1
|
Huang T, Bei C, Hu Z, Li Y. CAR-macrophage: Breaking new ground in cellular immunotherapy. Front Cell Dev Biol 2024; 12:1464218. [PMID: 39421021 PMCID: PMC11484238 DOI: 10.3389/fcell.2024.1464218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric Antigen Receptor (CAR) technology has revolutionized cellular immunotherapy, particularly with the success of CAR-T cells in treating hematologic malignancies. However, CAR-T cells have the limited efficacy of against solid tumors. To address these limitations, CAR-macrophages (CAR-Ms) leverage the innate properties of macrophages with the specificity and potency of CAR technology, offering a novel and promising approach to cancer immunotherapy. Preclinical studies have shown that CAR-Ms can effectively target and destroy tumor cells, even within challenging microenvironments, by exhibiting direct cytotoxicity and enhancing the recruitment and activation of other immune cells. Additionally, the favorable safety profile of macrophages and their persistence within solid tumors position CAR-Ms as potentially safer and more durable therapeutic options compared to CAR-T cells. This review explores recent advancements in CAR-Ms technology, including engineering strategies to optimize their anti-tumor efficacy and preclinical evidence supporting their use. We also discuss the challenges and future directions in developing CAR-Ms therapies, emphasizing their potential to revolutionize cellular immunotherapy. By harnessing the unique properties of macrophages, CAR-Ms offer a groundbreaking approach to overcoming the current limitations of CAR-T cell therapies, paving the way for more effective and sustainable cancer treatments.
Collapse
Affiliation(s)
- Ting Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Bei
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Chupradit K, Muneekaew S, Wattanapanitch M. Engineered CD147-CAR macrophages for enhanced phagocytosis of cancers. Cancer Immunol Immunother 2024; 73:170. [PMID: 38954079 PMCID: PMC11219683 DOI: 10.1007/s00262-024-03759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematologic malignancies, but its effectiveness in solid cancers remains challenging. Macrophages are immune cells residing within the tumor microenvironment. They can phagocytose tumor cells. Recently, CAR macrophages (CAR-M) have been a promising candidate for treating solid cancers. One of the common cancer antigens overexpressed in various types of cancer is CD147. CAR-T and NK cells targeting CD147 antigen have shown significant efficacy against hepatocellular carcinoma. Nevertheless, CAR-M targeting the CD147 molecule has not been investigated. In this study, we generated CAR targeting the CD147 molecule using the THP-1 monocytic cell line (CD147 CAR-M). The CD147 CAR-M exhibited typical macrophage characteristics, including phagocytosis of zymosan bioparticles and polarization ability toward M1 and M2 phenotypes. Furthermore, the CD147 CAR-M demonstrated enhanced anti-tumor activity against K562 and MDA-MB-231 cells without exhibiting off-target cytotoxicity against normal cells. Our research provides valuable insights into the potential of CD147 CAR-M as a promising platform for cancer immunotherapy, with applications in both hematologic malignancies and solid cancers.
Collapse
Affiliation(s)
- Koollawat Chupradit
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saitong Muneekaew
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
4
|
Leland P, Kumar D, Nimmagadda S, Bauer SR, Puri RK, Joshi BH. Characterization of chimeric antigen receptor modified T cells expressing scFv-IL-13Rα2 after radiolabeling with 89Zirconium oxine for PET imaging. J Transl Med 2023; 21:367. [PMID: 37286997 PMCID: PMC10246418 DOI: 10.1186/s12967-023-04142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Enabling in vitro methods to allow meaningful, sensitive in vivo biodistribution studies is needed to better understand CAR-T cell disposition and its relationship to both effectiveness and safety of these products. METHODS To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89Zirconium-oxine (89Zr-oxine) and characterized and compared their product attributes with non-labeled CAR-T cells. The 89Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, T cell subtype characterization and product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. RESULTS We observed that radiolabeling of CAR-T cells with 89Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells and subtypes such as CD4 + , CD8 + and scFV-IL-13Rα2 transgene positive T cell population were characterized and found similar to that of unlabeled cells as determined by TUNEL assay, caspase 3/7 enzyme and granzyme B activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion (PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. CONCLUSIONS Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89Zr-oxine retain critical product attributes and suggest 89Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Dhiraj Kumar
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Nimmagadda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven R Bauer
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Wake Forest Institute of Regenerative Medicine, Winston Salem, North Caroline, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, San Carlos, CA, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advance Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
5
|
Leland P, Kumar D, Nimaggada S, Bauer SR, Puri RK, Joshi BH. Characterization of Chimeric Antigen Receptor Modified T Cells Expressing scFv-IL-13Rα2 after Radiolabeling with 89Zirconium Oxine for PET Imaging. RESEARCH SQUARE 2023:rs.3.rs-2242559. [PMID: 36711796 PMCID: PMC9882610 DOI: 10.21203/rs.3.rs-2242559/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Methods To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89 Zirconium-oxine ( 89 Zr-oxine), and characterized and compared their product attributes with non-labeled CAR-T cells. The 89 Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. Results We observed that radiolabeling of CAR-T cells with 89 Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells was similar to that of unlabeled cells as determined by TUNEL assay and caspase 3/7 enzyme activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion(PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. Conclusions Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89 Zr-oxine retain critical product attributes and suggest 89 Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.
