1
|
Nguyen LV, Eyal-Lubling Y, Guerrero-Romero D, Kronheim S, Chin SF, Manzano Garcia R, Sammut SJ, Lerda G, Lui AJW, Bardwell HA, Greenwood W, Shin HJ, Masina R, Kania K, Bruna A, Esmaeilishirazifard E, Kolyvas EA, Aparicio S, Rueda OM, Caldas C. Fitness and transcriptional plasticity of human breast cancer single-cell-derived clones. Cell Rep 2025; 44:115699. [PMID: 40359107 DOI: 10.1016/j.celrep.2025.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/12/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Clonal fitness and plasticity drive cancer heterogeneity. We used expressed lentiviral-based cellular barcodes combined with single-cell RNA sequencing to associate single-cell profiles with in vivo clonal growth. This generated a significant resource of growth measurements from over 20,000 single-cell-derived clones in 110 xenografts from 26 patient-derived breast cancer xenograft models. 167,375 single-cell RNA profiles were obtained from 5 models and revealed that rare propagating clones display a highly conserved model-specific differentiation program with reproducible regeneration of the entire transcriptomic landscape of the original xenograft. In 2 models of basal breast cancer, propagating clones demonstrated remarkable transcriptional plasticity at single-cell resolution. Dichotomous cell populations with different clonal growth properties, signaling pathways, and metabolic programs were characterized. By directly linking clonal growth with single-cell transcriptomes, these findings provide a profound understanding of clonal fitness and plasticity with implications for cancer biology and therapy.
Collapse
Affiliation(s)
- Long V Nguyen
- Department of Clinical Biochemistry and Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | | - Sarah Kronheim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, Cambridge, UK; Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Allan J W Lui
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | | | | | - Hee Jin Shin
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution: Molecular Pathology Division, The Institute of Cancer Research, Sutton, UK
| | | | | | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Oscar M Rueda
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Department of Clinical Biochemistry and Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Wang Y, Frederick J, Medina KI, Bartom ET, Almassalha LM, Zhang Y, Wodarcyk G, Huang H, Ye IC, Gong R, Dunton CL, Duval A, Gonzalez PC, Pritchard J, Carinato J, Topchu I, Li J, Ji Z, Adli M, Backman V, Matei D. Chromatin Organization Governs Transcriptional Response and Plasticity of Cancer Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407426. [PMID: 40051293 PMCID: PMC12061297 DOI: 10.1002/advs.202407426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/16/2024] [Indexed: 03/09/2025]
Abstract
Chromatin organization regulates transcription to influence cellular plasticity and cell fate. We explored whether chromatin nanoscale packing domains are involved in stemness and response to chemotherapy. Using an optical spectroscopic nanosensing technology we show that ovarian cancer-derived cancer stem cells (CSCs) display upregulation of nanoscale chromatin packing domains compared to non-CSCs. Cleavage under targets and tagmentation (CUT&Tag) sequencing with antibodies for repressive H3K27me3 and active H3K4me3 and H3K27ac marks mapped chromatin regions associated with differentially expressed genes. More poised genes marked by both H3K4me3 and H3K27me3 were identified in CSCs vs. non-CSCs, supporting increased transcriptional plasticity of CSCs. Pathways related to Wnt signaling and cytokine-cytokine receptor interaction were repressed in non-CSCs, while retinol metabolism and antioxidant response were activated in CSCs. Comparative transcriptomic analyses showed higher intercellular transcriptional heterogeneity at baseline in CSCs. In response to cisplatin, genes with low baseline expression levels underwent the highest upregulation in CSCs, demonstrating transcriptional plasticity under stress. Epigenome targeting drugs downregulated chromatin packing domains and promoted cellular differentiation. A disruptor of telomeric silencing 1-like (Dot1L) inhibitor blocked transcriptional plasticity, reversing stemness. These findings support that CSCs harbor upregulated chromatin packing domains, contributing to transcriptional and cell plasticity that epigenome modifiers can target.
Collapse
|
3
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Yuan H, Qiu Y, Mei Z, Liu J, Wang L, Zhang K, Liu H, Zhu F. Cancer stem cells and tumor-associated macrophages: Interactions and therapeutic opportunities. Cancer Lett 2025; 624:217737. [PMID: 40274063 DOI: 10.1016/j.canlet.2025.217737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Cancer stem cells (CSCs) depend on the tumor microenvironment (TME) to sustain their stem-like properties by recruiting monocytes and reprogramming them into tumor-associated macrophages (TAMs), which in turn promote tumor progression. This review explores CSC-TAM interactions, emphasizing how CSCs drive monocyte recruitment and TAM polarization. We discuss how TAMs enhance CSC stemness and niche maintenance through chemokines, cytokines, exosome-mediated miRNA transfer, direct interactions, and extracellular matrix (ECM) remodeling. Furthermore, we examine therapeutic strategies targeting TAMs, including inhibiting TAM differentiation, reprogramming TAM polarization, and leveraging immune checkpoint blockade and CAR-macrophage immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yun Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zijie Mei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Kaiqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Qaderi K, Shahmoradi A, Thyagarajan A, Sahu RP. Impact of targeting the platelet-activating factor and its receptor in cancer treatment. Mil Med Res 2025; 12:10. [PMID: 40033370 PMCID: PMC11877967 DOI: 10.1186/s40779-025-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
The lipid mediator platelet-activating factor (PAF) and its receptor (PAFR) signaling play critical roles in a wide range of physiological and pathophysiological conditions, including cancer growth and metastasis. The ability of PAFR to interact with other oncogenic signaling cascades makes it a promising target for cancer treatment. Moreover, numerous natural and synthetic compounds, characterized by diverse pharmacological activities such as anti-inflammatory and anti-tumor effects, have been explored for their potential as PAF and PAFR antagonists. In this review, we provide comprehensive evidence regarding the PAF/PAFR signaling pathway, highlighting the effectiveness of various classes of PAF and PAFR inhibitors and antagonists across multiple cancer models. Notably, the synergistic effects of PAF and PAFR antagonists in enhancing the efficacy of chemotherapy and radiation therapy in several experimental cancer models are also discussed. Overall, the synthesis of literature review indicates that targeting the PAF/PAFR axis represents a promising approach for cancer treatment and also exerts synergy with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kimya Qaderi
- Department of Molecular and Cell Biology, College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, 66177-13446, Kurdistan, Iran
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
6
|
