1
|
Zeng Y, Wang X, Hu J, Tian C, Liu R, Chen X, Huang L, Liang X, Wang X, Fan H, Zhang H, Lu Y. LZTS3 represses tumorigenesis and radioresistance via CK1δ and β-TrCP-mediated ubiquitination pathway in lung cancer. Cell Signal 2025; 129:111655. [PMID: 39956246 DOI: 10.1016/j.cellsig.2025.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Radioresistance is one of the main causes for local treatment failure in lung cancer. Nevertheless, the potential mechanisms of radioresistance in lung cancer have not been elucidated completely. Here, we discover a carcinoma-inhibiting protein called leucine zipper tumor suppressor 3 (LZTS3), which is low-expressed and related to adverse outcome in lung cancer. Moreover, our studies demonstrate that LZTS3 restrains cell proliferation and radioresistance in vitro and in vivo. Mechanistically, protein kinase CK1δ interacts with LZTS3, resulting in E3 ubiquitin ligase β-TrCP recognizes and binds to LZTS3. Thus, LZTS3 is degraded by the ubiquitin-proteasome pathway. We also identify two conserved degrons (DSGRNS and DSGRAS) are essential for the ubiquitinated degradation of LZTS3 by CK1δ and β-TrCP. More importantly, we detect that the CK1δ and β-TrCP-mediated degradation of LZTS3 facilitate the cell growth, proliferation and radioresistance in lung cancer. Collectivelly, our results suggest that LZTS3 regulates tumorigenesis and radioresistance in lung cancer depend on a CK1δ and β-TrCP-mediated ubiquitin-proteasome pathway. LZTS3 may be a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology,Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoyan Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of medical oncology, Sir run run shaw hospital, School of medicine, Zhejiang university, China
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hu Bei 430022, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ren P, Liu M, Wei B, Tang Q, Wang Y, Xue C. Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism. Int J Biol Macromol 2025; 300:140334. [PMID: 39870263 DOI: 10.1016/j.ijbiomac.2025.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice. Subsequently, fecal microbial transplants were introduced into the pseudo-sterile tumor-bearing mice. The antitumor effects of fucoidan were found to be dependent on the gut microbiota. Fucoidan promoted the proliferation of Akkermansia, Bifidobacterium and Lactobacillus, which have immunomodulatory effects. Furthermore, through regulation of gut microbiota, fucoidan influenced the metabolic process of tryptophan and facilitated its conversion to indole-3-acetic acid. In addition, fucoidan decreased the kynurenine/tryptophan ratio in serum, increased the proportion of CD8+ T cells, and suppressed the expression level of IDO1 in tumor tissues. Our results confirm that fucoidan enhances anti-tumor immune responses and subsequently exhibits anti-tumor effects by modulating the gut microbiota. Our research contributes to the comprehension of the mechanism of anti-tumor effects of fucoidan and facilitates the development of fucoidan as a dietary supplement for cancer patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Meng Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
3
|
Ruiz‐Malagón AJ, Rodríguez‐Sojo MJ, Redondo E, Rodríguez‐Cabezas ME, Gálvez J, Rodríguez‐Nogales A. Systematic review: The gut microbiota as a link between colorectal cancer and obesity. Obes Rev 2025; 26:e13872. [PMID: 39614602 PMCID: PMC11884970 DOI: 10.1111/obr.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microbiome modulation is one of the novel strategies in medicine with the greatest future to improve the health of individuals and reduce the risk of different conditions, including metabolic, immune, inflammatory, and degenerative diseases, as well as cancer. Regarding the latter, many studies have reported the role of the gut microbiome in carcinogenesis, formation and progression of colorectal cancer (CRC), as well as its response to different systemic therapies. Likewise, obesity, one of the most important risk factors for CRC, is also well known for its association with gut dysbiosis. Moreover, obesity and CRC display, apart from microbial dysbiosis, chronic inflammation, which participates in their pathogenesis. Although human and murine studies demonstrate the significant impact of the microbiome in regulating energy metabolism and CRC development, little is understood about the contribution of the microbiome to the development of obesity-associated CRC. Therefore, this systematic review explores the evidence for microbiome changes associated with these conditions and hypothesizes that this may contribute to the pathogenesis of obesity-related CRC. Two databases were searched, and different studies on the relationship among obesity, intestinal microbiota and CRC in clinical and preclinical models were selected. Data extraction was carried out by two reviewers independently, and 101 studies were finally considered. Findings indicate the existence of a risk association between obesity and CRC derived from metabolic, immune, and microbial disorders.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz‐Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Instituto de Investigación Biomédica de Málaga (IBIMA)MalgaSpain
| | - María Jesús Rodríguez‐Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Eduardo Redondo
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
- Servicio de DigestivoHospital Universitario Virgen de las NievesGranadaSpain
| | - María Elena Rodríguez‐Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| | - Alba Rodríguez‐Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA)GranadaSpain
| |
Collapse
|
4
|
Zheng L, Zhang J, Yang J, Wang Y, Zhang Y, Fang K, Wu J, Zheng M. Association of the use of nonfood prebiotics, probiotics, and synbiotics with total and cause-specific mortality: a prospective cohort study. Nutr J 2025; 24:45. [PMID: 40114150 PMCID: PMC11924732 DOI: 10.1186/s12937-025-01104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The use of nonfood prebiotics, probiotics, and synbiotics has approximately tripled in the last 20 years. It is necessary to examine the associations of these substances with all-cause and cause-specific mortality in a large prospective cohort. METHODS This study included 53,333 adults from the National Health and Nutrition Examination Survey 1999-2018. All participants answered questions on the use of dietary supplements and medications, including prebiotics, probiotics, and synbiotics. Death outcomes were determined by linkage to National Death Index records through 31 December 2019. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for mortality from all causes, heart diseases, cancer, and other causes. RESULTS During a mean follow-up of 10.6 years, 9117 deaths were documented, including 2364 heart disease deaths, 1964 cancer deaths, and 4700 other causes deaths. Compared to nonusers, nonfood prebiotic, probiotic, and synbiotic users had a 59% (HR 0.41, 95% CI 0.30 to 0.56), 56% (HR 0.44, 95% CI 0.26 to 0.74), 49% (HR 0.51, 95% CI 0.31 to 0.83), and 64% (HR 0.36, 95% CI 0.23 to 0.59) for lower risk of all-cause, cancer, heart disease, and other causes mortality, respectively. Moreover, the inverse association of the use of prebiotics, probiotics, and synbiotics with mortality was stronger in female participants and participants without hypertension. CONCLUSION The use of nonfood prebiotics, probiotics, and synbiotics is significantly associated with lower all-cause mortality, as well as deaths from heart disease, cancer, and other causes.
