1
|
Parolini C. Sepsis and high-density lipoproteins: Pathophysiology and potential new therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167761. [PMID: 40044061 DOI: 10.1016/j.bbadis.2025.167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/19/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
In 2020, sepsis has been defined a worldwide health major issue (World Health Organization). Lung, urinary tract and abdominal cavity are the preferred sites of sepsis-linked infection. Research has highlighted that the advancement of sepsis is not only related to the presence of inflammation or microbial or host pattern recognition. Clinicians and researchers now recognized that a severe immunosuppression is also a common feature found in patients with sepsis, increasing the susceptibility to secondary infections. Lipopolysaccharides (LPS) are expressed on the cell surface of Gram-negative, whereas Gram-positive bacteria express peptidoglycan (PGN) and lipoteichoic acid (LTA). The main mechanism by which LPS trigger host innate immune responses is binding to TLR4-MD2 (toll-like receptor4-myeloid differentiation factor 2), whereas, PGN and LTA are exogenous ligands of TLR2. Nucleotide-binding oligomerization domain (NOD)-like receptors are the most well-characterized cytosolic pattern recognition receptors, which bind microbial molecules, endogenous by-products and environmental triggers. It has been demonstrated that high-density lipoproteins (HDL), besides their major role in promoting cholesterol efflux, possess diverse pleiotropic properties, ranging from a modulation of the immune system to anti-inflammatory, anti-apoptotic, and anti-oxidant functions. In addition, HDL are able at i) binding LPS, preventing the activating of TLR4, and ii) inducing the expression of ATF3 (Activating transcription factor 3), a negative regulator of the TLR signalling pathways, contributing at justifying their capacity to hamper infection-based illnesses. Therefore, reconstituted HDL (rHDL), constituted by apolipoprotein A-I/apolipoprotein A-IMilano complexed with phospholipids, may be considered as a new therapeutic tool for the management of sepsis.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", via Balzaretti 9 - Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
2
|
Luo P, Wang F, Li J, Liu G, Xiong Q, Yan B, Cao X, Liu B, Wang Y, Wu G, Shi C. The stress-responsive gene ATF3 drives fibroblast activation and collagen production through transcriptionally activating TGF-β receptor Ⅱ in skin wound healing. Arch Biochem Biophys 2024; 760:110134. [PMID: 39181381 DOI: 10.1016/j.abb.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Skin wound is an emerging health challenge on account of the high-frequency trauma, surgery and chronic refractory ulcer. Further study on the disease biology will help to develop new effective approaches for wound healing. Here, we identified a wound-stress responsive gene, activating transcription factor 3 (ATF3), and then investigated its biological action and mechanism in wound healing. In the full-thickness skin wound model, ATF3 was found to promote fibroblast activation and collagen production, resulted in accelerated wound healing. Mechanically, ATF3 transcriptionally activated TGF-β receptor Ⅱ via directly binding to its specific promoter motif, followed by the enhanced TGF-β/Smad pathway in fibroblasts. Moreover, the increased ATF3 upon skin injury was partly resulted from hypoxia stimulation with Hif-1α dependent manner. Altogether, this work gives novel insights into the biology and mechanism of stress-responsive gene ATF3 in wound healing, and provides a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Fulong Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Jialun Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Qin Xiong
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Benhuang Yan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Gang Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China; Institute of Medicine and Equipment for High Altitude Region, Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Llerena Schiffmacher DA, Kliza KW, Theil AF, Kremers GJ, Demmers JAA, Ogi T, Vermeulen M, Vermeulen W, Pines A. Live cell transcription-coupled nucleotide excision repair dynamics revisited. DNA Repair (Amst) 2023; 130:103566. [PMID: 37716192 DOI: 10.1016/j.dnarep.2023.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints. In this study, we employ knock-in cell lines designed to target the endogenous CSB gene locus with mClover, a GFP variant. Through live cell imaging, we uncover the intricate molecular dynamics of CSB in response to physiologically relevant UV doses. We showed that the DNA damage-induced association of CSB with chromatin is tightly regulated by the CSA-containing ubiquitin-ligase CRL complex (CRL4CSA). Combining the CSB-mClover knock-in cell line with SILAC-based GFP-mediated complex isolation and mass-spectrometry-based proteomics, revealed novel putative CSB interactors as well as discernible variations in complex composition during distinct stages of TC-NER progression. Our work not only provides molecular insight into TC-NER, but also illustrates the versatility of endogenously tagging fluorescent and affinity tags.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Centre, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherland
| | - Tomoo Ogi
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, the Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr Molewaterplein 40, Rotterdam 3015 GD, the Netherlands.
| |
Collapse
|
4
|
Sun Z, Zhang S, Zhang N, Wang J, Wang J, Liu J. Circ_0005231 promotes the progression of esophageal squamous cell carcinoma via sponging miR-383-5p and regulating KIAA0101. Thorac Cancer 2022; 13:1751-1762. [PMID: 35524161 PMCID: PMC9200875 DOI: 10.1111/1759-7714.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) can act as key regulators in human cancers, including esophageal squamous cell carcinoma (ESCC). However, the role and mechanism of circ_0005231 in ESCC have not previously been reported. Methods RNA levels and protein levels were detected by real‐time quantitative polymerase chain reaction (RT‐qPCR) and Western blot assay, respectively. Cell proliferation was assessed by colony formation assay and 5‐ethynyl‐2'‐deoxyuridine (EdU) assay. Wound healing and transwell assays were used to assess cell migration and invasion, respectively. The intermolecular interaction was predicted by bioinformatic analysis and verified by RNA immunoprecipitation (RIP), RNA pulldown and dual‐luciferase reporter assays. Xenograft tumor model was used for exploring the biological function of circ_0005231 in vivo. Results Circ_0005231 was upregulated in ESCC plasma, tissues and cells. Cell proliferation, migration and invasion were significantly restrained by knockdown of circ_0005231 in ESCC cells. Circ_0005231 acted as a sponge of miR‐383‐5p, and circ_0005231 regulated ESCC cellular behavior by sponging miR‐383‐5p. Moreover, miR‐383‐5p directly targeted KIAA0101, and circ_0005231 positively regulated KIAA0101 expression by sponging miR‐383‐5p. Furthermore, circ_0005231 knockdown suppressed the malignant behavior of ESCC cells by downregulating KIAA0101. Importantly, knockdown of circ_0005231 blocked xenograft tumor growth in vivo. Conclusion Circ_0005231 acted as a sponge of miR‐383‐5p to promote ESCC progression by upregulating KIAA0101, which provided a potential therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Zhiguang Sun
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Shaowei Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianxin Wang
- Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Jindong Wang
- Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Liu J, He Y, Li C, Zhou R, Yuan Q, Hou J, Wu G. Increased KIAA0101 gene expression associated with poor prognosis in breast cancer. Transl Cancer Res 2022; 10:4009-4019. [PMID: 35116699 PMCID: PMC8797655 DOI: 10.21037/tcr-20-3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/14/2021] [Indexed: 12/29/2022]
Abstract
Background Breast cancer (BC) has long been a major death threat facing women worldwide. With the development of comprehensive treatment methods, the prognosis of BC was improved but still unsatisfactory. This study was aimed to identify the key genes in BC tumorigenesis and investigate potential prognostic predictors. Methods Differential expression genes were analyzed in TCGA BRCA dataset using Genevestigator software. The expression profile of target gene was explored, and the correlations between selected genes with important clinical parameters were evaluated as well. The prognostic values of target genes were also carried out through Kaplan-Meier plotter OncoLnc and BC gene-expression miner. Results KIAA0101 gene was selected for further analysis from the differential expression genes identified. At both mRNA and protein levels, the expression of KIAA0101 in BC was higher than that in normal tissues. Further analysis indicated that overexpression of KIAA0101 was significantly correlated with worse clinical outcome parameters. KIAA0101 was highly expressed in older patients, in the luminal group, and in patients with advanced stages. Moreover, BC patients with elevated KIAA0101 expression had worse overall survival (OS), relapse-free survival (RFS), distant metastasis-free survival (DMFS) and disease-free survival (DFS). Conclusions Taken together, KIAA0101 could be considered as a diagnostic biomarker or predictor for BC prognosis.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yukun He
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Zhou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Chang HH, Sun DS. Emerging role of the itaconate-mediated rescue of cellular metabolic stress. Tzu Chi Med J 2022; 34:134-138. [PMID: 35465285 PMCID: PMC9020237 DOI: 10.4103/tcmj.tcmj_79_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022] Open
Abstract
Metabolic regulations play vital roles on maintaining the homeostasis of our body. Evidence have suggested that ATF3 and nuclear factor erythroid 2–related factor 2 (NRF2) are critical for maintaining cell function, metabolism, and inflammation/anti-inflammation regulations when cells are under stress, while the upstream regulators in the stressed cells remain elusive. Recent findings have shown that tricarboxylic acid cycle metabolites such as itaconate and succinate are not just mitochondrial metabolites, but rather important signaling mediators, involving in the regulations of metabolism, immune modulation. Itaconate exerts anti-inflammatory role through regulating ATF3 and NRF2 pathways under stressed conditions. In addition, itaconate inhibits succinate dehydrogenase, succinate oxidation and thus blocking succinate-mediated inflammatory processes. These findings suggest itaconate-ATF3 and itaconate-NRF2 axes are well-coordinated machineries that facilitate the rescue against cellular stress. Here, we review these fascinating discoveries, a research field may help the development of more effective therapeutic approach to manage stress-induced inflammation, tissue damage, and metabolic disorder.
