1
|
Zhang YK, Shi R, Meng RY, Lin SL, Zheng M. Erythropoietin-induced hepatocyte receptor A2 regulates effect of pyroptosis on gastrointestinal colorectal cancer occurrence and metastasis resistance. World J Gastrointest Oncol 2024; 16:3781-3797. [PMID: 39350985 PMCID: PMC11438782 DOI: 10.4251/wjgo.v16.i9.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Erythropoietin-induced hepatocyte receptor A2 (EphA2) is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors. This article reviews the expression of EphA2 in gastrointestinal (GI) colorectal cancer (CRC) and its regulation of pyroptosis. Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression. Studies have shown that EphA2 regulates pyrodeath through various signaling pathways, affecting the occurrence, development and metastasis of GI CRC. The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC, and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment. In addition, EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors, further influencing cancer progression. The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets, which have important implications for future cancer treatment.
Collapse
Affiliation(s)
- Yu-Kun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ruo-Yu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shui-Li Lin
- Department of Ana and Intestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
2
|
Madasu C, Liao Z, Parks SE, Sharma KL, Bohren KM, Ye Q, Li F, Palaniappan M, Tan Z, Yuan F, Creighton CJ, Tang S, Masand RP, Guan X, Young DW, Monsivais D, Matzuk MM. Identification of potent pan-ephrin receptor kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci U S A 2024; 121:e2322934121. [PMID: 38701119 PMCID: PMC11087803 DOI: 10.1073/pnas.2322934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1β-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.
Collapse
Affiliation(s)
- Chandrashekhar Madasu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Sydney E. Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kiran L. Sharma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kurt M. Bohren
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Qiuji Ye
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX77030
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Ramya P. Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Damian W. Young
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
3
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Sayedahmed EE, Araújo MV, Silva-Pereira TT, Chothe SK, Elkashif A, Alhashimi M, Wang WC, Santos AP, Nair MS, Gontu A, Nissly R, Francisco de Souza Filho A, Tavares MS, Ayupe MC, Salgado CL, Donizetti de Oliveira Candido É, Leal Oliveira DB, Durigon EL, Heinemann MB, Morais da Fonseca D, Jagannath C, Sá Guimarães AM, Kuchipudi SV, Mittal SK. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023; 30:194-207. [PMID: 37502665 PMCID: PMC10299838 DOI: 10.1016/j.omtm.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marcelo Valdemir Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shubhada K. Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Andrea P. Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ruth Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Mariana Silva Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ana Marcia Sá Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
EPH/Ephrin-Targeting Treatment in Breast Cancer: A New Chapter in Breast Cancer Therapy. Int J Mol Sci 2022; 23:ijms232315275. [PMID: 36499598 PMCID: PMC9740341 DOI: 10.3390/ijms232315275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women. Erythropoietin-producing hepatocellular receptors (EPHs), receptor tyrosine kinases binding the membrane-bound proteins ephrins, are differentially expressed in BC, and correlate with carcinogenesis and tumor progression. With a view to examining available therapeutics targeting the EPH/ephrin system in BC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most studied EPH/ephrin target in BC treatment. The targeting of EPHA2, EPHA10, EPHB4, ephrin-A2, ephrin-A4, as well as ephrin-B2 in BC cells or xenograft models is associated with apoptosis induction, tumor regression, anticancer immune response activation, and impaired cell motility. In conclusion, EPHs/ephrins seem to represent promising future treatment targets in BC.
Collapse
|
6
|
Ezenwafor TC, Uzonwanne VO, Madukwe JUA, Amin SM, Anye VC, Obayemi JD, Odusanya OS, Soboyejo WO. Adhesion of LHRH/EphA2 to human Triple Negative Breast Cancer tissues. J Mech Behav Biomed Mater 2022; 136:105461. [PMID: 36195050 DOI: 10.1016/j.jmbbm.2022.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The adhesive interactions between molecular recognition units (such as specific peptides and antibodies) and antigens or other receptors on the surfaces of tumors are of great value in the design of targeted nanoparticles and drugs for the detection and treatment of specific cancers. In this paper, we present the results of a combined experimental and theoretical study of the adhesion between Luteinizing Hormone Releasing Hormone (LHRH)/Epherin type A2 (EphA2)-AFM coated tips and LHRH/EphA2 receptors that are overexpressed on the surfaces of human Triple Negative Breast Cancer (TNBC) tissues of different histological grades. Following a histochemical and immuno-histological study of human tissue extracts, the receptor overexpression, and their distributions are characterized using Immunohistochemistry (IHC), Immunofluorescence (IF), and a combination of fluorescence microscopy and confocal microscopy. The adhesion forces between LHRH or EphA2 and human TNBC breast tissues are measured using force microscopy techniques that account for the potential effects of capillary forces due to the presence of water vapor. The corresponding adhesion energies are also determined using adhesion theory. The pull off forces and adhesion energies associated with higher grades of TNBC are shown to be greater than those associated with normal/non-tumorigenic human breast tissues, which were studied as controls. The observed increase in adhesion forces and adhesion energies are also correlated with the increasing incidence of LHRH/EphA2 receptors at higher grades of TNBC. The implications of the results are discussed for the development of targeted nanostructures for the detection and treatment of TNBC.
Collapse
Affiliation(s)
- Theresa C Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; NASENI Centre of Excellence in Nanotechnology and Advanced Materials, Km 4, Ondo Road, Akure, Ondo State, Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Vanessa O Uzonwanne
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Jonathan U A Madukwe
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Said M Amin
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Vitalis C Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria
| | - John D Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Olushola S Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Kwale, Abuja, Federal Capital Territory, Nigeria
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA.
| |
Collapse
|
7
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Nikas I, Giaginis C, Petrouska K, Alexandrou P, Michail A, Sarantis P, Tsourouflis G, Danas E, Pergaris A, Politis PK, Nakopoulou L, Theocharis S. EPHA2, EPHA4, and EPHA7 Expression in Triple-Negative Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020366. [PMID: 35204461 PMCID: PMC8871500 DOI: 10.3390/diagnostics12020366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Ongoing research continues to elucidate the complex role of ephrin receptors (EPHs) and their ligands (ephrins) in breast cancer pathogenesis, with their varying expression patterns implied to have an important impact on patients’ outcome. The current study aims to investigate the clinical significance of EPHA2, EPHA4, and EPHA7 expression in triple-negative breast cancer (TNBC) cases. EPHA2, EPHA4, and EPHA7 protein expression was assessed immunohistochemically on formalin-fixed and paraffin-embedded (FFPE) TNBC tissue sections from 52 TNBC patients and correlated with key clinicopathologic parameters and patients’ survival data (overall survival (OS); disease-free survival (DFS)). EPHA2, EPHA4, and EPHA7 expression was further examined in TNBC cell lines. EPHA2 overexpression was observed in 26 (50%) of the TNBC cases, who exhibited a shorter OS and DFS than their low-expression counterparts, with EPHA2 representing an independent prognostic factor for OS and DFS (p = 0.0041 and p = 0.0232, respectively). EPHA4 overexpression was associated with lymph node metastasis in TNBC patients (p = 0.0546). Alterations in EPHA2, EPHA4, and EPHA7 expression levels were also noted in the examined TNBC cell lines. Our study stresses that EPHA2 expression constitutes a potential prognostic factor for TNBC patients. Given the limited treatment options and poorer outcome that accompany the TNBC subtype, EPHA2 could also pose as a target for novel, more personalized, and effective therapeutic approaches for those patients.