Collapse
Affiliation(s)
- Luyan Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jiaqi Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Yanbo Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Kailu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Díez-Madueño K, Montero I, Fernández-Gosende M, Martínez-Álvarez N, Hidalgo-Cantabrana C, de la Cueva Dobao P, Coto-Segura P. Compositional and Functional Profile of Gut Microbiota in a Cohort of Adult Spanish Patients with Atopic Dermatitis Using Metagenomics: A Cross-Sectional Study. Dermatitis 2025. [PMID: 40111891 DOI: 10.1089/derm.2024.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Background: The role of gut dysbiosis in the pathophysiology of atopic dermatitis (AD) through immune system (IS) imbalance is a novel line of investigation currently under discussion. This study aimed to characterize compare the composition and functional profile of the gut microbiota (GM) between adults with AD and healthy individuals. Methods: Observational cross-sectional study, where fecal samples from 70 adults (38 patients and 32 controls) were analyzed using metagenomics and bioinformatics. Results: Differences between the GM of patients with AD and healthy individuals were demonstrated. Reduced microbial diversity was found in subjects with AD. Bacterial species with lower abundance primarily belonged to the families Ruminococcaceae, Akkermansiaceae, and Methanobacteriaceae. Several microbial metabolic pathways were found to be decreased in patients with AD, including amino acid biosynthesis, vitamin biosynthesis, fatty acids and lipids biosynthesis, and energy metabolism. Conclusion: Adults with AD exhibited a distinct GM compared to healthy individuals. Changes were demonstrated both compositionally and functionally. Further investigation is mandatory to elucidate the potential link and causal relationship between gut dysbiosis and AD, which may be crucial for a deeper understanding of the disease's pathophysiology and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | - Pablo de la Cueva Dobao
- From the Dermatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
| | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, Mieres, Spain
| |
Collapse
|
6
|
Xialu S, Faqiang M. Mechanisms of action of intestinal microorganisms and advances in head and neck tumors. Discov Oncol 2025; 16:303. [PMID: 40072772 PMCID: PMC11903988 DOI: 10.1007/s12672-025-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.
Collapse
Affiliation(s)
- Su Xialu
- Graduate School of Guizhou Medical University, Guiyang, 550000, China
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Ma Faqiang
- Graduate School of Guizhou Medical University, Guiyang, 550000, China.
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| |
Collapse
|
7
|
Xie M, Yang T, Liu Q, Ning Z, Feng L, Min X. The influence of Lactobacillus johnsonii on tumor growth and lymph node metastasis in papillary thyroid carcinoma. Commun Biol 2025; 8:419. [PMID: 40074848 PMCID: PMC11903660 DOI: 10.1038/s42003-025-07856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Lymph node metastasis (LNM) is a key factor in the prognosis of papillary thyroid carcinoma (PTC). This study explores the effect of intratumoral bacteria on LNM in PTC. The intrathyroidal microbiome is analyzed in 55 PTC patients by 16S rRNA gene sequencing. The CCK8 and Transwell assays determine the impact of bacteria on the proliferation and migration abilities of PTC cells. Xenograft tumor and bacterial colonization experiments are carried out using nude mice. We show that Lactobacillus is significantly decreased in PTC lesions from patients with LNM. Lactobacillus johnsonii (L. johnsonii) suppresses the proliferation and migration capability of PTC cells in vitro and in vivo. Bacterial gut colonization of L. johnsonii increases its abundance in tumors and inhibits PTC growth and LNM. These findings suggest that L. johnsonii can be harnessed for the development of innovative therapeutic strategies for PTC.
Collapse
Affiliation(s)
- Minghao Xie
- Department of General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Yang
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qiang Liu
- Department of General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zhikun Ning
- Department of Day Ward, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lili Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510000, PR China.
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510000, PR China.
| | - Xiang Min
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
8
|
Sun J, Song S, Liu J, Chen F, Li X, Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. NPJ Biofilms Microbiomes 2025; 11:43. [PMID: 40069181 PMCID: PMC11897378 DOI: 10.1038/s41522-025-00678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
In order to decipher the relationship between gut microbiota imbalance and cancer, this paper reviewed the role of intestinal microbiota in anticancer therapy and related mechanisms, discussed the current research status of gut microbiota as a biomarker of cancer, and finally summarized the reasonable means of regulating gut microbiota to assist cancer therapy. Overall, our study reveals that the gut microbiota can serve as a potential target for improving cancer management.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyan Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahua Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Wang R, Li W, Cao H, Zhang L. Decoding the Tumor-Associated Microbiota: From Origins to Nanomedicine Applications in Cancer Therapy. BIOLOGY 2025; 14:243. [PMID: 40136500 PMCID: PMC11940167 DOI: 10.3390/biology14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence reveals that the tumor microbiome-comprising distinct microbial communities within neoplastic tissues-exerts a profound influence on cancer initiation, progression, and therapeutic response. These microbes actively reshape the tumor microenvironment (TME) through metabolite secretion, the modulation of immune pathways, and direct interactions with host cells, thereby affecting tumor biology and therapeutic outcomes. Despite substantial heterogeneity among cancer types, recent insights underscore the tumor microbiome's potential as both a diagnostic/prognostic biomarker and a targetable component for innovative treatments. In this review, we synthesize emerging knowledge on the mechanistic roles of tumor-associated microbiota in shaping the TME, with a focus on how these discoveries can guide novel therapeutic strategies. We further explore interdisciplinary advances, including the convergence of microbiomics and nanotechnology, to enhance drug delivery, circumvent resistance, and foster TME remodeling. By highlighting these cutting-edge developments, our review underscores the transformative potential of integrating tumor microbiome research into precision oncology and advancing more personalized cancer therapies.
