1
|
Masaadeh AH, Eletrebi M, Parajuli B, De Jager N, Bosch DE. Human colitis-associated colorectal carcinoma progression is accompanied by dysbiosis with enriched pathobionts. Gut Microbes 2025; 17:2479774. [PMID: 40094201 PMCID: PMC11917176 DOI: 10.1080/19490976.2025.2479774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Dysbiosis and pathobionts contribute to inflammation and the risk of colitis-associated carcinoma (CAC) in animal models, but their roles in humans with this uncommon disease are unknown. We identified microbiome differences in human CAC compared with longstanding inflammatory bowel disease (IBD) and sporadic colorectal carcinoma (CRC). Twenty-four CAC resections were matched with CRC and IBD controls. Methods included histopathology, 16S rDNA metagenomics, and pathobiont-specific qPCR. Beta diversity differed by diagnosis (PERMANOVA p = 0.007). The distinguishing taxa included Akkermansia enriched in CRC, and Bacteroides spp. enriched in IBD. The non-neoplastic mucosae presented distinct beta diversity (p = 0.005), but the CAC/CRC tumor microbiomes were similar (p = 0.7). Within metastases and margins, Enterobacteriaceae were enriched in CAC, and Bacteroidales in CRC. Pathobiont-specific qPCR confirmed a greater frequency of pks+ E. coli and enterotoxigenic Bacteroides fragilis in CAC than IBD. High alpha diversity was associated with active inflammation, advanced cancer stage, and shorter overall survival (log-rank p = 0.008). Mucosal microbiomes distinguish CAC from longstanding IBD, implicating pathobionts as markers for disease progression. Integrating our findings with prior animal model research, pathobionts promote carcinogenesis in IBD patients through genotoxicity and host cell signaling.
Collapse
Affiliation(s)
- Amr H. Masaadeh
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohamed Eletrebi
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bishal Parajuli
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicola De Jager
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Dustin E. Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, Iowa City, IA, USA
| |
Collapse
|
2
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Kang Z, Jiang S, Fang JY, Chen H. Intestinal dysbiosis and colorectal cancer. Chin Med J (Engl) 2025; 138:1266-1287. [PMID: 40387510 DOI: 10.1097/cm9.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Indexed: 05/20/2025] Open
Abstract
ABSTRACT Colorectal cancer (CRC) is one of the leading causes of cancer-related morbidity and mortality worldwide, highlighting the urgent need for novel preventive and therapeutic strategies. Emerging research highlights the crucial role of the gut microbiota, including bacteria, fungi, viruses, and their metabolites, in the pathogenesis of CRC. Dysbiosis, characterized by an imbalance in microbial composition, contributes to tumorigenesis through immune modulation, metabolic reprogramming, and genotoxicity. Specific bacterial species, such as Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis , along with fungal agents like Candida species, have been implicated in CRC progression. Moreover, viral factors, including Epstein-Barr virus and human cytomegalovirus, are increasingly recognized for their roles in promoting inflammation and immune evasion. This review synthesizes the latest evidence on host-microbiome interactions in CRC, emphasizing microbial metabolites, such as short-chain fatty acids and bile acids, which may act as both risk factors and therapeutic agents. We further discuss the latest advances in microbiota-targeted clinical applications, including biomarker-assisted diagnosis, next-generation probiotics, and microbiome-based interventions. A deeper understanding of the role of gut microbiome in CRC pathogenesis could pave the way for diagnostic, preventive, and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ziran Kang
- Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Shanshan Jiang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
4
|
Moskal K, Khurana N, Siegert L, Lee YS, Clevers H, Elinav E, Puschhof J. Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms. Int J Cancer 2025; 156:2053-2067. [PMID: 39716471 PMCID: PMC11970552 DOI: 10.1002/ijc.35298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024]
Abstract
The biology of cancer is characterized by an intricate interplay of cells originating not only from the tumor mass, but also its surrounding environment. Different microbial species have been suggested to be enriched in tumors and the impacts of these on tumor phenotypes is subject to intensive investigation. For these efforts, model systems that accurately reflect human-microbe interactions are rapidly gaining importance. Here we present a guide for selecting a suitable in vitro co-culture platform used to model different cancer-microbiome interactions. Our discussion spans a variety of in vitro models, including 2D cultures, tumor spheroids, organoids, and organ-on-a-chip platforms, where we delineate their respective advantages, limitations, and applicability in cancer microbiome research. Particular focus is placed on methodologies that facilitate the exposure of cancer cells to microbes, such as organoid microinjections and co-culture on microfluidic devices. We highlight studies offering critical insights into possible cancer-microbe interactions and underscore the importance of in vitro models in those discoveries. We anticipate the integration of more complex microbial communities and the inclusion of immune cells into co-culture systems to more accurately simulate the tumor microenvironment. The advent of ever more sophisticated co-culture models will aid in unraveling the mechanisms of cancer-microbiome interplay and contribute to exploiting their potential in novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Moskal
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| | - Nimisha Khurana
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Luisa Siegert
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
| | - Ye Seul Lee
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Hans Clevers
- Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtHubrecht InstituteUtrechtThe Netherlands
- Present address:
Roche Pharmaceutical Research and Early DevelopmentBaselSwitzerland
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Jens Puschhof
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| |
Collapse
|
5
|
Agrawal R, Al-Hiyari S, Hugh-White R, Hromas R, Patel Y, Williamson EA, Mootor MFE, Gonzalez A, Fu J, Haas R, Jordan M, Wickes BL, Mohammed G, Tian M, Doris MJ, Jobin C, Wernke KM, Pan Y, Yamaguchi TN, Herzon SB, Boutros PC, Liss MA. Colibactin Exerts Androgen-dependent and -independent Effects on Prostate Cancer. Eur Urol Oncol 2025; 8:716-730. [PMID: 39547899 PMCID: PMC12075626 DOI: 10.1016/j.euo.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The etiology of prostate cancer (PC) is multifactorial and poorly understood. It has been suggested that colibactin-producing Escherichia coli positive for the pathogenicity island pks (pks+) initiate cancers via induction of genomic instability. In PC, androgens promote oncogenic translocations. Our aim was to investigate the association of pks+E. coli with PC diagnosis and molecular architecture, and its relationship with androgens. METHODS We quantified the association of pks+E. coli with PC diagnosis in a volunteer-sampled 235-person cohort from two institutional practices (UT San Antonio). We then used colibactin 742 and DNA/RNA sequencing to evaluate the effects of colibactin 742, dihydrotestosterone (DHT), and their combination in vitro. KEY FINDINGS AND LIMITATIONS Colibactin exposure was positively associated with PC diagnosis (p = 0.04) in our clinical cohort, and significantly increased replication fork stalling and fusions in vitro (p < 0.01). Combined in vitro exposure to colibactin 742 and DHT induced more somatic mutations of all types than exposure to either alone. The combination also elicited kataegis, with a higher density of somatic point mutations. Laboratory analyses were conducted using a single cell line, which limited our ability to fully recapitulate the complexity of PC etiology. CONCLUSIONS AND CLINICAL IMPLICATIONS Our findings are consistent with synergistic induction of genome instability and kataegis by colibactin 742 and DHT in cell culture. Colibactin-producing pks+ E. coli may plausibly contribute to PC etiology. PATIENT SUMMARY We investigated whether a bacterial toxin that is linked to colon cancer can also cause prostate cancer. Our results support this idea by showing a link between the toxin and prostate cancer diagnosis in a large patient population. We also found that this toxin causes genetic dysfunction in prostate cancer cells when combined with testosterone.