Collapse
Affiliation(s)
- Ilias Nikas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, Myrina, 811 00 Lemnos, Greece;
| | - Kalliopi Petrouska
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Paraskevi Alexandrou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Eugene Danas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- Correspondence: ; Tel.: + 30-210-7462178; Fax: + 30-210-7456259
| |
Collapse
|
9
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
10
|
Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics. J Exp Clin Cancer Res 2021; 40:383. [PMID: 34863235 PMCID: PMC8642961 DOI: 10.1186/s13046-021-02193-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Short or small interfering RNAs (siRNAs) and microRNA (miRNAs) are molecules similar in size and function able to inhibit gene expression based on their complementarity with mRNA sequences, inducing the degradation of the transcript or the inhibition of their translation. siRNAs bind specifically to a single gene location by sequence complementarity and regulate gene expression by specifically targeting transcription units via posttranscriptional gene silencing. miRNAs can regulate the expression of different gene targets through their imperfect base pairing. This process - known as RNA interference (RNAi) - modulates transcription in order to maintain a correct physiological environment, playing a role in almost the totality of the cellular pathways. siRNAs have been evolutionary evolved for the protection of genome integrity in response to exogenous and invasive nucleic acids such as transgenes or transposons. Artificial siRNAs are widely used in molecular biology for transient silencing of genes of interest. This strategy allows to inhibit the expression of any target protein of known sequence and is currently used for the treatment of different human diseases including cancer. Modifications and rearrangements in gene regions encoding for miRNAs have been found in cancer cells, and specific miRNA expression profiles characterize the developmental lineage and the differentiation state of the tumor. miRNAs with different expression patterns in tumors have been reported as oncogenes (oncomirs) or tumor-suppressors (anti-oncomirs). RNA modulation has become important in cancer research not only for development of early and easy diagnosis tools but also as a promising novel therapeutic approach. Despite the emerging discoveries supporting the role of miRNAs in carcinogenesis and their and siRNAs possible use in therapy, a series of concerns regarding their development, delivery and side effects have arisen. In this review we report the biology of miRNAs and siRNAs in relation to cancer summarizing the recent methods described to use them as novel therapeutic drugs and methods to specifically deliver them to cancer cells and overcome the limitations in the use of these molecules.
Collapse
|
11
|
Khan A, Sayedahmed EE, Singh VK, Mishra A, Dorta-Estremera S, Nookala S, Canaday DH, Chen M, Wang J, Sastry KJ, Mittal SK, Jagannath C. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep Med 2021; 2:100372. [PMID: 34467249 PMCID: PMC8385328 DOI: 10.1016/j.xcrm.2021.100372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | | | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, OH, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, and Department of Surgery, Weill Cornell Medical College, Houston, TX, USA
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
12
|
Expression Pattern and Prognostic Value of EPHA/EFNA in Breast Cancer by Bioinformatics Analysis: Revealing Its Importance in Chemotherapy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5575704. [PMID: 33977106 PMCID: PMC8087473 DOI: 10.1155/2021/5575704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022]
Abstract
The activities of the ephrin family in breast cancer (BrCa) are complex. Family A receptors (EPHA) and ligands (EFNA) can act as oncogenes or tumor suppressors and are implicated in chemoresistance. Here, we examined the expression pattern and prognostic value of the EPHA/EFNA family in patients with breast cancer, including patients with different subtypes or different chemotherapy cohorts. In the UALCAN database, the mRNA expression of EPHA1, EPHA10, EFNA1, EFNA3, and EFNA4 was significantly higher, whereas that of EPHA2, EPHA4, EPHA5, and EFNA5 was significantly lower in breast cancer tissues than in paracancerous tissues. The transcriptional levels of EPHA/EFNA family members were correlated with intrinsic subclasses of breast cancer. The relationship between EPHA/EFNA and the clinicopathological parameters of BrCa was analyzed using bc-GenExMiner V4.5. EPHA1, EPHA2, EPHA4, EPHA7, EFNA3, EFNA4, and EFNA5 were upregulated in estrogen receptor- (ER-) and progesterone receptor- (PR-) negative tumors, whereas EPHA3, EPHA6, and EFNA1 were upregulated in ER- and PR-positive tumors. EPHA1, EPHA2, EFNA3, and EFNA4 mRNA expression was significantly higher in human epidermal growth factor receptor 2- (HER2-) positive tumors than in HER2-negative tumors. Triple-negative status was positively correlated with EPHA1, EPHA2, EPHA4, EPHA7, EFNA3, EFNA4, and EFNA5 and negatively correlated with EPHA3 and EPHA10 mRNA expression. Genetic alterations of EPHA/EFNA in breast cancer varied from 1.1% to 10% for individual genes, as determined by the cBioPortal database. The Kaplan–Meier plotter indicated that high EphA7 mRNA expression was associated with poor overall survival (OS) and recurrence-free survival (RFS), especially in the HER2 and luminal A subtypes. EFNA4 was predicted to have poor OS and RFS in breast cancers, especially in luminal B, basal-like subtype, and patients treated with adjuvant chemotherapy. High EPHA3 expression was significantly associated with better OS and RFS, especially in the luminal A subtype, but with poor RFS in BrCa patients receiving chemotherapy. Our findings systematically elucidate the expression pattern and prognostic value of the EPHA/EFNA family in BrCa, which might provide potential prognostic factors and novel targets in BrCa patients, including those with different subtypes or treated with chemotherapy.
Collapse
|
13
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
S K J, S P D, R S, Sai Surya NU, Chenmala K. Guardian of genome on the tract: Wild type p53-mdm2 complex inhibition in healing the breast cancer. Gene 2021; 786:145616. [PMID: 33811963 DOI: 10.1016/j.gene.2021.145616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer acts as an assassin among women. According to WHO (world health organisation), about 6, 27,000 deaths have occurred in 2018 due to breast cancer. Since, the evolution of cancer involves many complicated pathway, in this article we have decided to focus on wild type p53. P53 is also called as tumor suppressor gene. As the name suggest, p53 is a real guardian of genome, if it is not mutated or subjected to degradation. It can perform a wide range of activities during cancer progression. It either stimulates or inhibits the genes or proteins that are responsible for cell cycle arrest, apoptosis, anti-angiogenic activity and anti-metastatic activity. At times, the p53 will be unable to produce its action due to various reasons like mutation or degradation by other proteins or degrading ligases. Since, we are focusing on wild type p53, it will be inhibited occasionally by mdm2 resulting in proteosomal degradation of p53. However, this condition can be prevented by possible treatment regimen. With the above points in mind, we have focused on p53 activation, complex formation between p53 and mdm2, and inhibition of the complex in order to free p53 and allow them to perform their action for rehabilitation of cancer. Furthermore, we have also discussed pathways involved in eradicating cancer through p53 activation. By considering the following aspects, hope that p53 can be considered for management of breast cancer.
Collapse
Affiliation(s)
- Janani S K
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Dhanabal S P
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India.
| | - Sureshkumar R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Nikitha Upadhyayula Sai Surya
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Karthika Chenmala
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| |
Collapse
|
15
|
Zhao P, Jiang D, Huang Y, Chen C. EphA2: A promising therapeutic target in breast cancer. J Genet Genomics 2021; 48:261-267. [PMID: 33962882 DOI: 10.1016/j.jgg.2021.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Ephrin type-A receptor 2 (EphA2), a receptor tyrosine kinase, is overexpressed in human breast cancers often linked to poor patient prognosis. Accumulating evidence demonstrates that EphA2 plays important roles in several critical processes associated with malignant breast progression, such as proliferation, survival, migration, invasion, drug resistance, metastasis, and angiogenesis. As its inhibition through multiple approaches can inhibit the growth of breast cancer and restore drug sensitivity, EphA2 has become a promising therapeutic target for breast cancer treatment. Here, we summarize the expression, functions, mechanisms of action, and regulation of EphA2 in breast cancer. We also list the potential therapeutic strategies targeting EphA2. Furthermore, we discuss the future directions of studying EphA2 in breast cancer.