Collapse
Affiliation(s)
- Ruiqi Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Weizheng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Hongqian Cao
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Hu ZJ, Zhu HR, Jin YJ, Liu P, Yu XW, Zhang YR. Correlation between gut microbiota and tumor immune microenvironment: A bibliometric and visualized study. World J Clin Oncol 2025; 16:101611. [PMID: 39995564 PMCID: PMC11686564 DOI: 10.5306/wjco.v16.i2.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND In recent years, numerous reports have been published regarding the relationship between the gut microbiota and the tumor immune microenvironment (TIME). However, to date, no systematic study has been conducted on the relationship between gut microbiota and the TIME using bibliometric methods. AIM To describe the current global research status on the correlation between gut microbiota and the TIME, and to identify the most influential countries, research institutions, researchers, and research hotspots related to this topic. METHODS We searched for all literature related to gut microbiota and TIME published from January 1, 2014, to May 28, 2024, in the Web of Science Core Collection database. We then conducted a bibliometric analysis and created visual maps of the published literature on countries, institutions, authors, keywords, references, etc., using CiteSpace (6.2R6), VOSviewer (1.6.20), and bibliometrics (based on R 4.3.2). RESULTS In total, 491 documents were included, with a rapid increase in the number of publications starting in 2019. The country with the highest number of publications was China, followed by the United States. Germany has the highest number of citations in literature. From a centrality perspective, the United States has the highest influence in this field. The institutions with the highest number of publications were Shanghai Jiao Tong University and Zhejiang University. However, the institution with the most citations was the United States National Cancer Institute. Among authors, Professor Giorgio Trinchieri from the National Institutes of Health has the most local impact in this field. The most cited author was Fan XZ. The results of journal publications showed that the top three journals with the highest number of published papers were Frontiers in Immunology, Cancers, and Frontiers in Oncology. The three most frequently used keywords were gut microbiota, tumor microenvironment, and immunotherapy. CONCLUSION This study systematically elaborates on the research progress related to gut microbiota and TIME over the past decade. Research results indicate that the number of publications has rapidly increased since 2019, with research hotspots including "gut microbiota", "tumor microenvironment" and "immunotherapy". Exploring the effects of specific gut microbiota or derived metabolites on the behavior of immune cells in the TIME, regulating the secretion of immune molecules, and influencing immunotherapy are research hotspots and future research directions.
Collapse
Affiliation(s)
- Zheng-Jun Hu
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Hui-Rong Zhu
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yong-Jie Jin
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Pan Liu
- School of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230000, Anhui Province, China
| | - Xiao-Wei Yu
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yu-Ren Zhang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| |
Collapse
|
11
|
Vučinić D, Redžović A, Hauser G, Mikolašević I. Microbiota and Radiotherapy: Unlocking the Potential for Improved Gastrointestinal Cancer Treatment. Biomedicines 2025; 13:526. [PMID: 40002939 PMCID: PMC11852588 DOI: 10.3390/biomedicines13020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Radiotherapy (RT) is one of the major cornerstones in managing gastrointestinal (GI) cancers. However, several side effects, such as intestinal inflammation, mucosal injury, and dysbiosis, often compromise this. The gut microbiota increasingly attracts much interest as an essential modulator of RT effects influencing immune responses and tissue repair. Through short-chain fatty acids such as butyrate, representatives of certain bacterial species play a crucial role under normal conditions, keeping the mucosal integrity intact and reducing oxidative stress-mediated damage. Dysbiosis, a state where diminished microbial diversity and increased pathogenic species in the microbiota are seen, amplifies RT-induced toxicity in patients. Clinical investigations highlight that microbiota-targeted interventions, including probiotics, prebiotics, and fecal microbiota transplantation, hold the means to augment RT efficacy and lessen toxicity. Increased microflora diversity and specific microbial profiles have yielded serious patient improvements. Advanced RT methods use stereotactic body radiotherapy combined with microbiota modulation as a promising technique to shield healthy tissue and maximize immune-mediated antitumor effects. Additionally, there is an implication in tumor behavior regulated by the intratumoral microbiota regarding the response to radiotherapy. Notably, the modulation of gut and tumor microbiota provides an avenue to optimize RT benefits in GI cancers, underscoring the importance of personalized therapy.
Collapse
Affiliation(s)
- Damir Vučinić
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Arnela Redžović
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Goran Hauser
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
Zhao J, He C, Xie H, Zou Y, Yan Z, Deng J, Du Y, Yang W, Zhang X. Latent Association Between Diets and Glioma Risk: A Mendelian Randomization Analysis. Nutrients 2025; 17:582. [PMID: 39940440 PMCID: PMC11819737 DOI: 10.3390/nu17030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Gliomas, particularly high-grade gliomas such as glioblastoma, represent a major challenge due to their poor prognosis. While dietary factors have been proposed as potential modulators of glioma risk, causal inference has been hindered by confounding and reverse causality in observational studies. This study employs Mendelian randomization to investigate the causal relationship between dietary factors and glioma risk. METHODS A two-sample MR framework was applied, utilizing genome-wide association study data for 22 dietary exposures and glioma risks, including both GBM and non-GBM subtypes. Instrumental variables (genetic variants) were identified for each dietary factor to address confounding and pleiotropy. Causal inference was conducted using inverse-variance weighted regression, complemented by MR-Egger and MR-PRESSO analyses to assess and correct for potential pleiotropy. RESULTS A positive causal association was observed between the intake of cooked vegetables and the GBM risk (OR = 6.55, 95% CI: 1.86-23.12, p = 0.00350). While alcohol intake demonstrated a protective effect for non-GBM risk (OR = 0.770, 95% CI: 0.61-0.97, p = 0.029), beer was substantially linked to an increased risk of non-GBM gliomas (OR = 4.82, 95% CI: 1.84-12.59, p = 0.0014). Other dietary factors did not exhibit significant causal associations. CONCLUSIONS These findings suggest that certain dietary factors, including cooked vegetable intake, beer consumption, and alcohol intake, may exert a causal influence on glioma risk. This study provides new insights into the potential dietary determinants of glioma and underscores the need for further investigation into modifiable risk factors for glioma prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiangheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.Z.); (C.H.); (H.X.); (Y.Z.); (Z.Y.); (J.D.); (Y.D.); (W.Y.)
