1
|
Pan X, Ren Z, Liang W, Dong X, Li J, Wang L, Bhatia M, Pan LL, Sun J. Thiamine deficiency aggravates experimental colitis in mice by promoting glycolytic reprogramming in macrophages. Br J Pharmacol 2025; 182:1897-1911. [PMID: 39890689 DOI: 10.1111/bph.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/20/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is closely associated with immune dysfunction, where nutrient-mediated metabolic flux dictates immune cell fate and function. Thiamine is a central water-soluble vitamin involved in cellular energy metabolism, and its deficiency has been reported in IBD patients. However, whether thiamine deficiency is a cause or consequence of IBD pathogenesis remains unclear. The current study aimed to reveal the immunometabolic regulation of macrophages and underlying mechanism of thiamine deficiency in colitis development. EXPERIMENTAL APPROACH Thiamine deficiency was induced in C57BL/6 mice and bone marrow-derived macrophages (BMDMs), by administering a thiamine-deficient diet/medium together with pyrithiamine hydrobromide. The frequency of macrophage phenotypes and their intracellular metabolism were detected using flow cytometry and non-targeted metabolomics, respectively. KEY RESULTS Thiamine deficiency aggravated ulcerative colitis in mice and promoted the infiltration of proinflammatory M1 macrophages in colonic lamina propria. Our mechanistic study revealed that thiamine deficiency impaired pyruvate dehydrogenase (PDH) activity, thereby reprogramming cellular glucose metabolism to enhance glycolysis and lactic acid accumulation in M1 macrophages. Using a well-established PDH inhibitor (CPI-613) and lactic acid dehydrogenase inhibitor (galloflavin), we further demonstrated that PDH inhibition mimics, while lactate dehydrogenase inhibition partially rescues, thiamine deficiency-induced proinflammatory macrophage infiltration and experimental colitis in mice. CONCLUSION AND IMPLICATIONS Our study provides evidence linking thiamine deficiency with proinflammatory macrophage activation and colitis aggravation, suggesting that monitoring thiamine status and adjusting thiamine intake is necessary to protect against colitis.
Collapse
Affiliation(s)
- Xiaohua Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Lili Wang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Kirsche L, He J, Müller A, Leary P. MARMOT: A multifaceted R pipeline for analysing spectral flow cytometry data from subcutaneously growing murine gastric organoids. J Immunol Methods 2025; 540:113854. [PMID: 40122453 DOI: 10.1016/j.jim.2025.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The analysis of murine immune cell types is a critical component of immunological research, necessitating precise and reproducible methodologies. Here, we present a comprehensive protocol and pipeline designed to streamline the process from murine gastric organoid transplant sample preparation to figure generation. This pipeline includes a detailed staining panel tailored for murine immune cells, ensuring accurate and comprehensive identification of various cell types. Additionally, it integrates an R-based analysis script (MARMOT Pipeline), encompassing data processing and visualisation. A key feature of this pipeline is its ability to produce publication-quality figures with minimal direct R coding, thus making advanced data analysis accessible to researchers with limited programming experience. Additionally, figures can be customised using a provided Shiny application. This approach both enhances the efficiency of data analysis and enables the reproducibility required for high-quality scientific research.
Collapse
Affiliation(s)
- Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland.
| |
Collapse
|
4
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang Y, Zhou Z, Zhang Z, Liu Y, Ji W, Wang J, Wang K, Li Q. Lentinan mitigates ulcerative colitis via the IL-22 pathway to repair the compromised mucosal barrier and enhance antimicrobial defense. Int J Biol Macromol 2025; 307:141784. [PMID: 40054799 DOI: 10.1016/j.ijbiomac.2025.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Ulcerative colitis (UC) involves chronic, complex pathology of the intestinal mucosa. Current treatments are limited in efficacy and associated with adverse effects, highlighting the urgent need for improved therapeutic options. Lentinan (LNT), a polysaccharide drug commonly used in clinical immune modulation therapies, shows potential for UC treatment, though its specific targets and mechanisms remain unclear. In this study, LNT administration effectively mitigated DSS-induced colitis in mice, enhanced mucosal barrier function and antimicrobial defense. Specifically, LNT modulated the balance between tissue-resident and infiltrating macrophages, thereby improving pathogen clearance and enhancing the immunological barrier. Notably, we identified a novel effect of LNT in regulating the macrophage Dectin-1-ILC3 axis to increase IL-22 secretion. This led to the modulation of epithelial O-glycan fucosylation, antimicrobial peptides, and epithelial stem cells, thereby strengthening antimicrobial defenses and the physicochemical barrier. Neutralization with anti-IL-22 antibodies diminished the therapeutic effect of LNT in UC, underscoring the critical role of IL-22 in LNT-mediated treatment. Overall, this study highlights the potential of LNT as a novel therapeutic agent for UC, offering new insights into its molecular mechanisms and clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zhihong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zeming Zhang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| |
Collapse
|
6
|
Tull S, Saviano A, Fatima A, Begum J, Mansour AA, Marigliano N, Schettino A, Blaising J, Trenkle P, Sandrin V, Maione F, Regan-Komito D, Iqbal AJ. Dichotomous effects of Galectin-9 in disease modulation in murine models of inflammatory bowel disease. Biomed Pharmacother 2025; 184:117902. [PMID: 39951917 PMCID: PMC11870847 DOI: 10.1016/j.biopha.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a multifaceted disease characterised by compromised integrity of the epithelial barrier, the gut microbiome, and mucosal inflammation. While leukocyte recruitment and infiltration into intestinal tissue are well-studied and targeted in clinical practice, the role of galectins in modulating mucosal immunity remains underexplored. Galectins, a family of lectin-binding proteins, mediate critical interactions between immune cells and the intestinal epithelium. This study investigated the effect of endogenous Galectin-9 (Gal-9), as well as the combined effects with Galectin-3 (Gal-3), in modulating disease progression in murine models of colitis, using global knockout (KO) models for Gal-3, Gal-9, and Gal-3/Gal-9. Global deficiency in both galectins demonstrated improved disease parameters in Dextran sodium sulfate (DSS)-driven colitis. In contrast, in a model of adoptive T cell driven colitis, the addition of recombinant Gal-9 (rGal-9) was associated with reduced intestinal inflammation and an improvement in disease parameters. Further in vitro studies revealed no change in bone marrow-derived macrophage cytokine production in the absence of endogenous Gal-9, whereas the addition of rGal-9 to human macrophages stimulated pro-inflammatory cytokine production. Collectively, these findings demonstrate that Gal-9 plays distinct, context-dependent effects in intestinal inflammation, with both pro-inflammatory and anti-inflammatory effects. The contrasting functions of endogenous and exogenous Gal-9 underscore its complex involvement in IBD pathogenesis and highlight the need to differentiate its physiological function from therapeutic applications.