Agudo J, Miao Y. Stemness in solid malignancies: coping with immune attack. Nat Rev Cancer 2025; 25:27-40. [PMID: 39455862 DOI: 10.1038/s41568-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Immunotherapy has become a key new pillar of cancer treatment, and this has sparked interest in understanding mechanisms of cancer immune evasion. It has long been appreciated that cancers are constituted by heterogeneous populations of tumour cells. This feature is often fuelled by specialized cells that have molecular programs resembling tissue stem cells. Although these cancer stem cells (CSCs) have capacity for unlimited self-renewal and differentiation, it is increasingly evident that some CSCs are capable of achieving remarkable immune resistance. Given that most immunotherapy regiments have overlooked CSC-specific immune-evasive mechanisms, many current treatment strategies often lead to cancer relapse. This Review focuses on advancements in understanding how CSCs in solid tumours achieve their unique immune-evasive properties, enabling them to drive tumour regrowth. Moreover, as cancers often arise from tissue stem cells that acquired oncogenic mutations, we discuss how tissue stem cells undergoing malignant transformation activate intrinsic immune-evasive mechanisms and establish close interactions with suppressive immune cells to escape immune surveillance. In addition, we summarize how in advanced disease stages, CSCs often hijack features of normal stem cells to resist antitumour immunity. Finally, we provide insights in how to design a new generation of cancer immunotherapies to ensure elimination of CSCs.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
- New York Stem Cell Foundation, Robertson Investigator, New York, NY, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Kang Y, Kang Y, Zhang D, Yao J. Antiangiogenic therapy exerts antitumor effects by altering the tumor microenvironment: bibliometric analysis. Front Immunol 2024; 15:1460533. [PMID: 39691714 PMCID: PMC11649635 DOI: 10.3389/fimmu.2024.1460533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Background Antiangiogenic therapy can alter the tumor microenvironment (TME) and thus exert anti-tumor effects, and has the potential to increase the efficacy of conventional therapy and immunotherapy. The aim of this study was to examine current research hotspots and collaborative networks on the relationship between previous antiangiogenic therapies and the TME through bibliometric analysis. Method From the Web of Science Core Collection database, all publications from inception through December 2023 were downloaded. In-depth analysis was performed by Bibliometrix packages in R. Keywords and collaborative networks were analyzed using VOSviewers and Citespace. Result We obtained a total of 9027 publications. They come from 27 countries and were published in 1387 journals, with a total of 39,604 authors in the studied area. The number of publications increases dramatically from 2014 to 2023, accounting for 73.87% (6668/9027) of all publications. China and CANCERS have the highest number of publications on this topic and CANCER RESEACH is the most influential. In the last decade (2013- 2023), research has gradually shifted from studying the role of vascular endothelial growth factor in the TME to examining how antivascular therapy can contribute to the progression of cancer treatment. Furthermore, nanoparticle-based drug delivery systems and immunotherapy have been widely explored in the past five years. The findings of this study will help scientists to explore this promising field in depth by providing insight into the relationship between antiangiogenic therapy and the TME. Conclusion The relationship between the antiangiogenic therapy and the TME has been developing rapidly, but cooperation between different institutions and countries is still limited. Researchers can use this study to identify hotspots and develop trends for related research, thereby facilitating the development and cooperative exchange in this field, as well as to suggest potential future research directions.
Collapse
Affiliation(s)
| | | | | | - Jun Yao
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of
Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Aziz MA. Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine. Cancer Metastasis Rev 2024; 43:1549-1559. [PMID: 38761231 DOI: 10.1007/s10555-024-10190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Cellular plasticity refers to the ability of cells to change their identity or behavior, which can be advantageous in some cases (e.g., tissue regeneration) but detrimental in others (e.g., cancer metastasis). With a better understanding of cellular plasticity, the complexity of cancer cells, their heterogeneity, and their role in metastasis is being unraveled. The plasticity of the cells could also prove as a nemesis to their characterization. In this review, we have attempted to highlight the possibilities and benefits of using multiomics approach in characterizing the plastic nature of cancer cells. There is a need to integrate fragmented evidence at different levels of cellular organization (DNA, RNA, protein, metabolite, epigenetics, etc.) to facilitate the characterization of different forms of plasticity and cell types. We have discussed the role of cellular plasticity in generating intra-tumor heterogeneity. Different omics level evidence is being provided to highlight the variety of molecular determinants discovered using different techniques. Attempts have been made to integrate some of this information to provide a quantitative assessment and scoring of the plastic nature of the cells. However, there is a huge gap in our understanding of mechanisms that lead to the observed heterogeneity. Understanding of these mechanism(s) is necessary for finding targets for early detection and effective therapeutic interventions in metastasis. Targeting cellular plasticity is akin to neutralizing a moving target. Along with the advancements in precision and personalized medicine, these efforts may translate into better clinical outcomes for cancer patients, especially in metastatic stages.
Collapse
Affiliation(s)
- Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
9
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
10
|
Vangala V, Chen YC, Dinavahi SS, Gowda K, Lone NA, Herlyn M, Drabick J, Helm K, Zhu J, Neves RI, Sharma AK, Berg A, Archetti M, Amin S, Schell TD, Robertson GP. Tumor Heterogeneity Shapes Survival Dynamics in Drug-Treated Cells, Revealing Size-Drifting Subpopulations. ACS Pharmacol Transl Sci 2024; 7:3573-3584. [PMID: 39539277 PMCID: PMC11555517 DOI: 10.1021/acsptsci.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic "rheostat" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer. The approach was designed to show that either ALDHhigh and ALDHlow subpopulations rapidly epigenetically transition between stem-cell-like high into nonstem-like low production states to create an environment during drug treatment that would enable optimal cellular proliferation and tumor expansion to facilitate drug resistance. The controlled experiments showed proportional changes in each cell population to reach an evolutionarily stable equilibrium mediated by the needed levels of ALDH enzyme activity. Mechanistically, cell population size changes served to functionally move the aldehyde and the resulting reactive oxygen species (ROS) levels to those compatible with optimal cellular proliferation with population fluctuations dependent on the levels of drug induced tumor stress. This is the first report documenting fluctuations in the sizes of cell populations in tumors to cooperatively assist in drug resistance development.