Collapse
Affiliation(s)
- Raag Agrawal
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Sarah Al-Hiyari
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rupert Hugh-White
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Yash Patel
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Mohammed F E Mootor
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alfredo Gonzalez
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jianmin Fu
- Department of Microbiology and Immunology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Roni Haas
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Madison Jordan
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Brian L Wickes
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas, San Antonia, TC, USA
| | - Ghouse Mohammed
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Molly J Doris
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Christian Jobin
- Departments of Medicine, Infectious Diseases and Immunology, and Anatomy and Cell Physiology, University of Florida, Gainesville, FL, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Yu Pan
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael A Liss
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Silveira MAD, Rodrigues RR, Trinchieri G. Intestinal Microbiome Modulation of Therapeutic Efficacy of Cancer Immunotherapy. Gastroenterol Clin North Am 2025; 54:295-315. [PMID: 40348489 PMCID: PMC12066836 DOI: 10.1016/j.gtc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bacteria are associated with certain cancers and may induce genetic instability and cancer progression. The gut microbiome modulates the response to cancer therapy. Training machine learning models with response associated taxa or bacterial genes predict patients' response to immunotherapies with moderate accuracy. Clinical trials targeting the gut microbiome to improve immunotherapy efficacy have been conducted. While single bacterial strains or small consortia have not be reported yet to be successful, encouraging results have been reported in small single arm and randomized studies using transplant of fecal microbiome from cancer patients who successfully responded to therapy or from healthy volunteers.
Collapse
Affiliation(s)
- Maruhen A D Silveira
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA
| | - Richard R Rodrigues
- Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4140B, Bethesda, MD 20852, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4146, Bethesda, MD 20852, USA.
| |
Collapse
|
7
|
Guo Y, Xiao Y, Zhang C, Wang Y, Cao G, Tse KY, Han Z, Li F, Zhi Y. The intratumoral microbiota heterogenicity is related to the prognosis and tumorigenesis of cervical cancer. Front Cell Infect Microbiol 2025; 15:1574511. [PMID: 40433663 PMCID: PMC12106397 DOI: 10.3389/fcimb.2025.1574511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background The intratumoral microbe-host interaction plays crucial role in the development of cancer. The microbiome can influence cancer development by modulating inflammation, immune responses and metabolic pathways. Therefore, we aim to delineate the landscape and role of intratumoral microbiota in cervical cancer (CC). Methods The presence of bacterial community in CC tissues was confirmed by fluorescence in situ hybridization (FISH). Then 16s rRNA and RNA-Seq were used to characterize the composition of intratumoral microbiota. Combined with cervical squamous cell carcinoma (CESC) data from the Tumor Cancer Genome Atlas (TCGA), the clinical signatures of intratumoral microbiota and DEGs were further analyzed. Finally, the effect of the up-regulated Fibrinogen beta chain (FGB) expressed fragment peptide on the biological behavior of cancer was verified in vitro. Results We found the composition heterogeneity of bacteria in CC tumors. Pseudomonas was most highly enriched in CC tissues and grouped according to the relative abundance level. The clinical characteristics of patients with relatively high abundance of Pseudomonas had the higher levels of fibrinogen and lower levels of white blood cell (WBC) and albumin (ALB) expression. Combining transcriptome data from the two our collective CC and TCGA-CESC cohorts, we found that Pseudomonas abundance was significantly associated with fibrinogen beta peptide expression and worse overall survival in CC patients. In vitro experiment revealed that Pseudomonas could promote the proliferation and migration of cervical cancer cells through overexpression of FGB. Conclusions We characterized the composition of the intratumoral microbiota in CC tissues and identified the most significantly differentially abundant bacteria between cancerous and non-cancerous tissues. Our findings provide novel insights into the relationship between intratumoral Pseudomonas and the tumorigenesis of CC. A deeper understanding of the tumor microenvironment and its associated microbiota may reveal new potential therapeutic targets and improve clinical outcomes.
Collapse
Affiliation(s)
- Yi Guo
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuhang Xiao
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxu Cao
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis(Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong Zhi
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Kim M, Kim J, Lee GS, Olinares PDB, Airan Y, Chow JL, Park J, Jeong Y, Park J, Chait BT, Herzon SB, Kim CS, Kang JY. Structural study on human microbiome-derived polyketide synthases that assemble genotoxic colibactin. Structure 2025:S0969-2126(25)00173-X. [PMID: 40381618 DOI: 10.1016/j.str.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Colibactin, a human microbiome-derived genotoxin, promotes colorectal cancer by damaging the host gut epithelial genomes. While colibactin is synthesized via a hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway, known as pks or clb, the structural details of its biosynthetic enzymes remain limited, hindering our understanding of its biosynthesis and clinical application. In this study, we report the cryo-EM structures of two colibactin-producing PKS enzymes, ClbC and ClbI, captured in different reaction states using a substrate-mimic crosslinker. Our structural analysis revealed the binding sites of carrier protein (CP) domains of the ClbC and ClbI on their ketosynthase (KS) domains. Further, we identified a novel NRPS-PKS docking interaction between ClbI and its upstream enzyme, ClbH, mediated by the C-terminal peptide ClbH and the dimeric interface of ClbI, establishing a 1:2 stoichiometry. These findings advance our understanding of colibactin assembly line and provide broader insights into NRPS-PKS natural product biosynthesis mechanisms.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jasmine L Chow
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jongseok Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yujin Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Jans M, Vereecke L. Physiological drivers of pks+ E. coli in colorectal cancer. Trends Microbiol 2025:S0966-842X(25)00121-0. [PMID: 40335416 DOI: 10.1016/j.tim.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, with rising incidence, particularly among individuals under 50. Increasing evidence highlights the gut microbiota as key contributors to CRC development, with certain oncogenic bacteria influencing cancer initiation, progression, and therapy response. Among these is pks+ Escherichia coli, which produces colibactin, a genotoxic compound that induces DNA damage and leaves a distinct mutational signature in healthy individuals and CRC patients. While research has focused on its genotoxic effects, this review examines the kinetics of colibactin-induced mutations and the epithelial and environmental changes that promote E. coli expansion and colibactin exposure. We also explore the broader role of pks+ E. coli in cancer initiation and progression beyond genotoxicity, and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Abdollahi S, Zarin B, Vatani M, Vajhadin F, Hassani M, Jalali P, Kim K, Sanati-Nezhad A. Biomimetic culture substrates for modelling homeostatic intestinal epithelium in vitro. Nat Commun 2025; 16:4120. [PMID: 40316543 PMCID: PMC12048609 DOI: 10.1038/s41467-025-59459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
The increasing interest in utilizing three-dimensional (3D) in vitro models with innovative biomaterials to engineer functional tissues arises from the limitations of conventional cell culture methods in accurately reproducing the complex physiological conditions of living organisms. This study presents a strategy for replicating the intricate microenvironment of the intestine by cultivating intestinal cells within bioinspired 3D interfaces that recapitulate the villus-crypt architecture and 3D tissue arrangement of the intestine. Intestinal cells cultured on these biomimetic substrates exhibited phenotypes and differentiation characteristics resembling intestinal-specific cell types, effectively replicating intestinal tissue. Notably, tissue proliferation and differentiation were achieved within 72-120 h-significantly faster than the several weeks required by conventional bioengineered materials, which often pose risks of tissue necrosis or cross-contamination. Additionally, the differentiated cells on these villi-crypts mimicking bio-interfaces exhibit higher production of natural antimicrobial peptides, resulting in reduced pathogenic infection compared to control samples. Furthermore, our method stands out for simplicity in fabrication, eliminating the need for cleanroom procedures and complex microfabrication techniques.
Collapse
Affiliation(s)
- Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada
| | - Bahareh Zarin
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Maryam Vatani
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada
| | - Fereshteh Vajhadin
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Mohsen Hassani
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Pezhman Jalali
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 2T8, Canada.
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 2T8, Canada.
| |
Collapse
|
11
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1283-1308. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Green EH, Kotrannavar SR, Rutherford ME, Lunnemann HM, Kaur H, Heiser CN, Ding H, Simmons AJ, Liu X, Lacy DB, Washington MK, Shrubsole MJ, Liu Q, Lau KS, Sears CL, Coffey RJ, Drewes JL, Markham NO. Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia. J Pathol 2025; 266:51-65. [PMID: 40026233 PMCID: PMC11985286 DOI: 10.1002/path.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emily H Green
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Megan E Rutherford
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hannah M Lunnemann
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Harsimran Kaur
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTNUSA
| | - Cody N Heiser
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Hua Ding
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Alan J Simmons
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Xiao Liu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - M Kay Washington
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Martha J Shrubsole
- Vanderbilt Epidemiology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Qi Liu
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Ken S Lau
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Cynthia L Sears
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nicholas O Markham
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
14
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025; 7:895-917. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
15
|
Thomas CE, Peters U. Genomic landscape of cancer in racially and ethnically diverse populations. Nat Rev Genet 2025; 26:336-349. [PMID: 39609636 DOI: 10.1038/s41576-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/30/2024]
Abstract
Cancer incidence and mortality rates can vary widely among different racial and ethnic groups, attributed to a complex interplay of genetic, environmental and social factors. Recently, substantial progress has been made in investigating hereditary genetic risk factors and in characterizing tumour genomes. However, most research has been conducted in individuals of European ancestries and, increasingly, in individuals of Asian ancestries. The study of germline and somatic genetics in cancer across racial and ethnic groups using omics technologies offers opportunities to identify similarities and differences in both heritable traits and the molecular features of cancer genomes. An improved understanding of population-specific cancer genomics, as well as translation of those findings across populations, will help reduce cancer disparities and ensure that personalized medicine and public health approaches are equitable across racial and ethnic groups.