Collapse
Affiliation(s)
- Samantha Tull
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Areeba Fatima
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Jenefa Begum
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Julie Blaising
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Patrick Trenkle
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| | - Daniel Regan-Komito
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Asif J Iqbal
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| |
Collapse
|
7
|
Mohapatra A, Howard Z, Ernst JD. CCR2 recruits monocytes to the lung, while CX3CR1 modulates positioning of monocyte-derived CD11c pos cells in the lymph node during pulmonary tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637199. [PMID: 39974908 PMCID: PMC11839135 DOI: 10.1101/2025.02.07.637199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Infection by Mycobacterium tuberculosis (Mtb) continues to cause more than 1 million deaths annually, due to pathogen persistence in lung macrophages and dendritic cells derived from blood monocytes. While accumulation of monocyte-derived cells in the Mtb-infected lung partially depends on the chemokine receptor CCR2, the other chemoattractant receptors regulating trafficking remain undefined. We used mice expressing knock-in/knockout reporter alleles of Ccr2 and Cx3cr1 to interrogate their expression and function in monocyte-derived populations of the lungs and draining mediastinal lymph nodes during Mtb infection. CCR2 and CX3CR1 expression varied across monocyte-derived subsets stratified by cell surface Ly6C expression in both organs. We found that expression of CCR2 predicted dependence of monocyte-derived cells on the receptor for lung and lymph node accumulation. CCR2-deficient mice were also observed to have worsened lung and lymph node Mtb burden. While CX3CR1 deficiency, alone or in combination with CCR2 deficiency, did not affect cell frequencies or lung Mtb control, its absence was associated with altered positioning of monocyte-derived dendritic cells in mediastinal lymph nodes. We found that combined loss of Ccr2 and Cx3cr1 also worsened Mtb control in the mediastinal lymph node, suggesting a rationale for the persistent expression of CX3CR1 among monocyte-derived cells in pulmonary tuberculosis. IMPORTANCE Mycobacterium tuberculosis is the respiratory pathogen responsible for the deadliest infectious disease worldwide. Susceptible humans exhibit ineffective immune responses, in which infected phagocytes are not able to eliminate the pathogen. Since recruited monocyte-derived cells serve as reservoirs for persistent infection, understanding how these phagocytes accumulate in the lung and why they are unable to eliminate Mtb can inform development of therapies that can synergize with antimicrobials to achieve faster and more durable Mtb elimination. Monocyte-derived cells express the chemokine receptors CCR2 and CX3CR1, but the role of the latter in Mtb infection remains poorly defined. The significance of our study is in elucidating the roles of these receptors in the trafficking of monocyte-derived cells in the infected lung and mediastinal lymph node. These data shed light on the host response in tuberculosis and in other pulmonary infections.
Collapse
|
8
|
McCurdy JD, Hartley I, Behrenbruch C, Hart A, Tozer P, Ding NS. Management of Perianal Fistulizing Crohn's Disease According to Principles of Wound Repair. Aliment Pharmacol Ther 2025; 61:600-613. [PMID: 39757535 DOI: 10.1111/apt.18466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Perianal fistulizing Crohn's disease (PFCD) is a challenging and debilitating phenotype of Crohn's disease that can negatively affect quality of life. Studies have begun to uncover the physiologic mechanisms involved in wound repair as it relates to PFCD and how aberrations in these mechanisms may contribute to fistula persistence. AIMS To review the physiologic and pathophysiologic mechanisms of wound repair in PFCD and how specific therapeutic strategies may impact their outcomes. METHODS We reviewed the latest published literature on wound repair as it relates to PFCD. RESULTS Wound repair can be categorised into three overlapping biological phases: localised inflammation, cell recruitment/proliferation and tissue remodelling. Each is tightly regulated since insufficient or excessive activation can result in, respectively, chronic wounds and fibrotic tissue, both of which can impair organ function. In PFCD, the outcomes of wound repair include restitution (complete healing), epithelialisation and chronic wounds. Treatment of PFCD should take into consideration the distinct phases of wound repair. Therefore, the ability to differentiate between each phase of wound repair and their outcomes may help physicians deliver the most effective treatment strategy at the most appropriate time. CONCLUSIONS This review provides a comprehensive overview of the phases of wound repair and specific treatment strategies for each to provide clinicians with a rational framework for managing PFCD.
Collapse
Affiliation(s)
- Jeffrey D McCurdy
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Imogen Hartley
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Corina Behrenbruch
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | | | | | - Nik S Ding
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
9
|
Bosáková V, Papatheodorou I, Kafka F, Tomášiková Z, Kolovos P, Hortová Kohoutková M, Frič J. Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue. Exp Mol Med 2025; 57:364-378. [PMID: 39894823 PMCID: PMC11873120 DOI: 10.1038/s12276-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
The intestine hosts the largest immune system and peripheral nervous system in the human body. The gut‒brain axis orchestrates communication between the central and enteric nervous systems, playing a pivotal role in regulating overall body function and intestinal homeostasis. Here, using a human three-dimensional in vitro culture model, we investigated the effects of serotonin, a neuromodulator produced in the gut, on immune cell and intestinal tissue interactions. Serotonin attenuated the tumor necrosis factor-induced proinflammatory response, mostly by affecting the expression of chemokines. Serotonin affected the phenotype and distribution of tissue-migrating monocytes, without direct contact with the cells, by remodeling the intestinal tissue. Collectively, our results show that serotonin plays a crucial role in communication among gut-brain axis components and regulates monocyte migration and plasticity, thereby contributing to gut homeostasis and the progression of inflammation. In vivo studies focused on the role of neuromodulators in gut inflammation have shown controversial results, highlighting the importance of human experimental models. Moreover, our results emphasize the importance of human health research in human cell-based models and suggest that the serotonin signaling pathway is a new therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Kafka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Tomášiková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marcela Hortová Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
10
|
Qu F, Xu B, Kang H, Wang H, Ji J, Pang L, Wu Y, Zhou Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb Pathog 2025; 199:107227. [PMID: 39675441 DOI: 10.1016/j.micpath.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Macrophages have great plasticity. Typically, there are two of activated macrophages: M1 macrophages and M2 macrophages. Of them, M1 macrophages play a major role in responses that are pro-inflammatory, while M2 macrophages play an important part in responses that are anti-inflammatory. Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestine. The pathophysiology and course of UC are significantly influenced by the inflammatory response triggered by macrophage activation. M1 is a possible cause of increased inflammation in UC whereas M2 has a significant function in the healing of inflammation. The polarization imbalance of intestinal M1/M2 macrophages is closely linked to UC. Thus, by suppressing M1 polarization, encouraging M2 polarization, and reestablishing macrophage polarization balance, the treatment of UC based on macrophage polarization is beneficial for UC. Not only chemical drugs, but also traditional Chinese medicine compounds and herbal extracts have been shown to restore the balance of macrophage polarization, providing a new idea in the treatment of UC.