Collapse
Affiliation(s)
| | - Dhiraj Kumar
- Johns Hopkins Medicine School of Medicine: Johns Hopkins University School of Medicine
| | | | | | - Raj K Puri
- Center for Biologics Evaluation and Research
| | | |
Collapse
|
6
|
Mukherji R, Debnath D, Hartley ML, Noel MS. The Role of Immunotherapy in Pancreatic Cancer. Curr Oncol 2022; 29:6864-6892. [PMID: 36290818 PMCID: PMC9600738 DOI: 10.3390/curroncol29100541] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic adenocarcinoma remains one of the most lethal cancers globally, with a significant need for improved therapeutic options. While the recent breakthroughs of immunotherapy through checkpoint inhibitors have dramatically changed treatment paradigms in other malignancies based on considerable survival benefits, this is not so for pancreatic cancer. Chemotherapies with modest benefits are still the cornerstone of advanced pancreatic cancer treatment. Pancreatic cancers are inherently immune-cold tumors and have been largely refractory to immunotherapies in clinical trials. Understanding and overcoming the current failures of immunotherapy through elucidating resistance mechanisms and developing novel therapeutic approaches are essential to harnessing the potential durable benefits of immune-modulating therapy in pancreatic cancer patients.
Collapse
Affiliation(s)
- Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Dipanjan Debnath
- Department of Internal Medicine, Medstar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| | - Marion L. Hartley
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Marcus S. Noel
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
- Correspondence:
| |
Collapse
|
7
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
8
|
Kimura Y, Ghosn M, Cheema W, Adusumilli PS, Solomon SB, Srimathveeralli G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumors. Mol Ther Oncolytics 2022; 24:194-204. [PMID: 35036524 PMCID: PMC8752905 DOI: 10.1016/j.omto.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptors (CAR) T cells has proven effective for hematologic malignancies, but success in solid tumors has been impeded by poor intratumoral infiltration, exhaustion of effector cells from antigen burden, and an immunosuppressive tumor microenvironment. Results from recent clinical trials and preclinical studies lend promising evidence of locoregional approaches for CAR T cell delivery, priming the tumor microenvironment, and performing adjuvant therapies that sustain T cell activity. Interventional oncology is a subspeciality of interventional radiology where imaging guidance is used to perform percutaneous and catheter-directed procedures for localized, non-surgical therapy or interrogation of solid tumors. Interventional oncology provides unique synergies with immunotherapy, which has been well-studied to improve treatment efficacy while reducing toxicities associated with systemic treatment. Besides aiding in CAR T cell delivery, priming, or the stimulation of the tumor microenvironment to promote effector survival and function, interventional oncology can also aid in the monitoring of treatment response through selective, multiplex tumor sampling and catheter-based venous sampling. This review presents an overview of interventional oncology, its various procedures, and its potential for advancing CAR T cell immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Yasushi Kimura
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Mario Ghosn
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waseem Cheema
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen B. Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Govindarajan Srimathveeralli
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA, USA
- Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
9
|
Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells 2022; 11:cells11060994. [PMID: 35326445 PMCID: PMC8947001 DOI: 10.3390/cells11060994] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have shown impressive results in patients with hematological malignancies; however, little success has been achieved in the treatment of solid tumors. Recently, macrophages (MΦs) were identified as an additional candidate for the CAR approach, and initial proof of concept studies using peripheral blood-derived monocytes showed antigen-redirected activation of CAR MΦs. However, some patients may not be suitable for monocyte-apheresis, and prior cancer treatment regimens may negatively affect immune cell number and functionality. To address this problem, we here introduce primary human hematopoietic stem and progenitor cells (HSPCs) as a cell source to generate functional CAR MΦs ex vivo. Our data showed successful CAR expression in cord blood (CB)-derived HSPCs, with considerable cell expansion during differentiation to CAR MΦs. HSPC-derived MΦs showed typical MΦ morphology, phenotype, and basic anti-bacterial functionality. CAR MΦs targeting the carcinoembryonic antigen (CEA) and containing either a DAP12- or a CD3ζ-derived signaling domain showed antigen redirected activation as they secreted pro-inflammatory cytokines specifically upon contact with CEA+ target cells. In addition, CD3ζ-expressing CAR MΦs exhibited significantly enhanced phagocytosis of CEA+ HT1080 cells. Our data establish human HSPCs as a suitable cell source to generate functional CAR MΦs and further support the use of CAR MΦs in the context of solid tumor therapy.