Collapse
Affiliation(s)
- Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Koh GCC, Nanda AS, Rinaldi G, Boushaki S, Degasperi A, Badja C, Pregnall AM, Zhao SJ, Chmelova L, Black D, Heskin L, Dias J, Young J, Memari Y, Shooter S, Czarnecki J, Brown MA, Davies HR, Zou X, Nik-Zainal S. A redefined InDel taxonomy provides insights into mutational signatures. Nat Genet 2025; 57:1132-1141. [PMID: 40210680 DOI: 10.1038/s41588-025-02152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Despite their deleterious effects, small insertions and deletions (InDels) have received far less attention than substitutions. Here we generated isogenic CRISPR-edited human cellular models of postreplicative repair dysfunction (PRRd), including individual and combined gene edits of DNA mismatch repair (MMR) and replicative polymerases (Pol ε and Pol δ). Unique, diverse InDel mutational footprints were revealed. However, the prevailing InDel classification framework was unable to discriminate these InDel signatures from background mutagenesis and from each other. To address this, we developed an alternative InDel classification system that considers flanking sequences and informative motifs (for example, longer homopolymers), enabling unambiguous InDel classification into 89 subtypes. Through focused characterization of seven tumor types from the 100,000 Genomes Project, we uncovered 37 InDel signatures; 27 were new. In addition to unveiling previously hidden biological insights, we also developed PRRDetect-a highly specific classifier of PRRd status in tumors, with potential implications for immunotherapies.
Collapse
Affiliation(s)
- Gene Ching Chiek Koh
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Arjun Scott Nanda
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Giuseppe Rinaldi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Soraya Boushaki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Cherif Badja
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Andrew Marcel Pregnall
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Salome Jingchen Zhao
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lucia Chmelova
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniella Black
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Laura Heskin
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - João Dias
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jamie Young
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yasin Memari
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Scott Shooter
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jan Czarnecki
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthew Arthur Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, UK
| | - Helen Ruth Davies
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Genomic Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Ye Z, Gao L, Guo Z, Wang Q. Oral and intestinal flora translocation and tumor development. J Cancer Res Ther 2025; 21:323-333. [PMID: 40317136 DOI: 10.4103/jcrt.jcrt_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 05/07/2025]
Abstract
ABSTRACT Cancer metastasis is the leading cause of death in patients. In recent years, there has been a growing recognition of the role of tumor-associated microflora in tumor metastasis. The connection between oral and gut microflora and the tumor microenvironment has also been extensively studied. The migration of oral and gut microflora is closely associated with tumor development. Although there is awareness regarding the significant impact of microbial communities on human health, the focus on their relationship with host organisms, particularly those related to tumor-associated microflora, remains inadequate. As an integral part of the body, the host microflora is crucial for regulating the cancer risk and preventing tumor recurrence. The oral-gut axis plays an indispensable role in human immunity, and many types of cancers, such as colorectal, pancreatic, and breast, are significantly influenced by their internal microbial communities. However, further exploration into the mechanisms underlying the role of the intratumoral microflora in cancer is necessary to achieve a comprehensive understanding. We have summarized and analyzed related articles in PubMed. This article reviews the impact of the oral-gut axis on the human immune system, explores the relationship between the translocation of the oral and intestinal flora and the tumor microenvironment, analyzes the specific mechanisms involved in the translocation of the oral and intestinal microflora during the evolution and progression of tumors, and elaborates on the correlations between the occurrence and development of tumors and the changes in the microflora. Finally, a summary of these abovementioned points is provided.
Collapse
Affiliation(s)
- Zhiyuan Ye
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Linglin Gao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, The 6 Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Mäklin T, Taira A, Arredondo-Alonso S, Shao Y, Stratton MR, Lawley TD, Aaltonen LA, Corander J. Geographical variation in the incidence of colorectal cancer and urinary tract cancer is associated with population exposure to colibactin-producing Escherichia coli. THE LANCET. MICROBE 2025; 6:101015. [PMID: 39644909 DOI: 10.1016/j.lanmic.2024.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
Biomedical research has implicated the bacterial metabolite colibactin as a causal risk factor for several cancer types, in particular, colorectal cancer. Colibactin has been known to drive tumorigenesis by inducing double-strand breaks in the DNA of epithelial cells exposed to colibactin-producing bacteria. Some phylogroup B2 Escherichia coli secrete colibactin during interbacterial warfare, concomitantly exposing the host to an increasing risk of DNA damage. This Personal View reviews the current knowledge about the cancer-colibactin interface and summarises metagenomics-based and population-genomics-based surveys to show that the prevalence of dominant colibactin-producing lineages of E coli varies considerably across geographical regions. The prevalence is further strongly associated with the age-standardised incidences of colorectal cancer, bladder cancer, and prostate cancer, suggesting that the degree of colibactin exposure in a population might contribute to the geographical variation of these cancers. Our observations provide a strong impetus for further research and the development of novel interventions to reduce the risks for colibactin-related cancers.
Collapse
Affiliation(s)
- Tommi Mäklin
- Department of Mathematics and Statistics University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics University of Helsinki, Helsinki, Finland
| | | | - Yan Shao
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics University of Helsinki, Helsinki, Finland; Department of Biostatistics, University of Oslo, Oslo, Norway; Wellcome Sanger Institute, Hinxton, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Yang Y, Wang D, Li L, Song J, Yang X, Li J. Evolution of enteric viruses in the progression of colorectal cancer via the adenoma-carcinoma sequence pathway. Virus Res 2025; 355:199569. [PMID: 40180222 PMCID: PMC12005302 DOI: 10.1016/j.virusres.2025.199569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The global incidence of colorectal cancer (CRC) is increasing. In the majority of CRC cases, colon cancer develops from alterations in the adenoma-carcinoma sequence pathway. Currently, there are few studies regarding the effects of enteric viruses on the adenoma-carcinoma sequence pathway, and subsequently, the progression and development of the CRC. Here, fecal and tissue samples from a normal control group, an adenomatous polyp group, and a colorectal adenocarcinoma group were collected to gain a deeper understanding of the variations in enteric viruses in CRC patients and to analyze their significance. With the progression of CRC from adenoma to adenocarcinoma, the number of DNA viruses in the virus-like particles (VLPs) of fecal and tissue samples gradually increased, and there were distinct differences in the composition of enteric viruses among the different groups. Multiple species correlation analysis revealed extensive interactions among viruses, bacteria, and fungi in fecal and tissue samples. Functional analysis also revealed that the functional pathways in fecal and tissue samples also underwent significant changes. In conclusion, the changes in the composition and function of enteric viruses in the progression of CRC via adenoma-carcinoma sequence pathway were analyzed in this study, and these changes hold certain importance for exploring the role of enteric viruses in the occurrence of this disease; however, their mode of action and specific mechanisms require further investigation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China; Department of Gastroenterology, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Longlin Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jieyu Song
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People's Hospital, Chengdu, China
| | - Jun Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Yang R, Liu W, Cai S, Feng X, Chen Y, Cheng X, Ma J, Ma W, Tian Z, Yang W. Evaluation of the efficacy of probiotics in the chemoradiotherapy of colorectal cancer: a meta-analysis of Randomized Controlled Trials. BMC Gastroenterol 2025; 25:312. [PMID: 40301781 PMCID: PMC12042389 DOI: 10.1186/s12876-025-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
OBJECTIVE We undertook this study to assess the efficacy of probiotics in managing adverse reactions during chemoradiotherapy in patients with colorectal cancer. METHOD A comprehensive literature search was conducted on PubMed, ClinicalTrials.gov, Embase, Cochrane library,Web of Science, and Chinese databases until July 27, 2024. Data analysis was performed using RevMan5.3 statistical software. The risk of bias was assessed using the Cochrane collaboration tool. Relative risk (RR) was employed to incorporate statistical measures and calculate 95% confidence intervals (95%CI) for bipartite data. Standardized mean difference (SMD) was utilized to incorporate statistical measures and calculate 95% confidence intervals for continuous variables. RESULTS A meta-analysis of 633 patients with colorectal cancer was conducted across eight studies. In comparison to the control group, probiotics demonstrated a significant reduction in the incidence of chemoradiotherapy-induced diarrhea among colorectal cancer patients(RR = 0.51,95%Cl:0.38 ~ 0.68,P < 0.001). Additionally, probiotic usage exhibited improvements in pain index (SMD = -2.27,95%Cl: -4.49 ~ -0.05,P = 0.04), dyspnea (SMD = -0.92,95%Cl: -1.61 ~ 0.22, P = 0.01) and insomnia (SMD = -2.95, 95%Cl: -5.44 ~ -0.47, P = 0.02) compared to the control group. However, there were no significant differences between two groups in abdominal distension(RR = 0.79, 95%Cl:0.21 ~ 3.00, P = 0.72), stomatitis risk (RR = 1.23, 95%Cl: 0.48 ~ 3.21, P = 0.67), fatigue (SMD = -7.12, 95%Cl:-14.99 ~ 0.75, P = 0.08)and loss of appetite(SMD = -2.86, 95%Cl: -5.83 ~ 0.11, P = 0.06). Furthermore, the use of probiotics did not significantly improve the quality of life (QOL) (SMD = 8.82, 95%Cl: -1.11 ~ 18.75, P = 0.08)of colorectal cancer patients receiving chemoradiotherapy. CONCLUSIONS This meta-analysis suggested that probiotic consumption may ameliorate certain adverse reactions in patients with colorectal cancer receiving chemoradiotherapy. TRIAL REGISTRATIONS Prospero registration number: PROSPERO (CRD42023465966).