Collapse
Affiliation(s)
- Ping Zhao
- Department of the First Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China.
| |
Collapse
|
16
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
17
|
Orahoske CM, Li Y, Petty A, Salem FM, Hanna J, Zhang W, Su B, Wang B. Dimeric small molecule agonists of EphA2 receptor inhibit glioblastoma cell growth. Bioorg Med Chem 2020; 28:115656. [PMID: 32828423 DOI: 10.1016/j.bmc.2020.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/15/2022]
Abstract
EphA2 receptor kinase could become a novel target for anti-glioblastoma treatment. Doxazosin previously identified acts like the endogenous ligand of EphA2 and induces cell apoptosis. Through lead structure modification a derivative of Doxazosin possessing unique dimeric structure showed an improvement in the activity. In the current study, we expanded the dimeric scaffold by lead optimization to explore the chemical space of the conjoining moieties and a slight variation to the core structure. 27 new derivatives were synthesized and examined with EphA2 overexpressed and wild type glioblastoma cell lines for cell proliferation and EphA2 activation. Three new compounds 3d, 3e, and 7bg showed potent and selective activities against the growth of EphA2 overexpressed glioblastoma cells. Dimer 3d modification replaces the long alkyl chain with a short polyethylene glycol chain. Dimer 7bg has a relatively longer polyethylene glycol chain in comparison to compound 3d and the length is more similar to the lead compound. Whereas dimer 3e has a rigid aromatic linker exploring the chemical space. The diversity of the linkers in the active suggest additional hydrogen binding sites has a positive correlation to the activity. All three dimers showed selective activity in EphA2 overexpressed cells, indicating the activity is correlated to the EphA2 targeting effect.
Collapse
Affiliation(s)
- Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fatma M Salem
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Jovana Hanna
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
18
|
Zhong B, Li Y, Idippily N, Petty A, Su B, Wang B. A quantitative LC-MS/MS method for determination of a small molecule agonist of EphA2 in mouse plasma and brain tissue. Biomed Chromatogr 2019; 33:e4461. [PMID: 30548501 DOI: 10.1002/bmc.4461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 11/07/2022]
Abstract
Compound 27 {1, 12-bis[4-(4-amino-6,7-dimethoxyquinazolin-2-yl)piperazin-1-yl]dodecane-1,12-dione} is a novel small molecule agonist of EphA2 receptor tyrosine kinase. It showed much improved activity for the activation of EphA2 receptor compared with the parental compound doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC-MS/MS) has been developed for the quantification of this compound. Liquid-liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse-phase chromatography with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by MS detection using positive ion multiple reaction monitoring mode. Multiple reaction monitoring transitions m/z 387.3 → 290.1 and m/z 384.1 → 247.1 were selected for monitoring compound 27 and internal standard prazosin, respectively. The linear calibration range was 2-200 ng/mL with the intra- and inter-day precision and accuracy within the acceptable range. This method was successfully applied to the quantitative analysis of compound 27 in mouse plasma and brain tissue with different drug administration routes.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA
| | - Nethrie Idippily
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA
| | - Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth System, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth System, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine 2018; 36:6744-6751. [PMID: 30266488 DOI: 10.1016/j.vaccine.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022]
Abstract
There is a high incidence of adenovirus (AdV) infection in humans due to the presence of more than 60 types of human adenoviruses (HAdVs). The majority of individuals are exposed to one or more HAdV types early in their lives, leading to the development of AdV type-specific neutralizing antibodies. Similarly, immunization or gene therapy with AdV vectors leads to immune responses to the AdV vector. This 'vector immunity' is a concern for AdV vector-based applications for vaccines or gene therapy, especially when the repeated administration of a vector is required. The objective of this investigation was to establish whether AdV neutralizing antibody titers decline sufficiently in a year to permit annual vaccination with the same AdV vector. Naïve or human adenoviral vector group C, type 5 (HAdV-C5)-primed mice were mock-inoculated (with PBS) or inoculated i.m. with 108 PFU of either HAd-GFP [HAdV-C5 vector expressing the green fluorescent protein (GFP)] to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 108 PFU of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza virus]. There was a significant continual decrease in vector immunity titers with time, thereby leading to significant continual increases in the levels of HA-specific humoral and cell-mediated immune responses. In addition, significant improvement in protection efficacy against challenge with an antigenically heterologous H5N1 virus was observed in HAdV-primed animals at 6 months and onwards. These results indicate that the annual immunization with the same AdV vector may be effective due to a significant decline in vector immunity.
Collapse
|
20
|
Hong HN, Won YJ, Shim JH, Kim HJ, Han SH, Kim BS, Kim HS. Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J Cancer Res Clin Oncol 2018; 144:1649-1663. [PMID: 29948146 DOI: 10.1007/s00432-018-2683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Under physiologic conditions, the binding of erythropoietin-producing hepatocellular (Eph) A2 receptor and its ligand ephrinA1 results in decreased EphA2 level and tumor suppression. However, EphA2 and ephrinA1 are highly expressed in human cancers including gastric adenocarcinoma. In this study, we tested our hypothesis that cancer-associated fibroblasts (CAFs) promote gastric tumorigenesis through EphA2 signaling in a ligand-independent manner. METHODS Expression of EphA2 protein in primary tumor tissues of 91 patients who underwent curative surgery for gastric adenocarcinoma was evaluated by immunohistochemistry and western blotting. Conditioned medium of cancer-associated fibroblasts (CAF-CM) was used to evaluate the tumorigenic effect of CAFs on gastric cancer cell lines. Epithelial-mesenchymal transition (EMT), cell proliferation, migration, and invasion were assessed. EphrinA1-Fc ligand was used to determine the suppressor role of EphA2 receptor-ligand binding. RESULTS CAF-CM-induced EMT and promoted cancer cell motility even without cell-cell interaction. Treatment with a selective EphA2 inhibitor (ALW-II-41-27) or EphA2-targeted siRNA markedly reduced CAF-CM-induced gastric tumorigenesis. EphrinA1-Fc ligand treatment showing ligand-dependent tumor suppression diminished the EphA2 expression and EMT progression. In contrast, ephrinA1-targeted siRNA did not significantly affect CAF-CM-mediated increases in EphA2 expression and EMT progression. Treatment with VEGF showed effects like CAF-CM in terms of EphA2 activation and EMT progression. CONCLUSION CAFs may contribute to gastric tumorigenesis by activating EphA2 signaling pathway in a ligand-independent manner. Our results suggest that ligand-independent activation of EphA2 was triggered by VEGF released from CAF-CM. Our result may partially explain why ligand-dependent tumor suppressor roles of EphA2 are not evident in gastric cancer despite the prominent level of ephrinA1.
Collapse
Affiliation(s)
- Hea Nam Hong
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - You Jin Won
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ju Hee Shim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Ji Kim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Hee Han
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
21
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
22
|
A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:210-222. [PMID: 30101154 PMCID: PMC6082999 DOI: 10.1016/j.omtm.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) were developed as gene delivery vectors to supplement and/or elude human AdV (HAdV)-specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza virus in a dose escalation study in mice with the intranasal (IN) or intramuscular (IM) route of inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing HA of a H5N1 influenza virus. Dose-related increases in the immune responses were clearly noticeable. A single IM inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared with that of HAd-H5HA and conferred complete protection following challenge with a heterologous H5N1 virus at the dose of 3 × 107 plaque-forming units (PFUs), whereas a significant amount of influenza virus was detected in the lungs of mice immunized with 1 × 108 PFUs of HAd-H5HA. Similarly, compared with that of HAd-H5HA, a single IN inoculation with BAd-H5HA produced significantly enhanced humoral (HA-specific immunoglobulin [IgG] and its subclasses, as well as HA-specific IgA) and cellular immune responses, and conferred complete protection following challenge with a heterologous H5N1 virus. Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFUs), but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFUs). These results suggest that at least 30-fold dose sparing can be achieved with BAd-H5HA vector compared with HAd-H5HA vaccine vector.