Collapse
|
7
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
8
|
Tantiwetrueangdet A, Panvichian R, Sornmayura P, Leelaudomlipi S, Macoska JA. PCNA-associated factor (KIAA0101/PCLAF) overexpression and gene copy number alterations in hepatocellular carcinoma tissues. BMC Cancer 2021; 21:295. [PMID: 33743635 PMCID: PMC7981960 DOI: 10.1186/s12885-021-07994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background PCNA-associated factor, the protein encoded by the KIAA0101/PCLAF gene, is a cell-cycle regulated oncoprotein that regulates DNA synthesis, maintenance of DNA methylation, and DNA-damage bypass, through the interaction with the human sliding clamp PCNA. KIAA0101/PCLAF is overexpressed in various cancers, including hepatocellular carcinoma (HCC). However, it remains unknown whether KIAA0101/PCLAF overexpression is coupled to gene amplification in HCC. Methods KIAA0101/PCLAF mRNA expression levels were assessed by quantitative real-time PCR (qRT-PCR) in 40 pairs of snap-frozen HCC and matched-non-cancerous tissues. KIAA0101/PCLAF gene copy numbers were evaluated by droplet digital PCR (ddPCR) in 36 pairs of the tissues, and protein expression was detected by immunohistochemistry (IHC) in 81 pairs of formalin-fixed paraffin-embedded (FFPE) tissues. The KIAA0101/PCLAF gene copy number alteration and RNA expression was compared by Spearman correlation. The relationships between KIAA0101 protein expression and other clinicopathological parameters, including Ki-67, p53, and HBsAg protein expression in HCC tissues, were evaluated using Chi-square test. Results Our results demonstrated that KIAA0101/PCLAF mRNA levels were significantly higher in HCC than in the matched-non-cancerous tissues (p < 0.0001). The high KIAA0101/PCLAF mRNA levels in HCC were associated with poor patient survival. The KIAA0101/PCLAF gene was not amplified in HCC, and KIAA0101/PCLAF gene copy numbers were not associated with KIAA0101/PCLAF transcript levels. KIAA0101 protein was overexpressed in the majority of HCC tissues (77.8%) but was not detectable in matched-non-cancerous tissues. Significant correlations between the expression of KIAA0101 protein in HCC tissues and p53 tumor suppressor protein (p = 0.002) and Ki-67 proliferation marker protein (p = 0.017) were found. However, KIAA0101 protein levels in HCC tissues were not correlated with patient age, tumor size, serum AFP level, or the HBsAg expression. Conclusions KIAA0101/PCLAF mRNA and protein overexpression is frequently observed in HCC but without concurrent KIAA0101/PCLAF gene amplification. Significant correlations between the expression of KIAA0101 protein and p53 and Ki-67 proteins were observed in this study. Thus, detection of KIAA0101/PCLAF mRNA/protein might be used, along with the detection of p53 and Ki-67 proteins, as potential biomarkers to select candidate patients for further studies of novel HCC treatment related to these targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07994-3.
Collapse
Affiliation(s)
| | - Ravat Panvichian
- Department of Internal Medicine, Division of Medical Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 Road, Rajthevi, Bangkok, 10400, Thailand.
| | - Pattana Sornmayura
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Leelaudomlipi
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
9
|
Chen Y, Jin Y, Ying H, Zhang P, Chen M, Hu X. Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol 2020; 197:343-352. [PMID: 33231712 DOI: 10.1007/s00066-020-01708-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Proliferating cell nuclear antigen-associated factor (PAF) is involved in cancer cell growth and associated with cell death induced by ultraviolet (UV) radiation. However, the contribution of PAF to radiotherapy sensitivity in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to investigate the relationship between PAF expression and radiotherapy response in NSCLC. METHODS Associations between PAF expression and patient survival outcomes were evaluated using publicly available online gene expression datasets. RNA interference was performed to knockdown PAF expression in the NSCLC cells. The effects of PAF knockdown on cell proliferation, migration, apoptosis, DNA damage, and activation of MEK/ERK and Wnt/β-catenin signaling pathways following X‑ray irradiation were evaluated in vitro. RESULTS PAF was found to be overexpressed in lung cancer tissues compared with normal samples, and elevated PAF expression was significantly correlated with inferior patient survival. In vitro, knockdown of PAF inhibited cell proliferation, cell apoptosis, and migration induced by X‑ray irradiation. Moreover, X‑ray-induced intracellular DNA strand damage was more obvious following PAF knockdown. Additionally, PAF knockdown inhibited activation of the MEK/ERK and Wnt/β-catenin signaling pathways in X‑ray-irradiated A549 cells. CONCLUSION These data demonstrate that reduced expression of PAF enhances radiosensitivity in NSCLC cells. Mechanistically, inhibition of the MEK/ERK and Wnt/β-catenin signaling pathways caused by PAF interference may lead to impaired cell function and enhance sensitivity to X‑rays. Targeting PAF may therefore serve as a potential therapeutic strategy to increase the efficiency of radiotherapy in NSCLC patients, ultimately improving patient survival.
Collapse
Affiliation(s)
- Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ying Jin
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.,Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Hangjie Ying
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Dysregulated NF-κB signal promotes the hub gene PCLAF expression to facilitate nasopharyngeal carcinoma proliferation and metastasis. Biomed Pharmacother 2020; 125:109905. [PMID: 32070873 DOI: 10.1016/j.biopha.2020.109905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is common in Southern China. The molecular mechanism underlying NPC genesis and progression has been comprehensively investigated, but the key gene (s) or pathway (s) pertaining to NPC are unidentified. METHODS We explored some key genes and pathways involved in NPC through using meta-analysis of deposited expression of microarray data of NPC. The expression of proliferating cell nuclear antigen clamp associated factor (PCLAF) was determined by real-time PCR and western blots. CCK-8 assay, colony formation assay, transwell migration assay, cell wound healing assay, cell cycle analysis and cell apoptosis were carried out to assess biological behaviors caused by downregulation and overexpression of PCLAF in vitro. CHIP was utilized to determine the direct upstream regulatory transcription factors of PCLAF. RESULTS PCLAF was the key gene of NPC, which was significantly up-regulated in NPC cell line compared to the normal nasopharyngeal cell line. Additionally, in vitro assay has demonstrated the down-regulation and overexpression of PCLAF, resulted in significantly suppressed and enhanced NPC proliferation, metastasis and invasion respectively. Furthermore, the up-regulation of PCLAF in NPC is induced by direct binding of dysregulated NF-κB p50/RelB complex to the promoter of PCLAF. CONCLUSION Our results offer a strategy for re-using the deposited data to find the key genes and pathways involved in pathogenesis of cancer. Our study has provided evidence of supporting the role of PCLAF in NPC genesis and progression.
Collapse
|
11
|
Yin S, Wang Y, Liu N, Yang M, Hu Y, Li X, Fu Y, Luo M, Sun J, Yang X. Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed Pharmacother 2019; 120:109535. [DOI: 10.1016/j.biopha.2019.109535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
|
12
|
Zhao Z, Dong Q, Liu X, Wei L, Liu L, Li Y, Wang X. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics 2019; 112:1309-1317. [PMID: 31376528 DOI: 10.1016/j.ygeno.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest process associated with aging and senescence-related diseases. DNA damage is an extensive feature of cellular senescence and aging. Different levels of DNA damage could lead to cellular senescence or transient cell-cycle arrest, but the genetic regulatory mechanisms determining cell fate are still not clear. In this work, high-resolution time course analysis of gene expression in DNA damage-induced cellular senescence and transient cell-cycle arrest was used to explore the transcriptomic differences between different cell fates after DNA damage response and to investigate the key regulatory factors affecting senescent cell fates. Pathways such as the cell cycle, DNA repair and cholesterol metabolism showed characteristic differential response. A number of key transcription factors were predicted to regulating cell cycle and DNA repair. Our study provides genome-wide insights into the molecular-level mechanisms of senescent cell fate decisions after DNA damage response.