| |
Collapse
|
13
|
Liu X, Ding H, Zhang X, Ta N, Zhao J, Zhang Q, Liu H, Sun M, Zhang X. Dynamic changes in the gastrointestinal microbial communities of Gangba sheep and analysis of their functions in plant biomass degradation at high altitude. MICROBIOME 2025; 13:17. [PMID: 39838419 PMCID: PMC11748513 DOI: 10.1186/s40168-024-02022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health. RESULTS A comprehensive multi-omics survey of the microbial communities of the Gangba sheep gastrointestinal tract was performed under three distinct feeding strategies: natural grazing, semi-grazing with supplementation, and barn feeding. The dynamic changes, cross-kingdom partnerships and functional potential profiles were analysed and the results revealed that the feeding strategies had a greater impact on the microbial communities than the site of the gastrointestinal tract. The different microbial associations among the groups were revealed by co-occurrence networks based on the amplicon sequence variants (ASVs). Moreover, a Gangba sheep gastrointestinal microbial genomic catalogue was constructed for the first time, including 1146 metagenome-assembled genomes (MAGs) with completeness > 50% and contamination < 10%, among which, 504 bacterial and 15 archaeal MAGs were of high quality with completeness > 80% and contamination < 10%. About 40% of the high-quality MAGs displaying enzyme activity were related to the microbial species that contribute to plant biomass degradation. Most of these enzymes were expressed in rumen metatranscriptome datasets, especially in Prevotella spp. and Ruminococcus spp., suggesting that gastrointestinal microbial communities in ruminants play major roles in the digestion of plant biomass to provide nutrition and energy for the host. CONCLUSIONS These findings suggest that feeding strategies are the primary cause of changes in the gastrointestinal microbiome. Diversification of livestock feed might be an effective strategy to maintain the diversity and ecological multifunctionality of microbial communities in the gastrointestinal tract. Additionally, the catalogue of microbial genomes and the encoded biomass-degrading enzymes identified here provide insights into the potential microbial functions of the gastrointestinal tract of Gangba sheep at high altitudes. This paves the way for microbial interventions to improve the growth performance, productivity and product quality of ruminant livestock. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - He Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoxue Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Na Ta
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jinmei Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Qian Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Huiyun Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Mengjiao Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 85000, China.
| |
Collapse
|
14
|
Zhang J, Lou K, Chi J, Wu J, Fan X, Cui Y. Research progress on intratumoral microorganisms in renal cancer. World J Urol 2025; 43:72. [PMID: 39812826 DOI: 10.1007/s00345-024-05403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer. However, with the advancement of sequencing technologies, scholars have discovered that microorganisms within kidney tissues are significant components of tumor tissues. Intratumoral microorganisms may affect tumor growth and development through certain mechanisms, influence the function of immune cells, or impact the effectiveness of chemotherapy or immunotherapy in patients. This paper reviews the latest progress in the research on intratumoral microorganisms in renal cancer (RCa). It summarizes the types and distribution characteristics of these microorganisms, discusses the close association between specific viral infections (such as HPV and EBV) and RCa, and highlights the role of microorganisms in the pathogenesis of RCa. This review provides new perspectives for understanding the pathogenic mechanisms of RCa, thereby offering potential clinical applications.
Collapse
Affiliation(s)
- Jiankun Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xinying Fan
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
15
|
Li X, Zhu X, Diba P, Shi X, Vrieling F, Jansen FAC, Balvers MGJ, de Bus I, Levasseur PR, Sattler A, Arneson-Wissink PC, Poland M, Witkamp RF, van Norren K, Marks DL. Tumor-derived cyclooxygenase-2 fuels hypothalamic inflammation. Brain Behav Immun 2025; 123:886-902. [PMID: 39505049 DOI: 10.1016/j.bbi.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
Hypothalamic inflammation often coincides with cancer and cachexia-anorexia. Prior work established the significance of tumor-derived inflammatory factors in triggering hypothalamic inflammation, yet the precise mechanisms remained elusive. Here, we demonstrate that prostaglandin E2 (PGE2), produced in the tumor via cyclooxygenase-2 (COX-2), plays a pivotal role in this context. PGE2 itself directly exerts pro-inflammatory effects on the hypothalamus through the EP4 receptor, while also augmenting hypothalamic inflammation via NF-κB pathways in the presence of host gut-derived pathogen-associated molecular patterns (PAMPs). In tumor-bearing mice, we confirm this synergistic interaction between tumor-derived COX-2/PGE2 and host-derived lipopolysaccharide (LPS) in amplifying hypothalamic inflammation. Supporting this mechanism we find that the tumor-specific knockout of COX-2 attenuates hypothalamic inflammation and improves survival in mice. Together, these findings highlight the mechanisms of tumor-associated COX-2 in fuelling hypothalamic inflammation. They also emphasize the potential of tumor-specific COX-2 inhibition and targeting gut permeability as a novel therapeutic strategy for improving clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Xiaolin Li
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA; Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Xuan Shi
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Frank Vrieling
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Fleur A C Jansen
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Michiel G J Balvers
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Ian de Bus
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ariana Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Paige C Arneson-Wissink
- Brenden Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Mieke Poland
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Renger F Witkamp
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands.
