RASSF1A-interacting proteins. The transcriptome of Rassf1a(-/-) livers was more deregulated than that of Sav1(+/-) livers, and the transcriptome of Rassf1a(-/-), Sav1(+/-) livers was similar to that of Rassf1a(-/-) mice. We found that the levels of TBK1 protein were substantially upregulated in livers lacking Rassf1a. Furthermore, transcripts of several β-tubulin isoforms were increased in the Rassf1a-deficient livers presumably reflecting a role of RASSF1A as a microtubule-stabilizing protein. In human liver cancer, RASSF1A frequently undergoes methylation at the promoter but this was not observed for MST1, MST2, or SAV1. Our results suggest a multifactorial role of RASSF1A in suppression of liver carcinogenesis. Cancer Res; 76(9); 2824-35. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Cai Guo
- Department of Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Arthur X Li
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Limin Liu
- Department of Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Walter Tsark
- Division of Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Reinhard Dammann
- Institute for Genetics, Justus-Liebig-University, Giessen, Germany
| | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Steven L Vonderfecht
- Division of Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Gerd P Pfeifer
- Department of Biology, Beckman Research Institute, City of Hope, Duarte, California. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan.
| |
Collapse
|
29
|
Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, Khuri FR, Du Y, Fu H. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform. J Mol Cell Biol 2015; 8:271-81. [PMID: 26578655 DOI: 10.1093/jmcb/mjv064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023] Open
Abstract
Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yin Luo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rina Su
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Dermatology, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Jonathan J Havel
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zenggang Li
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Feng Y, Li P, Liu Y, Sha Z, Feng L, Wang F, Mao Q, Xue W. The Association of Ala133Ser Polymorphism and Methylation in Ras Association Domain Family 1A Gene With Unfavorable Prognosis of Hepatocellular Carcinoma. HEPATITIS MONTHLY 2015; 15:e32145. [PMID: 26587041 PMCID: PMC4644634 DOI: 10.5812/hepatmon.32145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/07/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The functional and prognostic significance of Ras association domain family 1A gene (RASSF1A) on hepatocellular carcinoma (HCC) has not been well characterized. OBJECTIVES This study aimed to investigate the association between Ala133Ser polymorphism or promoter methylation in RASSF1A and the prognosis of HCC in Nantong City, one of the areas with the highest incidence of cancer in China. PATIENTS AND METHODS Using peripheral blood plasma, the incidence rate of RASSF1A Ala133Ser in 235 controls and subjects with 260 HCC was analyzed by the polymerase chain reaction and sequencing. We further investigated the RASSF1A methylation status in HCC and corresponding peri-tumorous normal tissues using the methylation-specific polymerase chain reaction approach. RESULTS It was found that the frequency of the RASSF1A Ala133Ser T allele (Ala/Ser and Ser/Ser) genotype in HCC cases was observably higher than that of normal subjects (P < 0.001). In comparison to the Ala/Ala genotype, the T allele genotype improved the susceptibility to HCC. The study also found that RASSF1A methylation improves the risk of HCC. Furthermore, in contrast with the corresponding peri-tumorous normal tissues, we observed that the RASSF1A methylation status was markedly higher in HCC tissues (P < 0.001). The Kaplan-Meier and multivariate analyses suggested that the poor survival of HCC patients was closely connected with hepatocirrhosis, Barcelona Clinic Liver Cancer stage, Edmondson division, RASSF1A methylation and Ala133Ser polymorphism (P < 0.001). CONCLUSIONS The polymorphism and promoter methylation of RASSF1A may be a significant factor in HCC, and can be an indicator for poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Ying Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
| | - Yifei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, China
| | - Zhenyu Sha
- Department of Medical Affairs, Nantong University Affiliated Hospital, Nantong, China
| | - Liang Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
| | - Fei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
| | - Qinsheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
- Corresponding Authors: Wanjiang Xue, Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China. Tel: +86-51381161121, Fax: +86-51385052254, E-mail: ; Qinsheng Mao, Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China. Tel: +86-51381161126, Fax: +86-51385052254, E-mail:
| | - Wanjiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China
- Corresponding Authors: Wanjiang Xue, Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China. Tel: +86-51381161121, Fax: +86-51385052254, E-mail: ; Qinsheng Mao, Department of General Surgery, Nantong University Affiliated Hospital, Nantong, China. Tel: +86-51381161126, Fax: +86-51385052254, E-mail:
| |
Collapse
|
31
|
Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of RARβ2 and RASSF1A demethylation. Int J Mol Sci 2014; 15:23519-36. [PMID: 25526566 PMCID: PMC4284778 DOI: 10.3390/ijms151223519] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022] Open
Abstract
It has been reported that lidocaine is toxic to various types of cells. And a recent study has confirmed that lidocaine exerts a demethylation effect and regulates the proliferation of human breast cancer cell lines. To recognize a potential anti-tumor effect of lidocaine, we evaluated the DNA demethylation by lidocaine in human breast cancer lines, MCF-7 and MDA-MB-231 cells, and determined the influence of demethylation on the toxicity to these cells of cisplatin, which is a commonly utilized anti-tumor agent for breast cancer. Results demonstrated that lidocaine promoted a significant global genomic demethylation, and particularly in the promoters of tumor suppressive genes (TSGs), RARβ2 and RASSF1A. Further, the lidocaine treatment increased cisplatin-induced apoptosis and enhanced cisplatin-induced cytotoxicity. The combined treatment with both lidocaine and cisplatin promoted a significantly higher level of MCF-7 cell apoptosis than singular lidocaine or cisplatin treatment. Moreover, the abrogation of RARβ2 or RASSF1A expression inhibited such apoptosis. In conclusion, the present study confirms the demethylation effect of lidocaine in breast cancer cells, and found that the demethylation of RARβ2 and RASSF1A sensitized the cytotoxicity of cisplatin in breast cancer cells.
Collapse
|
32
|
Gordon M, Baksh S. RASSF1A: Not a prototypical Ras effector. Small GTPases 2014; 2:148-157. [PMID: 21776416 DOI: 10.4161/sgtp.2.3.16286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/25/2023] Open
Abstract
The Ras association domain family (RASSF) of genes are commonly silenced by promoter specific methylation in human cancers. After the cloning of the first two family members in early 2000 (RASSF1 and RASSF5), eight other related genes have been identified (RASSF2, 3, 4 and 6-10). The unifying motif amongst all RASSF family members is the presence of the Ras association (RA) domain that could potentially associate with the Ras family of GTPases. Detailed analyses have determined that RASSF family members are tumor suppressor proteins, activators of cell death, cell cycle modulators, microtubule stabilizers and possibly inflammatory mediators linked to NFκB. As such, exploring the biological function of this gene family is needed and if indeed RASSF proteins could be the missing link between Ras signaling and apoptosis. Several RASSF family members have been demonstrated to associate with Ras. However, there is still controversy regarding the ability of RASSF1A to utilize Ras to promote cell death and of the importance of the RASSF1A RA domain. The focus of this review is to highlight the importance of Ras binding to the RASSF family of proteins and discuss what we currently know about the biology of RASSF1A.
Collapse
Affiliation(s)
- Marilyn Gordon
- Department of Pediatrics; Faculty of Medicine and Dentistry; University of Alberta; Edmonton, AB Canada
| | | |
Collapse
|
33
|
Donninger H, Clark JA, Monaghan MK, Schmidt ML, Vos M, Clark GJ. Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression. J Biol Chem 2014; 289:31287-95. [PMID: 25225292 DOI: 10.1074/jbc.m114.609537] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ras association domain family protein 1A (RASSF1A) is arguably one of the most frequently inactivated tumor suppressors in human cancer. RASSF1A modulates apoptosis via the Hippo and Bax pathways but also modulates the cell cycle. In part, cell cycle regulation appears to be dependent upon the ability of RASSF1A to complex with microtubules and regulate their dynamics. Which property of RASSF1A, apoptosis induction or microtubule regulation, is responsible for its tumor suppressor function is not known. We have identified a short conserved motif that is essential for the binding of RASSF family proteins with microtubule-associated proteins. By making a single point mutation in the motif, we were able to generate a RASSF1A variant that retains wild-type apoptotic properties but completely loses the ability to bind microtubule-associated proteins and complex with microtubules. Comparison of this mutant to wild-type RASSF1A showed that, despite retaining its proapoptotic properties, the mutant was completely unable to induce cell cycle arrest or suppress the tumorigenic phenotype. Therefore, it appears that the cell cycle/microtubule effects of RASSF1A are key to its tumor suppressor function rather than its apoptotic effects.