Collapse
Affiliation(s)
- Zhen Zhao
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuehui Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Wei S, Li T, Xie R, Ye B, Xiang J, Liu K, Chen Z, Gao X. The role of ATF3 in ZnO nanoparticle-induced genotoxicity and cytotoxicity in bronchial epithelial cells. Int J Biochem Cell Biol 2019; 113:95-102. [PMID: 31220582 DOI: 10.1016/j.biocel.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
ZnO nanoparticle (ZnO NP) exposure causes oxidative stress in the respiratory system, leading to pulmonary damage. Activating transcription factor 3 (ATF3) participates in a variety of cellular stress responses. However, the role of ATF3 in ZnO NP genotoxicity and cytotoxicity remains to be explored. Here we reported that ZnO NP treatment dramatically induced the expression of ATF3 in human bronchial epithelial (HBE) cells, which was mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2). ATF3 was required for the repair of ZnO NP-induced DNA damage as gamma foci number increased when endogenous ATF3 was silenced. Moreover, ATF3 also contributed to ZnO NP-induced cell apoptosis. Mechanistic study revealed that ATF3 interacted with the p53 protein and upregulated its expression under ZnO NP treatment. Collectively, our findings demonstrated ATF3 as an important regulator of epithelial homeostasis by promoting both DNA repair and the death of damaged cells under ZnO NP-induced genotoxic stress.
Collapse
Affiliation(s)
- Saisai Wei
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tiezheng Li
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Renxiang Xie
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bingqi Ye
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Xiang
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kangli Liu
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhanghui Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Xiangwei Gao
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Kim HS, Kim YJ, Kim SJ, Kang DS, Lee TR, Shin DW, Kim HJ, Seo YR. Transcriptomic analysis of human dermal fibroblast cells reveals potential mechanisms underlying the protective effects of visible red light against damage from ultraviolet B light. J Dermatol Sci 2019; 94:276-283. [PMID: 30956030 DOI: 10.1016/j.jdermsci.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation is a major cause of skin photodamage, including the damage associated with photodermatoses, aging, and cancer. Although many studies have shown that red light has photoprotective effects on skin, the mechanisms underlying these effects are still poorly understood. OBJECTIVE The aim of this study was to identify the photoprotective effects of visible red light against UVB-induced skin damage in normal human dermal fibroblast cells using a transcriptomic approach. METHODS Next-generation sequencing-based transcriptomic analyses were used to profile transcriptomic alterations and identify genes that are differentially expressed by visible red light and by UVB exposure. To understand the biological networks among identified genes, a literature-based biological pathway analysis was performed. Quantitative real-time polymerase chain reaction assays were used for mRNA-level validation of selected key genes. RESULTS We observed that visible red light contributes to skin cell protection against UVB by modulating gene expression that enhances the adaptive response to redox and inflammatory balancing and by upregulating genes involved in DNA excision repair processes. We also identified that several key genes in the red light-induced biological network were differentially regulated. CONCLUSIONS Visible red light enhanced the UVB-protective effects in normal human skin cells via the transcriptomic modulation of genes involved in cell-protective processes. Our findings from this next-generation sequencing analysis may lead to a better understanding of the cytoprotective effects of visible red light and provide direction for further molecular or mechanistic studies.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Su Ji Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Doo Seok Kang
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical & Health Science, Konkuk University, Chungju, 27478, Korea.
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
15
|
Wang Z, Dang C, Yan R, Zhang H, Yuan D, Li K. [Screening of cell cycle-related genes regulated by KIAA0101 in gastric cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1151-1158. [PMID: 30377125 DOI: 10.3969/j.issn.1673-4254.2018.10.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To screen the genes related to cell cycle under regulation by KIAA0101 in gastric cancer. METHODS RT-PCR was used to detect the expression level of KIAA0101 gene in gastric cancer tissue and paired adjacent tissues. GO function enrichment analysis and KEGG pathway enrichment analysis were carried out using DAVID database. KEGG was used to map the pathways and the corresponding genes were analyzed. The list of genes associated with the KIAA0101 expression pattern was imported into TCGA cBioPortal to analyze the relationship between the interacting genes and generate a genetic topology map. The candidate genes were screened by RT-PCR. RESULTS The expression level of KIAA0101 mRNA was significantly higher in cancer tissues than in paired adjacent tissues (1.104 ± 0.379 vs 0.421 ± 0.172; P=0.0179). The system screened genes related with KIAA0101 from 478 tissues by pooled analysis of the expression intensity of all the gene probes. GO function analysis showed that the differential genes were mainly enriched in protein phosphorylation, RNA processing, cell cycle, DNA metabolism, protein transport, acetylation, apoptosis, proteolysis, and redox. The changes in the expression level of KIAA0101 mainly affect the gastric cancer-related pathways including cell cycle, spliceosome, DNA replication, and p53 signal transduction pathway. KEGG pathway maps and gene topology maps showed that the genes related to KIAA0101 (such as BUB1B, MAD2L1, CDC45, CDK1, CCNE1 and CCNB2) were also related to cell cycle. RT-PCR results confirmed significant increments of the expression levels of BUB1B, MAD2L, CDK1, CCNE1, and CCNB2 mRNA in gastric cancer tissues as compared with the paired adjacent gastric tissues (P < 0.05), but CDC45 mRNA did not show significant differential expression in gastric cancer tissues (P > 0.05). CONCLUSIONS KIAA0101 may affect cell cycle by regulating the expression of BUB1B, MAD2L1, CDK1, CCNE1 and CCNB2, and this finding may provide evidence for understanding how KIAA0101 affects cell cycle and for screening of tumor markers and selection of drug targets.
Collapse
Affiliation(s)
- Zhi Wang
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China.,Shaanxi Tuberculosis Hospital, Xi'an 710100, China
| | - Chengxue Dang
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | - Rong Yan
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | - Hao Zhang
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | - Dawei Yuan
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | - Kang Li
- First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| |
Collapse
|
16
|
Jin C, Liu Z, Li Y, Bu H, Wang Y, Xu Y, Qiu C, Yan S, Yuan C, Li R, Diao N, Zhang Z, Wang X, Liu L, Kong B. PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer 2018; 143:2973-2984. [PMID: 30129654 DOI: 10.1002/ijc.31800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/24/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chengjuan Jin
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
- Department of Obstetrics and Gynecology; Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University; 650 XinSongjiang Road, Shanghai People's Republic of China
| | - Zhaojian Liu
- Department of Cell Biology; Shandong University School of Medicine; 44 Wenhua Xi Road, Jinan China
| | - Yingwei Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Hualei Bu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Yu Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Ying Xu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Shi Yan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Rongrong Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Nannan Diao
- Institute of Diagnostics, School of Medicine; Shandong University; 44 Wenhua Xi Road, Jinan China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Lidong Liu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Beihua Kong
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| |
Collapse
|
17
|
Liu L, Liu Y, Chen X, Wang M, Zhou Y, Zhou P, Li W, Zhu F. Variant 2 of KIAA0101, antagonizing its oncogenic variant 1, might be a potential therapeutic strategy in hepatocellular carcinoma. Oncotarget 2018; 8:43990-44003. [PMID: 28410205 PMCID: PMC5546456 DOI: 10.18632/oncotarget.16702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide and effective therapies, including molecular therapy, remain elusive. Our previous work demonstrates that oncogenic KIAA0101 transcript variant (tv) 1 promotes HCC development and might be a HCC therapeutic target. However, the function of another KIAA0101 variant, KIAA0101 tv2, remains unknown. In this study, we reported that KIAA0101 tv2 was highly expressed in adjacent non-tumorous liver tissues (NTs) compared to HCC tissues. In vivo and in vitro results showed that KIAA0101 tv2 decreased cell survival, colony formation, tumor xenografts, migration, and invasion, as well as induced cell cycle arrest and apoptosis. Interestingly, it could inhibit the function of KIAA0101 tv1 by partially down-regulating KIAA0101 tv1, acting similar to KIAA0101 tv1 short hairpin RNA (shRNA). Further studies illustrated that KIAA0101 tv2 could increase the activity of p53 by competing with KIAA0101 tv1 for P53 binding. In conclusion, KIAA0101 tv2 exerts anti-tumor activity in HCC and acts as an endogenous competitor of tumor-associated KIAA0101 tv1. KIAA0101 tv2 has a potential to work as a therapeutic drug targeting the KIAA0101 tv1 in HCC.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Youyi Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Miao Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Wenxin Li
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, P.R. China
| |
Collapse
|
18
|
Yan R, Zhu K, Dang C, Lan K, Wang H, Yuan D, Chen W, Meltzer SJ, Li K. Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget 2018; 7:38750-38761. [PMID: 27246972 PMCID: PMC5122426 DOI: 10.18632/oncotarget.9606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Paf15, which participates in DNA repair, is overexpressed in numerous solid tumors. Blocking of Paf15 inhibits the growth of many types of cancer cells; while simultaneously enhancing cellular sensitivity to UV radiation. However, its expression and function in rectal cancer (RC) remain unknown. The current study was undertaken to assess the association of Paf15 expression with RC prognosis, as well as to explore the participation of Paf15 in the response of RC cells to irradiation. Increased Paf15 expression was observed in RC tissues and associated with pTNM stage and poor survival. In vitro, Paf15 induced increased RC cell proliferation while accelerating cell cycle progression, inhibiting cell death, and protecting against gamma radiation-induced DNA damage in RC cells. In conclusion, increased Paf15 expression is associated with increased RC proliferation, decreased patient survival, and a worse radiotherapeutic response.