Collapse
|
23
|
Liu Z, Tao Z, Zhang Q, Wan S, Zhang F, Zhang Y, Wu G, Wang J. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells. Cancer Chemother Pharmacol 2018; 81:687-695. [DOI: 10.1007/s00280-018-3535-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
|
24
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
25
|
Petty A, Idippily N, Bobba V, Geldenhuys WJ, Zhong B, Su B, Wang B. Design and synthesis of small molecule agonists of EphA2 receptor. Eur J Med Chem 2017; 143:1261-1276. [PMID: 29128116 DOI: 10.1016/j.ejmech.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor.
Collapse
Affiliation(s)
- Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nethrie Idippily
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Viharika Bobba
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, USA
| | - Bo Zhong
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
26
|
Tanaka T, Yamada H, Kuroki M, Kodama S, Tamura K, Takamatsu Y. A Modified Adenovirus Vector-Mediated Antibody Screening Method Identifies EphA2 as a Cancer Target. Transl Oncol 2017; 10:476-484. [PMID: 28505517 PMCID: PMC5430157 DOI: 10.1016/j.tranon.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: We constructed a genetically modified adenovirus vector incorporating an IgG Fc-binding motif from staphylococcal protein A, Z33 (Adv-FZ33). Adv-FZ33 allows an antibody to redirect the vector to a target molecule on the cell surface. We attempted to search for target antigen candidates and antibodies that allowed highly selective gene transduction into malignant tumors. METHODS: Hybridoma libraries producing monoclonal antibodies (mAbs) were screened that increased transduction efficiency in cancer cell lines after cross-linking with Adv-FZ33. Target antigens of the mAbs were identified by immunoprecipitation and mass spectrometry. Of these mAbs, we noted a clone, F2-27, that recognized the receptor tyrosine kinase EphA2. Next, we generated an adenovirus vector, Ax3CMTK-FZ33, that expressed a herpes simplex virus thymidine kinase (HSV-TK). The therapeutic efficacy of F2-27–mediated HSV-TK gene transduction, followed by ganciclovir (GCV) administration, was studied in vitro. The inhibitory effect of F2-27 on cancer cell invasion was investigated by a three-dimensional spheroid formation assay. RESULTS: In vitro reporter gene expression after Adv-FZ33 infection via F2-27 was 146 times higher than with control mAb in EphA2-expressing cancer cell lines. F2-27–mediated Ax3CMTK-FZ33 infection induced the HSV-TK gene in an F2-27–dependent manner and had a highly effective cytotoxic effect in a GCV-dependent manner. Additionally, F2-27 independently inhibited migration of EphA2-positive breast cancer cell lines in three-dimensional culture. CONCLUSION: Our modified adenovirus and hybridoma screening system is useful for the development of targeted cancer therapy, and F2-27 has the potential to be an antibody-based therapy for various EphA2-positive cancers.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiromi Yamada
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kazuo Tamura
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasushi Takamatsu
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
27
|
Wang X, Xu H, Cao G, Wu Z, Wang J. Loss of EphA3 Protein Expression Is Associated With Advanced TNM Stage in Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2016; 15:e169-e173. [PMID: 27591824 DOI: 10.1016/j.clgc.2016.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest family of receptor tyrosine kinases. Ephs and their ligands ephrins play an important role in development and carcinogenesis. The expression of EphA3, an Eph family member, has been investigated in a variety of human cancers, with mixed results. High levels of EphA3 protein expression have been reported in colorectal, prostate, and gastric cancers, whereas loss of protein expression has been reported in lung and hematopoietic cancers. EphA3 expression in clear-cell renal cell carcinoma (ccRCC) and its association with clinicopathological parameters has not previously been examined. The aim of this study was to determine the cancerous value of EphA3 protein expression in patients with ccRCC. MATERIALS AND METHODS This study included 68 patients with ccRCC. EphA3 protein expression was examined in ccRCC tissue samples using immunohistochemistry and a specific polyclonal antibody, and the correlation between EphA3 expression and clinicopathological parameters was subsequently evaluated. RESULTS High EphA3 protein expression was observed in all normal renal tubules. In the 68 ccRCC patient samples examined, EphA3 protein expression was detected in 19 cases (27.9%) and undetectable in 49 cases (72.1%). EphA3 protein expression was significantly associated with tumor diameter (P = .016) and tumor, node metastases stage (P = .029). No significant association between protein expression and sex (P = .387), age (P = .727), or nuclear grade (P = .243) was found. CONCLUSION Ourdata indicate that EphA3 protein expression is reduced in ccRCC, suggesting the possibility that this receptor functions as a tumor suppressor in this disease.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guangxin Cao
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Zhijun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing, China.
| |
Collapse
|
28
|
Youngblood VM, Kim LC, Edwards DN, Hwang Y, Santapuram PR, Stirdivant SM, Lu P, Ye F, Brantley-Sieders DM, Chen J. The Ephrin-A1/EPHA2 Signaling Axis Regulates Glutamine Metabolism in HER2-Positive Breast Cancer. Cancer Res 2016; 76:1825-36. [PMID: 26833123 DOI: 10.1158/0008-5472.can-15-0847] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/20/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of receptor tyrosine kinases (RTK) contributes to cellular transformation and cancer progression by disrupting key metabolic signaling pathways. The EPHA2 RTK is overexpressed in aggressive forms of breast cancer, including the HER2(+) subtype, and correlates with poor prognosis. However, the role of EPHA2 in tumor metabolism remains unexplored. In this study, we used in vivo and in vitro models of HER2-overexpressing breast cancer to investigate the mechanisms by which EPHA2 ligand-independent signaling promotes tumorigenesis in the absence of its prototypic ligand, ephrin-A1. We demonstrate that ephrin-A1 loss leads to upregulated glutamine metabolism and lipid accumulation that enhanced tumor growth. Global metabolic profiling of ephrin-A1-null, HER2-overexpressing mammary tumors revealed a significant increase in glutaminolysis, a critical metabolic pathway that generates intermediates for lipogenesis. Pharmacologic inhibition of glutaminase activity reduced tumor growth in both ephrin-A1-depleted and EPHA2-overexpressing tumor allografts in vivo Mechanistically, we show that the enhanced proliferation and glutaminolysis in the absence of ephrin-A1 were attributed to increased RhoA-dependent glutaminase activity. EPHA2 depletion or pharmacologic inhibition of Rho, glutaminase, or fatty acid synthase abrogated the increased lipid content and proliferative effects of ephrin-A1 knockdown. Together, these findings highlight a novel, unsuspected connection between the EPHA2/ephrin-A1 signaling axis and tumor metabolism, and suggest potential new therapeutic targets in cancer subtypes exhibiting glutamine dependency. Cancer Res; 76(7); 1825-36. ©2016 AACR.
Collapse
Affiliation(s)
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yoonha Hwang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | | | | | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee.