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA; Brenden Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
16
|
S Thomas A, Lu Y, Campbell M, Thompson JA, Tan D, Faleck DM, Wang Y. Immune Checkpoint Inhibitor-Induced Colitis. Gastroenterology 2025; 168:21-28. [PMID: 39389184 DOI: 10.1053/j.gastro.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Anusha S Thomas
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mathew Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John A Thompson
- Phase 1 Clinical Trials Program, University of Washington, Seattle, Washington
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David M Faleck
- Gastroenterology, Hepatology and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yinghong Wang
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Gautam M, Jahagirdar V, Mahadevia H, Sanders K, Campbell JP, Sylvestre PB, Chhabra R, Clarkston W, Jonnalagadda SS. Double Whammy: A Case Report of Immune Checkpoint Inhibitor Colitis and Concomitant Cytomegalovirus Colitis in a Patient on Nivolumab. ACG Case Rep J 2025; 12:e01569. [PMID: 39734389 PMCID: PMC11671063 DOI: 10.14309/crj.0000000000001569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 12/31/2024] Open
Abstract
Immune checkpoint inhibitors commonly cause gastrointestinal immune-related adverse effects. These patients also carry an increased risk of concomitant infections. This 66-year-old man with immune checkpoint inhibitor colitis was discovered to have concurrent Yersinia and Cytomegalovirus colitis. Such infections may mimic or complicate disease course. Hence, clinicians must monitor patient symptoms, have a low threshold for infectious testing and colonoscopy, and consider treatment strategies to mitigate their risk.
Collapse
Affiliation(s)
- Misha Gautam
- Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Vinay Jahagirdar
- Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Himil Mahadevia
- Internal Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Kimberly Sanders
- Gastroenterology and Hepatology, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - John P. Campbell
- Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, MO
| | | | - Rajiv Chhabra
- Gastroenterology and Hepatology, University of Missouri-Kansas City School of Medicine, Kansas City, MO
- Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, MO
| | - Wendell Clarkston
- Gastroenterology and Hepatology, University of Missouri-Kansas City School of Medicine, Kansas City, MO
- Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, MO
| | - Sreenivasa S. Jonnalagadda
- Gastroenterology and Hepatology, University of Missouri-Kansas City School of Medicine, Kansas City, MO
- Gastroenterology, Saint Luke's Hospital of Kansas City, Kansas City, MO
| |
Collapse
|
18
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
19
|
Yang L, Wang Q, He L, Sun X. The critical role of tumor microbiome in cancer immunotherapy. Cancer Biol Ther 2024; 25:2301801. [PMID: 38241173 PMCID: PMC10802201 DOI: 10.1080/15384047.2024.2301801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
In recent years, the microbiome has shown an integral role in cancer immunotherapy and has become a prominent and widely studied topic. A full understanding of the interactions between the tumor microbiome and various immunotherapies offers opportunities for immunotherapy of cancer. This review scrutinizes the composition of the tumor microbiome, the mechanism of microbial immune regulation, the influence of tumor microorganisms on tumor metastasis, and the interaction between tumor microorganisms and immunotherapy. In addition, this review also summarizes the challenges and opportunities of immunotherapy through tumor microbes, as well as the prospects and directions for future related research. In conclusion, the potential of microbial immunotherapy to enhance treatment outcomes for cancer patients should not be underestimated. Through this review, it is hoped that more research on tumor microbial immunotherapy will be done to better solve the treatment problems of cancer patients.
Collapse
Affiliation(s)
- Liu Yang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Lijuan He
- Department of Health Management Center, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xingyu Sun
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Mahmoudian F, Gheshlagh SR, Hemati M, Farhadi S, Eslami M. The influence of microbiota on the efficacy and toxicity of immunotherapy in cancer treatment. Mol Biol Rep 2024; 52:86. [PMID: 39724461 DOI: 10.1007/s11033-024-10188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Immunotherapy, which uses the body's immune system to fight cancer cells, has gained attention recently as a breakthrough in cancer treatment. Although significant progress has been made, obstacles still exist since cancers are skilled at avoiding immune monitoring. The gut microbiota is being looked at more and more in modern research as a critical component in improving the results of immunotherapy. Through modulating both innate and adaptive immune responses, the gut microbiome has a significant impact on cancer immunotherapy. The effectiveness of treatment and the way the immune system responds are significantly influenced by some microorganisms and the metabolites they produce, especially short-chain fatty acids. On the other hand, dysbiosis and persistent inflammation in the gut environment might unintentionally accelerate the growth of tumors, which makes the complex relationship between the makeup of the microbiota and cancer treatment more challenging. Gut microbiota plays a crucial role in immunotherapy effectiveness. Improved microbial diversity leads to better treatment responses, with some taxa like Bacteroides and Ruminococcaceae being linked to better responses to immune checkpoint inhibitors. Dysbiotic conditions can worsen immune-related side effects and reduce treatment effectiveness. Strategies manipulating gut microbiota, such as fecal microbiota transplantation, antibiotic therapies, and dietary interventions, could optimize immunotherapy response and prognosis. However, standardizing these interventions for different cancer types and patient populations is challenging due to individual microbiome differences. Future research should combine microbiome research with AI and rigorous clinical trials for individualized cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
21
|
Díez-Madueño K, de la Cueva Dobao P, Torres-Rojas I, Fernández-Gosende M, Hidalgo-Cantabrana C, Coto-Segura P. Gut Dysbiosis and Adult Atopic Dermatitis: A Systematic Review. J Clin Med 2024; 14:19. [PMID: 39797102 PMCID: PMC11721037 DOI: 10.3390/jcm14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Research on the relationship between gut microbiota (GM) and atopic dermatitis (AD) has seen a growing interest in recent years. The aim of this systematic review was to determine whether differences exist between the GM of adults with AD and that of healthy adults (gut dysbiosis). Methods: We conducted a systematic review based on the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, EMBASE, and Web of Science. Observational and interventional studies were analyzed. Results: Although the studies showed heterogeneous results, some distinguishing characteristics were found in the intestinal microbial composition of adults with dermatitis. Even though no significant differences in diversity were found between healthy and affected adults, certain microorganisms, such as Bacteroidales, Enterobacteriaceae, and Clostridium (perfringens), were more characteristic of the fecal microbiota in adults with AD. Healthy individuals exhibited lower abundances of aerobic bacteria and higher abundances of short-chain fatty acid-producing species and polyamines. Clinical trials showed that the consumption of probiotics (Bifidobacterium and/or Lactobacillus), fecal microbiota transplants, and balneotherapy modified the fecal microbiota composition of participants and were associated with significant improvements in disease management. Conclusions: In anticipation of forthcoming clinical trials, it is essential to conduct meta-analyses that comprehensively evaluate the effectiveness and safety of interventions designed to modify intestinal flora in the context of AD. Preliminary evidence suggests that certain interventions may enhance adult AD management.