Collapse
Affiliation(s)
- Fanfan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baoqing Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongchang Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lianjing Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaqian Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenghua Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
11
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
12
|
Sarrabayrouse G, Joulain C, Bessoles S, Chiron AS, Abina AM, Hacein-Bey-Abina S. Erythropoietin supplementation induces dysbiosis of the gut microbiota and impacts mucosal immunity in a non-diseased mouse model. Front Immunol 2025; 15:1465410. [PMID: 39916952 PMCID: PMC11798978 DOI: 10.3389/fimmu.2024.1465410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
A number of drug treatments are known to alter the dialogue between the gut microbiota and the immune system components in the digestive mucosa. Alterations in intestinal homeostasis are now well known to affect peripheral immune responses and favor the occurrence of a number of pathologies such as allergies and cancers. Erythropoietin's known pleiotropic effects might explain the adverse events sometimes observed in anemic patients treated by erythropoiesis-stimulating agents (ESA). However, the impact of this therapeutic cytokine on the homeostasis of the intestinal tract has not previously been investigated in detail. By studying a mouse model of erythropoietin (EPO) supplementation for 28 days, we observed EPO-induced dysbiosis of the fecal microbiota characterized by a greater bacterial load, lower bacterial diversity and taxonomic changes. With regard to the mucosal immune system, an analysis of leukocyte populations in the small intestine and colon treatment revealed low proportions of ileal CD4 lymphocyte subpopulations (Treg, Tr17 and Th17 cells), IgA-secreting plasma cells, and a major macrophage subpopulation, involved in the control of lymphocyte responses. Our results provide for the first time a descriptive analysis of intestinal EPO's regulatory properties and raise questions about the involvement of EPO-induced alterations in the microbiota and the gut immune effectors in the control of intestinal and peripheral immune responses.
Collapse
Affiliation(s)
- Guillaume Sarrabayrouse
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Corentin Joulain
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Stéphanie Bessoles
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Andrada S. Chiron
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Amine M. Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Ohishi K, Dora D, Han CY, Guyer RA, Ohkura T, Kazimierczyk S, Picard N, Leavitt AR, Ott LC, Rahman AA, Mueller JL, Shpigel NY, Jain N, Nagy N, Hotta R, Goldstein AM, Stavely R. Resolving Resident Colonic Muscularis Macrophage Diversity and Plasticity During Colitis. Inflamm Bowel Dis 2025; 31:151-168. [PMID: 39102823 PMCID: PMC11701110 DOI: 10.1093/ibd/izae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 08/07/2024]
Abstract
BACKGROUND Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation. METHODS This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis. Findings are validated by immunohistochemistry, flow cytometry and cell-lineage tracing in vivo, and in vitro assays with muscularis macrophages (MMφ). RESULTS In naïve conditions, transcriptional duality is observed in MMφs with 2 major subpopulations: conventional resident Cx3cr1+ MMφs and Lyve1+ MMφs. The Lyve1+ population is phagocytic and expresses several known MMφ markers in mouse and human, confirming their identity as a bona fide MMφ subset. Single-cell transcriptomics indicate that resident MMφs are retained during colitis and exhibit plasticity toward an inflammatory profile. Lyve1+ MMφs, which express anti-inflammatory marker CD163, are absent during colitis, as confirmed by flow cytometry. In contrast, lineage tracing finds that resident Cx3cr1+ MMφs remain during colitis and are not completely replaced by the inflammatory infiltrating monocytes. In vitro studies provide biological evidence of the plasticity of resident Cx3cr1+ MMφs in response to lipopolysaccharide (LPS), mirroring transcriptional observations in vivo of their inflammatory plasticity. Potential markers for colitic MMφs, validated in animal models and in individuals with ulcerative colitis, are identified. CONCLUSIONS Our findings contribute to the understanding of the immune system in the muscularis propria niche during colitis by resolving the heterogeneity and origins of colitic MMφs.
Collapse
Affiliation(s)
- Kensuke Ohishi
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Kazimierczyk
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Charlestown, MA, USA
| | - Nicole Picard
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nahum Y Shpigel
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Charlestown, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Wang YB, Li T, Wang FY, Yao X, Bai QX, Su HW, Liu J, Wang L, Tan RZ. The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease. Int J Biol Sci 2025; 21:632-657. [PMID: 39781471 PMCID: PMC11705649 DOI: 10.7150/ijbs.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized. During this process, macrophages exhibit a range of pro-damage response to senescent tissues and cells, while the aging of macrophages themselves also significantly influences disease progression, creating a bidirectional regulatory role between aging and macrophages. To explore this bidirectional mechanism, this review will elucidate the origin, characteristic, phenotype, and function of macrophages in response to the senescence-associated secretory phenotype (SASP), extracellular vesicles from senescent cells, and the senescence cell-engulfment suppression (SCES), particularly in the context of kidney disease. Additionally, it will discuss the characteristics of senescent macrophage, such as common markers, and changes in autophagy, metabolism, gene regulation, phagocytosis, antigen presentation, and exosome secretion, along with their physiological and pathological impacts on renal tissue cells. Furthermore, exploring therapies and drugs that modulate the function of senescent macrophages or eliminate senescent cells may help slow the progression of kidney aging and damage.
Collapse
Affiliation(s)
- Yi-bing Wang
- Department of Radiology, the Affiliated Hospital, Southwest Medical University, 646000 Luzhou, China
- Department of Medical Imaging, Southwest Medical University, 646000 Luzhou, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Feng-yu Wang
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Xin Yao
- Department of Anesthesiology, Southwest Medical University, 646000 Luzhou, China
| | - Qiu-xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Hong-wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Rui-zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
15
|
Rampado R, Naidu GS, Karpov O, Goldsmith M, Sharma P, Ezra A, Stotsky L, Breier D, Peer D. Lipid Nanoparticles With Fine-Tuned Composition Show Enhanced Colon Targeting as a Platform for mRNA Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408744. [PMID: 39585189 PMCID: PMC11744673 DOI: 10.1002/advs.202408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Lipid Nanoparticles (LNPs) recently emerged as an invaluable RNA delivery platform. With many LNP-based therapeutics in the pre-clinical and clinical pipelines, there is extensive research dedicated to improving LNPs. These efforts focus mainly on the tolerability and transfectability of new ionizable lipids and RNAs, or modulating LNPs biodistribution with active targeting strategies. However, most formulations follow the well-established lipid proportions used in clinically approved products. Nevertheless, investigating the effects of LNPs composition on their biodistribution can expand the toolbox for particle design, leading to improved delivery strategies. Herein, a new LNPs (30-n-LNPs) formulation with increasing amounts of phospholipids is investigated as a possible mRNA delivery system for treating Inflammatory Bowel Diseases. Compared to LNPs with benchmark composition (b-LNPs), n-LNPs containing 30% distearoylphosphatidylcholine (DSPC) are well tolerated following intravenous administration and display natural targeting toward the inflamed colon in dextran sodium sulfate (DSS)-colitis bearing mice, while de-targeting clearing organs such as the liver and spleen. Using interleukin-10-encoding mRNA as therapeutic cargo, n-LNPs demonstrated a reduction of pathological burden in colitis-bearing mice. n-LNPs represent a starting point to further investigate the influence of LNPs composition on systemic biodistribution, ultimately opening new therapeutic modalities in different pathologies.