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee. Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
29
|
A highly immunogenic vaccine against A/H7N9 influenza virus. Vaccine 2016; 34:744-9. [PMID: 26765287 DOI: 10.1016/j.vaccine.2015.12.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/09/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
Abstract
Since the first case of human infection in March 2013, continued reports of H7N9 cases highlight a potential pandemic threat. Highly immunogenic vaccines to this virus are urgently needed to protect vulnerable populations who lack protective immunity. In this study, an egg- and adjuvant-independent adenoviral vector-based, hemagglutinin H7 subtype influenza vaccine (HAd-H7HA) demonstrated enhanced cell-mediated immunity as well as serum antibody responses in a mouse model. Most importantly, this vaccine provided complete protection against homologous A/H7N9 viral challenge suggesting its potential utility as a pandemic vaccine.
Collapse
|
30
|
Park SH, Park S, Kim DY, Pyo A, Kimura RH, Sathirachinda A, Choy HE, Min JJ, Gambhir SS, Hong Y. Isolation and Characterization of a Monobody with a Fibronectin Domain III Scaffold That Specifically Binds EphA2. PLoS One 2015; 10:e0132976. [PMID: 26177208 PMCID: PMC4503726 DOI: 10.1371/journal.pone.0132976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/21/2023] Open
Abstract
Monobodies are binding scaffold proteins originating from a human fibronectin domain III (Fn3) scaffold that can be easily engineered with specificity and affinity. Human EphA2 (hEphA2) is an early detection marker protein for various tumors including lung, breast, and colon cancer. In this study, we isolated two hEphA2-specific monobodies (E1 and E10) by screening a yeast surface display library. They showed the same amino acid sequence except in the DE loop and had high affinity (~2 nM Kd) against hEphA2. E1 bound only hEphA2 and mEphA2, although it bound hEphA2 with an affinity 2-fold higher than that of mEphA2. However, E10 also bound the mEphA6 and mEphA8 homologs as well as hEphA2 and mEphA2. Thus, E1 but not E10 was highly specific for hEphA2. E1 specifically bound human cells and xenograft tumor tissues expressing hEphA on the cell surface. In vivo optical imaging showed strong targeting of Cy5.5-labeled E1 to mouse tumor tissue induced by PC3 cells, a human prostate cancer cell line that expresses a high level of hEphA2. In conclusion, the highly specific monobody E1 is useful as a hEphA2 probe candidate for in vivo diagnosis and therapy.
Collapse
Affiliation(s)
- Seung-Hwan Park
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sukho Park
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ayoung Pyo
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Richard H. Kimura
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Ataya Sathirachinda
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Department of Radiology, Bio-X Program, Stanford University, Palo Alto, CA, United States of America
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Tsouko E, Wang J, Frigo DE, Aydoğdu E, Williams C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis 2015; 36:1051-60. [PMID: 26088362 DOI: 10.1093/carcin/bgv087] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases.
Collapse
Affiliation(s)
- Efrosini Tsouko
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Daniel E Frigo
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA and
| | - Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Present address: Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Cecilia Williams
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Science for Life Laboratory, School of Biotechnology, KTH - Royal Institute of Technology, 171 21 Stockholm, Sweden
| |
Collapse
|
32
|
Kampen KR, Scherpen FJG, Garcia-Manero G, Yang H, Kaspers GJL, Cloos J, Zwaan CM, van den Heuvel-Eibrink MM, Kornblau SM, De Bont ESJM. EphB1 Suppression in Acute Myelogenous Leukemia: Regulating the DNA Damage Control System. Mol Cancer Res 2015; 13:982-92. [PMID: 25944917 DOI: 10.1158/1541-7786.mcr-14-0660-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Loss of ephrin receptor (EphB1) expression may associate with aggressive cancer phenotypes; however, the mechanism of action remains unclear. To gain detailed insight into EphB1 function in acute myelogenous leukemia (AML), comprehensive analysis of EphB1 transcriptional regulation was conducted. In AML cells, EphB1 transcript was inversely correlated with EphB1 promoter methylation. The presence of EphB1 allowed EfnB1 ligand-mediated p53 DNA binding, leading to restoration of the DNA damage response (DDR) cascade by the activation of ATR, Chk1, p53, p21, p38, CDK1(tyr15), and Bax, and downregulation of HSP27 and Bcl2. Comparatively, reintroduction of EphB1 expression in EphB1-methylated AML cells enhanced the same cascade of ATR, Chk1, p21, and CDK1(tyr15), which consequently enforced programmed cell death. Interestingly, in pediatric AML samples, EphB1 peptide phosphorylation and mRNA expression were actively suppressed as compared with normal bone marrow, and a significant percentage of the primary AML specimens had EphB1 promoter hypermethylation. Finally, EphB1 repression associated with a poor overall survival in pediatric AML. Combined, the contribution of EphB1 to the DDR system reveals a tumor-suppressor function for EphB1 in pediatric AML. IMPLICATIONS The tumor-suppressor function of EphB1 is clinically relevant across many malignancies, suggesting that EphB1 is an important regulator of common cancer cell transforming pathways.
Collapse
Affiliation(s)
- K R Kampen
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F J G Scherpen
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - H Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G J L Kaspers
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - J Cloos
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - C M Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - S M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - E S J M De Bont
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
33
|
Shang X, Lin X, Howell SB. Claudin-4 controls the receptor tyrosine kinase EphA2 pro-oncogenic switch through β-catenin. Cell Commun Signal 2014; 12:59. [PMID: 25344320 PMCID: PMC4212103 DOI: 10.1186/s12964-014-0059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background The EphA2 receptor, which is expressed in many types of cancer, is activated by two different mechanisms. Activation by engagement with one of its ephrin ligands is anti-oncogenic whereas phosphorylation of S897 by AKT increases migration, invasion and metastasis. Down-regulation of claudin-4 (CLDN4) produces a loss of E-cadherin and increased β-catenin signaling and a phenotype similar to that produced by oncogenic activation of EphA2, suggesting that CLDN4 may serve to restrain the pro-oncogenic signaling of EphA2. Results We found that constitutive knockdown of CLDN4 was associated with a 4.5-fold increase in EphA2 mRNA and a 2.5-fold increase in EphA2 protein which was reversible by re-expression of CLDN4. Knockdown of EphA2 blocked the migratory phenotype induced by loss of CLDN4. Knockdown of CLDN4 resulted in a 5.8-fold increase in pEphA(S897), the oncogenic form of the receptor, as well as partial mislocalization of the excess EphA2 to the interior of the cell. Forced expression of E-cadherin did not reduce total EphA2 or pEphA(S897) whereas re-expression of CLDN4 restored localization and reduced EphA2 and pEphA(S897) even in cells not expressing E-cadherin. Transient siRNA-mediated knockdown of EphA2 and β-catenin, and inhibition of PI3K by LY294002, demonstrated that increased pEphA(S897) in the CLDN4 knockdown cells was attributable to an increase in the level of active dephospho-β-catenin upstream of PI3K and AKT. Conclusions We conclude that CLDN4 serves to restrain pro-oncogenic signaling from EphA2 by limiting the activity of β-catenin and PI3K and preventing phosphorylation of EphA2 on S897 by AKT. This suggests that interventions directed at enhancing the level or functional activity of CLDN4 may be of therapeutic interest. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0059-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiying Shang
- Department of Medicine and the Moores UCSD Cancer Center, University of California, 3855 Health Sciences Drive, La Jolla, San Diego, CA, 92093-0819, USA.
| | - Xinjian Lin
- Department of Medicine and the Moores UCSD Cancer Center, University of California, 3855 Health Sciences Drive, La Jolla, San Diego, CA, 92093-0819, USA.
| | - Stephen B Howell
- Department of Medicine and the Moores UCSD Cancer Center, University of California, 3855 Health Sciences Drive, La Jolla, San Diego, CA, 92093-0819, USA.