Collapse
Affiliation(s)
- Kevin Díez-Madueño
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pablo de la Cueva Dobao
- Dermatology Department, Hospital Universitario Infanta Leonor, Complutense University of Madrid, 28040 Madrid, Spain;
- School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Torres-Rojas
- Allergy Department, Hospital Universitario Infanta Sofía, 28702 Alcobendas, Spain;
| | | | | | - Pablo Coto-Segura
- Dermatology Department, Hospital Vital Álvarez Buylla, 33611 Mieres, Spain;
| |
Collapse
|
22
|
Yang S, Hao S, Ye H, Zhang X. Crosstalk between gut microbiota and cancer chemotherapy: current status and trends. Discov Oncol 2024; 15:833. [PMID: 39715958 DOI: 10.1007/s12672-024-01704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chemotherapy is crucial in the management of tumors, but challenges such as chemoresistance and adverse reactions frequently lead to therapeutic delays or even premature cessation. A growing body of research underscores a profound connection between the gut microbiota (GM) and cancer chemotherapy (CC). This paper aims to pinpoint highly influential publications and monitor the current landscape and evolving trends within the realm of GM/CC research. METHODS On October 1st, 2024, a comprehensive search for GM/CC publications spanning the past 20 years from 2004 to 2023 was conducted utilizing the Web of Science Core Collection (WoSCC). The scope encompassed both articles and reviews, and the data was subsequently extracted. To gain insights into the evolution and dynamics of this research field, we employed bibliometric analysis tools such as the Bibliometrix R package, VOSviewer, and Microsoft Excel to visualize and analyze various dimensions, including prominent journals, leading authors, esteemed institutions, contributing countries/regions, highly cited papers, and frequently occurring keywords. RESULTS A total of 888 papers were obtained. The number of publications about GM/CC studies has increased gradually. China and the United States published the largest number of papers. The INSERM was in the leading position in publishers. The most productive authors were Zitvogel L from France. Cancers had the largest number of papers. Citation analysis explained the historical evolution and breakthroughs in GM/CC research. Highly cited papers and common keywords illustrated the status and trends of GM/CC research. Four clusters were identified, and the hot topics included the role of the GM in the efficacy and toxicity of CC, the targeting of the GM to improve the outcome of CC, the mechanism by which the GM affects CC, and the correlation of the GM with carcinogenesis and cancer therapy. Metabolism, GM-derived metabolites, tumor microenvironment, immunity, intestinal barrier, tumor microbiota and Fusobacterium nucleatum may become the new hotspots and trends of GM/CC research. CONCLUSION This study analyzed global publications and bibliometric characteristics of the links between GM and CC, identified highly cited papers in GM/CC, provided insight into the status, hotspots, and trends of global GM/CC research, and showed that the GM can be used to predict the efficacy and toxicity of CC and modifying the GM can improve the outcomes of chemotherapeutics, which may inform clinical researchers of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| | - Xuezhi Zhang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
23
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
25
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
27
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
29
|
Schettini F, Gattazzo F, Nucera S, Rubio Garcia E, López-Aladid R, Morelli L, Fontana A, Vigneri P, Casals-Pascual C, Iebba V, Generali D. Navigating the complex relationship between human gut microbiota and breast cancer: Physiopathological, prognostic and therapeutic implications. Cancer Treat Rev 2024; 130:102816. [PMID: 39182440 DOI: 10.1016/j.ctrv.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The human body represents the habitat of trillions of symbiotic microorganisms, collectively known as human microbiota, approximately half of which residing in the gut. The development of next-generation sequencing techniques has boosted the profiling of human microbiota in recent years. A growing body of evidence seems to support a strict relationship between the disruption of the mutualistic relationship between the microbiota and the host (i.e., dysbiosis) and the development of several diseases, including breast malignancies. Breast cancer still represents the most frequent cause of cancer-related death in women. Its complex relationship with gut microbiota is the object of a growing body of evidence. In fact, the interaction with the host immune system and a direct impact of gut microbiota on estrogen, lipid and polyphenols metabolism, seem to potentially affect breast tumor development, progression and response to treatments. In this review, in an attempt to help oncologists navigating this rapidly-evolving research field, we provide an essential overview on the taxonomy, main analytical techniques and terminology most commonly adopted. We discuss what is currently known regarding the interaction between gut microbiota and breast cancer and potential efforts to harness this complex interplay for therapeutic purposes, and revise main ongoing studies. We also briefly provide an overview on breast cancer intratumoral microbiota and its potential role beyond gut microbiota.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.
| | - Federica Gattazzo
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy; Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sabrina Nucera
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elisa Rubio Garcia
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ruben López-Aladid
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Climent Casals-Pascual
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Valerio Iebba
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
30
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
31
|
Liu C, Fu L, Wang Y, Yang W. Influence of the gut microbiota on immune cell interactions and cancer treatment. J Transl Med 2024; 22:939. [PMID: 39407240 PMCID: PMC11476117 DOI: 10.1186/s12967-024-05709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumour microenvironment represents a novel frontier in oncological research. Over the past decade, accumulating evidence has underscored the importance of the tumour microenvironment (TME), including tumour cells, stromal cells, immune cells, and various secreted factors, which collectively influence tumour growth, invasion, and responses to therapeutic agents. Immune cells within the TME are now widely acknowledged to play pivotal roles in tumour development and treatment. While some perspectives have posited that immune cells within the TME facilitate tumour progression and confer resistance to therapeutic interventions, contrasting conclusions also exist. Affirmative and negative conclusions appear to be context dependent, and a unified consensus has yet to be reached. The burgeoning body of research on the relationship between the gut microbiota and tumours in recent years has led to a growing understanding. Most studies have indicated that specific components of the gut microbiota, such as unique bacterial communities or specific secretory factors, play diverse roles in regulating immune cells within the TME, thereby influencing the prognosis and outcomes of cancer treatments. A detailed understanding of these factors could provide novel insights into the TME and cancer therapy. In this study, we aimed to synthesise information on the interactions between the gut microbiota and immune cells within the TME, providing an in-depth exploration of the potential guiding implications for future cancer therapies.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Gastroenterological Surgery, Hengqin Hospital, First Affiliated Hospital of Guangzhou Medical University, No. 118 Baoxing Road, Hengqin, Guangdong, 519031, China
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Hengqin Hospital, First Affiliated Hospital of Guangzhou Medical University, No. 118 Baoxing Road, Hengqin, Guangdong, 519031, China
| | - Yuxin Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Weijun Yang
- Department of Gastroenterological Surgery, Hengqin Hospital, First Affiliated Hospital of Guangzhou Medical University, No. 118 Baoxing Road, Hengqin, Guangdong, 519031, China.
