1
|
Fujii N, Urabe F, Yamamoto S, Inoue K, Kimura T, Shiraishi K. Extracellular vesicles in renal cell carcinoma: A review of the current landscape and future directions. Urol Oncol 2025; 43:370-379. [PMID: 40069067 DOI: 10.1016/j.urolonc.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 05/19/2025]
Abstract
Liquid biopsy, a minimally invasive biopsy method that uses patient body fluids (e.g., blood, urine, or saliva), is considered a useful biomarker for early diagnosis, monitoring of tumor progression, and evaluating treatment efficacy. Extracellular vesicles (EVs), a diverse group of particles classified according to their size and biosynthetic method, are liquid bilayer structures released from various cells. EVs contain specific information, such as DNA, RNA, and proteins derived from released cells. Consequently, they have attracted attention for use in liquid biopsy. EV-derived microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are useful biomarkers for cancer diagnosis, tumor progression, and drug treatment resistance. Renal cell carcinoma (RCC), one of the most common type of urological cancer, accounts for 90% of all renal tumors. In contrast to prostate cancer, for which a tumor marker has been established, clinically applicable and useful biomarkers remain to be established for RCC. EV-derived miRNAs and lncRNAs have been identified as useful biomarkers in several types of carcinoma for determining the diagnosis and predicting tumor progression, and drug treatment resistance in patients with RCC. The development and identification of biomarkers to diagnose and predict tumor progression in RCC will improve the management and prognosis of patients with RCC. This review focuses on EV-derived miRNAs and lncRNAs and discusses the currently available EV-based biomarkers in RCC and their future prospects.
Collapse
Affiliation(s)
- Nakanori Fujii
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku, Kochi, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Koji Shiraishi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
2
|
Li H, Chiang CL, Kwak KJ, Lee HL, Wang X, Romano G, Saviana M, Toft R, Cheng TS, Chang Y, Hsiang BD, Liu GW, Mo X, Ma Y, Pan J, Rima XY, Kim TN, Reategui E, Shen CN, Chu YS, Croce C, Chang PMH, Yeh YC, Carbone DP, Huang CYF, Chiang CL, Nana-Sinkam P, Lee LJ. Extracellular Vesicular Delta-Like Ligand 3 and Subtype Transcription Factors for Small Cell Lung Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416711. [PMID: 40285610 DOI: 10.1002/advs.202416711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/15/2025] [Indexed: 04/29/2025]
Abstract
Small cell lung cancer (SCLC) is associated with high mortality and limited therapeutic options. There is increasing recognition that SCLC harbors molecular heterogeneity. Using a new liquid biopsy assay, it is demonstrated that SCLC subtypes, as determined by patient tumor tissue staining and cell lines, can be accurately identified by measuring the mRNA expression of subtype transcription factors (ASCL1, POU2F3, and NEUROD1) in circulating exosome-rich extracellular vesicles (Exo). Additionally, upregulation of Delta-like ligand 3 (DLL3) mRNA in Exo and its membrane protein (mProtein) in extracellular vesicles associated with tumor (tEV) may distinguish both limited- and extensive-stage SCLC patients from high-risk smokers, with AUC/ROC values of 0.836 and 0.839, respectively. By incorporating Exo-ASCL1 and Exo-POU2F3 mRNA expression with DLL3 Exo-mRNA/tEV-mProtein expression, the classifier enhances the AUC/ROC to 0.912 and 0.963 for limited- and extensive-stage SCLC patients, respectively.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | | | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
| | - Xinyu Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Robin Toft
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yuehshih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
- School of Medicine, College of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bi-Da Hsiang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Guan-Wan Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Junjie Pan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xilal Y Rima
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Truc Nguyen Kim
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Eduardo Reategui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Chia-Ning Shen
- Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Carlo Croce
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - David P Carbone
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chi-Lu Chiang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| |
Collapse
|
3
|