Collapse
Affiliation(s)
- Venugopal Vangala
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yu-Chi Chen
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Saketh S. Dinavahi
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishne Gowda
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Nazir A. Lone
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Meenhard Herlyn
- Molecular
and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joseph Drabick
- Department
of Medicine, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Klaus Helm
- Department
of Dermatology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Jiyue Zhu
- Department
of Pharmaceutical Sciences, Washington State
University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington 99202, United States
| | - Rogerio I. Neves
- Department
of Surgery, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Arun K. Sharma
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Arthur Berg
- Department
of Public Health Sciences, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Marco Archetti
- Department
of Biology, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Shantu Amin
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Todd D. Schell
- Department
of Microbiology and Immunology, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Gavin P. Robertson
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Dermatology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Pathology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Surgery, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Foreman
Foundation for Melanoma Research, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Melanoma
Center, Pennsylvania State University College
of Medicine, Hershey, Pennsylvania 17033, United States
- Melanoma
Therapeutics Program, Pennsylvania State
University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
11
|
Chandouri B, Naves T, Yassine M, Ikhlef L, Tricard J, Chaunavel A, Homayed Z, Pannequin J, Girard N, Durand S, Carré V, Lalloué F. Comparison of methods for cancer stem cell detection in prognosis of early stages NSCLC. Br J Cancer 2024; 131:1425-1436. [PMID: 39304747 PMCID: PMC11519646 DOI: 10.1038/s41416-024-02839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Despite advances in diagnosis and treatment in lung cancer, therapies still fail to improve patient management due to resistance mechanisms and relapses. As Cancer stem cells (CSCs) directly contribute to tumor growth and therapeutic resistance, their clinical detection represents a major challenge. However specific and additional CSC markers lack. Thus, our aim was to achieve selective detection of CSCs with specific glycan patterns and assess the CSCs burden to predict the risk of relapse in NSCLC tumors. METHODS The lung CSCs detection and sorting with a lectin MIX were assessed and compared to CD133 in vitro. Then, its putative role as CSC biomarker was evaluated in vivo and its clinical significance on 221 NSCLC patients. RESULTS We showed a significant CSCs enrichment in the MIX+ sorted fraction compared to CD133+ cells and confirmed its high tumorigenic capacity. The MIX prognostic value on the overall survival from early stages patients was validated suggesting its potential for detecting CSCs directly linked to tumor aggressiveness. CONCLUSION The MIX could be more relevant for detecting and sorting CSCs than CD133. Moreover, its prognosis value could enable clinicians to better classify early-stage patients at high risk of relapse in order to tailor therapeutic decisions.
Collapse
Affiliation(s)
- Boutaîna Chandouri
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
- Carcidiag Biotechnologies company, Guéret, France.
| | - Thomas Naves
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - May Yassine
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - Léa Ikhlef
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
| | - Jérémy Tricard
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France
- Thoracic and Cardiovascular Surgery Department, Limoges University Hospital Center, Limoges, France
| | - Alain Chaunavel
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Zeinab Homayed
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicolas Girard
- Thorax Institute Curie Montsouris, Institut Curie, Paris, France
- UVSQ, Paris Saclay University, Versailles, France
| | - Stéphanie Durand
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
| | | | - Fabrice Lalloué
- UMR INSERM 1308 CAPTuR, Faculty of Medicine, University of Limoges, Limoges, France.
| |
Collapse
|
12
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
13
|
Guan A, Dai Z, Jiang C, Sun J, Yang B, Xie B, Chen Q. PGRMC1 promotes NSCLC stemness phenotypes by disrupting TRIM56-mediated ubiquitination of AHR. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167440. [PMID: 39059592 DOI: 10.1016/j.bbadis.2024.167440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) are responsible for tumor chemoresistance, and the aryl hydrocarbon receptor (AHR) is indispensable for maintaining CSC characteristics. Here, we aimed to investigate how the interaction between progesterone receptor membrane component 1 (PGRMC1) and AHR contributes to the maintenance of CSC phenotypes in non-small cell lung cancer (NSCLC). Clinical data and tissue microarray analyses indicated that patients with elevated PGRMC1 expression had poorer prognoses. Moreover, PGRMC1 overexpression enhanced CSC phenotypes and chemotherapy resistance in vitro and in vivo by modulating AHR ubiquitination. We then determined the specific interaction sites between PGRMC1 and AHR. Mass spectrometry screening identified tripartite motif containing 56 (TRIM56) as the E3 ligase targeting AHR. Notably, PGRMC1 overexpression inhibited the interaction between TRIM56 and AHR. Overall, our study revealed a regulatory mechanism that involves PGRMC1, AHR, and TRIM56, providing insights for developing CSC-targeting strategies in NSCLC treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phenotype
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Progesterone/metabolism
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitination
Collapse
Affiliation(s)
- Anqi Guan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyi Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
Xiong B, Liu W, Liu Y, Chen T, Lin A, Song J, Qu L, Luo P, Jiang A, Wang L. A Multi-Omics Prognostic Model Capturing Tumor Stemness and the Immune Microenvironment in Clear Cell Renal Cell Carcinoma. Biomedicines 2024; 12:2171. [PMID: 39457484 PMCID: PMC11504857 DOI: 10.3390/biomedicines12102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer stem-like cells (CSCs), a distinct subset recognized for their stem cell-like abilities, are intimately linked to the resistance to radiotherapy, metastatic behaviors, and self-renewal capacities in tumors. Despite their relevance, the definitive traits and importance of CSCs in the realm of oncology are still not fully comprehended, particularly in the context of clear cell renal cell carcinoma (ccRCC). A comprehensive understanding of these CSCs' properties in relation to stemness, and their impact on the efficacy of treatment and resistance to medication, is of paramount importance. Methods: In a meticulous research effort, we have identified new molecular categories designated as CRCS1 and CRCS2 through the application of an unsupervised clustering algorithm. The analysis of these subtypes included a comprehensive examination of the tumor immune environment, patterns of metabolic activity, progression of the disease, and its response to immunotherapy. In addition, we have delved into understanding these subtypes' distinctive clinical presentations, the landscape of their genomic alterations, and the likelihood of their response to various pharmacological interventions. Proceeding from these insights, prognostic models were developed that could potentially forecast the outcomes for patients with ccRCC, as well as inform strategies for the surveillance of recurrence after treatment and the handling of drug-resistant scenarios. Results: Compared with CRCS1, CRCS2 patients had a lower clinical stage/grading and a better prognosis. The CRCS2 subtype was in a hypoxic state and was characterized by suppression and exclusion of immune function, which was sensitive to gefitinib, erlotinib, and saracatinib. The constructed prognostic risk model performed well in both training and validation cohorts, helping to identify patients who may benefit from specific treatments or who are at risk of recurrence and drug resistance. A novel therapeutic target, SAA2, regulating neutrophil and fibroblast infiltration, and, thus promoting ccRCC progression, was identified. Conclusions: Our findings highlight the key role of CSCs in shaping the ccRCC tumor microenvironment, crucial for therapy research and clinical guidance. Recognizing tumor stemness helps to predict treatment efficacy, recurrence, and drug resistance, informing treatment strategies and enhancing ccRCC patient outcomes.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu 610200, China;
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Ying Liu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Tong Chen
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; (A.L.); (P.L.)