Collapse
|
10
|
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell Oncol (Dordr) 2021; 44:495-523. [PMID: 33759063 DOI: 10.1007/s13402-021-00593-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cell therapy has shown great potential in the immunotherapy of patients with hematologic malignancies. In spite of this striking achievement, there are still major challenges to overcome in CAR T cell therapy of solid tumors, including treatment-related toxicity and specificity. Also, other obstacles may be encountered in tackling solid tumors, such as their immunosuppressive microenvironment, the heterogeneous expression of cell surface markers, and the cumbersome arrival of T cells at the tumor site. Although several strategies have been developed to overcome these challenges, aditional research aimed at enhancing its efficacy with minimum side effects, the design of precise yet simplified work flows and the possibility to scale-up production with reduced costs and related risks is still warranted. CONCLUSIONS Here, we review main strategies to establish a balance between the toxicity and activity of CAR T cells in order to enhance their specificity and surpass immunosuppression. In recent years, many clinical studies have been conducted that eventually led to approved products. To date, the FDA has approved two anti-CD19 CAR T cell products for non-Hodgkin lymphoma therapy, i.e., axicbtagene ciloleucel and tisagenlecleucel. With all the advances that have been made in the field of CAR T cell therapy for hematologic malignancies therapy, ongoing studies are focused on optimizing its efficacy and specificity, as well as reducing the side effects. Also, the efforts are poised to broaden CAR T cell therapeutics for other cancers, especially solid tumors.
Collapse
Affiliation(s)
- Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Garcia-Sampedro A, Gaggia G, Ney A, Mahamed I, Acedo P. The State-of-the-Art of Phase II/III Clinical Trials for Targeted Pancreatic Cancer Therapies. J Clin Med 2021; 10:566. [PMID: 33546207 PMCID: PMC7913382 DOI: 10.3390/jcm10040566] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a devastating disease with very poor prognosis. Currently, surgery followed by adjuvant chemotherapy represents the only curative option which, unfortunately, is only available for a small group of patients. The majority of pancreatic cancer cases are diagnosed at advanced or metastatic stage when surgical resection is not possible and treatment options are limited. Thus, novel and more effective therapeutic strategies are urgently needed. Molecular profiling together with targeted therapies against key hallmarks of pancreatic cancer appear as a promising approach that could overcome the limitations of conventional chemo- and radio-therapy. In this review, we focus on the latest personalised and multimodal targeted therapies currently undergoing phase II or III clinical trials. We discuss the most promising findings of agents targeting surface receptors, angiogenesis, DNA damage and cell cycle arrest, key signalling pathways, immunotherapies, and the tumour microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, London NW3 2QG, UK; (A.G.-S.); (G.G.); (A.N.); (I.M.)