Collapse
Affiliation(s)
- Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.,Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Ke Lan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Stephen J Meltzer
- Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Shen J, Lin H, Li G, Jin RA, Shi L, Chen M, Chang C, Cai X. TR4 nuclear receptor enhances the cisplatin chemo-sensitivity via altering the ATF3 expression to better suppress HCC cell growth. Oncotarget 2017; 7:32088-99. [PMID: 27050071 PMCID: PMC5077999 DOI: 10.18632/oncotarget.8525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
Early studies indicated that TR4 nuclear receptor (TR4) may play a key role to modulate the prostate cancer progression, its potential linkage to liver cancer progression, however, remains unclear. Here we found that higher TR4 expression in hepatocellular carcinoma (HCC) cells might enhance the efficacy of cisplatin chemotherapy to better suppress the HCC progression. Knocking down TR4 with TR4-siRNA in HCC Huh7 and Hep3B cells increased cisplatin chemotherapy resistance and overexpression of TR4 with TR4-cDNA in HCC LM3 and SNU387 cells increased cisplatin chemotherapy sensitivity. Mechanism dissection found that TR4 might function through altering the ATF3 expression at the transcriptional level to enhance the cisplatin chemotherapy sensitivity, and interrupting ATF3 expression via ATF3-siRNA reversed TR4-enhanced cisplatin chemotherapy sensitivity in HCC cells. The in vivo HCC mouse model using xenografted HCC LM3 cells also confirmed in vitro cell lines data showing TR4 enhanced the cisplatin chemotherapy sensitivity. Together, these results provided a new potential therapeutic approach via altering the TR4-ATF3 signals to increase the efficacy of cisplatin to better suppress the HCC progression.
Collapse
Affiliation(s)
- Jiliang Shen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ren-An Jin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mingming Chen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
20
|
Wang Z, He Y, Deng W, Lang L, Yang H, Jin B, Kolhe R, Ding HF, Zhang J, Hai T, Yan C. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene 2017; 37:18-27. [PMID: 28869597 PMCID: PMC6179156 DOI: 10.1038/onc.2017.310] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mice lacking genes involving in the DNA damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3-/-) mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3+/+) mice. Consistent with these results, Atf3-/- mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53+/- mice, but did not affect tumor formation in Trp53-/- mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Z Wang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Y He
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - W Deng
- State Key Laboratory of Oncology in South China, Collaboration Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - L Lang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - H Yang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - B Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - R Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H-F Ding
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - C Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
21
|
Li G, Luna C, Gonzalez P. miR-183 Inhibits UV-Induced DNA Damage Repair in Human Trabecular Meshwork Cells by Targeting of KIAA0101. Invest Ophthalmol Vis Sci 2016; 57:2178-86. [PMID: 27116545 PMCID: PMC4849888 DOI: 10.1167/iovs.15-18665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study was to investigate the mechanisms by which miR-183 may contribute to the phenotypic alterations associated with stress-induced senescence of human trabecular meshwork (HTM) cells. Methods Changes in gene expression induced by miR-183 in HTM cells were evaluated by gene array analysis, confirmed by quantitative-PCR (Q-PCR), and analyzed by MetaCore pathway analysis. Effects of miR-183 on cell proliferation were assessed by incorporation of bromodeoxyuridine incorporation, and DNA damage by CometAssay after ultraviolet (UV) irradiation in primary HTM cells, and confirmed in human diploid fibroblasts (HDF) and HeLa cells. A plasmid expressing KIAA0101 without its 3′-untranslated region (3′-UTR) was cotransfected with miR-183 to evaluate the role of KIAA0101 on the effects induced by miR-183. Results miR-183 affected the expression of multiple genes involved in cell cycle regulation and DNA damage response in HTM cells. Forced expression of miR-183 in HTM and HDF resulted in a significant decrease in proliferation in primary HTM and HDF cells but not in HeLa cells. In all cell types tested, overexpression of miR-183 resulted in increased DNA damage under UV irradiation. Expression of KIAA0101 lacking the 3′-UTR region partially prevented the effects of miR-183 on cell proliferation and completely reversed the effects on UV-induced DNA damage. Conclusions Our results suggest that the observed up-regulation of miR-183 after stress-induced senescence in HTM cells may contribute to reinforce cellular senescence by inhibiting cell cycle progression through multiple gene targets and limiting the DNA repair mechanisms through inhibition of KIAA0101.
Collapse
|
22
|
Zhang HF, Alshareef A, Wu C, Jiao JW, Sorensen PH, Lai R, Xu LY, Li EM. miR-200b induces cell cycle arrest and represses cell growth in esophageal squamous cell carcinoma. Carcinogenesis 2016; 37:858-869. [PMID: 27496804 PMCID: PMC5008252 DOI: 10.1093/carcin/bgw079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/12/2016] [Accepted: 07/30/2016] [Indexed: 02/05/2023] Open
Abstract
miR-200b is a pleiotropically acting microRNA in cancer progression, representing an attractive therapeutic target. We previously identified miR-200b as an invasiveness repressor in esophageal squamous cell carcinoma (ESCC), whereas further understanding is warranted to establish it as a therapeutic target. Here, we show that miR-200b mitigates ESCC cell growth by inducing G2-phase cell cycle arrest and apoptosis. The expression/activation of multiple key cell cycle regulators such as CDK1, CDK2, CDK4 and Cyclin B, and the Wnt/β-Catenin signaling are modulated by miR-200b. We identified CDK2 and PAF (PCNA-associated factor), two important tumor-promoting factors, as direct miR-200b targets in ESCC. Correlating with the frequent loss of miR-200b in ESCC, both CDK2 and PAF levels are significantly increased in ESCC tumors compared to case-matched normal tissues (n = 119, both P < 0.0001), and correlate with markedly reduced survival (P = 0.007 and P = 0.041, respectively). Furthermore, CDK2 and PAF are also associated with poor prognosis in certain subtypes of breast cancer (n = 1802) and gastric cancer (n = 233). Although CDK2 could not significantly mediate the biological function of miR-200b, PAF siRNA knockdown phenocopied while restored expression of PAF abrogated the biological effects of miR-200b on ESCC cells. Moreover, PAF was revealed to mediate the inhibitory effects of miR-200b on Wnt/β-Catenin signaling. Collectively, the pleiotropic effects of miR-200b in ESCC highlight its potential for therapeutic intervention in this aggressive disease.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada and
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ji-Wei Jiao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada and
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- *To whom correspondence should be addressed. Tel: +86 754 88900464; Fax: +86 754 88900847;
| |
Collapse
|
23
|
Quan M, Liu S, Wang Q, Li G, Zhang Y, Feng S, Liang J, Cheng J. NS5ATP9 Promotes Beclin 1-Dependent Starvation-Induced Autophagy of Hepatoblastoma Cells. J Cell Biochem 2016; 116:1574-82. [PMID: 25649430 DOI: 10.1002/jcb.25111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022]
Abstract
NS5ATP9, a gene up-regulated by NS5A, plays a crucial oncogenic role in several types of human tumours. However, the underlying mechanisms remain unclear. Autophagy, an evolutionarily conserved catabolic process, maintains cellular homeostasis under stress conditions, such as starvation, and plays a crucial role in tumour initiation and progression. Here, we report that NS5ATP9 mRNA and protein expression was up-regulated in starved HepG2 cells and that the up-regulated NS5ATP9 played a functional role in starvation-induced autophagy. Overexpression or silencing of this gene showed contrasting effects on Beclin 1 and on starvation-induced autophagy. Furthermore, NS5ATP9-mediated autophagy is required for promotion of tumour cell growth, and this effect could be inhibited with 3-methyladenine, chloroquine or by Beclin 1-silencing. Thus, the mechanism for NS5ATP9-promoted autophagy is Beclin 1-dependent in the condition of starvation, and for hepatoblastoma cell growth is also Beclin 1-dependent.