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China; (W.L.); (Y.L.); (T.C.); (J.S.)
| |
Collapse
|
15
|
Kim JH, Lee J, Lee KW, Xiong H, Li M, Kim JS. Trapped in Cells: A Selective Accumulation Approach for Type-I Photodynamic Ablation of Cancer Stem-like Cells. JACS AU 2024; 4:3657-3667. [PMID: 39328753 PMCID: PMC11423316 DOI: 10.1021/jacsau.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Aldehyde dehydrogenase (ALDH) is an enzyme responsible for converting aldehyde functional groups into carboxylate metabolites. Elevated ALDH activity is a characteristic feature of cancer stem-like cells (CSCs). As a novel approach to target the CSC trait of overexpressing ALDH, we aimed to utilize ALDH activity for the selective accumulation of a photosensitizer in ALDHHigh CSCs. A novel ALDH substrate photosensitizer, SCHO, with thionylated coumarin and N-ethyl-4-(aminomethyl)benzaldehyde was developed to achieve this goal. Our study demonstrated the efficient metabolism of the aldehyde unit of SCHO into carboxylate, leading to its accumulation in ALDHHigh MDA-MB-231 cells. Importantly, we established the selectivity of SCHO as an ALDHHigh cell photosensitizer as it is not a substrate for ABC transporters. SCHO-based photodynamic therapy triggers apoptosis and pyroptosis in MDA-MB-231 cells and further reduces the characteristics of CSCs. Our study presents a novel strategy to target CSCs by exploiting their cellular metabolism to enhance photosensitizer accumulation, highlighting the potential of photodynamic therapy as a powerful tool for eliminating ALDHHigh CSCs.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- Department
of Chemical and Systems Biology, Chem-H
and Stanford Cancer Institute, Stanford School of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Jieun Lee
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyung-Woo Lee
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Hao Xiong
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
17
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
18
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
19
|
Wang S, Liu Q. Research progress on m6A demethylase FTO and its role in gynecological tumors. Front Oncol 2024; 14:1413505. [PMID: 39175477 PMCID: PMC11338917 DOI: 10.3389/fonc.2024.1413505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Recent advances in genomic research have increasingly focused on the fat mass- and obesity-associated (FTO) gene due to its notable correlation with obesity. Initially explored for its contribution to increased body weight, FTO was later discovered to function as an m6A demethylase. This pivotal role enhances our understanding of its broader implications across various pathologies. Epigenetic modifications, such as m6A, have been implicated in gynecological cancers, including ovarian, endometrial, and cervical malignancies. However, the precise mechanisms by which FTO influences the development of gynecological cancers remain largely unknown. This analysis underscores the growing relevance of investigations into the FTO gene in elucidating the mechanisms underlying gynecological cancers and exploring potential therapeutic avenues.
Collapse
Affiliation(s)
- SiYuan Wang
- Jiangsu University School of Medicine, Jiangsu University School, Zhenjiang, Jiangsu, China
| | - Qin Liu
- Gynecology, KunShan Affiliated Hospital of Jiangsu University, Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Deng Q, Qiang J, Liu C, Ding J, Tu J, He X, Xia J, Peng X, Li S, Chen X, Ma W, Zhang L, Jiang Y, Shao Z, Chen C, Liu S, Xu J, Zhang L. SOSTDC1 Nuclear Translocation Facilitates BTIC Maintenance and CHD1-Mediated HR Repair to Promote Tumor Progression and Olaparib Resistance in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306860. [PMID: 38864559 PMCID: PMC11304230 DOI: 10.1002/advs.202306860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to β-transducin repeat-containing protein (β-TrCP) binding motifs of CHD1 is found, thereby blocking the β-TrCP-CHD1 interaction and inhibiting β-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.
Collapse
Affiliation(s)
- Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Cuicui Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiajun Ding
- Department of ThyroidBreast and Vascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xian Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yi‐Zhou Jiang
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunming650201China
- Academy of Biomedical Engineering & The Third Affiliated HospitalKunming Medical UniversityKunming650118China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
21
|
Mirshahidi S, Yuan IJ, Chen Z, Simental A, Lee SC, Andrade Filho PA, Murry T, Zeng F, Duerksen-Hughes P, Wang C, Yuan X. Tumor Cell Stemness and Stromal Cell Features Contribute to Oral Cancer Outcome Disparity in Black Americans. Cancers (Basel) 2024; 16:2730. [PMID: 39123459 PMCID: PMC11311411 DOI: 10.3390/cancers16152730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Black Americans (BAs) with head and neck cancer (HNC) have worse survival outcomes compared to the White patients. While HNC disparities in patient outcomes for BAs have been well recognized, the specific drivers of the inferior outcomes remain poorly understood. Here, we investigated the biologic features of patient tumor specimens obtained during the surgical treatment of oral cancers and performed a follow-up study of the patients' post-surgery recurrences and metastases with the aim to explore whether tumor biologic features could be associated with the poorer outcomes among BA patients compared with White American (WA) patients. We examined the tumor stemness traits and stromal properties as well as the post-surgery recurrence and metastasis of oral cancers among BA and WA patients. It was found that high levels of tumor self-renewal, invasion, tumorigenesis, metastasis, and tumor-promoting stromal characteristics were linked to post-surgery recurrence and metastasis. There were more BA than WA patients demonstrating high stemness traits and strong tumor-promoting stromal features in association with post-surgery tumor recurrences and metastases, although the investigated cases displayed clinically comparable TNM stages and histological grades. These findings demonstrated that the differences in tumor stemness and stromal property among cancers with comparable clinical diagnoses contribute to the outcome disparity in HNCs. More research is needed to understand the genetic and molecular basis of the biologic characteristics underlying the inferior outcomes among BA patients, so that targeting strategies can be developed to reduce HNC disparity.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Isabella J. Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C. Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A. Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Thomas Murry