Collapse
Affiliation(s)
- Riccardo Rampado
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Gonna Somu Naidu
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Olga Karpov
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Assaf Ezra
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Lior Stotsky
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Department of Materials Sciences and Engineering, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| |
Collapse
|
16
|
Tominaga K, Kechele DO, Sanchez JG, Vales S, Jurickova I, Roman L, Asai A, Enriquez JR, McCauley HA, Kishimoto K, Iwasawa K, Singh A, Horio Y, Múnera JO, Takebe T, Zorn AM, Helmrath MA, Denson LA, Wells JM. Deriving Human Intestinal Organoids with Functional Tissue-Resident Macrophages All From Pluripotent Stem Cells. Cell Mol Gastroenterol Hepatol 2024; 19:101444. [PMID: 39701210 PMCID: PMC11847122 DOI: 10.1016/j.jcmgh.2024.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND & AIMS Organs of the gastrointestinal tract contain tissue-resident immune cells that function during tissue development, homeostasis, and disease. However, most published human organoid model systems lack resident immune cells, thus limiting their potential as disease avatars. For example, human intestinal organoids (HIOs) derived from pluripotent stem cells contain epithelial and various mesenchymal cell types but lack immune cells. In this study, we aimed to develop an HIO model with functional tissue-resident macrophages. METHODS HIOs and macrophages were generated separately through the directed differentiation of human pluripotent stem cells and combined in vitro. Following 2 weeks of coculture, the organoids were used for transcriptional profiling, functional analysis of macrophages, or transplanted into immunocompromised mice and matured in vivo for an additional 10-12 weeks. RESULTS Macrophages were incorporated into developing HIOs and persisted for 2 weeks in vitro HIOs and for at least 12 weeks in HIOs in vivo. These cocultured macrophages had a transcriptional signature that resembled those in the human fetal intestine, indicating that they were acquiring the features of tissue-resident macrophages. HIO macrophages could phagocytose bacteria and produced inflammatory cytokines in response to proinflammatory signals, such as lipopolysaccharide, which could be reversed with interleukin-10. CONCLUSIONS We generated an HIO system containing functional tissue-resident macrophages for an extended period. This new organoid system can be used to investigate the molecular mechanisms involved in inflammatory bowel disease.
Collapse
Affiliation(s)
- Kentaro Tominaga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon Vales
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ingrid Jurickova
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lizza Roman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Akihiro Asai
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kentaro Iwasawa
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Akaljot Singh
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yuko Horio
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lee A Denson
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
17
|
Chen T, Sun W, Xu ZJ. The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1450688. [PMID: 39737178 PMCID: PMC11682984 DOI: 10.3389/fimmu.2024.1450688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation. During the development of AE-IPF, the classical stimulatory signals in adaptive immunity are inhibited, while the nonclassical immune reactions (Th17) are activated, attracting numerous neutrophils and monocytes to lung tissues. However, there is limited information about the specific changes in the immune response of AE-IPF. We summarized the immune mechanisms of AE-IPF in this review.
Collapse
Affiliation(s)
- Tao Chen
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zuo-jun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Gallerand A, Han J, Ivanov S, Randolph GJ. Mouse and human macrophages and their roles in cardiovascular health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1424-1437. [PMID: 39604762 DOI: 10.1038/s44161-024-00580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024]
Abstract
The past 15 years have witnessed a leap in understanding the life cycle, gene expression profiles, origins and functions of mouse macrophages in many tissues, including macrophages of the artery wall and heart that have critical roles in cardiovascular health. Here, we review the phenotypical and functional diversity of macrophage populations in multiple organs and discuss the roles that proliferation, survival, and recruitment and replenishment from monocytes have in maintaining macrophages in homeostasis and inflammatory states such as atherosclerosis and myocardial infarction. We also introduce emerging data that better characterize the life cycle and phenotypic profiles of human macrophages. We discuss the similarities and differences between murine and human macrophages, raising the possibility that tissue-resident macrophages in humans may rely more on bone marrow-derived monocytes than in mouse.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Ge Y, Zadeh M, Sharma C, Lin YD, Soshnev AA, Mohamadzadeh M. Controlling functional homeostasis of ileal resident macrophages by vitamin B12 during steady state and Salmonella infection in mice. Mucosal Immunol 2024; 17:1314-1325. [PMID: 39255854 DOI: 10.1016/j.mucimm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Dietary micronutrients, particularly vitamin B12 (VB12), profoundly influence the physiological maintenance and function of intestinal cells. However, it is still unclear whether VB12 modulates the transcriptional and metabolic programming of ileal macrophages (iMacs), thereby contributing to intestinal homeostasis. Using multiomic approaches, we demonstrated that VB12 primarily supports the cell cycle activity and mitochondrial metabolism of iMacs, resulting in increased cell frequency compared to VB12 deficiency. VB12 also retained the ability to promote maintenance and metabolic regulation of iMacs during intestinal infection with Salmonella Typhimurium (STm). On the contrary, depletion of iMacs by inhibiting CSF1R signaling significantly increased host susceptibility to STm and prevented VB12-mediated pathogen reduction. These results thus suggest that regulation of VB12-dependent iMacs critically controls STm expansion, which may be of new relevance to advance our understanding of this vitamin and to strategically formulate sustainable therapeutic nutritional regimens that improve human gut health.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA.
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Cheshta Sharma
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Alexey A Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; South Texas Veterans Health Care System (STVHCS), San Antonio, TX, USA.
| |
Collapse
|
20
|
Gudneppanavar R, Di Pietro C, H Öz H, Zhang PX, Cheng EC, Huang PH, Tebaldi T, Biancon G, Halene S, Hoppe AD, Kim C, Gonzalez AL, Krause DS, Egan ME, Gupta N, Murray TS, Bruscia EM. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. Cell Death Dis 2024; 15:864. [PMID: 39613751 PMCID: PMC11607083 DOI: 10.1038/s41419-024-07255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Caterina Di Pietro
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hasan H Öz
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Toma Tebaldi
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Diane S Krause
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Neetu Gupta
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas S Murray
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang Y, Yao J, Wei Y, Li D, Wang L. Dissecting Innate and Adaptive Immunity in Inflammatory Bowel Disease: Immune Compartmentalization, Microbiota Crosstalk, and Emerging Therapies. J Inflamm Res 2024; 17:9987-10014. [PMID: 39634289 PMCID: PMC11615095 DOI: 10.2147/jir.s492079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal immune system is the largest immune organ in the human body. Excessive immune response to intestinal cavity induced by harmful stimuli including pathogens, foreign substances and food antigens is an important cause of inflammatory diseases such as celiac disease and inflammatory bowel disease (IBD). Although great progress has been made in the treatment of IBD by some immune-related biotherapeutic products, yet a considerable proportion of IBD patients remain unresponsive or immune tolerant to immunotherapeutic strategy. Therefore, it is necessary to further understand the mechanism of immune cell populations involved in enteritis, including dendritic cells, macrophages and natural lymphocytes, in the steady-state immune tolerance of IBD, in order to find effective IBD therapy. In this review, we discussed the important role of innate and adaptive immunity in the development of IBD. And the relationship between intestinal immune system disorders and microflora crosstalk were also presented. We also focus on the new findings in the field of T cell immunity, which might identify novel cytokines, chemokines or anti-cytokine antibodies as new approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuqi Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
22
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
23
|
Jo CH, Lee SY, Son YB, Lee WJ, Choe YH, Lee HJ, Oh SJ, Kim TS, Hong CY, Lee SL, Rho GJ. Regulation of Colonic Inflammation and Macrophage Homeostasis of IFN-γ-Primed Canine AMSCs in Experimental Colitis in Mice. Animals (Basel) 2024; 14:3283. [PMID: 39595338 PMCID: PMC11591378 DOI: 10.3390/ani14223283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown potential in treating immune-mediated diseases due to their immunomodulatory properties, which can be enhanced by priming with inflammatory cytokines like interferon-gamma (IFN-γ). This study evaluates the therapeutic effects of IFN-γ-primed canine adipose tissue-derived MSCs (AMSCs) in a mouse model of inflammatory bowel disease (IBD). Canine AMSCs were primed with 50 ng/mL recombinant canine IFN-γ for 48 h, and the effects were compared to those seen in naïve (unprimed) AMSCs. IBD was induced in mice using dextran sodium sulfate (DSS), and AMSCs were injected intraperitoneally on days 1 and 3. The mice treated with IFN-γ-primed AMSCs showed improved clinical outcomes, including a reduced disease activity index (DAI), less body weight loss, and longer colon length compared to the mice treated with naïve AMSCs. A histological analysis revealed less damage to the intestinal structures and reduced inflammatory cell infiltration. IFN-γ priming led to a shift in the immune cell balance in the gut, decreasing pro-inflammatory macrophages (Ly6Chi) and increasing anti-inflammatory macrophages (Ly6Clo/MHC-IIhi). This was associated with the reduced expression of inflammatory cytokine genes (Il-1β, Il-6, and Il-18) and increased expression of the intestinal stem cell marker Lgr5. These findings suggest that IFN-γ-primed AMSCs offer enhanced therapeutic potential for treating CE in veterinary medicine.