Collapse
Affiliation(s)
- Rong Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Wei Liu
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Shuiyan Cai
- Department of General Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Xiurong Feng
- Department of Ultrasonography Lab, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, China
| | - Yongjing Chen
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Xiangyu Cheng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Junjie Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China
| | - Zhihui Tian
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China.
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Staff New Street, Xinghualing District, Taiyuan City, Shanxi Province, 030000, China.
| |
Collapse
|
21
|
Abdel Hamid M, Pammer LM, Oberparleiter S, Günther M, Amann A, Gruber RA, Mair A, Nocera FI, Ormanns S, Zimmer K, Gerner RR, Kocher F, Vorbach SM, Wolf D, Riedl JM, Huemer F, Seeber A. Multidimensional differences of right- and left-sided colorectal cancer and their impact on targeted therapies. NPJ Precis Oncol 2025; 9:116. [PMID: 40263545 PMCID: PMC12015310 DOI: 10.1038/s41698-025-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Despite advances in metastatic colorectal cancer (mCRC) treatment, long-term survival remains poor, particularly in right-sided colorectal cancer (RCRC), which has a worse prognosis compared to left-sided CRC (LCRC). This disparity is driven by the complex biological diversity of these malignancies. RCRC and LCRC differ not only in clinical presentation and outcomes but also in their underlying molecular and genetic profiles. This article offers a detailed literature review focusing on the distinctions between RCRC and LCRC. We explore key differences across embryology, anatomy, pathology, omics, and the tumor microenvironment (TME), providing insights into how these factors contribute to prognosis and therapeutic responses. Furthermore, we examine the therapeutic implications of these differences, considering whether the conventional classification of CRC into right- and left-sided forms should be refined. Recent molecular findings suggest that this binary classification may overlook critical biological complexities. Therefore, we propose that future approaches should integrate molecular insights to better guide personalized treatments, especially anti-EGFR therapies, and improve patient outcomes.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Oberparleiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca A Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mair
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne I Nocera
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- INNPATH, Institute of Pathology, Tirol Kliniken GmBH, Innsbruck, Austria
| | - Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Medicine III, Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354, Freising, Germany
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Samuel M Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Oncology, Hematology and Palliative Care, General Hospital Oberwart, Oberwart, Austria.
| |
Collapse
|
22
|
Tajpara P, Sobkowiak MJ, Healy K, Naud S, Gündel B, Halimi A, Khan ZA, Gabarrini G, Le Guyader S, Imreh G, Reisz JA, Del Chiaro M, D’Alessandro A, Heuchel R, Löhr JM, Özenci V, Sällberg Chen M. Patient-derived pancreatic tumor bacteria exhibit oncogenic properties and are recognized by MAIT cells in tumor spheroids. Front Immunol 2025; 16:1553034. [PMID: 40330456 PMCID: PMC12053177 DOI: 10.3389/fimmu.2025.1553034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Tumor-residing microbiota poses a new challenge in cancer progression and therapy; however, the functional behavior of patient tumor-derived microbes remains poorly understood. We previously reported the presence of tumor microbiota in intraductal papillary mucinous neoplasms (IPMNs), which are precursors of pancreatic cancer. Methods We examined the metabolic and pathogenic potential of clinical microbiota strains obtained from IPMN tumors using various pancreatic cell lines and 3D spheroid models. Results Our findings revealed that several strains from IPMNs with invasive cancer or high-grade dysplasia, such as E. cloacae, E. faecalis, and K. pneumoniae, induced a cancer metabolite signature in human pancreatic cells when infected ex vivo. Bacterial invasiveness was significantly correlated with DNA damage in spheroids derived from normal and tumor-derived pancreatic cells, particularly in strains derived from advanced neoplasia IPMN and under hypoxic conditions. Additionally, microbial metabolites activate human mucosal-associated invariant T (MAIT) cells and restrict the infection, both extra- and intracellularly, in hypoxic tumor conditions and in synergy with antibiotics. Discussion Immune sensing of tumor microbiota metabolites may have clinical implications in cancer management.