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Feng Zeng
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Xiangpeng Yuan
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
22
|
Li Y, Xie J, Du X, Chen Y, Wang C, Liu T, Yi Z, Wang Y, Zhao M, Li X, Shi S. Oridonin, a small molecule inhibitor of cancer stem cell with potent cytotoxicity and differentiation potential. Eur J Pharmacol 2024; 975:176656. [PMID: 38754536 DOI: 10.1016/j.ejphar.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Cancer stem cells (CSCs) drive malignant tumor progression, recurrence, and metastasis with unique characteristics, including self-renewal and resistance to conventional treatments. Conventional differentiation inducers, although promising, have limited cytotoxicity and may inadvertently enhance CSC stemness. To address these challenges, ongoing efforts are dedicated to developing strategies that can effectively combine both cytotoxicity and differentiation-inducing effects. In this study, we introduce oridonin (Ori), a small molecule with dual differentiation-inducing and cytotoxicity properties capable of eliminating tumor CSCs. We isolated CSCs in B16F10 cells using the Hoechst side population method and assessed the differentiation effect of Ori. Ori's differentiation-inducing effect was further evaluated using human acute promyelocytic leukemia. The cytotoxic potential of Ori against MCF-7 and B16F10 cell lines was assessed through various methods. In vivo anti-tumor and anti-CSC efficacy of Ori was investigated using mouse melanoma and CSCs melanoma models. Safety evaluation included zebrafish embryotoxicity and mouse acute toxicity experiments. As a result, Ori effectively dismantles tumorspheres, inhibits proliferation, and reduces the expression of CSC-specific markers. It induces significant differentiation, especially in the case of NB4. Additionally, Ori upregulates TP53 expression, mitigates the hypoxic tumor microenvironment, suppresses stemness, and inhibits PD-L1 expression, prompting a robust anti-cancer immune response. Ori demonstrates pronounced cytotoxicity, inducing notable pro-apoptotic effects on B16F10 and MCF-7 cells, with specific triggering of mitochondrial apoptosis. Importantly, Ori maintains a commendable biosafety record. The dual-action prowess of Ori not only induces the differentiation of CSCs but also dispatches differentiated and residual tumor cells, effectively thwarting the relentless march of tumor progression.
Collapse
Affiliation(s)
- Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinjin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tiantian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiwen Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
23
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
24
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
25
|
Pérez-Moreno P, Riquelme I, Bizama C, Vergara-Gómez L, Tapia JC, Brebi P, García P, Roa JC. LINC00662 Promotes Aggressive Traits by Modulating OCT4 Expression through miR-335-5p in Gallbladder Cancer Cells. Int J Mol Sci 2024; 25:6740. [PMID: 38928444 PMCID: PMC11204134 DOI: 10.3390/ijms25126740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Carolina Bizama
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de la Frontera, Temuco 4810296, Chile;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Millennium Institute on Immunology and Immunotherapy (MIII), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - Patricia García
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| | - Juan Carlos Roa
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| |
Collapse
|
26
|
Zhang M, Zhang J, Liang X, Zhang M. Stemness related lncRNAs signature for the prognosis and tumor immune microenvironment of ccRCC patients. BMC Med Genomics 2024; 17:150. [PMID: 38822402 PMCID: PMC11141027 DOI: 10.1186/s12920-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and cancer stem cells (CSCs) are crucial for the growth, migration, recurrence, and medication resistance of tumors. However, the impact of lncRNAs related to stemness on the outcome and tumor immune microenvironment (TIME) in clear cell renal cell carcinoma (ccRCC) is still unclear. In this study, we aimed to predict the outcome and TIME of ccRCC by constructing a stem related lncRNAs (SRlncRNAs) signature. We firstly downloaded ccRCC patients' clinical data and RNA sequencing data from UCSC and TCGA databases, and abtained the differentially expressed lncRNAs highly correlated with stem index in ccRCC through gene expression differential analysis and Pearson correlation analysis. Then, we selected suitable SRlncRNAs for constructing a prognostic signature of ccRCC patients by LASSO Cox regression. Further, we used nomogram and Kaplan Meier curves to evaluate the SRlncRNA signature for the prognose in ccRCC. At last, we used ssGSEA and GSVA to evaluate the correlation between the SRlncRNAs signature and TIME in ccRCC. Finally, We obtained a signtaure based on six SRlncRNAs, which are correlated with TIME and can effectively predict the ccRCC patients' prognosis. The SRlncRNAs signature may be a noval prognostic indicator in ccRCC.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jiqiang Zhang
- Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xuemei Liang
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
27
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
28
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
30
|
Li Y, Fang J, Singh K, Ortu F, Suntharalingam K. An immunogenic anti-cancer stem cell bi-nuclear copper(II)-flufenamic acid complex. Dalton Trans 2024; 53:6410-6415. [PMID: 38501501 DOI: 10.1039/d4dt00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
An asymmetric bi-nuclear copper(II) complex with both cytotoxic and immunogenic activity towards breast cancer stem cells (CSCs) is reported. The bi-nuclear copper(II) complex comprises of two copper(II) centres bound to flufenamic acid and 3,4,7,8-tetramethyl-1,10-phenanthroline. The bi-nuclear copper(II) complex exhibits sub-micromolar potency towards breast CSCs grown in monolayers and three-dimensional cultures. Remarkably, the bi-nuclear copper(II) complex is up to 25-fold more potent toward breast CSC mammospheres than salinomycin (a gold standard anti-breast CSC agent) and cisplatin (a clinically administered metallodrug). Mechanistic studies showed that the bi-nuclear copper(II) complex readily enters breast CSCs, elevates intracellular reactive oxygen species levels, induces apoptosis, and promotes damage-associated molecular pattern release. The latter triggers phagocytosis of breast CSCs by macrophages. As far as we are aware, this is the first report of a bi-nuclear copper(II) complex to induce engulfment of breast CSCs by immune cells.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Jiaxin Fang