Collapse
Affiliation(s)
- Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Young-Bum Son
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, 300 Yonbongdong, Buk-gu, Gwangju 500-757, Republic of Korea;
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Hyeon-Jeong Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Tae-Seok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (C.-H.J.); (S.-Y.L.); (Y.-H.C.); (H.-J.L.); (S.-J.O.); (T.-S.K.); (C.-Y.H.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
24
|
Zhang K, Xu L, Guo J. Tarm1 may affect colitis by regulating macrophage M1 polarization in a mouse colitis model. Pediatr Res 2024:10.1038/s41390-024-03640-3. [PMID: 39487321 DOI: 10.1038/s41390-024-03640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND In this study, we aimed to explore the role of Tarm1 in juvenile mice with dextran sulfate sodium (DSS)-induced colitis and elucidate the mechanisms that affect intestinal barrier function. METHODS A DSS-induced pediatric inflammatory bowel disease mouse model was established using 4-week-old juvenile mice. Disease activity index and histopathological damage scores were determined using hematoxylin and eosin (H&E) staining. Tarm1, F4/80, CD68, and CD86 levels were detected using qPCR, western blotting, and immunofluorescence. Trans epithelial electric resistance (TEER) was detected using the transwell assay. RESULTS Results revealed that juvenile colitis mice fed 4% DSS drinking water had increased Tarm1 expression in the colon tissue, increased macrophage M1 polarization, higher expression of pro-inflammatory cytokines, and an impaired intestinal mucosal barrier, compared with the control group. Tarm1-knockdown RAW264.7 cells inhibited lipopolysaccharide (LPS)-induced M1 polarization and attenuated barrier damage in co-cultured intestinal epithelial cells. CONCLUSION Tarm1 expression was increased in colonic tissues of juvenile mice with colitis, and LPS-induced M1 polarization and intestinal barrier damage were attenuated in Tarm1-knockdown RAW264.7 cells. This suggests that attenuation of Tarm1 expression is a potential target for pediatric inflammatory bowel disease therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lingfen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
25
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Daveri E, Vergani B, Lalli L, Ferrero G, Casiraghi E, Cova A, Zorza M, Huber V, Gariboldi M, Pasanisi P, Guarrera S, Morelli D, Arienti F, Vitellaro M, Corsetto PA, Rizzo AM, Stroscia M, Frati P, Lagano V, Cattaneo L, Sabella G, Leone BE, Milione M, Sorrentino L, Rivoltini L. Cancer-associated foam cells hamper protective T cell immunity and favor tumor progression in human colon carcinogenesis. J Immunother Cancer 2024; 12:e009720. [PMID: 39395839 PMCID: PMC11474856 DOI: 10.1136/jitc-2024-009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant healthcare burden worldwide, characterized by a complex interplay between obesity and chronic inflammation. While the relationship between CRC, obesity and altered lipid metabolism is not fully understood, there are evidences suggesting a link between them. In this study, we hypothesized that dysregulated lipid metabolism contributes to local accumulation of foam cells (FC) in CRC, which in turn disrupts antitumor immunosurveillance. METHODS Tumor infiltrating FC and CD8+ were quantified by digital pathology in patients affected by T2-T4 CRC with any N stage undergoing radical upfront surgery (n=65) and correlated with patients' clinical outcomes. Multiparametric high-resolution flow cytometry analysis and bulk RNAseq of CRC tissue were conducted to evaluate the phenotype and transcriptomic program of immune cell infiltrate in relation to FC accumulation. The immunosuppressive effects of FC and mechanistic studies on FC-associated transforming growth factor-beta (TGF-β) and anti-PD-L1 inhibition were explored using an in-vitro human model of lipid-engulfed macrophages. RESULTS FC (large CD68+ Bodipy+ macrophages) accumulated at the tumor margin in CRC samples. FChigh tumors exhibited reduced CD8+ T cells and increased regulatory T cells (Tregs). Functional transcriptional profiling depicted an immunosuppressed milieu characterized by reduced interferon gamma, memory CD8+ T cells, and activated macrophages mirrored by increased T-cell exhaustion and Treg enrichment. Furthermore, FChigh tumor phenotype was independent of standard clinical factors but correlated with high body mass index (BMI) and plasma saturated fatty acid levels. In CD8low tumors, the FChigh phenotype was associated with a 3-year disease-free survival rate of 8.6% compared with 28.7% of FClow (p=0.001). In-vitro studies demonstrated that FC significantly impact on CD8 proliferation in TFG-β dependent manner, while inhibition of TGF-β FC-related factors restored antitumor immunity. CONCLUSIONS FC exert immunosuppressive activity through a TGF-β-related pathway, resulting in a CD8-excluded microenvironment and identifying immunosuppressed tumors with worse prognosis in patients with primary CRC. FC association with patient BMI and dyslipidemia might explain the link of CRC with obesity, and offers novel therapeutic and preventive perspectives in this specific clinical setting.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Luca Lalli
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elena Casiraghi
- Anacleto Lab, Computer Science Department, University of Milan, Milan, Italy
| | - Agata Cova
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Zorza
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Veronica Huber
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Research in Nutrition and Metabolomics, Department of Reaserch, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Daniele Morelli
- Laboratory Medicine Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Flavio Arienti
- Immunohematology and Trasfusion Medicine Service (SIMT), Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Martina Stroscia
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Frati
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vincenzo Lagano
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Cattaneo
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E Leone
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Sorrentino
- Unit of Colorectal Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
29
|
Guo Q, Li N, Shi H, Gan Y, Wang W, Jia J, Zhou Y. Aerobic Exercise Prevents High-Fat-Diet-Induced Adipose Tissue Dysfunction in Male Mice. Nutrients 2024; 16:3451. [PMID: 39458447 PMCID: PMC11510691 DOI: 10.3390/nu16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the effect of aerobic exercise on capillary density and vascular smooth muscle cell (VSMC) phenotype in the visceral and subcutaneous adipose tissue of high-fat-diet (HFD) mice in order to understand the mechanisms underlying improvements in insulin resistance (IR) and chronic inflammation in adipose tissue (AT). METHODS Male C57BL/6J mice were divided into HFD and normal diet groups for 12 weeks and then further split into sedentary and aerobic exercise subgroups for an additional 8 weeks. Various parameters including body weight, fat weight, blood glucose, lipid profile, insulin levels, glucose tolerance, and inflammatory cytokines were evaluated. RESULTS Aerobic exercise reduced HFD-induced weight gain, IR, and improved lipid profiles. HFD had a minimal effect on inflammatory cytokines except in visceral adipose tissue (VAT). IR was associated with capillary density in subcutaneous adipose tissue (SAT) and VSMC phenotype in VAT. Aerobic exercise promoted anti-inflammatory responses in VAT, correlating with VSMC phenotype in this tissue. CONCLUSIONS Aerobic exercise can alleviate HFD-induced IR and inflammation through the modulation of VSMC phenotype in AT.