Collapse
Affiliation(s)
| | | | | | | | - Michele Vos
- the Cell and Cancer Biology Branch, NCI, National Institutes of Health, Rockville, Maryland 20850
| | - Geoffrey J Clark
- Pharmacology and Toxicology, James Graham Brown Cancer Center, Molecular Targets Program, University of Louisville, Louisville, Kentucky 40202 and
| |
Collapse
|
34
|
Schmidt ML, Donninger H, Clark GJ. Ras regulates SCF(β-TrCP) protein activity and specificity via its effector protein NORE1A. J Biol Chem 2014; 289:31102-10. [PMID: 25217643 DOI: 10.1074/jbc.m114.594283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCF(β-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(β-TrCP) toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCF(β-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(β-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.
Collapse
Affiliation(s)
- M Lee Schmidt
- From the Molecular Targets Group, James Graham Brown Cancer Center, Departments of Biochemistry and Molecular Biology
| | | | - Geoffrey J Clark
- Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
35
|
Chamberlain CE, Scheel DW, McGlynn K, Kim H, Miyatsuka T, Wang J, Nguyen V, Zhao S, Mavropoulos A, Abraham AG, O’Neill E, Ku GM, Cobb MH, Martin GR, German MS. Menin determines K-RAS proliferative outputs in endocrine cells. J Clin Invest 2014; 124:4093-101. [PMID: 25133424 PMCID: PMC4153699 DOI: 10.1172/jci69004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/26/2014] [Indexed: 12/19/2022] Open
Abstract
Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors.
Collapse
Affiliation(s)
- Chester E. Chamberlain
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - David W. Scheel
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Kathleen McGlynn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Hail Kim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Takeshi Miyatsuka
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Juehu Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Vinh Nguyen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Shuhong Zhao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Anastasia Mavropoulos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Aswin G. Abraham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Eric O’Neill
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Gregory M. Ku
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Melanie H. Cobb
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Gail R. Martin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| | - Michael S. German
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center, and Department of Anatomy, UCSF, San Francisco, California, USA. CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, United Kingdom. Department of Surgery and Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
36
|
Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 2014; 16:673-84. [DOI: 10.1038/ncb2986] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 12/19/2022]
|
37
|
Yang R, Kong E, Jin J, Hergovich A, Püschel AW. Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway. J Cell Sci 2014; 127:3463-76. [PMID: 24928906 DOI: 10.1242/jcs.146696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The morphology and polarized growth of cells depend on pathways that control the asymmetric distribution of regulatory factors. The evolutionarily conserved Ndr kinases play important roles in cell polarity and morphogenesis in yeast and invertebrates but it is unclear whether they perform a similar function in mammalian cells. Here, we analyze the function of mammalian Ndr1 and Ndr2 (also known as STK38 or STK38L, respectively) in the establishment of polarity in neurons. We show that they act downstream of the tumor suppressor Rassf5 and upstream of the polarity protein Par3 (also known as PARD3). Rassf5 and Ndr1 or Ndr2 are required during the polarization of hippocampal neurons to prevent the formation of supernumerary axons. Mechanistically, the Ndr kinases act by phosphorylating Par3 at Ser383 to inhibit its interaction with dynein, thereby polarizing the distribution of Par3 and reinforcing axon specification. Our results identify a novel Rassf5-Ndr-Par3 signaling cascade that regulates the transport of Par3 during the establishment of neuronal polarity. Their role in neuronal polarity suggests that Ndr kinases perform a conserved function as regulators of cell polarity.