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Fabrizio Ortu
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | |
Collapse
|
31
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
32
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
33
|
Resendiz-Hernández M, García-Hernández AP, Silva-Cázares MB, Coronado-Uribe R, Hernández-de la Cruz ON, Arriaga-Pizano LA, Prieto-Chávez JL, Salinas-Vera YM, Ibarra-Sierra E, Ortiz-Martínez C, López-Camarillo C. MicroRNA-204 Regulates Angiogenesis and Vasculogenic Mimicry in CD44+/CD24- Breast Cancer Stem-like Cells. Noncoding RNA 2024; 10:14. [PMID: 38392969 PMCID: PMC10891775 DOI: 10.3390/ncrna10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tumors have high requirements in terms of nutrients and oxygen. Angiogenesis is the classical mechanism for vessel formation. Tumoral vascularization has the function of nourishing the cancer cells to support tumor growth. Vasculogenic mimicry, a novel intratumoral microcirculation system, alludes to the ability of cancer cells to organize in three-dimensional (3D) channel-like architectures. It also supplies the tumors with nutrients and oxygen. Both mechanisms operate in a coordinated way; however, their functions in breast cancer stem-like cells and their regulation by microRNAs remain elusive. In the present study, we investigated the functional role of microRNA-204 (miR-204) on angiogenesis and vasculogenic mimicry in breast cancer stem-like cells. Using flow cytometry assays, we found that 86.1% of MDA-MB-231 and 92% of Hs-578t breast cancer cells showed the CD44+/CD24- immunophenotype representative of cancer stem-like cells (CSCs). The MDA-MB-231 subpopulation of CSCs exhibited the ability to form mammospheres, as expected. Interestingly, we found that the restoration of miR-204 expression in CSCs significantly inhibited the number and size of the mammospheres. Moreover, we found that MDA-MB-231 and Hs-578t CSCs efficiently undergo angiogenesis and hypoxia-induced vasculogenic mimicry in vitro. The transfection of precursor miR-204 in both CSCs was able to impair the angiogenesis in the HUVEC cell model, which was observed as a diminution in the number of polygons and sprouting cells. Remarkably, miR-204 mimics also resulted in the inhibition of vasculogenic mimicry formation in MDA-MB-231 and Hs-578t CSCs, with a significant reduction in the number of channel-like structures and branch points. Mechanistically, the effects of miR-204 were associated with a diminution of pro-angiogenic VEGFA and β-catenin protein levels. In conclusion, our findings indicated that miR-204 abrogates the angiogenesis and vasculogenic mimicry development in breast cancer stem-like cells, suggesting that it could be a potential tool for breast cancer intervention based on microRNA replacement therapies.
Collapse
Affiliation(s)
- Martha Resendiz-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Alejandra P. García-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Macrina B. Silva-Cázares
- Unidad Academica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala 78760, San Luis Potosí, Mexico;
| | - Rogelio Coronado-Uribe
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Olga N. Hernández-de la Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Lourdes A. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06720, Mexico;
| | - Jessica L. Prieto-Chávez
- Laboratorio de Citometría de Flujo, Centro de Instrumentos, Coordinación de Investigación en Salud, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06720, Mexico;
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerologia “Dr. Arturo Beltrán Ortega”, Acapulco 39610, Guerrero, Mexico;
| | - Concepción Ortiz-Martínez
- Servicio de Ginecología Oncológica, Instituto Estatal de Cancerologia “Dr. Arturo Beltrán Ortega”, Acapulco 39610, Guerrero, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| |
Collapse
|
34
|
Bistué-Rovira À, Rico LG, Bardina J, Juncà J, Granada I, Bradford JA, Ward MD, Salvia R, Solé F, Petriz J. Persistence of Chronic Lymphocytic Leukemia Stem-like Populations under Simultaneous In Vitro Treatment with Curcumin, Fludarabine, and Ibrutinib: Implications for Therapy Resistance. Int J Mol Sci 2024; 25:1994. [PMID: 38396682 PMCID: PMC10888954 DOI: 10.3390/ijms25041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.
Collapse
Affiliation(s)
- Àngel Bistué-Rovira
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain;
| | - Laura G. Rico
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Jorge Bardina
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordi Juncà
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Isabel Granada
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jolene A. Bradford
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Michael D. Ward
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Roser Salvia
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jordi Petriz
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| |
Collapse
|
35
|
Fang J, Orobator ON, Olelewe C, Passeri G, Singh K, Awuah SG, Suntharalingam K. A Breast Cancer Stem Active Cobalt(III)-Cyclam Complex Containing Flufenamic Acid with Immunogenic Potential. Angew Chem Int Ed Engl 2024; 63:e202317940. [PMID: 38063406 PMCID: PMC10952489 DOI: 10.1002/anie.202317940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/31/2023]
Abstract
The cytotoxic and immunogenic-activating properties of a cobalt(III)-cyclam complex bearing the non-steroidal anti-inflammatory drug, flufenamic acid is reported within the context of anti-cancer stem cell (CSC) drug discovery. The cobalt(III)-cyclam complex 1 displays sub-micromolar potency towards breast CSCs grown in monolayers, 24-fold and 31-fold greater than salinomycin (an established anti-breast CSC agent) and cisplatin (an anticancer metallopharmaceutical), respectively. Strikingly, the cobalt(III)-cyclam complex 1 is 69-fold and 50-fold more potent than salinomycin and cisplatin towards three-dimensionally cultured breast CSC mammospheres. Mechanistic studies reveal that 1 induces DNA damage, inhibits cyclooxygenase-2 expression, and prompts caspase-dependent apoptosis. Breast CSCs treated with 1 exhibit damage-associated molecular patterns characteristic of immunogenic cell death and are phagocytosed by macrophages. As far as we are aware, 1 is the first cobalt complex of any oxidation state or geometry to display both cytotoxic and immunogenic-activating effects on breast CSCs.