Collapse
Affiliation(s)
- Qiaofeng Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Nan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Haiyan Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanming Gan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Weiqing Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Jiajie Jia
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
30
|
Zhang M, Xu X, Su L, Zeng Y, Lin J, Li W, Zou Y, Li S, Lin B, Li Z, Chen H, Huang Y, Xu Q, Chen H, Cheng F, Dai D. Oral administration of Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 ameliorates DSS-induced colitis in mice. J Nanobiotechnology 2024; 22:607. [PMID: 39379937 PMCID: PMC11463058 DOI: 10.1186/s12951-024-02856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Ulcerative colitis (UC) belongs to chronic inflammatory disease with a relapsing characterization. Conventional oral drugs of UC are restricted in clinical by premature degradation in the gastrointestinal tract, modest efficacy, and adverse effects. CX5461 can treat autoimmune disease, immunological rejection, and vascular inflammation. However, low solubility, intravenous administration, and non-inflammatory targeting limited its clinical application. Herein, this work aims to develop Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 (SFELNVs@CX5461) for efficient CX5461 oral delivery for UC therapy. We identified SFELNVs as nano-diameter (80 nm) with negative zeta potential (-32mV). Cellular uptake has shown that SFELNVs were targeted uptake by macrophages, thus increasing drug concentration. Additionally, oral SFELNVs@CX5461 exhibited good safety and stability, as well as inflammation-targeting ability in the gastrointestinal tract of dextran sodium sulfate (DSS)-induced colitis mice. In vivo, oral administration of SFELNVs and CX5461 could relieve mice colitis. More importantly, combined SFELNVs and CX5461 alleviated mice colitis by inhibiting pro-inflammatory factors (TNF-α, IL-1β, and IL-6) expression and promoting M2 macrophage polarization. Furthermore, SFELNVs promoted M2 polarization by miR4371c using miRNA sequencing. Our results suggest that SFELNVs@CX5461 represents a novel orally therapeutic drug that can ameliorate colitis, and a promising targeting strategy for safe UC therapy.
Collapse
Affiliation(s)
- Manqi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Xichao Xu
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518052, China
| | - Liqian Su
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Wenwen Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yigui Zou
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Sicong Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Boxian Lin
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Ziyuan Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Hu Chen
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yuheng Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Dongling Dai
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China.
| |
Collapse
|
31
|
Perruzza L, Heckmann J, Rezzonico Jost T, Raneri M, Guglielmetti S, Gargari G, Palatella M, Willers M, Fehlhaber B, Werlein C, Vogl T, Roth J, Grassi F, Viemann D. Postnatal supplementation with alarmins S100a8/a9 ameliorates malnutrition-induced neonate enteropathy in mice. Nat Commun 2024; 15:8623. [PMID: 39366940 PMCID: PMC11452687 DOI: 10.1038/s41467-024-52829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Malnutrition is linked to 45% of global childhood mortality, however, the impact of maternal malnutrition on the child's health remains elusive. Previous studies suggested that maternal malnutrition does not affect breast milk composition. Yet, malnourished children often develop a so-called environmental enteropathy, assumed to be triggered by frequent pathogen uptake and unfavorable gut colonization. Here, we show in a murine model that maternal malnutrition induces a persistent inflammatory gut dysfunction in the offspring that establishes during nursing and does not recover after weaning onto standard diet. Early intestinal influx of neutrophils, impaired postnatal development of gut-regulatory functions, and expansion of Enterobacteriaceae were hallmarks of this enteropathy. This gut phenotype resembled those developing under deficient S100a8/a9-supply via breast milk, which is a known key factor for the postnatal development of gut homeostasis. We could confirm that S100a8/a9 is lacking in the breast milk of malnourished mothers and the offspring's intestine. Nutritional supply of S100a8 to neonates of malnourished mothers abrogated the aberrant development of gut mucosal immunity and microbiota colonization and protected them lifelong against severe enteric infections and non-infectious bowel diseases. S100a8 supplementation after birth might be a promising measure to counteract deleterious imprinting of gut immunity by maternal malnutrition.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland.
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Matteo Raneri
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Martina Palatella
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Nishimura K, Shiotani T, Tawara I, Katayama N. Pravastatin prevents colitis-associated carcinogenesis by reducing CX3CR1 high M2-like fibrocyte counts in the inflamed colon. Sci Rep 2024; 14:23021. [PMID: 39362935 PMCID: PMC11449942 DOI: 10.1038/s41598-024-74215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, 515- 8557, Mie, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, 510-0293, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Takuya Shiotani
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| |
Collapse
|
33
|
Saurabh NK, Khan MM, Kirabo A. A Future Avenue of Treatment Ulcerative Colitis Targeting Macrophage Polarization: A Phytochemical Application. CROHN'S & COLITIS 360 2024; 6:otae070. [PMID: 39668979 PMCID: PMC11635166 DOI: 10.1093/crocol/otae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background Ulcerative colitis (UC) is a prevalent inflammatory bowel disease primarily impacting the mucosa of the colon. It is characterized by recurring and incurable symptoms and causes immense suffering and significant economic burden due to limited treatment options. Typical symptoms of UC include diarrhea, alterations in bowel patterns, bleeding from the rectum, rectal pain or urgency, anemia, and tiredness. Therefore, developing novel and effective treatment strategies for UC is imperative. Purpose This review aimed to explain how macrophage polarization contributes to UC development and compiled information on natural compounds with promising therapeutic potential that can target the macrophage phenotype and shed light on its potential mode of action. Results The phenotypic alteration of macrophages profoundly affects the development of UC, and these cells are essential for preserving intestinal immunological homeostasis. Evidence from research suggests that one effective method for UC prevention and therapy is to guide macrophage polarization toward the M2 phenotype. Phytochemicals, which are compounds extracted from plants, possess a wide array of biological activities. For example: Ginsenoside Rg1 emerges as a crucial regulator of macrophage polarization, promoting the M2 phenotype while inhibiting the M1 phenotype. Notably, their low toxicity and high effectiveness render them promising candidates for therapeutic interventions. These compounds have demonstrated encouraging protective effects against inflammation in the colon. Conclusions Exploring phytochemicals as a therapeutic avenue targeting macrophage polarization presents an innovative approach to treating UC.