Collapse
Affiliation(s)
- Min Quan
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Guoli Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yu Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shenghu Feng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jinqiu Liang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|
24
|
Cui H, Li X, Han C, Wang QE, Wang H, Ding HF, Zhang J, Yan C. The Stress-responsive Gene ATF3 Mediates Dichotomous UV Responses by Regulating the Tip60 and p53 Proteins. J Biol Chem 2016; 291:10847-57. [PMID: 26994140 DOI: 10.1074/jbc.m115.713099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.
Collapse
Affiliation(s)
| | | | - Chunhua Han
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Hongbo Wang
- the Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China, and
| | - Han-Fei Ding
- From the Georgia Cancer Center and Departments of Pathology and
| | - Junran Zhang
- the Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chunhong Yan
- From the Georgia Cancer Center and Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912,
| |
Collapse
|
25
|
NS5ATP9 suppresses activation of human hepatic stellate cells, possibly via inhibition of Smad3/phosphorylated-Smad3 expression. Inflammation 2015; 38:278-89. [PMID: 25300817 DOI: 10.1007/s10753-014-0031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of hepatic stellate cell (HSC) is the central event in liver fibrosis. NS5ATP9 is related to many malignant tumors, but little is known about its function in HSC activation. The aim of this study is to investigate the role of NS5ATP9 in HSC activation in vitro. Genes related to liver fibrosis were detected after NS5ATP9 overexpression or silencing with or without transforming growth factor (TGF)-β1 stimulation in the human HSCs by real-time polymerase chain reaction and western blotting. Cell proliferation, migration, and apoptosis were tested, and the mechanisms underlying the effect of NS5ATP9 on HSC activation were studied. We showed that NS5ATP9 suppressed HSC activation and collagen production, with or without TGF-β1 induction. Also, NS5ATP9 inhibited cell proliferation and migration and promoted apoptosis. Furthermore, NS5ATP9 reduced basal and TGF-β1-mediated Smad3/phosphorylated-Smad3 expression. The existence of a physical complex between NS5ATP9 and Smad3 was illustrated. NS5ATP9 suppresses HSC activation, extracellular matrix production, and promotes apoptosis, in part through reducing Smad3/phosphorylated-Smad3 expression.
Collapse
|
26
|
Cui H, Guo M, Xu D, Ding ZC, Zhou G, Ding HF, Zhang J, Tang Y, Yan C. The stress-responsive gene ATF3 regulates the histone acetyltransferase Tip60. Nat Commun 2015; 6:6752. [PMID: 25865756 PMCID: PMC4407828 DOI: 10.1038/ncomms7752] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Tat-interactive protein 60 (Tip60) is a MYST histone acetyltransferase that catalyzes acetylation of the major DNA damage kinase ATM, thereby triggering cellular signaling required for the maintenance of genomic stability upon genotoxic insults. The Tip60 activity is modulated by posttranslational modifications that alter its stability and its interactions with substrates. Here we report that activating transcription factor 3 (ATF3), a common stress mediator and a p53 activator, is a regulator of Tip60. ATF3 directly binds Tip60 at a region adjacent to the catalytic domain to promote the protein acetyltransferase activity. Moreover, the ATF3-Tip60 interaction increases the Tip60 stability by promoting USP7-mediated deubiquitination of Tip60. Consequently, knockdown of ATF3 expression leads to decreased Tip60 expression and suppression of ATM signaling as evidenced by accumulated DNA lesions and increased cell sensitivity to irradiation. Our findings thus reveal a previously unknown function of a common stress mediator in regulating Tip60 function.
Collapse
Affiliation(s)
- Hongmei Cui
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Mingxiong Guo
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Dong Xu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Zhi-Chun Ding
- GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Gang Zhou
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Han-Fei Ding
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Department of Pathology, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yi Tang
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Chunhong Yan
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA [3] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| |
Collapse
|
27
|
Deng S, Yan T, Nikolova T, Fuhrmann D, Nemecek A, Gödtel-Armbrust U, Kaina B, Wojnowski L. The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells. Br J Pharmacol 2015; 172:2246-57. [PMID: 25521189 DOI: 10.1111/bph.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The catalytic topoisomerase II inhibitor dexrazoxane has been associated not only with improved cancer patient survival but also with secondary malignancies and reduced tumour response. EXPERIMENTAL APPROACH We investigated the DNA damage response and the role of the activating transcription factor 3 (ATF3) accumulation in tumour cells exposed to dexrazoxane. KEY RESULTS Dexrazoxane exposure induced topoisomerase IIα (TOP2A)-dependent cell death, γ-H2AX accumulation and increased tail moment in neutral comet assays. Dexrazoxane induced DNA damage responses, shown by enhanced levels of γ-H2AX/53BP1 foci, ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), Chk1 and Chk2 phosphorylation, and by p53 accumulation. Dexrazoxane-induced γ-H2AX accumulation was dependent on ATM. ATF3 protein was induced by dexrazoxane in a concentration- and time-dependent manner, which was abolished in TOP2A-depleted cells and in cells pre-incubated with ATM inhibitor. Knockdown of ATF3 gene expression by siRNA triggered apoptosis in control cells and diminished the p53 protein level in both control and dexrazoxane -treated cells. This was accompanied by increased γ-H2AX accumulation. ATF3 knockdown also delayed the repair of dexrazoxane -induced DNA double-strand breaks. CONCLUSIONS AND IMPLICATIONS As with other TOP2A poisons, dexrazoxane induced DNA double-strand breaks followed by activation of the DNA damage response. The DNA damage-triggered ATF3 controlled p53 accumulation and generation of double-strand breaks and is proposed to serve as a switch between DNA damage and cell death following dexrazoxane treatment. These findings suggest a mechanistic explanation for the diverse clinical observations associated with dexrazoxane.
Collapse
Affiliation(s)
- Shiwei Deng
- Institute of Pharmacology, Medical Center of the University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
De Biasio A, Ibáñez de Opakua A, Cordeiro TN, Villate M, Merino N, Sibille N, Lelli M, Diercks T, Bernadó P, Blanco FJ. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins. Biophys J 2014; 106:865-74. [PMID: 24559989 DOI: 10.1016/j.bpj.2013.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 11/16/2022] Open
Abstract
We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF).
Collapse
Affiliation(s)
- Alfredo De Biasio
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Alain Ibáñez de Opakua
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Tiago N Cordeiro
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Maider Villate
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Moreno Lelli
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Institut de Sciences Analytiques (CNRS/Ecole Normale Supérieure de Lyon/Université Claude Bernard Lyon 1), Villeurbanne, France
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Francisco J Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
29
|
Quan M, Liu S, Li G, Wang Q, Zhang J, Zhang M, Li M, Gao P, Feng S, Cheng J. A functional role for NS5ATP9 in the induction of HCV NS5A-mediated autophagy. J Viral Hepat 2014; 21:405-15. [PMID: 24750205 DOI: 10.1111/jvh.12155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy has been shown to facilitate replication of hepatitis C virus (HCV); however, the mechanism by which HCV induces autophagy has not been fully established. NS5A, a nonstructural protein expressed by HCV, regulates numerous cellular pathways, including autophagy, by up-regulating Beclin 1; however, the underlying mechanism remains unclear. To obtain new insights into HCV-regulated autophagy, NS5ATP9 was overexpressed in HepG2 and L02 cells, resulting in up-regulation of endogenous Beclin 1 mRNA and protein levels, respectively. The luciferase-reporter assay results showed that both NS5A and NS5ATP9 could transactivate Beclin 1 promoter activity, but that NS5A could not transactivate the Beclin 1 promoter in NS5ATP9-silenced HepG2 and L02 cells. Up-regulation of Beclin 1 mRNA and protein expression by NS5A could also be attenuated by NS5ATP9 knock-down. Furthermore, the HepG2 and L02 cells that transiently overexpressed NS5ATP9 had enhanced accumulation of vacuoles carrying the autophagy marker LC3, consistent with the conversion of endogenous LC3-I to LC3-II. In contrast, the conversion of endogenous LC3-I to LC3-II could not be enhanced by NS5A in NS5ATP9-silenced HepG2 cells. These results highlight an important potential role for NS5ATP9 in HCV NS5A-induced hepatocyte autophagy.