Collapse
Affiliation(s)
- Rui Yang
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | - Eryan Kong
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | | | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Schloßplatz 5, D-48149 Münster, Germany Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
38
|
Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett 2014; 588:2671-84. [DOI: 10.1016/j.febslet.2014.02.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
|
39
|
NORE1A sensitises cancer cells to sorafenib-induced apoptosis and indicates hepatocellular carcinoma prognosis. Tumour Biol 2014; 35:1763-74. [DOI: 10.1007/s13277-013-1184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022] Open
|
40
|
Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Mol Biol Cell 2014; 25:800-10. [PMID: 24478455 PMCID: PMC3952850 DOI: 10.1091/mbc.e13-07-0374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RASSF1A is a microtubule-associated protein. This study provides evidence for RASSF1A regulating MT dynamics via segmental binding to provide local stabilization of the MT network, thus facilitating MT rescue. RASSF1A reconfigures the MT network through bundling of nearby MTs and provides a stable platform to maintain Golgi integrity. The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity.
Collapse
Affiliation(s)
- Christopher Arnette
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 JG Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | | | | | | |
Collapse
|
41
|
Santos ES, Raez LE, DeCesare T, Singal R. DNA methylation: its role in lung carcinogenesis and therapeutic implications. Expert Rev Anticancer Ther 2014; 5:667-79. [PMID: 16111467 DOI: 10.1586/14737140.5.4.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new era in the treatment of malignant diseases has been observed through the use of biologic agents targeting growth factor receptors, signaling pathways, gene mutations and others. The results have been impressive in some diseases and modest in others. The discovery of new targets has expanded our knowledge of different mechanisms in tumorigenesis. One of these mechanisms has been DNA methylation, which is an important gene transcription regulator. Although the role of methylation in lung carcinogenesis is not well understood, there is an enormous quantity of evolving data suggesting its critical role in lung cancer. In this review, the authors will discuss methylation in lung carcinogenesis and its possible clinical implications.
Collapse
Affiliation(s)
- Edgardo S Santos
- Division of Hematology-Oncology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-78, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
42
|
Duan C, Liu M, Zhang J, Ma R. RASSF1A: A potential novel therapeutic target against cardiac hypertrophy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:284-8. [DOI: 10.1016/j.pbiomolbio.2013.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
43
|
Chan JJ, Katan M. PLCɛ and the RASSF family in tumour suppression and other functions. Adv Biol Regul 2013; 53:258-279. [PMID: 23958207 DOI: 10.1016/j.jbior.2013.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Not all proteins implicated in direct binding to Ras appear to have a positive role in the generation and progression of tumours; examples include Phospholipase C epsilon (PLCɛ) and some members of the Ras-association domain family (RASSF). The RASSF family comprises of ten members, known as RASSF1 to RASSF10. PLCɛ and RASSF members carry a common Ras-association domain (RA) that can potentially bind Ras oncoproteins and mediate Ras-regulated functions. RASSF1 to RASSF6 also share a common SARAH domain that facilitates protein-protein interactions with other SARAH domain proteins. The majority of the family are frequently downregulated by epigenetic silencing in cancers. They are implicated in various important biological processes including apoptosis, microtubule stabilisation and cell cycle regulation. Recent studies have reinforced the tumour suppressive properties of the RASSF family, with new evidence of emerging pathways and novel functions that suggest a wider role for these proteins. This review will first describe an emerging role of PLCɛ in tumour suppression and then focus on and summarise the new findings on the RASSF family in the last five years to consolidate their well-established functions, and highlight the new regulatory roles of specific RASSF members.
Collapse
Affiliation(s)
- Jia Jia Chan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
44
|
Wu JW, Li T, Li JJ, Meng YP, Chai XQ. Expression of RASSF1A and Cyclin A2 in intrahepatic cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:2038-2044. [DOI: 10.11569/wcjd.v21.i21.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of RASSF1A and CyclinA2 in intrahepatic cholangiocarcinoma (ICC) and to analyze their relationship with the biological behavior of ICC.
METHODS: Thirty ICC specimens and 18 tumor-adjacent tissue specimens were collected from January 2010 to September 2011 in Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. The expression of RASSF1A and CyclinA2 in these specimens was detected by immunohistochemistry. The relationship between the expression of RASSF1A and CyclinA2 and clinicopathologic parameters of ICC was then analyzed.