Collapse
Affiliation(s)
- Nishant Kumar Saurabh
- Division of Molecular Biology, National Institute of Cancer Prevention & Research (ICMR-NICPR), I-7, Sector-39, Noida 201301, India
| | - Mohd Mabood Khan
- Department of Medicine, Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Annet Kirabo
- Department of Medicine, Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
34
|
Konkel JE, Cox JR, Wemyss K. Bite-sized immunology; damage and microbes educating immunity at the gingiva. Mucosal Immunol 2024; 17:1141-1150. [PMID: 39038755 DOI: 10.1016/j.mucimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
Collapse
Affiliation(s)
- Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Joshua R Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Su S, Liu T, Zheng JY, Wu HC, Keng VW, Zhang SJ, Li XX. Huang Lian Jie Du decoction attenuated colitis via suppressing the macrophage Csf1r/Src pathway and modulating gut microbiota. Front Immunol 2024; 15:1375781. [PMID: 39391314 PMCID: PMC11464287 DOI: 10.3389/fimmu.2024.1375781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Ulcerative colitis, a subtype of chronic inflammatory bowel disease (IBD), is characterized by relapsing colonic inflammation and ulcers. The traditional Chinese herbal formulation Huang Lian Jie Du (HLJD) decoction is used clinically to treat diarrhea and colitis. However, the mechanisms associated with the effects of treatment remain unclear. This study aims to elucidate the molecular mechanistic effects of HLJD formulation on colitis. Methods Chronic colitis in mice was induced by adding 1% dextran sulfate sodium (DSS) to their drinking water continuously for 8 weeks, and HLJD decoction at the doses of 2 and 4 g/kg was administered orally to mice daily from the second week until experimental endpoint. Stool consistency scores, blood stool scores, and body weights were recorded weekly. Disease activity index (DAI) was determined before necropsy, where colon tissues were collected for biochemical analyses. In addition, the fecal microbiome of treated mice was characterized using 16S rRNA amplicon sequencing. Results HLJD decoction at doses of 2 and 4 g/kg relieved DSS-induced chronic colitis in mice by suppressing inflammation through compromised macrophage activity in colonic tissues associated with the colony-stimulating factor 1 receptor (Csf1r)/Src pathway. Furthermore, the HLJD formula could modify the gut microbiota profile by decreasing the abundance of Bacteroides, Odoribacter, Clostridium_sensu_stricto_1, and Parasutterella. In addition, close correlations between DAI, colon length, spleen weight, and gut microbiota were identified. Discussion Our findings revealed that the HLJD formula attenuated DSS-induced chronic colitis by reducing inflammation via Csf1r/Src-mediated macrophage infiltration, as well as modulating the gut microbiota profile.
Collapse
Affiliation(s)
- Shan Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ting Liu
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Cui Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Vincent W. Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiao-Xiao Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
36
|
Lin S, Chang Y, Lee W, Chiang C, Liu S, Lee H, Jeng L, Shyu W. Role of STAT3-FOXO3 Signaling in the Modulation of Neuroplasticity by PD-L1-HGF-Decorated Mesenchymal Stem Cell-Derived Exosomes in a Murine Stroke Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404882. [PMID: 39049677 PMCID: PMC11423231 DOI: 10.1002/advs.202404882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
The limited therapeutic strategies available for stroke leave many patients disabled for life. This study assessed the potential of programmed death-ligand 1 (PD-L1) and hepatocyte growth factor (HGF)-engineered mesenchymal stem cell-derived exosomes (EXO-PD-L1-HGF) in enhancing neurological recovery post-stroke. EXO-PD-L1-HGF, which efficiently endocytosed into target cells, significantly diminishes the H2O2-induced neurotoxicity and increased the antiapoptotic proteins in vitro. EXO-PD-L1-HGF attenuates inflammation by inhibiting T-cell proliferation and increasing the number of CD8+CD122+IL-10+ regulatory T cells. Intravenous injection of EXO-PD-L1-HGF could target stromal cell-derived factor-1α (SDF-1α+) cells over the peri-infarcted area of the ischemic brain through CXCR4 upregulation and accumulation in neuroglial cells post-stroke. EXO-PD-L1-HGF facilitates endogenous nestin+ neural progenitor cell (NPC)-induced neurogenesis via STAT3-FOXO3 signaling cascade, which plays a pivotal role in cell survival and neuroprotection, thereby mitigating infarct size and enhancing neurological recovery in a murine stroke model. Moreover, increasing populations of the immune-regulatory CD19+IL-10+ and CD8+CD122+IL-10+ cells, together with reducing populations of proinflammatory cells, created an anti-inflammatory microenvironment in the ischemic brain. Thus, innovative approaches employing EXO-PD-L1-HGF intervention, which targets SDF-1α+ expression, modulates the immune system, and enhances the activation of resident nestin+ NPCs, might significantly alter the brain microenvironment and create a niche conducive to inducing neuroplastic regeneration post-stroke.
Collapse
Affiliation(s)
- Syuan‐Ling Lin
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
| | - Yi‐Wen Chang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei100Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Shih‐Ping Liu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Hsu‐Tung Lee
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei114Taiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichung402Taiwan
- Division of neurosurgical Oncology Neurological InstituteTaichung Veterans General HospitalTaichung407Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung404Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
- Department of Occupational TherapyAsia UniversityTaichung413Taiwan
| |
Collapse
|
37
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
38
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
39
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
41
|
Donlan AN, Leslie JL, Simpson ME, Petri WA, Allen JE, Petri WA. IL-13 protects from Clostridioides difficile colitis. Anaerobe 2024; 88:102860. [PMID: 38701912 PMCID: PMC11347079 DOI: 10.1016/j.anaerobe.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. We have previously discovered that antibiotic disruption of the gut microbiota decreases intestinal IL-33 and IL-25 and increases susceptibility to CDI. We further found that IL-33 promotes protection through type 2 Innate Lymphoid Cells (ILC2s), which produce IL-13. However, the contribution of IL-13 to disease has never been explored. METHODS We used a validated model of CDI in mice, in which we neutralized via blocking antibodies, or administered recombinant protein, IL-13 to assess the role of this cytokine during infection using weight and clinical scores. Fluorescent activated cell sorting (FACS) was used to characterize myeloid cell population changes in response to IL-13 manipulation. RESULTS We found that administration of IL-13 protected, and anti-IL-13 exacerbated CDI. Additionally, we observed alterations to the monocyte/macrophage cells following neutralization of IL-13 as early as day three post infection. We also observed elevated accumulation of myeloid cells by day four post-infection following IL-13 neutralization. Neutralization of the decoy receptor, IL-13Rα2, resulted in protection from disease, likely through increased available endogenous IL-13. CONCLUSIONS Our data highlight the protective role of IL-13 in protecting from more severe CDI and the association of poor responses with a dysregulated monocyte-macrophage compartment. These results increase our understanding of type 2 immunity in CDI and may have implications for treating disease in patients.