| |
Collapse
|
32
|
Neagoe CXR, Ionică M, Neagoe OC, Trifa AP. The Influence of Microbiota on Breast Cancer: A Review. Cancers (Basel) 2024; 16:3468. [PMID: 39456562 PMCID: PMC11506631 DOI: 10.3390/cancers16203468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer remains one of the leading causes of death among women worldwide, and recent research highlights its growing connection to alterations in the microbiota. This review delves into the intricate relationship between microbiotas and breast cancer, exploring its presence in healthy breast tissue, its changes during cancer progression, and its considerable impact on both the tumor microenvironment (TME) and the tumor immune microenvironment (TIME). We extensively analyze how the microbiota influences cancer growth, invasion, metastasis, resistance to drugs, and the evasion of the immune system, with a special focus on its effects on the TIME. Furthermore, we investigate distinct microbial profiles associated with the four primary molecular subtypes of breast cancer, examining how the microbiota in tumor tissues compares with that in adjacent normal tissues. Emerging studies suggest that microbiotas could serve as valuable diagnostic and prognostic biomarkers, as well as targets for therapy. This review emphasizes the urgent need for further research to improve strategies for breast cancer prevention, diagnosis, and treatment. By offering a detailed examination of the microbiota's critical role in breast cancer, this review aims to foster the development of novel microbiota-based approaches for managing the disease.
Collapse
Affiliation(s)
- Cara-Xenia-Rafaela Neagoe
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Mihaela Ionică
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Octavian Constantin Neagoe
- Second Clinic of General Surgery and Surgical Oncology, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
- Second Discipline of Surgical Semiology, First Department of Surgery, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Breast Surgery Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300079 Timișoara, Romania
| | - Adrian Pavel Trifa
- The Discipline of Genetics, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Genetics, Clinical Hospital of Infectious Diseases and Pneumophthisiology “Dr. Victor Babes” Timisoara, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
33
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K. Assessment of Prognostic Factors, Clinical Features Including the Microbiome, and Treatment Outcomes in Patients with Cancer of Unknown Primary Site. Cancers (Basel) 2024; 16:3416. [PMID: 39410035 PMCID: PMC11475148 DOI: 10.3390/cancers16193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTIONS cancer of unknown primary site (CUP) is a heterogeneous group of cancers in which metastases are found, and the primary tumor is not detected with available diagnostic methods. CUP is a disease that has not been fully researched, and its biology is unclear. The clinical characteristics of CUP are variable, but the prognosis of patients is usually unfavorable, and the possibilities of radical treatment are limited. The microbiome is the genes and gene products of microorganisms residing in a human body. In recent years, thanks to the use of next-generation sequencing, it is possible to assess the impact of the microbiome on human body functions. Head and neck cancers, due to the rich microbiome of this area, are influenced by it, and dysbiosis may be a risk factor for the development of cancer. Objective of this work: the aim of this study was to evaluate prognostic factors, clinical features including the microbiome, and treatment outcomes in patients with cancer of unknown primary site. RESULTS in the study group, increased numbers of bacteria of the phyla Bacteroides, Fusobacteria, Bacillota, Actinomycetota, Actinobacteria, and Candidatus were detected, while Firmicutes and Proteobacteria were detected in smaller numbers. Independent predictors of CUP occurrence were the following: leukocyte count of at most 6.49 × 103/mm, bacteria from the Proteobacteria phylum in the microbiome below 11.6%, Firmicutes below 22.1%, and Actinobacteria at least 11.0%. Increased numbers of Porphyromonas and Fusobacterium bacteria were associated with the risk of radiotherapy complications and shortened survival rate. CONCLUSIONS clinical diagnosis and treatment of patients with CUP is complicated and difficult due to the lack of consensus on this issue. Treatment and prognosis of patients with CUP is unsatisfactory. The clinical value of the influence of the microbiome on the development, course, and treatment of cancer is becoming increasingly important. The microbiome may become a marker of response to anticancer treatment and the risk of its complications. Immunity modulation with the microbiome provides opportunities for further research on improving the effectiveness of oncological treatment. Fusobacterium and Porphyromonas seem to be the bacteria most important for the development of cancer, also worsening the prognosis of patients by increasing the risk of complications of radiotherapy and shortening the survival rate of patients. Streptococcus and Lactobacillus seem to be bacteria that reduce the risk of cancer, reduce the risk of complications, and improve the prognosis of patients. Total protein deficiency and elevated inflammatory markers are also important predictors of cancer risk.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
34
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
35
|
Luo Q, Lu M, Butt H, Lytal N, Du R, Jiang H, An L. TimeNorm: a novel normalization method for time course microbiome data. Front Genet 2024; 15:1417533. [PMID: 39381141 PMCID: PMC11458461 DOI: 10.3389/fgene.2024.1417533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
Collapse
Affiliation(s)
- Qianwen Luo
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Meng Lu
- Graduate Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, United States
| | - Hamza Butt
- Department of Biostatistics and Epidemiology, University of Arizona, Tucson, AZ, United States
| | - Nicholas Lytal
- Department of Mathematics and Statistics, California State University at Chico, Chico, CA, United States
| | - Ruofei Du
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL, United States
| | - Lingling An
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
- Graduate Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, United States
- Department of Biostatistics and Epidemiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
36
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
37
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
38
|
Huang C, Zhang L, Shen P, Wu Z, Li G, Huang Y, Ao T, Luo L, Hu C, Wang N, Quzhuo R, Tian L, Huangfu C, Liao Z, Gao Y. Cannabidiol mitigates radiation-induced intestine ferroptosis via facilitating the heterodimerization of RUNX3 with CBFβ thereby promoting transactivation of GPX4. Free Radic Biol Med 2024; 222:288-303. [PMID: 38830513 DOI: 10.1016/j.freeradbiomed.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor β (CBFβ) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
Collapse
Affiliation(s)
- Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liangliang Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zekun Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yijian Huang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lin Luo