Collapse
Affiliation(s)
- M Quan
- Beijing Ditan Hospital, Peking University Teaching Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie C, Yao M, Dong Q. Proliferating cell unclear antigen-associated factor (PAF15): A novel oncogene. Int J Biochem Cell Biol 2014; 50:127-31. [DOI: 10.1016/j.biocel.2014.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 01/30/2023]
|
31
|
SAP domain-dependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients. Mol Cancer 2014; 13:22. [PMID: 24495796 PMCID: PMC3933235 DOI: 10.1186/1476-4598-13-22] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background The main cause of death of breast cancer patients is not the primary tumor itself but the metastatic disease. Identifying breast cancer-specific signatures for metastasis and learning more about the nature of the genes involved in the metastatic process would 1) improve our understanding of the mechanisms of cancer progression and 2) reveal new therapeutic targets. Previous studies showed that the transcriptional regulator megakaryoblastic leukemia-1 (Mkl1) induces tenascin-C expression in normal and transformed mammary epithelial cells. Tenascin-C is known to be expressed in metastatic niches, is highly induced in cancer stroma and promotes breast cancer metastasis to the lung. Methods Using HC11 mammary epithelial cells overexpressing different Mkl1 constructs, we devised a subtractive transcript profiling screen to identify the mechanism by which Mkl1 induces a gene set co-regulated with tenascin-C. We performed computational analysis of the Mkl1 target genes and used cell biological experiments to confirm the effect of these gene products on cell behavior. To analyze whether this gene set is prognostic of accelerated cancer progression in human patients, we used the bioinformatics tool GOBO that allowed us to investigate a large breast tumor data set linked to patient data. Results We discovered a breast cancer-specific set of genes including tenascin-C, which is regulated by Mkl1 in a SAP domain-dependent, serum response factor-independent manner and is strongly implicated in cell proliferation, cell motility and cancer. Downregulation of this set of transcripts by overexpression of Mkl1 lacking the SAP domain inhibited cell growth and cell migration. Many of these genes are direct Mkl1 targets since their promoter-reporter constructs were induced by Mkl1 in a SAP domain-dependent manner. Transcripts, most strongly reduced in the absence of the SAP domain were mechanoresponsive. Finally, expression of this gene set is associated with high-proliferative poor-outcome classes in human breast cancer and a strongly reduced survival rate for patients independent of tumor grade. Conclusions This study highlights a crucial role for the transcriptional regulator Mkl1 and its SAP domain during breast cancer progression. We identified a novel gene set that correlates with bad prognosis and thus may help in deciding the rigor of therapy.
Collapse
|
32
|
Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc Natl Acad Sci U S A 2013; 110:E2261-70. [PMID: 23733932 DOI: 10.1073/pnas.1220071110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.
Collapse
|
33
|
Chang CN, Feng MJ, Chen YL, Yuan RH, Jeng YM. p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression. PLoS One 2013; 8:e61196. [PMID: 23593430 PMCID: PMC3617190 DOI: 10.1371/journal.pone.0061196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
The p15(PAF)/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA)-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF) expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF) expression peaks during the S phase of the cell cycle. We observed that p15(PAF) knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF) resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF) promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF) expression. Binding of E2F4 and E2F6 to the p15(PAF) promoter caused transcriptional repression. Overall, these results indicate that p15(PAF) is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF) upregulation, which facilitates DNA synthesis and S-phase progression.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Mow-Jung Feng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chen
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Zhu K, Diao D, Dang C, Shi L, Wang J, Yan R, Yuan D, Li K. Elevated KIAA0101 expression is a marker of recurrence in human gastric cancer. Cancer Sci 2013; 104:353-9. [PMID: 23240630 DOI: 10.1111/cas.12083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/29/2012] [Accepted: 12/15/2012] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with a high rate of recurrence, which results in surgery being unsuccessful. Therefore, it is important to find the reason for the surgery failing. The purpose of the present study was to investigate a factor related to recurrence. Expression of KIAA0101 was assessed in 61 paired human primary GC and non-cancerous gastric tissue using immunohistochemistry. After surgery, all 61 patients were followed regularly for more than 24 months or until death to analyze the 2-year survival rate and recurrence. After suppressing KIAA0101 by RNA interference in human GC cell lines, the cell viability was detected using MTT. We are first to find that KIAA0101 was elevated in GC tissues compared with paired non-cancerous gastric tissues. Immunohistochemical staining also revealed the predominant nuclear localization of KIAA0101 protein. Despite these findings, GC patients with elevated KIAA0101 expression levels exhibited a high recurrence and subsequently poor prognosis in the survival study. Also, cell viability was significantly inhibited after suppressing KIAA0101 in GC cells, suggesting that KIAA0101 might promote cancer cell proliferation. KIAA0101 is increased in human GC and is a marker of recurrence.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Baines KJ, Hsu ACY, Tooze M, Gunawardhana LP, Gibson PG, Wark PAB. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD. Respir Res 2013; 14:15. [PMID: 23384071 PMCID: PMC3570361 DOI: 10.1186/1465-9921-14-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/31/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. METHODS Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. RESULTS COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. CONCLUSIONS COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD.
Collapse
Affiliation(s)
- Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Diseases, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Liu L, Chen X, Xie S, Zhang C, Qiu Z, Zhu F. Variant 1 of KIAA0101, overexpressed in hepatocellular carcinoma, prevents doxorubicin-induced apoptosis by inhibiting p53 activation. Hepatology 2012; 56:1760-9. [PMID: 22576474 DOI: 10.1002/hep.25834] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED KIAA0101 overexpression was detected in numerous malignant solid tumors and involved in tumor progression; however, the correlation between KIAA0101 expression level and human hepatocellular carcinoma (HCC) was controversial. Our data revealed abnormal expression of the KIAA0101 transcript variant 1 (KIAA0101 tv1) at both messenger RNA and protein levels in HCC tissues and cell lines assessed by semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), virtual northern blot, western blot, and immunohistochemical analysis, especially in stage 3-4 HCCs. NIH3T3 cells transfected with KIAA0101 tv1 induced colony formation in vitro and tumor xenorafts in vivo, implying the oncogenic potential of KIAA0101 tv1. Semiquantitative RT-PCR, real-time quantitative RT-PCR, and western blot analysis demonstrated that doxorubicin (Adriamycin, ADR) treatment down-regulated expression of the KIAA0101 tv1, whereas it increased the acetylation of the p53 protein. Additionally, KIAA0101 tv1 prevented cells from apoptosis caused by ADR through suppressing the acetylation of p53 at Lys382. Immunoprecipitation analysis and mammalian two-hybrid assay indicated that KIAA0101 tv1 bound to the transactivation region (1-42 amino acids) of p53 and strongly inhibits its transcriptional activity. Taken together, our data suggest that KIAA0101 tv1 played an important role in the late stage of metastatic HCC and prevented apoptosis after chemotherapeutic drug treatment through inhibiting the transcriptional activity of the p53 gene. CONCLUSION KIAA0101 tv1 may function as a regulator, promoting cell survival in HCC through regulating the function of p53. Suppression of the KIAA0101 tv1 function is likely to be a promising strategy to develop novel cancer therapeutic drugs.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Cui X, Zhang J, Du R, Wang L, Archacki S, Zhang Y, Yuan M, Ke T, Li H, Li D, Li C, Li DWC, Tang Z, Yin Z, Liu M. HSF4 is involved in DNA damage repair through regulation of Rad51. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1308-15. [PMID: 22587838 DOI: 10.1016/j.bbadis.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Heat shock factor protein 4 (HSF4) is expressed exclusively in the ocular lens and plays a critical role in the lens formation and differentiation. Mutations in the HSF4 gene lead to congenital and senile cataract. However, the molecular mechanisms causing this disease have not been well characterized. DNA damage in lens is a crucial risk factor in senile cataract formation, and its timely repair is essential for maintaining the lens' transparency. Our study firstly found evidence that HSF4 contributes to the repair of DNA strand breaks. Yet, this does not occur with cataract causative mutations in HSF4. We verify that DNA damage repair is mediated by the binding of HSF4 to a heat shock element in the Rad51 promoter, a gene which assists in the homologous recombination (HR) repair of DNA strand breaks. HSF4 up-regulates Rad51 expression while mutations in HSF4 fail, and DNA does not get repaired. Camptothecin, which interrupts the regulation of Rad51 by HSF4, also affects DNA damage repair. Additionally, with HSF4 knockdown in the lens of Zebrafish, DNA damage was observed and the protein level of Rad51 was significantly lower. Our study presents the first evidence demonstrating that HSF4 plays a role in DNA damage repair and may contribute a better understanding of congenital cataract formation.