Collapse
Affiliation(s)
- Jiaxin Fang
- School of ChemistryUniversity of LeicesterLeicesterUK
| | | | | | | | - Kuldip Singh
- School of ChemistryUniversity of LeicesterLeicesterUK
| | - Samuel G. Awuah
- Department of ChemistryUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | | |
Collapse
|
36
|
Hasan U, Chauhan M, Basu SM, R J, Giri J. Overcoming multidrug resistance by reversan and exterminating glioblastoma and glioblastoma stem cells by delivering drug-loaded nanostructure hybrid lipid capsules (nHLCs). Drug Deliv Transl Res 2024; 14:342-359. [PMID: 37587289 DOI: 10.1007/s13346-023-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma multiforme (GBM) is regarded as a highly aggressive brain cancer with a poor prognosis. There is an increase in the expression of P-glycoprotein (P-gp), responsible for multidrug resistance (MDR), making it a potential target for improving drug responses. Additionally, glioblastoma stem cells (GSCs) increase resistance to chemo- and radiotherapy and play a major role in cancer relapse. In this study, we targeted P-gp using a small molecule inhibitor, reversan (RV), to inhibit MDR that prolonged the retention of drugs in the cytosolic milieu. To eliminate GBM and GSCs, we have used two well-established anti-cancer drugs, regorafenib (RF) and curcumin (CMN). To improve the pharmacokinetics and decrease systemic delivery of drugs, we developed nanostructure hybrid lipid capsules (nHLCs), where hydrophobic drugs can be loaded in the core, and their physicochemical properties were determined by dynamic light scattering (DLS) and cryo-scanning electron microscopy (SEM). Inhibition of MDR by RV has also shown enhanced retention of nHLC in GBM cells. Co-delivery of drug-loaded nHLCs, pre-treated with RV, exhibited superior cytotoxicity in both GBM and GSCs than their individual doses and effectively reduced the size and stemness of tumor spheres and accelerated the rate of apoptosis, suggesting a promising treatment for glioblastoma.
Collapse
Affiliation(s)
- Uzma Hasan
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, India
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jayakumar R
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
37
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
38
|
Stanger BZ, Wahl GM. Cancer as a Disease of Development Gone Awry. ANNUAL REVIEW OF PATHOLOGY 2024; 19:397-421. [PMID: 37832945 PMCID: PMC11486542 DOI: 10.1146/annurev-pathmechdis-031621-025610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
In the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.
Collapse
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Abramson Family Cancer Research Institute, and Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
39
|
Amniouel S, Jafri MS. High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data. Front Physiol 2024; 14:1272206. [PMID: 38304289 PMCID: PMC10830836 DOI: 10.3389/fphys.2023.1272206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction: FOLFOX and FOLFIRI chemotherapy are considered standard first-line treatment options for colorectal cancer (CRC). However, the criteria for selecting the appropriate treatments have not been thoroughly analyzed. Methods: A newly developed machine learning model was applied on several gene expression data from the public repository GEO database to identify molecular signatures predictive of efficacy of 5-FU based combination chemotherapy (FOLFOX and FOLFIRI) in patients with CRC. The model was trained using 5-fold cross validation and multiple feature selection methods including LASSO and VarSelRF methods. Random Forest and support vector machine classifiers were applied to evaluate the performance of the models. Results and Discussion: For the CRC GEO dataset samples from patients who received either FOLFOX or FOLFIRI, validation and test sets were >90% correctly classified (accuracy), with specificity and sensitivity ranging between 85%-95%. In the datasets used from the GEO database, 28.6% of patients who failed the treatment therapy they received are predicted to benefit from the alternative treatment. Analysis of the gene signature suggests the mechanistic difference between colorectal cancers that respond and those that do not respond to FOLFOX and FOLFIRI. Application of this machine learning approach could lead to improvements in treatment outcomes for patients with CRC and other cancers after additional appropriate clinical validation.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Ni T, Chu Z, Tao L, Zhao Y, Lv M, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y. Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway. J Nat Med 2024; 78:100-113. [PMID: 37817006 DOI: 10.1007/s11418-023-01748-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Cancer stem cells (CSCs) are the primary source of tumor recurrence and chemoresistance, which complicates tumor treatment and has a significant impact on poor patient prognosis. Therefore, the discovery of inhibitors that specifically target CSCs is warranted. Previous research has established that the TGF-β/Smad signaling pathway is critical for the maintenance of CSCs phenotype, thus facilitating CSCs transformation. In this regard, Celastrus orbiculatus ethyl acetate extract (COE) was shown to exert anticancer properties; however, its therapeutic impact on gastric cancer stem cells (GCSCs) remains unknown. We here demonstrate that COE displayed a strong inhibitory effect on GCSCs growth and CSCs markers. Moreover, COE was shown to efficiently inhibit the development of tumor spheres and accelerate GCSCs apoptosis. Mechanistically, we established that COE could suppress the stemness phenotype of GCSCs by inhibiting the activity of the TGF-β/Smad signaling pathway. To summarize, our data indicate that COE suppresses the malignant biological phenotype of GCSCs via the TGF-β/Smad signaling pathway. These findings shed new light on the anticancer properties of COE and suggest new strategies for the development of efficient GCSCs therapeutics.
Collapse
Affiliation(s)
- Tengyang Ni
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Zewen Chu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Li Tao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Yang Zhao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Mengying Lv
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Miao Zhu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yuanyuan Luo
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142, Japan
| | - Haibo Wang
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Yanqing Liu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
41
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
42
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
43
|
Wang Z, Uddin MB, Wang PS, Liu Z, Barzideh D, Yang C. Up-regulation of RNA m 6A methyltransferase like-3 expression contributes to arsenic and benzo[a]pyrene co-exposure-induced cancer stem cell-like property and tumorigenesis. Toxicol Appl Pharmacol 2023; 481:116764. [PMID: 37972769 PMCID: PMC11375689 DOI: 10.1016/j.taap.2023.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
While arsenic or BaP alone exposure can cause lung cancer, studies showed that arsenic plus BaP co-exposure displays a significantly stronger lung tumorigenic effect. However, the underlying mechanism has not been well understood. Studies showed that RNA molecules are chemically modified. The most frequently occurring RNA modification in eukaryotic messenger RNAs is the N6-methyladenosine (m6A) methylation. This study aimed to determine whether arsenic plus BaP exposure alters RNA m6A methylation and its role in lung tumorigenic effect of arsenic plus BaP exposure. Human bronchial epithelial cells transformed by exposure to arsenic or BaP alone, and arsenic plus BaP and mouse xenograft tumorigenesis models were used in this study. It was found that arsenic plus BaP exposure-transformed cells have significantly higher levels of RNA m6A methylation than arsenic or BaP alone exposure-transformed human bronchial epithelial cells. Western blot analysis showed that arsenic plus BaP exposure greatly up-regulates the m6A writer methyltransferase like-3 (METTL3) expression levels in cultured cells and mouse lung tissues. METTL3 knockdown in cells transformed by arsenic plus BaP exposure drastically reduced their RNA m6A methylation levels. Functional studies revealed that METTL3 knockdown in cells transformed by arsenic plus BaP exposure greatly reduces their anchorage-dependent and -independent growth, cancer stem cell characters and tumorigenesis. The findings from this study suggest that arsenic plus BaP co-exposure causes epitranscriptomic dysregulation, which may contribute significantly to arsenic plus BaP co-exposure-caused synergistic lung tumorigenic effect.