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Changkun Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Renzeng Quzhuo
- Department of General Internal Medicine, Naqu People's Hospital, Nagqu, Xizang Autonomous Region, 852007, China
| | - Lishan Tian
- Navy Qingdao Special Service Recuperation Center, Qingdao, 266071, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
39
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
40
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
41
|
Yende AS, Sharma D. Obesity, dysbiosis and inflammation: interactions that modulate the efficacy of immunotherapy. Front Immunol 2024; 15:1444589. [PMID: 39253073 PMCID: PMC11381382 DOI: 10.3389/fimmu.2024.1444589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Recent years have seen an outstanding growth in the understanding of connections between diet-induced obesity, dysbiosis and alterations in the tumor microenvironment. Now we appreciate that gut dysbiosis can exert important effects in distant target tissues via specific microbes and metabolites. Multiple studies have examined how diet-induced obese state is associated with gut dysbiosis and how gut microbes direct various physiological processes that help maintain obese state in a bidirectional crosstalk. Another tightly linked factor is sustained low grade inflammation in tumor microenvironment that is modulated by both obese state and dysbiosis, and influences tumor growth as well as response to immunotherapy. Our review brings together these important aspects and explores their connections. In this review, we discuss how obese state modulates various components of the breast tumor microenvironment and gut microbiota to achieve sustained low-grade inflammation. We explore the crosstalk between different components of tumor microenvironment and microbes, and how they might modulate the response to immunotherapy. Discussing studies from multiple tumor types, we delve to find common microbial characteristics that may positively or negatively influence immunotherapy efficacy in breast cancer and may guide future studies.
Collapse
Affiliation(s)
- Ashutosh S Yende
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
42
|
Herrera-Quintana L, Vázquez-Lorente H, Lopez-Garzon M, Cortés-Martín A, Plaza-Diaz J. Cancer and the Microbiome of the Human Body. Nutrients 2024; 16:2790. [PMID: 39203926 PMCID: PMC11357655 DOI: 10.3390/nu16162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer remains a public health concern worldwide, with its incidence increasing worldwide and expected to continue growing during the next decades. The microbiome has emerged as a central factor in human health and disease, demonstrating an intricate relationship between the microbiome and cancer. Although some microbiomes present within local tissues have been shown to restrict cancer development, mainly by interacting with cancer cells or the host immune system, some microorganisms are harmful to human health and risk factors for cancer development. This review summarizes the recent evidence concerning the microbiome and some of the most common cancer types (i.e., lung, head and neck, breast, gastric, colorectal, prostate, and cervix cancers), providing a general overview of future clinical approaches and perspectives.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physical Therapy, Health Sciences Faculty, University of Granada, 18171 Granada, Spain;
| | - Adrián Cortés-Martín
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18016 Granada, Spain;
- APC Microbiome Ireland, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
43
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
44
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
45
|
Iacovacci J, Serafini MS, Avuzzi B, Badenchini F, Cicchetti A, Devecchi A, Dispinzieri M, Doldi V, Giandini T, Gioscio E, Mancinelli E, Noris Chiorda B, Orlandi E, Palorini F, Possenti L, Reis Ferreira M, Villa S, Zaffaroni N, De Cecco L, Valdagni R, Rancati T. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. EBioMedicine 2024; 106:105246. [PMID: 39029427 PMCID: PMC11314862 DOI: 10.1016/j.ebiom.2024.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).
Collapse
Affiliation(s)
- Jacopo Iacovacci
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Mara Serena Serafini
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Avuzzi
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Fabio Badenchini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Devecchi
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michela Dispinzieri
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Doldi
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tommaso Giandini
- Unit of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Eliana Gioscio
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Mancinelli
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Noris Chiorda
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
| | - Federica Palorini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | - Sergio Villa
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nadia Zaffaroni
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Riccardo Valdagni
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
46
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
47
|
Benej M, Hoyd R, Kreamer M, Wheeler CE, Grencewicz DJ, Choueiry F, Chan CH, Zakharia Y, Ma Q, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Robinson LA, Singer EA, Ikeguchi AP, McCarter MD, Tinoco G, Husain M, Jin N, Tan AC, Osman AE, Eljilany I, Riedlinger G, Schneider BP, Benejova K, Kery M, Papandreou I, Zhu J, Denko N, Spakowicz D. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1690-1701. [PMID: 38904265 PMCID: PMC11234499 DOI: 10.1158/2767-9764.crc-23-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - McKenzie Kreamer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Caroline E. Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Dennis J. Grencewicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Fouad Choueiry
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Carlos H.F. Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Eric A. Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma.
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Aik C. Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Afaf E.G. Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Clinical Science Lab, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Bryan P. Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana.
| | - Katarina Benejova
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Jiangjiang Zhu
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | | |
Collapse
|
48
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
49
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
50
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Bertuccioli A. The Role of Short-Chain Fatty Acids, Particularly Butyrate, in Oncological Immunotherapy with Checkpoint Inhibitors: The Effectiveness of Complementary Treatment with Clostridium butyricum 588. Microorganisms 2024; 12:1235. [PMID: 38930617 PMCID: PMC11206605 DOI: 10.3390/microorganisms12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|