Collapse
Affiliation(s)
- Poojabahen Tajpara
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michał Jacek Sobkowiak
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Katie Healy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sabrina Naud
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Asif Halimi
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umea, Sweden
| | - Zara Ahmad Khan
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Gabarrini
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sylvie Le Guyader
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Gabriela Imreh
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado of Medicine, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - J Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| |
Collapse
|
23
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
24
|
Di Pierro F, Sagheddu V, Galletti S, Casaroli A, Labrini E, Soldi S, Cazzaniga M, Bertuccioli A, Matera M, Cavecchia I, Palazzi CM, Tanda ML, Zerbinati N. Selection, Comparative Genomics, and Potential Probiotic Features of Escherichia coli 5C, a pks-Negative Strain Isolated from Healthy Infant Donor Feces. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10522-5. [PMID: 40238037 DOI: 10.1007/s12602-025-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Among the emerging issues in probiotic safety, the possible presence of pks, a gene cluster synthetizing a genotoxin known as colibactin, is one of the most alarming. Indeed, indigenous E. coli strain pks-positive are found in 60% of patients with colorectal cancer, and the most widely used E. coli-based probiotic, known as E. coli Nissle 1917 (DSM 6601), is pks-positive. Starting from 25 potential candidates selected by screening 25 infant stool samples, we have selected an E. coli strain (named 5C, deposited as LMG S-33222) belonging to the phylotype A and having the serovar O173:H1. Having been previously completely sequenced by our group, we have further characterized this strain, demonstrating that it is (i) devoid of the most known potential pathogenic-related genes, (ii) devoid of possible plasmids, (iii) antibiotic-sensitive according to the EFSA panel, (iv) resistant in gastric and enteric juice, (v) significantly producing acetate, (vi) poorly producing histamine, (vii) endowed with a significant in vitro antipathogenic profile, (viii) promoting a significant in vitro immunological response based on IL-10 and IL-12, and (ix) devoid of the pks genes. A comparative genomics versus E. coli Nissle 1917 is also provided. Considering that the other two most commonly used E. coli-based probiotics (E. coli DSM 17252 and E. coli A0 34/86) are respectively pks-positive and alpha-hemolysin-(hly) and cytotoxic necrotizing factor-1-(cnf1) positive, this novel strain (E. coli 5C) is likely the probiotic E. coli strain with the best safety profile available to date for human use.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, 10123, Turin, Italy
- Scientific & Research Department, Velleja Research, 20125, Milan, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Valeria Sagheddu
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Serena Galletti
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Alice Casaroli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Edoardo Labrini
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Sara Soldi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122, Urbino, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Pediatric Emergencies, Misericordia Hospital, 58100, Grosseto, Italy
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123, Turin, Italy
- Microbiomic Department, Koelliker Hospital, 10134, Turin, Italy
| | | | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
25
|
Wu X, Li Y, Li P, Lu G, Wu J, Wang Z, Wen Q, Cui B, Wang J, Zhang F. Structural Variations in Ulcerative Colitis-associated Escherichia coli Reduce Fructose Utilization and Aggravate Inflammation Under High-Fructose Diet. Gastroenterology 2025:S0016-5085(25)00635-3. [PMID: 40250773 DOI: 10.1053/j.gastro.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND AND AIMS Structural variations (SVs) have significant effects on microbial phenotypes. The underlying mechanism of functional changes caused by gut microbial SVs in the development of ulcerative colitis (UC) need further investigation. METHODS We performed long-read (Oxford Nanopore Technology-based) and short-read (Illumina-based) metagenomic sequencing on stool samples from 93 patients with UC and 100 healthy controls (HCs) and analyzed microbial SVs. A total of 648 Escherichia coli strains from fecal samples of patients with UC (UC-strains) and HCs (HC-strains) were isolated. SV-associated scrK gene deletion was verified via whole-genome sequencing or targeted polymerase chain reaction. Then, representative UC-strains, HC-strains, and scrK-knockout E coli were used for the in vitro and in vivo experiments to investigate the effects of specific SVs in E coli on fructose utilization ability and colitis. RESULTS E coli in UC with the highest fold change had SV-affected functional differences on fructose metabolism to that of HCs. The fructose utilization gene deletion was common in UC-strains, ostensibly reducing fructose utilization in vitro and leading to fructose-dependent aggravation of colitis in murine models. UC-strains and HC-strains induced comparable colitis under low fructose. However, high fructose exacerbated colitis severity exclusively in UC-strain-colonized mice, with elevated intestinal fructose residues, significant microbiome/metabolome changes, increased inflammation, and gut barrier disruption. These changes were mechanistically dependent on the deletion of the fructose utilization gene scrK. CONCLUSIONS SV-caused difference in fructose utilization and proinflammatory properties in E coli from patients with UC influence the development of UC, emphasizing the importance of fine-scale metagenomic studies in disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuejuan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaochen Lu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianyu Wu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheyu Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Wen
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Faming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
27
|
Hu J, Yang Y, Feng Y, Yu Y, Song X, Jia R. Association of Intratumoral Microbiota with Prognosis in Patients with Lacrimal Gland Tumor. Biomedicines 2025; 13:960. [PMID: 40299650 PMCID: PMC12024857 DOI: 10.3390/biomedicines13040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Background: While intratumoral microbiota have been identified in various cancers, their presence and clinical significance in lacrimal gland tumors remain largely unexplored. This study investigates the existence, composition, and potential clinical significance of intratumoral bacteria in lacrimal gland tumors. Methods: High-throughput 16S rDNA sequencing was performed on tumor DNA extracted from 89 paraffin-embedded tissues from patients with lacrimal gland tumors. Diversity analysis and LEfSe differential analysis were conducted to identify tumor-type-specific bacterial taxa. LASSO regression and the Cox proportional hazards models were used to analyze the relationship between intratumoral microbiota and prognosis. Results: Significant differences in the β diversity of intratumoral microbiota were observed across adenoid cystic carcinoma (ACC), carcinoma ex pleomorphic adenoma (CXPA), pleomorphic adenoma (PA), and IgG4-related disease (IgG4-RD) patients. After FDR correction, Garicola, Prevotella, Polaribacter, and Helicobacter were notably enriched in the tumors of ACC, CXPA, PA, and IgG4-RD patients, respectively. Importantly, patients with malignant lacrimal gland tumors who experienced relapse, distant metastasis, or death had significantly higher α diversity within their tumors. Furthermore, specific genera, such as Roseburia and Alloprevotella, were particularly associated with poorer prognosis in patients with malignant lacrimal gland tumors. Conclusions: This study provides a comprehensive analysis of microbial profiles in lacrimal gland tumors, highlighting distinct microbial characteristics across tumor types. Our findings suggest that intratumoral bacterial diversity and specific genera may serve as potential prognostic markers for malignant lacrimal gland tumors.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yidi Yang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yiyi Feng
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Yu Yu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Xin Song
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.H.); (Y.Y.); (Y.F.); (Y.Y.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
| |
Collapse
|
28
|
Kalkan AE, BinMowyna MN, Raposo A, Ahmad MF, Ahmed F, Otayf AY, Carrascosa C, Saraiva A, Karav S. Beyond the Gut: Unveiling Butyrate's Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review. Nutrients 2025; 17:1305. [PMID: 40284169 PMCID: PMC12029953 DOI: 10.3390/nu17081305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Short-chain fatty acids (SCFAs), mainly produced by gut microbiota through the fermentation process of dietary fibers and proteins, are crucial to human health, with butyrate, a famous four-carbon SCFA, standing out for its inevitably regulatory impact on both gut and immune functions. Within this narrative review, the vital physiological functions of SCFAs were examined, with emphasis on butyrate's role as an energy source for colonocytes and its ability to enhance the gut barrier while exhibiting anti-inflammatory effects. Knowledge of butyrate synthesis, primarily generated by Firmicutes bacteria, can be influenced by diets with specifically high contents of resistant starches and fiber. Butyrate can inhibit histone deacetylase, modulate gene expression, influence immune functionality, and regulate tight junction integrity, supporting the idea of its role in gut barrier preservation. Butyrate possesses systemic anti-inflammatory properties, particularly, its capacity to reduce pro-inflammatory cytokines and maintain immune homeostasis, highlighting its therapeutic potential in managing dysbiosis and inflammatory diseases. Although butyrate absorption into circulation is typically minimal, its broader health implications are substantial, especially regarding obesity and type 2 diabetes through its influence on metabolic regulation and inflammation. Furthermore, this narrative review thoroughly examines butyrate's growing recognition as a modulator of neurological health via its interaction with the gut-brain axis. Additionally, butyrate's neuroprotective effects are mediated through activation of specific G-protein-coupled receptors, such as FFAR3 and GPR109a, and inhibition of histone deacetylases (HDACs). Research indicates that butyrate can alleviate neurological disorders, including Alzheimer's, Parkinson's, autism spectrum disorder, and Huntington's disease, by reducing neuroinflammation, enhancing neurotransmitter modulation, and improving histone acetylation. This focus will help unlock its full therapeutic potential for metabolic and neurological health, rather than exclusively on its well-known benefits for gut health, as these are often interconnected.
Collapse
Affiliation(s)
- Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia;
| | - Abdullah Y. Otayf
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (M.F.A.); (A.Y.O.)
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
29
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
31
|
Eccles RL, Carreno G, de la Rica L, Balmer GM, Scott D. Tackling Cancer through Global Team Science. Cancer Discov 2025; 15:673-677. [PMID: 40042494 DOI: 10.1158/2159-8290.cd-25-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/03/2025]
Abstract
Here, we discuss the seven new challenges set by Cancer Grand Challenges that are currently open for creative applications. We invite the research community to assemble global, interdisciplinary teams to tackle these challenges and ultimately change the way we think about, study, prevent, and treat cancer.