Collapse
Affiliation(s)
- Xiukun Cui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet 2011; 7:e1002405. [PMID: 22174697 PMCID: PMC3234220 DOI: 10.1371/journal.pgen.1002405] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/17/2011] [Indexed: 12/11/2022] Open
Abstract
Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR–deficient Csa−/− and Csb−/− CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER–deficient Xpa−/− and Xpc−/− XP mice, but also occurred in XpdXPCS mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR–deficient mice are compatible with focal dysmyelination in CS patients. Both TCR–deficient and NER–deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa−/−, Csb−/−) or highly sporadic (Xpa−/−, Xpc−/−) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR–deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa−/− and Csb−/− TCR–deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR–deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival. Metabolism produces reactive oxygen species that damage our DNA and other cellular components, and as such it contributes to the aging process, including neuronal degeneration. Accordingly, genetic disorders associated with impaired DNA damage repair are frequently associated with premature onset of aging pathology in a variety of tissues, including the brain. This is well-illustrated by the progeroid DNA repair syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS), in which patients suffer from defects in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively. We have used a panel of XP and CS mice (including conditional double-mutant animals) to systematically investigate the impact of NER and TCR defects on neuronal degeneration. We have shown that, whereas a TCR defect causes white matter pathology, a NER defect can result in age related cumulative loss of neurons. These findings well match the neuropathology observed in CS and XP patients, underscoring the impact of spontaneous DNA damage in the onset of neuronal aging. Therefore, the XP and CS mouse models serve as valuable tools to delineate intervention strategies that combat age-associated pathology of the brain.
Collapse
|
39
|
Jain M, Zhang L, Patterson EE, Kebebew E. KIAA0101 is overexpressed, and promotes growth and invasion in adrenal cancer. PLoS One 2011; 6:e26866. [PMID: 22096502 PMCID: PMC3214018 DOI: 10.1371/journal.pone.0026866] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022] Open
Abstract
Background KIAA0101 is a proliferating cell nuclear antigen-associated factor that is overexpressed in some human malignancies. Adrenocortical neoplasm is one of the most common human neoplasms for which the molecular causes are poorly understood. Moreover, it is difficult to distinguish between localized benign and malignant adrenocortical tumors. For these reasons, we studied the expression, function and possible mechanism of dysregulation of KIAA0101 in human adrenocortical neoplasm. Methodology/Principal Findings KIAA0101 mRNA and protein expression levels were determined in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 adrenocortical carcinoma (ACC). SiRNA knockdown was used to determine the functional role of KIAA0101 on cell proliferation, cell cycle, apoptosis, soft agar anchorage independent growth and invasion in the ACC cell line, NCI-H295R. In addition, we explored the mechanism of KIAA0101 dysregulation by examining the mutational status. KIAA0101 mRNA (9.7 fold) and protein expression were significantly higher in ACC (p<0.0001). KIAA0101 had sparse protein expression in only a few normal adrenal cortex samples, which was confined to adrenocortical progenitor cells. KIAA0101 expression levels were 84% accurate for distinguishing between ACC and normal and benign adrenocortical tumor samples. Knockdown of KIAA0101 gene expression significantly decreased anchorage independent growth by 80% and invasion by 60% (p = 0.001; p = 0.006). We found no mutations in KIAA0101 in ACC. Conclusions/Significance KIAA0101 is overexpressed in ACC. Our data supports that KIAA0101 is a marker of cellular proliferation, promotes growth and invasion, and is a good diagnostic marker for distinguishing benign from malignant adrenocortical neoplasm.
Collapse
Affiliation(s)
- Meenu Jain
- Endocrine Oncology Section, Surgery Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | | | | |
Collapse
|
40
|
Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 2011; 31:12543-53. [PMID: 21880916 DOI: 10.1523/jneurosci.1589-11.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.
Collapse
|
41
|
Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol Cell 2011; 42:744-57. [PMID: 21700221 DOI: 10.1016/j.molcel.2011.04.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/05/2011] [Accepted: 04/13/2011] [Indexed: 01/24/2023]
Abstract
Processive reactions, such as transcription or translation, often proceed through distinct initiation and elongation phases. The processive formation of polymeric ubiquitin chains can accordingly be catalyzed by specialized initiating and elongating E2 enzymes, but the functional significance for this division of labor has remained unclear. Here, we have identified sequence motifs in several substrates of the anaphase-promoting complex (APC/C) that are required for efficient chain initiation by its E2 Ube2C. Differences in the quality and accessibility of these chain initiation motifs can determine the rate of a substrate's degradation without affecting its affinity for the APC/C, a mechanism used by the APC/C to control the timing of substrate proteolysis during the cell cycle. Based on our results, we propose that initiation motifs and their cognate E2s allow E3 enzymes to exert precise temporal control over substrate degradation.
Collapse
|
42
|
Amrani YM, Gill J, Matevossian A, Alonzo ES, Yang C, Shieh JH, Moore MA, Park CY, Sant'Angelo DB, Denzin LK. The Paf oncogene is essential for hematopoietic stem cell function and development. ACTA ACUST UNITED AC 2011; 208:1757-65. [PMID: 21844206 PMCID: PMC3171089 DOI: 10.1084/jem.20102170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Paf oncogene is highly expressed in cycling hematopoietic stem cells (HSCs) and is required for the development of long-term HSCs. Hematopoietic stem cells (HSCs) self-renew to maintain the lifelong production of all blood populations. Here, we show that the proliferating cell nuclear antigen–associated factor (Paf) is highly expressed in cycling bone marrow HSCs and plays a critical role in hematopoiesis. Mice lacking Paf exhibited reduced bone marrow cellularity; reduced numbers of HSCs and committed progenitors; and leukopenia. These phenotypes are caused by a cell-intrinsic blockage in the development of long-term (LT)-HSCs into multipotent progenitors and preferential loss of lymphoid progenitors caused by markedly increased p53-mediated apoptosis. In addition, LT-HSCs from Paf−/− mice had increased levels of reactive oxygen species (ROS), failed to maintain quiescence, and were unable to support LT hematopoiesis. The loss of lymphoid progenitors was likely due the increased levels of ROS in LT-HSCs caused by treatment of Paf−/− mice with the anti-oxidant N-acetylcysteine restored lymphoid progenitor numbers to that of Paf+/+ mice. Collectively, our studies identify Paf as a novel and essential regulator of early hematopoiesis.
Collapse
Affiliation(s)
- Yacine M Amrani
- Immunology Program, Sloan-Kettering Institute, 3 Department of Pediatrics, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu K, Zhou Y, Qiu W, Liu X, Xia M, Liu L, Liu X, Zhao D, Wang Y. Activating transcription factor 3 (ATF3) promotes sublytic C5b-9-induced glomerular mesangial cells apoptosis through up-regulation of Gadd45α and KLF6 gene expression. Immunobiology 2011; 216:871-81. [DOI: 10.1016/j.imbio.2011.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
|
44
|
Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S, Iorio F, Oliva G, Polishchuck R, Brunetti-Pierri N, di Bernardo D. Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 2011; 39:8677-88. [PMID: 21785136 PMCID: PMC3203605 DOI: 10.1093/nar/gkr593] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We collected a massive and heterogeneous dataset of 20 255 gene expression profiles (GEPs) from a variety of human samples and experimental conditions, as well as 8895 GEPs from mouse samples. We developed a mutual information (MI) reverse-engineering approach to quantify the extent to which the mRNA levels of two genes are related to each other across the dataset. The resulting networks consist of 4 817 629 connections among 20 255 transcripts in human and 14 461 095 connections among 45 101 transcripts in mouse, with a inter-species conservation of 12%. The inferred connections were compared against known interactions to assess their biological significance. We experimentally validated a subset of not previously described protein–protein interactions. We discovered co-expressed modules within the networks, consisting of genes strongly connected to each other, which carry out specific biological functions, and tend to be in physical proximity at the chromatin level in the nucleus. We show that the network can be used to predict the biological function and subcellular localization of a protein, and to elucidate the function of a disease gene. We experimentally verified that granulin precursor (GRN) gene, whose mutations cause frontotemporal lobar degeneration, is involved in lysosome function. We have developed an online tool to explore the human and mouse gene networks.