RESULTS: The positive rate of expression of RASSF1A in ICC was significantly lower than that in tumor-adjacent tissue (36.67% vs 83.33%, P < 0.05), while the positive rate of expression of Cyclin A2 in ICC was significantly higher than that in tumor-adjacent tissue (73.33% vs 11.11%, P < 0.05). There was a negative correlation between the expression of RASSF1A and that of Cyclin A2 in ICC (P < 0.01, r = 0.54).
CONCLUSION: RASSF1A and CyclinA2 may be involved in the occurrence and development of ICC. Inactivation of RASSF1A may contribute to the invasion and metastasis of ICC. CyclinA2 may play a significant role in the tumor inhibition mechanism mediated by RASSF1A.
Collapse
|
45
|
Ehrkamp A, Herrmann C, Stoll R, Heumann R. Ras and rheb signaling in survival and cell death. Cancers (Basel) 2013; 5:639-61. [PMID: 24216995 PMCID: PMC3730321 DOI: 10.3390/cancers5020639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022] Open
Abstract
One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.
Collapse
Affiliation(s)
- Anja Ehrkamp
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Christian Herrmann
- Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| | - Rolf Heumann
- Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum, Germany; E-Mail:
| |
Collapse
|
46
|
Zenonos K, Kyprianou K. RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol 2013; 5:97-101. [PMID: 23799159 PMCID: PMC3682174 DOI: 10.4251/wjgo.v5.i5.97] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/26/2013] [Accepted: 04/11/2013] [Indexed: 02/05/2023] Open
Abstract
Two of the main cellular pathways in which the RAS protein operates are the mitogen-activated protein kinases (MAPK) and phosphoinositide-3 kinase (PI3K) pathways. In a normal cell, these are important in controlling several functions, such as cell growth and survival. It becomes self-evident that these events will be disrupted in a malignant cell with a deregulated MAPK or PI3K pathway. Mutations in genes involved in these pathways and interacting with RAS, as well as RAS itself will be discussed. The second part of this review concentrates on how crucial RAS signaling is in colorectal cancer progression, with references to treatment response and prognosis when RAS or other related mutations are present.
Collapse
|
47
|
Chan JJ, Flatters D, Rodrigues-Lima F, Yan J, Thalassinos K, Katan M. Comparative analysis of interactions of RASSF1-10. Adv Biol Regul 2013; 53:190-201. [PMID: 23357313 PMCID: PMC4221134 DOI: 10.1016/j.jbior.2012.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 01/01/2023]
Abstract
Members of the RASSF family (RASSF1-10) have been identified as candidate tumour suppressors that are frequently downregulated by promoter hypermethylation in cancers. These proteins carry a common Ras-association (RA) and SARAH domain (RASSF1-6) that can potentially bind Ras oncoproteins and mediate protein-protein interactions with other SARAH domain proteins. However, there is a notable lack of comparative characterisation of the RASSF family, as well as molecular and structural information that facilitate their tumour suppressive functions. As part of our comparative analysis, we modelled the RA and SARAH domains of the RASSF members based on existing structures and predicted their potential interactions. These in silico predictions were compared to in vitro interaction studies with Ras and MST kinase (a SARAH domain-containing protein). Our data shows a diversity of interaction within the RASSF family RA domain, whereas the SARAH domain-mediated interactions for RASSF1-6 are consistent with the predictions. This suggests that different members, despite shared general architecture, could have distinct functional properties. Additionally, we identify a new interacting partner for MST kinase in the form of RASSF7. Current data supports an interaction model where RASSF serves as an adaptor for the assembly of multiple protein complexes and further functional interactions, involving MST kinases and other SARAH domain proteins, which could be regulated by Ras.