Collapse
Affiliation(s)
- Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Mohammad Burhan Uddin
- Department of Toxicology and Cancer Biology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - David Barzideh
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
44
|
Zhang N, Chen R, Cao X, Wang L. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation. J Cancer Res Ther 2023; 19:1517-1524. [PMID: 38156917 DOI: 10.4103/jcrt.jcrt_1458_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Radiofrequency ablation has become a favorable treatment modality for small hepatocellular carcinoma (HCC) recently; however, insufficient radiofrequency ablation (RFA) was shown to lead to enhanced invasiveness and metastasis of HCC in our previous study, while the underlying molecular mechanism has not been understood. MATERIALS AND METHODS In order to explore the influence of the hypoxic microenvironment on residual cancer and cancer stem cell (CSC)-like characteristics of HCC cells in this process, an in vitro hypoxic model and an insufficient RFA mouse model were established with HCC cancer cell lines. Immunochemistry staining and western blot were used to examine the expression of hypoxia-inducible factor (HIF)-1α and liver CSC markers. The 3D colon formation assay, tumor cell invasion assay, and gene transfection assays were applied to test the change in liver CSC stemness and HCC cell invasion. RESULTS After insufficient RFA treatment, the upregulated HIF-1α expression was associated with an increase in the CSC-like population in residual cancer. In vitro, hypoxic tumor cells showed aggressive CSC-like properties and phenotypes. Wnt/β-catenin signaling activation was shown to be necessary for the acquisition of liver CSC-like characteristics under hypoxic conditions. CONCLUSION Overall, the aberrantly enhanced HIF-1α expression enhanced the liver CSC-like traits via abnormal Wnt/β-catenin signaling activation after insufficient RFA, and the overexpressed HIF-1α would be a vital factor and useful biomarker during the HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
45
|
Ibarra AMC, Aguiar EMG, Ferreira CBR, Siqueira JM, Corrêa L, Nunes FD, Franco ALDS, Cecatto RB, Hamblin MR, Rodrigues MFSD. Photodynamic therapy in cancer stem cells - state of the art. Lasers Med Sci 2023; 38:251. [PMID: 37919479 DOI: 10.1007/s10103-023-03911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.
Collapse
Affiliation(s)
- Ana Melissa C Ibarra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | | | - Cássia B R Ferreira
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | | | - Luciana Corrêa
- School of Dentistry, University of São Paulo - FOUSP, São Paulo, Brazil
| | - Fabio D Nunes
- School of Dentistry, University of São Paulo - FOUSP, São Paulo, Brazil
| | | | - Rebeca B Cecatto
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Maria Fernanda S D Rodrigues
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University - UNINOVE, São Paulo, Brazil.
| |
Collapse
|
46
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
48
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
49
|
Kumari P, Ghosh S, Acharya S, Mitra P, Roy S, Ghosh S, Maji M, Singh S, Mukherjee A. Cytotoxic Imidazolyl-Mesalazine Ester-Based Ru(II) Complexes Reduce Expression of Stemness Genes and Induce Differentiation of Oral Squamous Cell Carcinoma. J Med Chem 2023; 66:14061-14079. [PMID: 37831489 DOI: 10.1021/acs.jmedchem.3c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The aggressiveness and recurrence of cancer is linked to cancer stem cells (CSCs), but drugs targeting CSCs may not succeed in the clinic due to the lack of a distinct CSC subpopulation. Clinical Pt(II) drugs can increase stemness. We screened 15 RuII or IrIII complexes with mesalazine or 3-aminobenzoate Schiff bases of the general formulas [Ru(p-cym)L]+, [Ru(p-cym)L], and [Ir(Cp*)L]+ (L = L1-L9) and found three complexes (2, 12, and 13) that are active against oral squamous cell carcinoma (OSCC) CSCs. There is a putative oncogenic role of transcription factors (viz. NOTCH1, SOX2, c-MYC) to enhance the stemness. Our work shows that imidazolyl-mesalazine ester-based RuII complexes inhibit growth of CSC-enriched OSCC 3D spheroids at low micromolar doses (2 μM). Complexes 2, 12, and 13 reduce stemness gene expression and induce differentiation markers (Involucrin, CK10) in OSCC 3D cultures. The imidazolyl-mesalazine ester-based RuII complex 13 shows the strongest effect. Downregulating c-MYC suggests that RuII complexes may target c-MYC-driven cancers.
Collapse
Affiliation(s)
- Pragya Kumari
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Subhashis Ghosh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Paromita Mitra
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Souryadip Roy
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani-741251, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advance Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| |
Collapse
|
50
|
Li YR, Ochoa CJ, Zhu Y, Kramer A, Wilson M, Fang Y, Chen Y, Singh T, Di Bernardo G, Zhu E, Lee D, Moatamed NA, Bando J, Zhou JJ, Memarzadeh S, Yang L. Profiling ovarian cancer tumor and microenvironment during disease progression for cell-based immunotherapy design. iScience 2023; 26:107952. [PMID: 37810241 PMCID: PMC10558812 DOI: 10.1016/j.isci.2023.107952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ovarian cancer (OC) is highly lethal due to late detection and frequent recurrence. Initial treatments, comprising surgery and chemotherapy, lead to disease remission but are invariably associated with subsequent relapse. The identification of novel therapies and an improved understanding of the molecular and cellular characteristics of OC are urgently needed. Here, we conducted a comprehensive analysis of primary tumor cells and their microenvironment from 16 chemonaive and 10 recurrent OC patient samples. Profiling OC tumor biomarkers allowed for the identification of potential molecular targets for developing immunotherapies, while profiling the microenvironment yielded insights into its cellular composition and property changes between chemonaive and recurrent samples. Notably, we identified CD1d as a biomarker of the OC microenvironment and demonstrated its targeting by invariant natural killer T (iNKT) cells. Overall, our study presents a comprehensive immuno-profiling of OC tumor and microenvironment during disease progression, guiding the development of immunotherapies for OC treatment, especially for recurrent disease.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher J Ochoa
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gabriella Di Bernardo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neda A Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joanne Bando
- Department of Medicine, Division of Pulmonary and Critical Care, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|