| |
Collapse
|
12
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
13
|
Dai X, Mei Y, Cai D, Han W. Standardizing CAR-T therapy: Getting it scaled up. Biotechnol Adv 2018; 37:239-245. [PMID: 30543841 DOI: 10.1016/j.biotechadv.2018.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 01/21/2023]
Abstract
CAR-T therapy, grafting the specificity of a monoclonal antibody onto a T cell to target certain cancer cells, has been recognized as a promising therapeutic approach for cancer control as evidenced by the two CAR-T products proved by FDA in 2017. However, the unique heterogeneity of CAR-T therapy has restricted its production in a limited number of institutions and made it a boutique oncotherapy. By reviewing outstanding issues surrounding the commercial scale production of CAR-T therapy, we conclude that achieving mass production of CAR-T therapy without sacrificing its personalized nature is a worldwild challenge for making CAR-T a key element in the next generation of precision medicine, which can be achieved by standardizing 7 prominent factors that collectively determine the scale of CAR-T manufacturing.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yi Mei
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Weidong Han
- Department of Molecular & Immunological Research, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
14
|
George JT, Levine H. Stochastic modeling of tumor progression and immune evasion. J Theor Biol 2018; 458:148-155. [PMID: 30218648 DOI: 10.1016/j.jtbi.2018.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 12/23/2022]
Abstract
It is now well-established that the host's adaptive immune system plays an important role in identifying and eliminating cancer cells in much the same way that intracellular pathogens are cleared during an adaptive immune response to infection. From a therapeutic standpoint, the adaptive immune system is unique in that it can co-evolve alongside a developing tumor. Tumor acquisition of immune evasive phenotypes, such as class-I MHC down-regulation, remains a major limitation of successful T-cell immunotherapy. Here, we consider a population dynamical model coupling tumor and adaptive immune compartments in order to study the dynamics and survival of an evolving threat when faced with adaptive immune pressure. We demonstrate that predicted optimal growth strategies depend on whether or not the threat may acquire an immune-evasive phenotype as well as the mode of immune detection. We parameterize adaptive immune functioning by T-cell turnover and repertoire diversity and predict that decreases in the latter quantity which occur in advanced age may substantially affect the ability to recognize, and therefore control, an immune evasive threat like cancer. This framework recapitulates general features of age-dependent AML incidence, thereby providing a probable association between cancer frequency and adaptive immune functioning. Lastly, we quantify therapeutic efficacy of adjuvant immunotherapeutic strategies, and predict their benefits and limitations with regard to handling immune evasion. Our model generates survival behavior consistent with known growth-dependent characteristics, and serves as a first attempt at modeling stochastic cancer evolution alongside an adaptive immune compartment.
Collapse
Affiliation(s)
- Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Physics and Astronomy, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Kabacaoglu D, Ciecielski KJ, Ruess DA, Algül H. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Front Immunol 2018; 9:1878. [PMID: 30158932 PMCID: PMC6104627 DOI: 10.3389/fimmu.2018.01878] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as the most frequent form of pancreatic malignancy, still is associated with a dismal prognosis. Due to its late detection, most patients are ineligible for surgery, and chemotherapeutic options are limited. Tumor heterogeneity and a characteristic structure with crosstalk between the cancer/malignant cells and an abundant tumor microenvironment (TME) make PDAC a very challenging puzzle to solve. Thus far, targeted therapies have failed to substantially improve the overall survival of PDAC patients. Immune checkpoint inhibition, as an emerging therapeutic option in cancer treatment, shows promising results in different solid tumor types and hematological malignancies. However, PDAC does not respond well to immune checkpoint inhibitors anti-programmed cell death protein 1 (PD-1) or anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) alone or in combination. PDAC with its immune-privileged nature, starting from the early pre-neoplastic state, appears to escape from the antitumor immune response unlike other neoplastic entities. Different mechanisms how cancer cells achieve immune-privileged status have been hypothesized. Among them are decreased antigenicity and impaired immunogenicity via both cancer cell-intrinsic mechanisms and an augmented immunosuppressive TME. Here, we seek to shed light on the recent advances in both bench and bedside investigation of immunotherapeutic options for PDAC. Furthermore, we aim to compile recent data about how PDAC adopts immune escape mechanisms, and how these mechanisms might be exploited therapeutically in combination with immune checkpoint inhibitors, such as PD-1 or CTLA-4 antibodies.