Collapse
Affiliation(s)
- Jia Jia Chan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Delphine Flatters
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques in silico, Inserm UMR-S 973, 35 rue Helene Brion, 75013 Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC4413, 75013, Paris, France
| | - Jun Yan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
48
|
Gou HF, Li X, Qiu M, Cheng K, Li LH, Dong H, Chen Y, Tang Y, Gao F, Zhao F, Men HT, Ge J, Su JM, Xu F, Bi F, Gao JJ, Liu JY. Epidermal growth factor receptor (EGFR)-RAS signaling pathway in penile squamous cell carcinoma. PLoS One 2013; 8:e62175. [PMID: 23637996 PMCID: PMC3634795 DOI: 10.1371/journal.pone.0062175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/17/2013] [Indexed: 02/05/2023] Open
Abstract
Penile Squamous Cell Carcinoma (SCC) is a rare cancer with poor prognosis and limited response to conventional chemotherapy. The genetic and epigenetic alterations of Epidermal Growth Factor Receptor (EGFR)-RAS-RAF signaling in penile SCC are unclear. This study aims to investigate four key members of this pathway in penile SCC. We examined the expression of EGFR and RAS-association domain family 1 A (RASSF1A) as well as the mutation status of K-RAS and BRAF in 150 cases of penile SCC. EGFR and RASSF1A expression was evaluated by immunohistochemistry. KRAS mutations at codons 12 and 13, and the BRAF mutation at codon 600 were analyzed on DNA isolated from formalin fixed paraffin embedded tissues by direct genomic sequencing. EGFR expression was positive in all specimens, and its over-expression rate was 92%. RASSF1A expression rate was only 3.42%. Significant correlation was not found between the expression of EGFR or RASSF1A and tumor grade, pT stage or lymph node metastases. The detection of KRAS and BRAF mutations analysis was performed in 94 and 83 tumor tissues, respectively. We found KRAS mutation in only one sample and found no BRAF V600E point mutation. In summary, we found over-expression of EGFR in the majority cases of penile SCC, but only rare expression of RASSF1A, rare KRAS mutation, and no BRAF mutation in penile SCC. These data suggest that anti-EGFR agents may be potentially considered as therapeutic options in penile SCC.
Collapse
Affiliation(s)
- Hong-Feng Gou
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiang Li
- Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ke Cheng
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Long-Hao Li
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hang Dong
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Feng Gao
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Feng Zhao
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hai-Tao Men
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jun Ge
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing-Mei Su
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Feng Xu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jian-Jun Gao
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ji-Yan Liu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
The differential effects of wild-type and mutated K-Ras on MST2 signaling are determined by K-Ras activation kinetics. Mol Cell Biol 2013; 33:1859-68. [PMID: 23459937 DOI: 10.1128/mcb.01414-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
K-Ras is frequently mutated in human cancers. Mutant (mt) K-Ras can stimulate both oncogenic transformation and apoptosis through activation of extracellular signal-regulated kinase (ERK) and AKT pathways and the MST2 pathway, respectively. The biological outcome is determined by the balance and cross talk between these pathways. In colorectal cancer (CRC), a K-Ras mutation is negatively correlated with MST2 expression, as mt K-Ras can induce apoptosis by activating the MST2 pathway. However, wild-type (wt) K-Ras can prevent the activation of the MST2 pathway upon growth factor stimulation and enable transformation by mt K-Ras in CRC cells that express MST2. Here we have investigated the mechanism by which wt and mt K-Ras differentially regulate the MST2 pathway and MST2-dependent apoptosis. The ability of K-Ras to activate MST2 and MST2-dependent apoptosis is determined by the differential activation kinetics of mt K-Ras and wt K-Ras. Chronic activation of K-Ras by mutation or overexpression of Ras exchange factors results in the activation of MST2 and LATS1, increased MST2-LATS1 complex formation, and apoptosis. In contrast, transient K-Ras activation upon epidermal growth factor (EGF) stimulation prevents the formation of the MST2-LATS1 complex in an AKT-dependent manner. Our data suggest that the close relationship between Ras prosurvival and proapoptotic signaling is coordinated via the differential regulation of the MST2-LATS1 interaction by transient and chronic stimuli.
Collapse
|
50
|
Iwasa H, Kuroyanagi H, Maimaiti S, Ikeda M, Nakagawa K, Hata Y. Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Exp Cell Res 2013; 319:1-11. [DOI: 10.1016/j.yexcr.2012.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 12/26/2022]
|