Collapse
|
32
|
Chu YL, Georgeson P, Clendenning M, Mahmood K, Walker R, Como J, Joseland S, Preston SG, Rice T, Lynch BM, Milne RL, Southey MC, Giles GG, Phipps AI, Hopper JL, Win AK, Rosty C, Macrae FA, Winship I, Jenkins MA, Buchanan DD, Joo JE. Intratumoural pks +Escherichia coli is associated with risk of metachronous colorectal cancer and adenoma development in people with Lynch syndrome. EBioMedicine 2025; 114:105661. [PMID: 40158390 PMCID: PMC11995779 DOI: 10.1016/j.ebiom.2025.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The adverse gut microbiome may underlie the variability in risks of colorectal cancer (CRC) and metachronous CRC in people with Lynch syndrome (LS). The role of pks+/-Escherichia coli (pks+/-E. coli), Enterotoxigenic Bacteroides fragilis (ETBF), and Fusobacterium nucleatum (Fn) in CRCs and adenomas in people with LS is unknown. METHODS A total of 358 LS cases, including 386 CRCs, 90 adenomas, 195 normal colonic mucosa DNA from the Australasian Colon Cancer Family Registry were tested using multiplex TaqMan qPCR. Logistic regression was used to compare the intratumoural prevalence of each bacteria in Lynch CRCs with 1336 sporadic CRCs. Cox proportional-hazards regression estimated the associations of each bacteria with the risk of metachronous CRC and neoplasia. FINDINGS Pks+ E. coli (odds ratio [95% confidence interval] = 1.60 [1.08-2.35], P = 0.017), pks-E. coli (3.87 [2.58-5.80], P < 0.001) and Fn (19.47 [13.32-28.87], P < 0.001) were significantly enriched in LS CRCs when compared with sporadic CRCs. Pks+ E. coli in the initial CRC was associated with an increased risk of metachronous CRC (hazard ratio [95% confidence interval] = 2.32 [1.29-4.17], P = 0.005) and metachronous colorectal neoplasia (1.51 [1.02-2.23], P = 0.040) when compared with CRCs without pks+ E. coli. INTERPRETATION Pks+ E. coli, pks-E. coli, and Fn are enriched within LS CRCs, suggesting possible roles in CRC development in LS. Having intratumoural pks+ E. coli is associated with increased risk of metachronous CRC, suggesting that, if validated, people with LS might benefit from pks+ E. coli screening and eradication. FUNDING This work was funded by an NHMRC Investigator grant (GNT1194896) and a Cancer Australia/Cancer Council NSW co-funded grant (GNT2012914).
Collapse
Affiliation(s)
- Yen Lin Chu
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Toni Rice
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Queensland, Brisbane, Queensland, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Vargas‐Castellanos E, Rincón‐Riveros A. Microsatellite Instability in the Tumor Microenvironment: The Role of Inflammation and the Microbiome. Cancer Med 2025; 14:e70603. [PMID: 40231893 PMCID: PMC11998172 DOI: 10.1002/cam4.70603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Microsatellite instability (MSI) is a hallmark of DNA mismatch repair (MMR) deficiency that leads to genomic instability and increased cancer risk. The tumor microenvironment (TME) significantly influences MSI-driven tumorigenesis, and emerging evidence points to a critical role of the microbiome in shaping this complex interplay. METHODS This review comprehensively examines the existing literature on the intricate relationship between MSI, microbiome, and cancer development, with a particular focus on the impact of microbial dysbiosis on the TME. RESULTS MSI-high tumors exhibited increased immune cell infiltration owing to the generation of neoantigens. However, immune evasion mechanisms such as PD-1/CTLA-4 upregulation limit the efficacy of immune checkpoint inhibitors (ICIs) in a subset of patients. Pathobionts, such as Fusobacterium nucleatum and Bacteroides fragilis, contribute to MSI through the production of genotoxins, further promoting inflammation and oxidative stress within the TME. CONCLUSIONS The microbiome profoundly affects MSI-driven tumorigenesis. Modulation of the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and dietary changes holds promise for improving ICI response rates. Further research into cancer pharmacomicrobiomics, investigating the interplay between microbial metabolites and anticancer therapies, is crucial for developing personalized treatment strategies.
Collapse
Affiliation(s)
| | - Andrés Rincón‐Riveros
- Facultad de Ciencias de la SaludUniversidad Colegio Mayor de CundinamarcaBogotáColombia
| |
Collapse
|
34
|
Quevedo-Olmos A, Wang S, Meyer TF. Decoding microbe-diet-host synergy in colorectal cancer. Nat Microbiol 2025; 10:819-820. [PMID: 40119149 DOI: 10.1038/s41564-025-01971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Affiliation(s)
- Alvaro Quevedo-Olmos
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shihan Wang
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
35
|
Thakur BK, Malaise Y, Choudhury SR, Neustaeter A, Turpin W, Streutker C, Copeland J, Wong EOY, Navarre WW, Guttman DS, Jobin C, Croitoru K, Martin A. Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer. Nat Microbiol 2025; 10:855-870. [PMID: 40033140 DOI: 10.1038/s41564-025-01938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Diet, microbiome, inflammation and host genetics have been linked to colorectal cancer development; however, it is not clear whether and how these factors interact to promote carcinogenesis. Here we used Il10-/- mice colonized with bacteria previously associated with colorectal cancer: enterotoxigenic Bacteroides fragilis, Helicobacter hepaticus or colibactin-producing (polyketide synthase-positive (pks+)) Escherichia coli and fed either a low-carbohydrate (LC) diet deficient in soluble fibre, a high-fat and high-sugar diet, or a normal chow diet. Colonic polyposis was increased in mice colonized with pks+ E. coli and fed the LC diet. Mechanistically, mucosal inflammation was increased in the LC-diet-fed mice, leading to diminished colonic PPAR-γ signalling and increased luminal nitrate levels. This promoted both pks+ E. coli growth and colibactin-induced DNA damage. PPAR-γ agonists or supplementation with dietary soluble fibre in the form of inulin reverted inflammatory and polyposis phenotypes. The pks+ E. coli also induced more polyps in mismatch-repair-deficient mice by inducing a senescence-associated secretory phenotype. Moreover, oncogenic effects were further potentiated by inflammatory triggers in the mismatch-repair-deficient model. These data reveal that diet and host genetics influence the oncogenic potential of a common bacterium.
Collapse
Affiliation(s)
| | - Yann Malaise
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Neustaeter
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, Ontario, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christian Jobin
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kenneth Croitoru
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Coorens THH, Collord G, Jung H, Wang Y, Moore L, Hooks Y, Mahbubani K, Law SYK, Yan HHN, Yuen ST, Saeb-Parsy K, Campbell PJ, Martincorena I, Leung SY, Stratton MR. The somatic mutation landscape of normal gastric epithelium. Nature 2025; 640:418-426. [PMID: 40108450 PMCID: PMC11981919 DOI: 10.1038/s41586-025-08708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025]
Abstract
The landscapes of somatic mutation in normal cells inform us about the processes of mutation and selection operative throughout life, providing insight into normal ageing and the earliest stages of cancer development1. Here, by whole-genome sequencing of 238 microdissections2 from 30 individuals, including 18 with gastric cancer, we elucidate the developmental trajectories of normal and malignant gastric epithelium. We find that gastric glands are units of monoclonal cell populations that accrue roughly 28 somatic single-nucleotide variants per year, predominantly attributable to endogenous mutational processes. In individuals with gastric cancer, metaplastic glands often show elevated mutation burdens due to acceleration of mutational processes linked to proliferation and oxidative damage. Unusually for normal cells, gastric epithelial cells often carry recurrent trisomies of specific chromosomes, which are highly enriched in a subset of individuals. Surveying 829 polyclonal gastric microbiopsies by targeted sequencing, we find somatic 'driver' mutations in a distinctive repertoire of known cancer genes, including ARID1A, ARID1B, ARID2, CTNNB1 and KDM6A. The prevalence of mutant clones increases with age to occupy roughly 8% of the gastric epithelial lining by age 60 years and is significantly increased by the presence of severe chronic inflammation. Our findings provide insights into intrinsic and extrinsic influences on somatic evolution in the gastric epithelium in healthy, precancerous and malignant states.