Collapse
Affiliation(s)
| | | | | | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B, Zhan HX. Immunotherapy for pancreatic cancer: A long and hopeful journey. Cancer Lett 2018; 425:143-151. [PMID: 29605510 DOI: 10.1016/j.canlet.2018.03.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/28/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Multiple therapeutic strategies have been developed to treat pancreatic cancer. However, the outcomes of these approaches are disappointing. Due to deeper understandings of the pivotal roles of the immune system in pancreatic cancer tumorigenesis and progression, novel therapeutic strategies based on immune cells and the tumor microenvironment are being investigated. Some of these approaches, such as checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and BiTE antibodies, have achieved exciting outcomes in preclinical and clinical trials. The current review describes the roles of immune cells and the immunosuppressive microenvironment in the development of pancreatic cancer, as well as the preclinical and clinical outcomes and benefits of recent immunotherapeutic approaches, which may help us further disclose the mechanisms of pancreatic cancer progression and the dialectical views of feasibility and effectiveness of immunotherapy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yu-Gang Cheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Bin Zhou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China.
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
17
|
George AP, Tse WT. Acute Complications in Hematopoietic Stem Cell Transplantation and Cellular Immunotherapy. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2018. [DOI: 10.1016/j.cpem.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Combination Immunotherapy Approaches for Pancreatic Cancer Treatment. Can J Gastroenterol Hepatol 2018; 2018:6240467. [PMID: 29707526 PMCID: PMC5863289 DOI: 10.1155/2018/6240467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/24/2017] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal malignant disease with a very low medium survival. Currently, metastatic pancreatic cancer poorly responds to conventional treatments and exhibits an acute resistance to most chemotherapy. Few approaches have been shown to be effective for metastatic pancreatic cancer treatment. Novel therapeutic approaches to treat patients with pancreatic adenocarcinoma are in great demand. Last decades, immunotherapies have been evaluated in clinical trials and received great success in many types of cancers. However, it has very limited success in treating pancreatic cancer. As pancreatic cancer poorly responds to many single immunotherapeutic agents, combination immunotherapy was introduced to improve efficacy. The combination therapies hold great promise for enhancing immune responses to achieve better therapeutic effects. This review summarizes the existing and potential combination immunotherapies for the treatment of pancreatic cancer.
Collapse
|
19
|
Schubert ML, Hoffmann JM, Dreger P, Müller-Tidow C, Schmitt M. Chimeric antigen receptor transduced T cells: Tuning up for the next generation. Int J Cancer 2017; 142:1738-1747. [PMID: 29119551 DOI: 10.1002/ijc.31147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has recently achieved impressive clinical outcome in patients with CD19-positive hematologic malignancies. Extrapolation of CAR T cell treatment to solid tumors, however, has not yet yielded similar results. This might be due to intrinsic causes, e.g. insufficient CAR T cell activation or CAR toxicity as well as extrinsic factors displaying an unfavorable tumor environment for CAR T cells by raising physical and chemical barriers. In this review, we discuss the advantages as well as major obstacles of CAR T cell therapy, particularly in the context of solid tumors, and focus on efforts and novel strategies in CAR T cell development.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
20
|
Chimeric Antigen Receptor (CAR) T-Cell Therapy for Thoracic Malignancies. J Thorac Oncol 2017; 13:16-26. [PMID: 29107016 DOI: 10.1016/j.jtho.2017.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/16/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are patient T cells that are transduced with genetically engineered synthetic receptors to target a cancer cell surface antigen. The remarkable clinical response rates achieved by adoptive transfer of T cells that target CD19 in patients with leukemia and lymphoma have led to a growing number of clinical trials exploring CAR T-cell therapy for solid tumors. Herein, we review the evolution of adoptive T-cell therapy; highlight advances in CAR T-cell therapy for thoracic malignancies; and summarize the targets being investigated in clinical trials for patients with lung cancer, malignant pleural mesothelioma, and esophageal cancer. We further discuss the barriers to successfully translating CAR T-cell therapy for solid tumors and present strategies that have been investigated to overcome these hurdles.
Collapse
|
21
|
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer. J Surg Oncol 2017; 116:63-74. [PMID: 28346697 DOI: 10.1002/jso.24627] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy utilizes genetic engineering to redirect a patient's own T cells to target cancer cells. The remarkable results in hematological malignancies prompted investigating this approach in solid tumors such as pancreatic cancer. The complex tumor microenvironment, stromal hindrance in limiting immune response, and expression of checkpoint blockade on T cells pose hurdles. Herein, we summarize the opportunities, challenges, and state of knowledge in targeting pancreatic cancer with CAR T-cell therapy.
Collapse
Affiliation(s)
- Carl J DeSelm
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary E Tano
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M Varghese
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|