| |
Collapse
|
34
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Toma MI, Erdmann K, Diezel M, Meinhardt M, Zastrow S, Fuessel S, Wirth MP, Baretton GB. Lack of ephrin receptor A1 is a favorable independent prognostic factor in clear cell renal cell carcinoma. PLoS One 2014; 9:e102262. [PMID: 25025847 PMCID: PMC4099180 DOI: 10.1371/journal.pone.0102262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/16/2014] [Indexed: 01/02/2023] Open
Abstract
The EPH receptor tyrosine kinases and their cell-bound ligands, the ephrins, have been shown to be associated with cancer development and progression. In this study, mRNA and protein expression of the receptors EPHA1 and EPHA2 as well as of their ligand EFNA1 and their prognostic relevance in clear cell renal cell carcinoma was evaluated. Gene expression was measured in 75 cryo-preserved primary tumors and matched non-malignant renal specimens by quantitative PCR. Protein expression was analyzed by immunohistochemistry on tissue microarrays comprising non-malignant, primary tumors and metastatic renal tissues of 241 patients. Gene and protein expression of all three factors was altered in tumor specimens with EPHA1 and EPHA2 being generally diminished in tumors compared to normal renal tissue, whereas EFNA1 was commonly elevated. A positive EPHA1 and EPHA2 protein staining as well as a low EFNA1 protein level were significantly linked to more aggressive tumor features, but only a positive EPHA1 immunoreactivity was significantly associated with poor survival. In subgroup analyses, EPHA1 and EPHA2 protein levels were significantly higher in metastatic than in primary lesions. Patients with EPHA1/EPHA2-positive tumors or with tumors with positive EPHA1 and low EFNA1 immunoreactivity had the shortest survival rates compared to the respective other combinations. In a multivariate model, EPHA1 was an independent prognostic marker for different survival endpoints. In conclusion, an impaired EPH-ephrin signaling could contribute to the pathogenesis and progression of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Marieta I. Toma
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- * E-mail:
| | - Kati Erdmann
- Department of Urology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Diezel
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Zastrow
- Department of Urology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Manfred P. Wirth
- Department of Urology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
36
|
Wada H, Yamamoto H, Kim C, Uemura M, Akita H, Tomimaru Y, Hama N, Kawamoto K, Kobayashi S, Eguchi H, Umeshita K, Doki Y, Mori M, Nagano H. Association between ephrin-A1 mRNA expression and poor prognosis after hepatectomy to treat hepatocellular carcinoma. Int J Oncol 2014; 45:1051-8. [PMID: 24969670 DOI: 10.3892/ijo.2014.2519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
Hypoxia regulates the expression of genes that promote tumor growth, angiogenesis and invasion. We previously studied hypoxic tumor cells in vitro and from hepatic metastases of colorectal cancer and determined several potential prognostic factors for hepatocellular carcinoma (HCC). In this study, we evaluated the prognostic impact of the expression of ephrin-A1 (EFNA1) and its receptor, EPHA2, in patients with HCC after curative resection. Samples from a total of 139 HCC patients were analyzed by either microarray alone (n=86) or by microarray and quantitative PCR (n=53). There was no correlation between EFNA1 expression and clinicopathological factors. EPHA2 expression was not significantly correlated with any clinicopathological factors, except for microscopic portal invasion. EFNA1 was an independent prognostic factor for HCC (p=0.0277). These findings suggest that EFNA1 expression may be a useful marker for predicting high risk of recurrence in patients who have undergone curative resection for HCC.
Collapse
Affiliation(s)
- Hiroshi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Chiwan Kim
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Uemura
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Akita
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoki Hama
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Umeshita
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Sato M, Kadota M, Tang B, Yang HH, Yang YA, Shan M, Weng J, Welsh MA, Flanders KC, Nagano Y, Michalowski AM, Clifford RJ, Lee MP, Wakefield LM. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer. Breast Cancer Res 2014; 16:R57. [PMID: 24890385 PMCID: PMC4095608 DOI: 10.1186/bcr3668] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/21/2014] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. METHODS Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. RESULTS TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. CONCLUSIONS Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists.
Collapse
Affiliation(s)
- Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | - Mitsutaka Kadota
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami-machi, Chuo-ku Kobe, Hyogo 650-0047, Japan
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Howard H Yang
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA
| | - Yu-an Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Mengge Shan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Jia Weng
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Michael A Welsh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Yoshiko Nagano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
- Department of Immunotherapeutics, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Robert J Clifford
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring MD 2091, 0USA
| | - Maxwell P Lee
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res 2014; 31:2796-809. [PMID: 24867421 DOI: 10.1007/s11095-014-1377-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Evaluation of tumor targeting pegylated EphA2 peptide coated nanoparticles (ENDDs) of a novel anticancer agent DIM-C-pPhC6H5 (DIM-P) and Docetaxel (DOC) and investigate its antitumor activity and potential for treatment of lung cancer. METHODS Nanoparticles were prepared with DIM-P and DOC (NDDs) using Nano-DeBEE. ENDDs were prepared by conjugating NDDs with 6His-PEG2K-EphA2 peptide and characterized for physicochemical properties, binding assay, cytotoxicity, cellular uptake studies, drug release and pharmacokinetic parameters. Anti-tumor activity of ENDDs was evaluated using a metastatic H1650 and orthotopic A549 tumor models in nude mice and tumor tissue were analyzed by RT-PCR and immunohistochemistry. RESULTS Particle size and entrapment efficiency of ENDDs were 197 ± 21 nm and 95 ± 2%. ENDDs showed 32.5 ± 3.5% more cellular uptake than NDDs in tumor cells. ENDDs showed 23 ± 3% and 26 ± 4% more tumor reduction compared to NDDs in metastatic and orthotopic tumor models, respectively. In-vivo imaging studies using the Care stream MX FX Pro system showed (p < 0.001) 40-60 fold higher flux for ENDDs compared to NDDs at tumor site. CONCLUSIONS The results emanating from these studies demonstrate anti-cancer potential of DIM-P and the role of ENDDs as effective tumor targeting drug delivery systems for lung cancer treatment.
Collapse
|
39
|
Iida J, Clancy R, Dorchak J, Somiari RI, Somiari S, Cutler ML, Mural RJ, Shriver CD. DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration. PLoS One 2014; 9:e88712. [PMID: 24586375 PMCID: PMC3929491 DOI: 10.1371/journal.pone.0088712] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/10/2014] [Indexed: 01/03/2023] Open
Abstract
CD44 adhesion molecules are expressed in many breast cancer cells and have been demonstrated to play a key role in regulating malignant phenotypes such as growth, migration, and invasion. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. The diversity of the biological functions of CD44 is the result of the various splicing variants of these exons. Previous studies suggest that exon v10 of CD44 plays a key role in promoting cancer invasion and metastasis, however, the molecular mechanisms are not clear. Given the fact that exon v10 is in the ectodomain of CD44, we hypothesized that CD44 forms a molecular complex with other cell surface molecules through exon v10 in order to promote migration of breast cancer cells. In order to test this hypothesis, we selected DNA aptamers that specifically bound to CD44 exon v10 using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). We selected aptamers that inhibited migration of breast cancer cells. Co-immunoprecipitation studies demonstrated that EphA2 was co-precipitated with CD44. Pull-down studies demonstrated that recombinant CD44 exon v10 bound to EphA2 and more importantly aptamers that inhibited migration also prevented the binding of EphA2 to exon v10. These results suggest that CD44 forms a molecular complex with EphA2 on the breast cancer cell surface and this complex plays a key role in enhancing breast cancer migration. These results provide insight not only for characterizing mechanisms of breast cancer migration but also for developing target-specific therapy for breast cancers and possibly other cancer types expressing CD44 exon v10.