Collapse
Affiliation(s)
- Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, UK.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Grace Collord
- Wellcome Sanger Institute, Hinxton, UK
- University College London Hospital, London, UK
| | | | | | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Simon Y K Law
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
| | - Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Siu Tsan Yuen
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
- Department of Pathology, St. Paul's Hospital, No. 2, Eastern Hospital Road, Causeway Bay, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | | |
Collapse
|
37
|
Cruz-Lebrón A, Faiez TS, Hess MM, Sfanos KS. Diet and the microbiome as mediators of prostate cancer risk, progression, and therapy response. Urol Oncol 2025; 43:209-220. [PMID: 39757039 DOI: 10.1016/j.urolonc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Complex relationships between the human microbiome and cancer are increasingly recognized for cancer sites that harbor commensal microbial communities such as the gut, genitourinary tract, and skin. For organ sites that likely do not contain commensal microbiota, there is still a substantial capacity for the human-associated microbiota to influence disease etiology across the cancer spectrum. We propose such a relationship for prostate cancer, the most commonly diagnosed cancer in males in the United States. This review explores the current evidence for a role for the urinary and gut microbiota in prostate cancer risk, via both direct interactions (prostate infections) and long-distance interactions such as via the metabolism of procarcinogenic or anticarcinogenic dietary metabolites. We further explore a newly recognized role of the gut microbiota in mediating cancer treatment response or resistance either via production of androgens and/or procarcinogenic metabolites or via direct metabolism of anticancer drugs that are used to treat advanced disease. Overall, we present the current state of knowledge relating to how the human microbiome mediates prostate cancer risk, progression, and therapy response, as well as suggest future research directions for the field.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Megan M Hess
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
38
|
Alves Costa Silva C, Almonte AA, Zitvogel L. Oncobiomics: Leveraging Microbiome Translational Research in Immuno-Oncology for Clinical-Practice Changes. Biomolecules 2025; 15:504. [PMID: 40305219 PMCID: PMC12024955 DOI: 10.3390/biom15040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Growing evidence suggests that cancer should not be viewed solely as a genetic disease but also as the result of functional defects in the metaorganism, including disturbances in the gut microbiota (i.e., gut dysbiosis). The human microbiota plays a critical role in regulating epithelial barrier function in the gut, airways, and skin, along with host metabolism and systemic immune responses against microbes and cancer. Collaborative international networks, such as ONCOBIOME, are essential in advancing research equity and building microbiome resources to identify and validate microbiota-related biomarkers and therapies. In this review, we explore the intricate relationship between the microbiome, metabolism, and cancer immunity, and we propose microbiota-based strategies to improve outcomes for individuals at risk of developing cancer or living with the disease.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Andrew A. Almonte
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, 94805 Villejuif, France
| |
Collapse
|
39
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
40
|
Dougherty MW, Hoffmann RM, Hernandez MC, Airan Y, Gharaibeh RZ, Herzon SB, Yang Y, Jobin C. Genome-scale CRISPR/Cas9 screening reveals the role of PSMD4 in colibactin-mediated cell cycle arrest. mSphere 2025; 10:e0069224. [PMID: 39918307 PMCID: PMC11934320 DOI: 10.1128/msphere.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Colibactin is a genotoxic secondary metabolite produced by certain Enterobacteriaceae strains that populate the intestine and produces a specific mutational signature in human colonocytes. However, the host pathways involved in colibactin response remain unclear. To address this gap, we performed genome-wide CRISPR/Cas9 knockout screens and RNA sequencing utilizing live pks+ bacteria and a synthetic colibactin analog. We identified 20 enriched genes with a MAGeCK score of >2.0 in both screens, including proteasomal subunits (e.g., PSMG4 and PSMD4), RNA processing factors (e.g., SF1 and PRPF8), and RNA polymerase III (e.g., CRCP), and validated the role of PSMD4 in colibactin sensitization. PSMD4 knockout in HEK293T and HT-29 cells promoted cell viability and ameliorated G2-M cell cycle arrest but did not affect the amount of phosphorylated H2AX foci after exposure to synthetic colibactin 742. Consistent with these observations, PSMD4-/- cells had a significantly higher colony formation rate and bigger colony size than control cells after 742 exposure. These findings suggest that PSMD4 regulates cell cycle arrest following colibactin-induced DNA damage and that cells with PSMD4 deficiency may continue to replicate despite DNA damage, potentially increasing the risk of malignant transformation. IMPORTANCE Colibactin has been implicated as a causative agent of colorectal cancer. However, colibactin-producing bacteria are also present in many healthy individuals, leading to the hypothesis that some aspects of colibactin regulation or host response dictate the molecule's carcinogenic potential. Elucidating the host-response pathways involved in dictating cell fate after colibactin intoxication has been difficult, partially due to an inability to isolate the molecule. This study provides the first high-throughput CRISPR/Cas9 screening to identify genes conferring colibactin sensitivity. Here, we utilize both bacterial infection and a synthetic colibactin analog to identify genes directly involved in colibactin response. These findings provide insight into how differences in gene expression may render certain individuals more vulnerable to colibactin-initiated tumor formation after DNA damage.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Hoffmann
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Departments of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Ye Yang
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
41
|
Xu S, Zhang Y, Ding X, Yang Y, Gao J, Zou N, Lu L, He J. Intestinal microbiota affects the progression of colorectal cancer by participating in the host intestinal arginine catabolism. Cell Rep 2025; 44:115370. [PMID: 40022728 DOI: 10.1016/j.celrep.2025.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
Arginine plays a critical role in colorectal cancer (CRC) progression. We find that arginine catabolism is reduced in the intestinal microbiota of patients with CRC but increased in tumor tissue. We further verify that Escherichia coli can consume arginine via the arginine succinyltransferase (AST) pathway, and gavaging mice with the AST-deficient E. coli Nissle 1917 (ΔacEcN) can inhibit arginine catabolism of the intestinal microbiota, thereby increasing the arginine concentration in the colon. In the azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mouse model, reduced arginine catabolism in the intestinal microbiota increases the arginine concentration in the tumor microenvironment, thereby activating the nitric oxide (NO) synthesis pathway and polyamine synthesis pathway in tumor tissues, stimulating angiogenesis in the tumor microenvironment, inducing M2 macrophage polarization, and activating the Wingless/Integrated (Wnt)/β-catenin pathway, ultimately accelerating CRC progression. This study reveals that intestinal microbiota can affect CRC progression through arginine catabolism, providing a potential target for the prevention and therapy of CRC.
Collapse
Affiliation(s)
- Siyang Xu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuling Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoqi Ding
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yijun Yang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jinge Gao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, P.R. China
| | - Li Lu
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, P.R. China.
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
42
|
Taglieri M, Di Gregorio L, Matis S, Uras CRM, Ardy M, Casati S, Marchese M, Poggi A, Raffaghello L, Benelli R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025; 14:457. [PMID: 40136707 PMCID: PMC11941511 DOI: 10.3390/cells14060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal epithelium was the first long-term 3D organoid culture established in vitro. Identification of the key components essential for the long-term survival of the stem cell niche allowed an indefinite propagation of these cultures and the modulation of their differentiation into various lineages of mature intestinal epithelial cells. While these methods were eventually adapted to establish organoids from different organs, colorectal organoids remain a pioneering model for the development of new applications in health and disease. Several basic and applicative aspects of organoid culture, modeling, monitoring and testing are analyzed in this review. We also tackle the ethical problems of biobanking and distribution of these precious research tools, frequently confined in the laboratory of origin or condemned to destruction at the end of the project.
Collapse
Affiliation(s)
- Martina Taglieri
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Linda Di Gregorio
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Serena Matis
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Chiara Rosa Maria Uras
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Massimo Ardy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Sara Casati
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” CNR, 80131 Naples, Italy;
- Common Service ELSI, BBMRI.it (UNIMIB National Node Headquarter), 20126 Milan, Italy
| | - Monica Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Lizzia Raffaghello
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Roberto Benelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| |
Collapse
|
43
|
Chan C, Coffey M, Murphy C, McKay I, Abdu J, Paida K, Tam RY, Wrigley-Carr H, Prentice B, Owens L, Belessis Y, Chuang S, Jaffe A, van Dorst J, Ooi CY. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms 2025; 13:681. [PMID: 40142573 PMCID: PMC11944406 DOI: 10.3390/microorganisms13030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Cystic fibrosis (CF) patients experience higher risks of colorectal cancer but the pathogenesis is unclear. In the general population, polyketide synthase-positive (pks+) E. coli is implicated in intestinal carcinogenesis via the production of colibactin; however, the relevance in CF is unknown. In this study, we investigate pks+E. coli prevalence in CF and potential associations between pks+E. coli, gastrointestinal inflammation, and microbiome dynamics with fecal calprotectin and 16SrRNA gene taxonomic data. Cross-sectional analysis demonstrated no difference in pks+E. coli carriage between CF patients and healthy controls, 21/55 (38%) vs. 26/55 (47%), p = 0.32. Pks+E. coli was not associated with significant differences in mean (SD) calprotectin concentration (124 (154) vs. 158 (268) mg/kg; p = 0.60), microbial richness (159 (76.5) vs. 147 (70.4); p = 0.50) or Shannon diversity index (2.78 (0.77) vs. 2.65 (0.74); p = 0.50) in CF. Additionally, there was no association with exocrine pancreatic status (p = 0.2) or overall antibiotic use (p = 0.6). Longitudinally, CF subjects demonstrated intra-individual variation in pks+E. coli presence but no significant difference in overall prevalence. Future investigation into the effects of repeat exposure on risk profile and analysis of older CF cohorts is necessary to identify if associations with colorectal cancer exist.