Collapse
Affiliation(s)
- A N Donlan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA; Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - J L Leslie
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - M E Simpson
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA.
| | - J E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PL, United Kingdom
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
42
|
O'Guinn ML, Handler DA, Hsieh JJ, Mallicote MU, Feliciano K, Gayer CP. FXR deletion attenuates intestinal barrier dysfunction in murine acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2024; 327:G175-G187. [PMID: 38860296 PMCID: PMC11427094 DOI: 10.1152/ajpgi.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Accumulating literature suggests that the farnesoid-X receptor (FXR), a nuclear bile acid receptor best known for its role in bile acid homeostasis, is also a potent context-dependent regulator of inflammation. FXR may thus be relevant to several intestinal disease states including inflammatory bowel disease, necrotizing enterocolitis, and sepsis. In this study, we tested the effects of FXR deletion on acute murine intestinal inflammation. We found that FXR knockout (KO) mice were protected from intestinal injury and barrier dysfunction induced by lipopolysaccharide (LPS) injection, dithizone (DI)/Klebsiella, and cecal ligation/puncture models. In the LPS model, RNA sequencing and qPCR analysis showed that this protection correlated with substantial reduction in LPS-induced proinflammatory gene expression, including lower tissue levels of Il1a, Il1b, and Tnf. Examining functional effects on the epithelium, we found that LPS-induced tight junctional disruption as assessed by internalization of ZO-1 and occludin was ameliorated in FXR KO animals. Taken together, these data suggest a role for FXR in the intestinal barrier during inflammatory injury.NEW & NOTEWORTHY Intestinal barrier failure is a hallmark in gut-origin sepsis. We demonstrate that the intestinal barriers of farnesoid-X receptor (FXR) knockout (KO) animals are protected from inflammatory insult using multiple models of acute intestinal inflammation. This protection is due to decreased inflammatory cytokine production and maintenance of tight junctional architecture seen within the KO animals. This is the first report of FXR deletion being protective to the intestinal barrier.
Collapse
Affiliation(s)
- MaKayla L O'Guinn
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - David A Handler
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Michael U Mallicote
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| | - Karina Feliciano
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Christopher P Gayer
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
- Division of Pediatric Surgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, United States
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States
| |
Collapse
|
43
|
Cheng H, Lee W, Hsu F, Lai Y, Huang S, Lim CSH, Lin Z, Hsu S, Chiang C, Jeng L, Shyu W, Chen S. Manipulating the Crosstalk between Cancer and Immunosuppressive Cells with Phototherapeutic Gold-Nanohut for Reprogramming Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404347. [PMID: 38923327 PMCID: PMC11348132 DOI: 10.1002/advs.202404347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Photoimmunotherapy faces challenges due to insufficient intratumoral accumulation of photothermal agents and the reversion of the cancer-immunity cycle during treatment. In this study, an anti-PD-L1-immobilized magnetic gold nanohut, AuNH-2-Ab, with photoresponsive, thermosensitive, and immunomodulatory properties to effectively suppress the growth of primary tumors, elevate immunogenic cell death (ICD) levels, reverse the tumor immune microenvironment (TIME), and consequently inhibit metastases are developed. AuNH-2-Ab achieves high tumor accumulation (9.54% injected dose) following systemic administration, allowing the modulation of hyperthermia dose of over 50 °C in the tumor. By optimizing the hyperthermia dose, AuNH-2-Ab simultaneously target and eliminate cancer cells and tumor-associated macrophages, thereby activating potent antitumor immunity without being compromised by immunosuppressive elements. Hyperthermia/pH induced morphological transformation of AuNH-2-Ab involving the detachment of the surface antibody for in situ PD-L1 inhibition, and exposure of the inner fucoidan layer for natural killer (NK) cell activation. This precision photoimmunotherapy approach reprograms the TIME, significantly prolongs survival in a murine hepatocellular carcinoma model (Hep55.1c), and harnesses the synergistic effects of ICD production and checkpoint inhibitors by utilizing a single nanoplatform.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichung406040Taiwan
| | - Yen‐Ho Lai
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Shu‐Rou Huang
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
| | - Chris Seh Hong Lim
- Department of Physician Assistant StudiesSchool of Health and Rehabilitation SciencesMGH InstituteBostonMassachusetts02114USA
| | - Zhen‐Kai Lin
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Shih‐Chao Hsu
- Department of SurgeryChina Medical University HospitalTaichung40447Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung40447Taiwan
- School of MedicineChina Medical UniversityTaichung406040Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- School of DentistryCollege of Dental MedicineKaohsiung Medical UniversityKaohsiung807Taiwan
| |
Collapse
|
44
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
45
|
Yao Z, Bai R, Liu W, Liu Y, Zhou W, Xu Z, Sheng J. Activation of angiogenin expression in macrophages by lipopolysaccharide via the TLR4/NF-κB pathway in colitis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:857-865. [PMID: 38567413 PMCID: PMC11214953 DOI: 10.3724/abbs.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.
Collapse
Affiliation(s)
- Zhengrong Yao
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Liu
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Yaxing Liu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Zhou
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| |
Collapse
|
46
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
47
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
48
|
Che N, Zhang Y, Zhang S, Kong X, Zhang Y, Wang S, Yuan Z, Liao Y. Macrophagic HDAC3 inhibition ameliorates Dextran Sulfate Sodium induced inflammatory bowel disease through GBP5-NLRP3 pathway. Int J Med Sci 2024; 21:1385-1398. [PMID: 38903915 PMCID: PMC11186415 DOI: 10.7150/ijms.94592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease, characterized by dysregulated immune response. HDAC3 is reported to be an epigenetic brake in inflammation, playing critical roles in macrophages. However, its role in IBD is unclear. In our study, we found HDAC3 was upregulated in CX3CR1-positive cells in the mucosa from IBD mice. Conditional knockout (cKO) of Hdac3 in CX3CR1 positive cells attenuated the disease severity of Dextran Sulfate Sodium (DSS)-induced colitis. In addition, inhibition of HDAC3 with RGFP966 could also alleviate the DSS-induced tissue injury and inflammation in IBD. The RNA sequencing results revealed that Hdac3 cKO restrained DSS-induced upregulation of genes in the pathways of cytokine-cytokine receptor interaction, complement and coagulation cascades, chemokine signaling, and extracellular matrix receptor interaction. We also identified that Guanylate-Binding Protein 5 (GBP5) was transcriptionally regulated by HDAC3 in monocytes by RNA sequencing. Inhibition of HDAC3 resulted in decreased transcriptional activity of interferon-gamma-induced expression of GBP5 in CX3CR1-positive cells, such as macrophages and microglia. Overexpression of HDAC3 upregulated the transcriptional activity of GBP5 reporter. Lastly, conditional knockout of Hdac3 in macrophages (Hdac3 mKO) attenuated the disease severity of DSS-induced colitis. In conclusion, inhibition of HDAC3 in macrophages could ameliorate the disease severity and inflammatory response in colitis by regulating GBP5-NLRP3 axis, identifying a new therapeutic avenue for the treatment of colitis.
Collapse
Affiliation(s)
- Na Che
- Department of neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yang Zhang
- Department of neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | - Zengqiang Yuan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | - Yajin Liao
- Department of neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
49
|
Zhu LW, Li Z, Dong X, Wu H, Cheng Y, Xia S, Bao X, Xu Y, Cao R. Ficolin-A induces macrophage polarization to a novel pro-inflammatory phenotype distinct from classical M1. Cell Commun Signal 2024; 22:271. [PMID: 38750493 PMCID: PMC11094856 DOI: 10.1186/s12964-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.
Collapse
Affiliation(s)
- Li-Wen Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaohong Dong
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Huadong Wu
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China.
| | - Runjing Cao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
50
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|