Collapse
Affiliation(s)
- Joji Iida
- Department of Cell Biology, Windber Research Institute, Windber, Pennsylvania, United States of America
- * E-mail:
| | - Rebecca Clancy
- Department of Cell Biology, Windber Research Institute, Windber, Pennsylvania, United States of America
| | - Jesse Dorchak
- Department of Cell Biology, Windber Research Institute, Windber, Pennsylvania, United States of America
| | | | - Stella Somiari
- Department of Cell Biology, Windber Research Institute, Windber, Pennsylvania, United States of America
| | - Mary Lou Cutler
- Department of Pathology, Uniformed Services University of the Health Science, Bethesda, Maryland, United States of America
| | - Richard J. Mural
- Windber Research Institute, Windber, Pennsylvania, United States of America
| | - Craig D. Shriver
- Department of Surgery, Walter-Reed Army Medical Center, Bethesda, Maryland, United States of America
| |
Collapse
|
40
|
Hasmim M, Badoual C, Vielh P, Drusch F, Marty V, Laplanche A, de Oliveira Diniz M, Roussel H, De Guillebon E, Oudard S, Hans S, Tartour E, Chouaib S. Expression of EPHRIN-A1, SCINDERIN and MHC class I molecules in head and neck cancers and relationship with the prognostic value of intratumoral CD8+ T cells. BMC Cancer 2013; 13:592. [PMID: 24330498 PMCID: PMC3867221 DOI: 10.1186/1471-2407-13-592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 03/17/2023] Open
Abstract
Background Our group has previously shown that EPHRIN-A1 and SCINDERIN expression by tumor cells rendered them resistant to cytotoxic T lymphocyte-mediated lysis. Whereas the prognostic value of EPHRIN-A1 expression in cancer has already been studied, the role of SCINDERIN presence remains to be established. In the present work, we investigated the prognosis value of EPHRIN-A1 and SCINDERIN expression in head and neck carcinomas. In addition, we monitored the HLA-class I expression by tumor cells and the presence of tumor-infiltrating CD8+ T cells to evaluate a putative correlation between these factors and the survival prognosis by themselves or related to EPHRIN-A1 and SCINDERIN expression. Methods Tumor tissue sections of 83 patients with head and neck cancer were assessed by immunohistochemistry for the expression of EPHRIN-A1, SCINDERIN, HLA class I molecules and the presence of CD8+ T cells. Results No significant prognosis value could be attributed to these factors independently, despite a tendency of association between EPHRIN-A1 and a worse clinical outcome. No prognostic value could be observed when CD8+ T cell tumor infiltration was analyzed combined with EPHRIN-A1, SCINDERIN or HLA class I expression. Conclusion These results highlight that molecules involved in cancer cell resistance to cytotoxic T lymphocytes by themselves are not a sufficient criteria for prognosis determination in cancer patients. Other intrinsic or tumor microenvironmental features should be considered in prognostic evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Salem Chouaib
- U753-INSERM, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
41
|
Lee HY, Mohammed KA, Kaye F, Sharma P, Moudgil BM, Clapp WL, Nasreen N. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer. Int J Nanomedicine 2013; 8:4481-94. [PMID: 24293999 PMCID: PMC3839802 DOI: 10.2147/ijn.s41782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers. Our earlier studies demonstrated that let-7a miR inhibits tumor growth in malignant pleural mesothelioma (MPM) and could be a potential therapeutic against lung cancer. EphA2 (ephrin type-A receptor 2) tyrosine kinase is overexpressed in most cancer cells, including MPM and non-small-cell lung cancer (NSCLC) cells. Ephrin-A1, a specific ligand of the EphA2 receptor, inhibits cell proliferation and migration. In this study, to enhance the delivery of miR, the miRs were encapsulated in the DOTAP (N-[1-(2.3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium)/Cholesterol/DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[cyanur(polyethylene glycol)-2000])-PEG (polyethylene glycol)-cyanur liposomal nanoparticles (LNP) and ephrin-A1 was conjugated on the surface of LNP to target receptor EphA2 on lung cancer cells. The LNP with an average diameter of 100 nm showed high stability, low cytotoxicity, and high loading efficiency of precursor let-7a miR and ephrin-A1. The ephrin-A1 conjugated LNP (ephrin-A1–LNP) and let-7a miR encapsulated LNP (miR–LNP) showed improved transfection efficiency against MPM and NSCLC. The effectiveness of targeted delivery of let-7a miR encapsulated ephrin-A1 conjugated LNP (miR–ephrin-A1–LNP) was determined on MPM and NSCLC tumor growth in vitro. miR–ephrin-A1–LNP significantly increased the delivery of let-7a miR in lung cancer cells when compared with free let-7a miR. In addition, the expression of target gene Ras was significantly repressed following miR–ephrin-A1–LNP treatment. Furthermore, the miR–ephrin-A1–LNP complex significantly inhibited MPM and NSCLC proliferation, migration, and tumor growth. Our results demonstrate that the engineered miR–ephrin-A1–LNP complex is an effective carrier for the targeted delivery of small RNA molecules to lung cancer cells. This could be a potential therapeutic approach against tumors overexpressing the EphA2 receptor.
Collapse
Affiliation(s)
- Hung-Yen Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine in the College of Medicine, Gainesville, FL, USA ; Biomaterials Center, Department of Materials Sciences and Engineering, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nekrasova OV, Sharonov GV, Tikhonov RV, Kolosov PM, Astapova MV, Yakimov SA, Tagvey AI, Korchagina AA, Bocharova OV, Wulfson AN, Feofanov AV, Kirpichnikov MP. Receptor-binding domain of ephrin-A1: production in bacterial expression system and activity. BIOCHEMISTRY (MOSCOW) 2013; 77:1387-94. [PMID: 23244735 DOI: 10.1134/s0006297912120073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.
Collapse
Affiliation(s)
- O V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vemula SV, Amen O, Katz JM, Donis R, Sambhara S, Mittal SK. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res 2013; 178:398-403. [PMID: 24051000 DOI: 10.1016/j.virusres.2013.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022]
Abstract
Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2 × 10(7)+1 × 10(7)) was completely protected against an rgH5N1 virus challenge on day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine.
Collapse
Affiliation(s)
- Sai V Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | |
Collapse
|
44
|
Jehle J, Staudacher I, Wiedmann F, Schweizer P, Becker R, Katus H, Thomas D. Regulation of apoptosis in HL-1 cardiomyocytes by phosphorylation of the receptor tyrosine kinase EphA2 and protection by lithocholic acid. Br J Pharmacol 2013; 167:1563-72. [PMID: 22845314 DOI: 10.1111/j.1476-5381.2012.02117.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Heart failure and atrial fibrillation are associated with apoptosis of cardiomyocytes, suggesting common abnormalities in pro-apoptotic cardiac molecules. Activation of the receptor tyrosine kinase EphA2 causes apoptosis in vitro, and dysregulation of EphA2-dependent signalling is implicated in LEOPARD and Noonan syndromes associated with cardiomyopathy. Molecular pathways and regulation of EphA2 signalling in the heart are poorly understood. Here we elucidated the pathways of EphA2-dependent apoptosis and evaluated a therapeutic strategy to prevent EphA2 activation and cardiac cell death. EXPERIMENTAL APPROACH EphA2 signalling was studied in an established model of doxazosin-induced apoptosis in HL-1 cells. Apoptosis was measured with TUNEL assays and as cell viability using a formazan method. Western blotting and siRNA for EphA2 were also used. KEY RESULTS Apoptosis induced by doxazosin (EC(50) = 17.3 μM) was associated with EphA2 activation through enhanced phosphorylation (2.2-fold). Activation of pro-apoptotic downstream factors, phospho-SHP-2 (3.9-fold), phospho-p38 MAPK (2.3-fold) and GADD153 (1.6-fold) resulted in cleavage of caspase 3. Furthermore, two anti-apoptotic enzymes were suppressed (focal adhesion kinase, by 41%; phospho-Akt, by 78%). Inactivation of EphA2 with appropriate siRNA mimicked pro-apoptotic effects of doxazosin. Finally, administration of lithocholic acid (LCA) protected against apoptosis by increasing EphA2 protein levels and decreasing EphA2 phosphorylation. CONCLUSIONS AND IMPLICATIONS EphA2 phosphorylation and activation of SHP-2 are critical steps in apoptosis. Reduction of EphA2 phosphorylation by LCA may represent a novel approach for future anti-apoptotic treatment of heart failure and atrial fibrillation.