Collapse
Affiliation(s)
- Christopher Chan
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Michael Coffey
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Caitlin Murphy
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Isabelle McKay
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Jumaana Abdu
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Keerti Paida
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Rachel Y. Tam
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Hannah Wrigley-Carr
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Bernadette Prentice
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Louisa Owens
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Yvonne Belessis
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Sandra Chuang
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Josie van Dorst
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Chee Y. Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
44
|
Jin X, Gu Y, Song X. Research status of the relationship between microecological imbalance and lung cancer. Front Microbiol 2025; 16:1558379. [PMID: 40130240 PMCID: PMC11931131 DOI: 10.3389/fmicb.2025.1558379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Microecology refers to the ecosystem formed by human and microbial communities in the process of co-evolution, the microecological imbalance is associated with occurrence and development of multiple diseases, including lung cancer. In this review, we detailedly summarized the concept and roles of microecology, the relationship between microecology and human diseases, and related techniques in microecology studies. Importantly, we specially analyzed the correlations between microecology and lung cancer by focusing on gut microbiota, oral microbiota and lower respiratory tract microbiota, and further evaluated the effects of microbiota dysbiosis on chemotherapy and immunotherapy efficacy in lung cancer. At last, we discussed the potential mechanisms by which dysregulated microbiota promotes the genesis and development of lung cancer. Microecology-centered detection and intervention will improve the early diagnosis of lung cancer and provide new targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yangang Gu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Song
- Department of Respiratory and Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
45
|
Al-Qadami G, Raposo A, Chien CC, Ma C, Priebe I, Hor M, Fung K. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G252-G276. [PMID: 39716040 DOI: 10.1152/ajpgi.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and nonepithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, three-dimensional (3-D) mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the nonepithelial and microbial components of the intestinal microenvironment. As such, several coculture systems have been developed to coculture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These coculture models allow researchers to recreate the complex intestinal environment and study the intricate cross talk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid cocultures, and each approach has its own strengths and limitations. This review discusses the existing methods for coculturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
Collapse
Affiliation(s)
| | - Anita Raposo
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Chia-Chi Chien
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Chenkai Ma
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| | - Ilka Priebe
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Maryam Hor
- Health and Biosecurity, CSIRO, Adelaide, South Australia, Australia
| | - Kim Fung
- Health and Biosecurity, CSIRO, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2025; 23:192-205. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
47
|
Savy T, Flanders L, Karpanasamy T, Sun M, Gerlinger M. Cancer evolution: from Darwin to the Extended Evolutionary Synthesis. Trends Cancer 2025; 11:204-215. [PMID: 39880745 DOI: 10.1016/j.trecan.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
The fundamental evolutionary nature of cancer has been recognized for decades. Increasingly powerful genetic and single cell sequencing technologies, as well as preclinical models, continue to unravel the evolution of premalignant cells, and progression to metastatic stages and to drug-resistant end-stage disease. Here, we summarize recent advances and distil evolutionary principles and their relevance for the clinic. We reveal how cancer cell and microenvironmental plasticity are intertwined with Darwinian evolution and demonstrate the need for a conceptual framework that integrates these processes. This warrants the adoption of the recently developed Extended Evolutionary Synthesis (EES).
Collapse
Affiliation(s)
- Thomas Savy
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Flanders
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK
| | | | - Min Sun
- St Bartholomew's Hospital, London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK.
| |
Collapse
|
48
|
Sugihara HY, Okamoto R, Mizutani T. Intestinal organoids: The path towards clinical application. Eur J Cell Biol 2025; 104:151474. [PMID: 39740324 DOI: 10.1016/j.ejcb.2024.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Organoids have revolutionized the whole field of biology with their ability to model complex three-dimensional human organs in vitro. Intestinal organoids were especially consequential as the first successful long-term culture of intestinal stem cells, which raised hopes for translational medical applications. Despite significant contributions to basic research, challenges remain to develop intestinal organoids into clinical tools for diagnosis, prognosis, and therapy. In this review, we outline the current state of translational research involving adult stem cell and pluripotent stem cell derived intestinal organoids, highlighting the advances and limitations in disease modeling, drug-screening, personalized medicine, and stem cell therapy. Preclinical studies have demonstrated a remarkable functional recapitulation of infectious and genetic diseases, and there is mounting evidence for the reliability of intestinal organoids as a patient-specific avatar. Breakthroughs now allow the generation of structurally and cellularly complex intestinal models to better capture a wider range of intestinal pathophysiology. As the field develops and evolves, there is a need for standardized frameworks for generation, culture, storage, and analysis of intestinal organoids to ensure reproducibility, comparability, and interpretability of these preclinical and clinical studies to ultimately enable clinical translation.
Collapse
Affiliation(s)
- Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
49
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
50
|
Díaz-Gay M, dos Santos W, Moody S, Kazachkova M, Abbasi A, Steele CD, Vangara R, Senkin S, Wang J, Fitzgerald S, Bergstrom EN, Khandekar A, Otlu B, Abedi-Ardekani B, de Carvalho AC, Cattiaux T, Penha RCC, Gaborieau V, Chopard P, Carreira C, Cheema S, Latimer C, Teague JW, Mukeriya A, Zaridze D, Cox R, Albert M, Phouthavongsy L, Gallinger S, Malekzadeh R, Niavarani A, Miladinov M, Erić K, Milosavljevic S, Sangrajrang S, Curado MP, Aguiar S, Reis RM, Reis MT, Romagnolo LG, Guimarães DP, Holcatova I, Kalvach J, Vaccaro CA, Piñero TA, Świątkowska B, Lissowska J, Roszkowska-Purska K, Huertas-Salgado A, Shibata T, Shiba S, Sangkhathat S, Chitapanarux T, Roshandel G, Ashton-Prolla P, Damin DC, de Oliveira FH, Humphreys L, Lawley TD, Perdomo S, Stratton MR, Brennan P, Alexandrov LB. Geographic and age-related variations in mutational processes in colorectal cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.13.25322219. [PMID: 40034755 PMCID: PMC11875255 DOI: 10.1101/2025.02.13.25322219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Wellington dos Santos
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Christopher D Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Anush Mukeriya
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - David Zaridze
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Riley Cox
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Monique Albert
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marko Miladinov
- Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Katarina Erić
- Department of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | | | - Maria Paula Curado
- Department of Epidemiology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Samuel Aguiar
- Colon Cancer Reference Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | | | | | | | - Ivana Holcatova
- Institute of Public Health & Preventive Medicine, 2 Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jaroslav Kalvach
- Surgery Department, 2 Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic
- 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Institute of Animal Physiology and Genetics Czech Academy of Science, Libechov, Czech Republic
- Clinical Center ISCARE, Prague, Czech Republic
| | - Carlos Alberto Vaccaro
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Tamara Alejandra Piñero
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Jolanta Lissowska
- The Maria Sklodowska-Cure National Research Institute of Oncology, Warsaw, Poland
| | | | - Antonio Huertas-Salgado
- Oncological pathology group, Terry Fox National Tumor Bank (Banco Nacional de Tumores Terry Fox), National Cancer Institute, Bogotá, Colombia
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Taned Chitapanarux
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Patricia Ashton-Prolla
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel C Damin
- Department of Surgery, Division of Colorectal Surgery, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Francine Hehn de Oliveira
- Department of Pathology, Anatomic Pathology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Trevor D. Lawley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|