Collapse
Affiliation(s)
- Vincenzo Belcastro
- Telethon Institute of Genetics and Medicine, Via P. Castellino, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kais Z, Barsky SH, Mathsyaraja H, Zha A, Ransburgh DJR, He G, Pilarski RT, Shapiro CL, Huang K, Parvin JD. KIAA0101 interacts with BRCA1 and regulates centrosome number. Mol Cancer Res 2011; 9:1091-9. [PMID: 21673012 DOI: 10.1158/1541-7786.mcr-10-0503] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To find genes and proteins that collaborate with BRCA1 or BRCA2 in the pathogenesis of breast cancer, we used an informatics approach and found a candidate BRCA interactor, KIAA0101, to function like BRCA1 in exerting a powerful control over centrosome number. The effect of KIAA0101 on centrosomes is likely direct, as its depletion does not affect the cell cycle, KIAA0101 localizes to regions coincident with the centrosomes, and KIAA0101 binds to BRCA1. We analyzed whether KIAA0101 protein is overexpressed in breast cancer tumor samples in tissue microarrays, and we found that overexpression of KIAA0101 correlated with positive Ki67 staining, a biomarker associated with increased disease severity. Furthermore, overexpression of the KIAA0101 gene in breast tumors was found to be associated with significantly decreased survival time. This study identifies KIAA0101 as a protein important for breast tumorigenesis, and as this factor has been reported as a UV repair factor, it may link the UV damage response to centrosome control.
Collapse
Affiliation(s)
- Zeina Kais
- Molecular, Cellular, and Development Program, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc Natl Acad Sci U S A 2011; 108:9845-50. [PMID: 21628590 DOI: 10.1073/pnas.1106136108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Collapse
|
47
|
Song DY, Oh KM, Yu HN, Park CR, Woo RS, Jung SS, Baik TK. Role of activating transcription factor 3 in ischemic penumbra region following transient middle cerebral artery occlusion and reperfusion injury. Neurosci Res 2011; 70:428-34. [PMID: 21616101 DOI: 10.1016/j.neures.2011.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/19/2022]
Abstract
The activating transcription factor 3 (ATF3) is expressed by various types of cellular insults. It has been suggested to serve diverse functions in both cellular survival and death signal cascades, but the exact role of ATF3 in brain ischemia is little known so far. Thus, the authors examined the expression pattern of ATF3 following middle cerebral artery occlusion (MCAO) and reperfusion injury. At 1-2 days after MCAO and reperfusion injury, numerous number of ATF3-immunoreacitive (-ir) nuclei was observed in the ipsilateral peri-infarct cortex, but declined rapidly at 3 days. Almost all ATF3-ir nuclei were co-localized with NeuN-ir neurons. Neither GFAP- nor OX42-ir neuroglia were co-localized with ATF3. Double labeling of Fluoro-Jade B with ATF3 showed that ATF3-ir nuclei mismatched with Fluoro-Jade B-ir neurons. To further examine the role of ATF3 in ischemic peri-infarct regions, double immunofluorescent labeling of ATF3/caspase 3, ATF3/Bcl-xl, and ATF3/HSP27 was conducted. Semiquantitive estimation showed that about 15% of ATF3-ir neurons also expressed caspase 3. However, about only 0.4% and 2.6% of ATF3-ir neurons were double-stained with Bcl-xl and Hsp27, respectively. Consequently, it would be suggested that ATF3 seem to play an important role in caspase-dependent neuronal apoptotic signal transduction pathways caused by focal cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Dae-Yong Song
- Department of Anatomy and Neurosciences, School of Medicine and Medical Sciences, Research Institute, Eulji University, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Schraenen A, de Faudeur G, Thorrez L, Lemaire K, Van Wichelen G, Granvik M, Van Lommel L, in’t Veld P, Schuit F. mRNA expression analysis of cell cycle genes in islets of pregnant mice. Diabetologia 2010; 53:2579-88. [PMID: 20886204 PMCID: PMC2974927 DOI: 10.1007/s00125-010-1912-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/17/2010] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Pregnancy requires an increase in the functional beta cell mass to match metabolic needs for insulin. To understand this adaptation at the molecular level, we undertook a time course analysis of mRNA expression in mice. METHODS Total RNA extracted from C57Bl6/J mouse islets every 3 days during pregnancy was hybridised on commercially available expression arrays. Gene network analysis was performed and changes in functional clusters over time visualised. The function of putative novel cell cycle genes was assessed via silencing in replicating mouse insulinoma 6 (MIN6) cells. RESULTS Gene network analysis identified a large gene cluster associated with cell cycle control (67 genes, all upregulated by ≥ 1.5-fold, p < 0.001). The number of upregulated cell cycle genes and the mRNA expression levels of individual genes peaked at pregnancy day (P)9.5. Filtering of poorly annotated genes with enhanced expression in islets at P9.5, and in MIN6 cells and thymus resulted in further studies with G7e (also known as D17H6S56E-5) and Fignl1. Gene knock-down experiments in MIN6 cells suggested that these genes are indeed involved in adequate cell cycle accomplishment. CONCLUSIONS/INTERPRETATION A sharp peak of cell cycle-related mRNA expression in islets occurs around P9.5, after which beta cell replication is increased. As illustrated by the identification of G7e and Fignl1 in islets of pregnant mice, further study of this distinct transcriptional peak should help to unravel the complex process of beta cell replication.
Collapse
Affiliation(s)
- A. Schraenen
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
| | - G. de Faudeur
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
| | - L. Thorrez
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
- Department of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Computational Systems Biology, SymBioSys, Katholieke Universiteit Leuven, Leuven, Belgium
| | - K. Lemaire
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
| | - G. Van Wichelen
- Department of Pathology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M. Granvik
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
| | - L. Van Lommel
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
| | - P. in’t Veld
- Department of Pathology, Vrije Universiteit Brussel, Brussels, Belgium
| | - F. Schuit
- Gene Expression Unit, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, mailbox 901, 3000 Leuven, Belgium
- Center for Computational Systems Biology, SymBioSys, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, Jamnig A, Trimmel D, Herndler-Brandstetter D, Brunner S, Zenzmaier C, Sampson N, Breitenbach M, Fröhlich KU, Grubeck-Loebenstein B, Berger P, Wieser M, Grillari-Voglauer R, Thallinger GG, Grillari J, Trajanoski Z, Madeo F, Lepperdinger G, Jansen-Dürr P. Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell 2010; 9:1084-97. [PMID: 20883526 PMCID: PMC2997327 DOI: 10.1111/j.1474-9726.2010.00637.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To identify new genetic regulators of cellular aging and senescence, we performed genome-wide comparative RNA profiling with selected human cellular model systems, reflecting replicative senescence, stress-induced premature senescence, and distinct other forms of cellular aging. Gene expression profiles were measured, analyzed, and entered into a newly generated database referred to as the GiSAO database. Bioinformatic analysis revealed a set of new candidate genes, conserved across the majority of the cellular aging models, which were so far not associated with cellular aging, and highlighted several new pathways that potentially play a role in cellular aging. Several candidate genes obtained through this analysis have been confirmed by functional experiments, thereby validating the experimental approach. The effect of genetic deletion on chronological lifespan in yeast was assessed for 93 genes where (i) functional homologues were found in the yeast genome and (ii) the deletion strain was viable. We identified several genes whose deletion led to significant changes of chronological lifespan in yeast, featuring both lifespan shortening and lifespan extension. In conclusion, an unbiased screen across species uncovered several so far unrecognized molecular pathways for cellular aging that are conserved in evolution.
Collapse
Affiliation(s)
- Gerhard T Laschober
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Doris Ruli
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Edith Hofer
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Christoph Muck
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Didac Carmona-Gutierrez
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Julia Ring
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Eveline Hutter
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Ruckenstuhl
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Lucia Micutkova
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Regina Brunauer
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Angelika Jamnig
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Daniela Trimmel
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Stefan Brunner
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Christoph Zenzmaier
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Natalie Sampson
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | | | - Kai-Uwe Fröhlich
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | | | - Peter Berger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Matthias Wieser
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Regina Grillari-Voglauer
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
| | - Johannes Grillari
- Aging and Immortalization Research, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics, Graz University of TechnologyPetersgasse 14, 8010 Graz, Austria
- Biocenter, Section for Bioinformatics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Frank Madeo
- Institute for Molecular Biosciences, University of GrazHumboldtstrasse 50, 8010 Graz, Austria
| | - Günter Lepperdinger
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Austrian Academy of SciencesRennweg 10, A-6020 Innsbruck, Austria
| |
Collapse
|
50
|
Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3. Neoplasia 2010; 12:527-38. [PMID: 20651982 DOI: 10.1593/neo.92048] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/18/2022] Open
Abstract
The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.
Collapse
|