Collapse
Affiliation(s)
- J Jehle
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Eph receptors and their ligands: promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta Rev Cancer 2013; 1835:243-57. [PMID: 23396052 DOI: 10.1016/j.bbcan.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Collapse
|
46
|
Yamamoto H, Tei M, Uemura M, Takemasa I, Uemura Y, Murata K, Fukunaga M, Ohue M, Ohnishi T, Ikeda K, Kato T, Okamura S, Ikenaga M, Haraguchi N, Nishimura J, Mizushima T, Mimori K, Doki Y, Mori M. Ephrin-A1 mRNA is associated with poor prognosis of colorectal cancer. Int J Oncol 2012; 42:549-55. [PMID: 23258614 DOI: 10.3892/ijo.2012.1750] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/02/2012] [Indexed: 12/22/2022] Open
Abstract
We previously studied hypoxic tumor cells from hepatic metastases of colorectal cancer (CRC) and determined several potential prognostic factors, including expression of ephrin-A1 (EFNA1), which was highly induced by hypoxia. Here, we further evaluated the prognostic impact of EFNA1 expression. Samples from a total of 366 CRC patients from 11 institutes were analyzed by either microarray (n=220) or quantitative reverse-transcriptase polymerase chain reaction (n=146). EFNA1 was an independent prognostic factor for CRC (p<0.05). In vitro assays revealed that loss of EFNA1 following siRNA treatment was associated with reduced proliferative activity and decreased invasion and migration of CRC cell lines. EFNA1 expression is a useful marker for predicting high risk of relapse and cancer-related death in patients who have undergone curative resection for CRC.
Collapse
Affiliation(s)
- Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, Huse JT, Cajola L, Zanetti N, DiMeco F, De Filippis L, Mangiola A, Maira G, Anile C, De Bonis P, Reynolds BA, Pasquale EB, Vescovi AL. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 2012; 22:765-80. [PMID: 23238013 PMCID: PMC3922047 DOI: 10.1016/j.ccr.2012.11.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/31/2012] [Accepted: 11/13/2012] [Indexed: 12/20/2022]
Abstract
In human glioblastomas (hGBMs), tumor-propagating cells with stem-like characteristics (TPCs) represent a key therapeutic target. We found that the EphA2 receptor tyrosine kinase is overexpressed in hGBM TPCs. Cytofluorimetric sorting into EphA2(High) and EphA2(Low) populations demonstrated that EphA2 expression correlates with the size and tumor-propagating ability of the TPC pool in hGBMs. Both ephrinA1-Fc, which caused EphA2 downregulation in TPCs, and siRNA-mediated knockdown of EPHA2 expression suppressed TPCs self-renewal ex vivo and intracranial tumorigenicity, pointing to EphA2 downregulation as a causal event in the loss of TPCs tumorigenicity. Infusion of ephrinA1-Fc into intracranial xenografts elicited strong tumor-suppressing effects, suggestive of therapeutic applications.
Collapse
Affiliation(s)
- Elena Binda
- Department of Biotechnology and Biosciences, University of Milan Bicocca, 20126 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Petty A, Myshkin E, Qin H, Guo H, Miao H, Tochtrop GP, Hsieh JT, Page P, Liu L, Lindner DJ, Acharya C, MacKerell AD, Ficker E, Song J, Wang B. A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS One 2012; 7:e42120. [PMID: 22916121 PMCID: PMC3419725 DOI: 10.1371/journal.pone.0042120] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/02/2012] [Indexed: 12/18/2022] Open
Abstract
During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo.
Collapse
Affiliation(s)
- Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Eugene Myshkin
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Haina Qin
- Departments of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Hong Guo
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Hui Miao
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Phillip Page
- Reichert, Inc., Depew, New York, United States of America
| | - Lili Liu
- Department of Medicine, Division of Hematology and Oncology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Daniel J. Lindner
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Chayan Acharya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - Eckhard Ficker
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jianxing Song
- Departments of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (JS); (BW)
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (JS); (BW)
| |
Collapse
|
49
|
Kongsgaard A, Lund-Iversen M, Berge G, Brustugun OT, Solberg SK, Mælandsmo GM, Boye K. Expression of S100A4, ephrin-A1 and osteopontin in non-small cell lung cancer. BMC Cancer 2012; 12:333. [PMID: 22853000 PMCID: PMC3458900 DOI: 10.1186/1471-2407-12-333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metastasis-promoting protein S100A4 induces expression of ephrin-A1 and osteopontin in osteosarcoma cell lines. The aim of this study was to investigate S100A4-mediated stimulation of ephrin-A1 and osteopontin in non-small cell lung cancer (NSCLC) cell lines, and to characterize the expression of these biomarkers in primary tumor tissue from NSCLC patients. METHODS Four NSCLC cell lines were treated with extracellular S100A4, and ephrin-A1 and osteopontin expression was analyzed by real time RT-PCR and Western blotting. Immunohistochemical staining for S100A4, ephrin-A1 and osteopontin was performed on tissue microarrays containing primary tumor samples from a cohort of 217 prospectively recruited NSCLC patients, and associations with clinicopathological parameters were investigated. RESULTS S100A4 induced ephrin-A1 mRNA and protein expression in adenocarcinoma, but not in squamous carcinoma cell lines, whereas the level of osteopontin was unaffected by S100A4 treatment. In primary tumors, moderate or strong immunoreactivity was observed in 57% of cases for cytoplasmic S100A4, 46% for nuclear S100A4, 86% for ephrin-A1 and 77% for osteopontin. Interestingly, S100A4 expression was associated with ephrin-A1 also in vivo, but there was no association between S100A4 and osteopontin. Expression levels of S100A4 and ephrin-A1 were significantly higher in adenocarcinomas compared to other histological subtypes, and S100A4-positive tumors were smaller and more differentiated than tumors without expression. CONCLUSIONS Our findings suggest that S100A4, ephrin-A1 and osteopontin are involved in the biology of NSCLC, and further investigation of their potential use as biomarkers in NSCLC is warranted.
Collapse
Affiliation(s)
- Ane Kongsgaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Gisle Berge
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Steinar K Solberg
- Department of Cardiovascular and Thoracic Surgery, Rikshospitalet, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| |
Collapse
|
50
|
Tandon M, Vemula SV, Sharma A, Ahi YS, Mittal S, Bangari DS, Mittal SK. EphrinA1-EphA2 interaction-mediated apoptosis and FMS-like tyrosine kinase 3 receptor ligand-induced immunotherapy inhibit tumor growth in a breast cancer mouse model. J Gene Med 2012; 14:77-89. [PMID: 22228563 DOI: 10.1002/jgm.1649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase 3 receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. METHODS We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. To determine whether EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). RESULTS In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. CONCLUSIONS The results obtained in the present study, indicating the induction of apoptosis and inhibition of mammary tumor growth, show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy for effectively inducing mammary tumor regression by HAd vector-based therapy.
Collapse
Affiliation(s)
- Manish Tandon
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|