Zhang H, Wu B, Zhou T, Fang L. Prognostic value of extracellular vesicles in colorectal cancer: a systematic review and meta-analysis. Clin Transl Oncol 2025:10.1007/s12094-025-03915-z. [PMID: 40205153 DOI: 10.1007/s12094-025-03915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Extracellular vesicles (EVs) are prognostic factors in colorectal cancer (CRC). This study aims to evaluate the prognostic value of EVs CRC. METHODS Clinical studies that directly investigated the association between EVs in different kinds of body fluids of CRC patients and patient prognosis were included by searching the PubMed, Web of Science, ClinicalTrials, and CENTRAL databases. The associations between single biomarkers, molecular panels, and EVs count with overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) were analyzed. Heterogeneity was assessed using the I2 statistic, with a random-effects model applied when I2 > 30% and a fixed-effects model when I2 ≤ 30%. RESULTS A total of 56 studies involving 5,985 patients were included. All included studies detected EVs in blood. Univariate analysis revealed an association between EVs single-biomarkers and OS (pHR = 2.07, 95% CI: 1.73-2.73) and DFS (pHR = 2.20, 95% CI: 1.46-2.79). Additionally, univariate analysis revealed an association between molecular-panels in EVs and OS (pHR = 3.67, 95% CI: 2.51-5.36) and RFS (pHR = 3.97, 95% CI: 1.57-10.08). Moreover, an association was observed between a EVs count and OS (pHR = 1.87, 95% CI: 1.40-2.49). On the basis of the results of the meta-regression and subgroup analyses, the subgroups of EVs and the disease stage of CRC patients are key factors contributing to the heterogeneity in the associations between EVs single-biomarkers and OS. CONCLUSION This study provides compelling evidence that EVs from blood hold prognostic value in CRC.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, China
| | - Bohan Wu
- Westa College, Southwest University, Beibei, Chongqing, China
| | - Tingting Zhou
- Westa College, Southwest University, Beibei, Chongqing, China
| | - Liaoqiong Fang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, China.
| |
Collapse
|
4
|
Barjasteh AH, Jaseb Mazhar AleKassar R, Al-Asady AM, Latifi H, Avan A, Khazaei M, Ryzhikov M, Hassanian SM. Therapeutic Potentials of MiRNA for Colorectal Cancer Liver Metastasis Treatment: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:202-219. [PMID: 40255223 PMCID: PMC12008659 DOI: 10.30476/ijms.2024.102910.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 04/22/2025]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent cancers worldwide and is the fourth leading cause of cancer-related deaths. Metastasis poses a significant obstacle in CRC treatment, as distant metastasis, particularly to the liver, remains the primary cause of mortality. Colorectal liver metastasis (CRLM) occurs frequently due to the liver's direct vascular connection to the colorectal region via the portal vein. Standard treatment approaches for CRLM are limited; only a few patients qualify for surgical intervention, resulting in a persistently low survival rate. Additionally, resistance to chemotherapy is common, emphasizing the need for more effective targeted therapies. Emerging evidence highlights the pivotal role of microRNAs (miRNAs) in modulating critical pathways associated with CRLM, including tumor invasion, epithelial-mesenchymal transition, and angiogenesis. MiRNAs exhibit dual functions as tumor suppressors and oncogenes by targeting multiple genes, thus playing a complex role in both the initiation and progression of metastasis. The regulatory mechanisms of miRNAs could help to identify novel biomarkers for early diagnosis and prognosis of CRLM, as well as promising therapeutic targets to overcome chemoresistance. Despite numerous studies on miRNA involvement in CRC metastasis, dedicated reviews focusing on miRNAs and CRLM remain scarce. This review aims to approach targeted therapies by examining the current understanding of miRNA involvement in CRLM and exploring their potential as diagnostic, prognostic, and therapeutic agents. Through an integrative approach, we aim to provide insights that could transform CRLM management and improve patient outcomes.
Collapse
Affiliation(s)
- Amir Hossein Barjasteh
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rawa Jaseb Mazhar AleKassar
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang W, Wang J, Liao D. Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury. Stem Cells Int 2025; 2025:1075016. [PMID: 40165854 PMCID: PMC11957863 DOI: 10.1155/sci/1075016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100080, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| |
Collapse
|
6
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Zhu Q, Chen Z, Tian M, Yan X, Gongye X, Liu Z, Zhao A, Yang Z, Yuan Y. Improved Predictability of Diagnosis and Prognosis Using Serum- and Tissue-Derived Extracellular Vesicles From Bulk mRNA Sequencing in Pancreatic Ductal Adenocarcinoma. Cancer Med 2025; 14:e70538. [PMID: 39812156 PMCID: PMC11733676 DOI: 10.1002/cam4.70538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Early-stage pancreatic ductal adenocarcinoma (PDAC) is frequently misdiagnosed, contributing to its high mortality rate. Exosomal microRNAs (miRNAs) have emerged as potential biomarkers for the early detection of PDAC. AIMS This study aimed to evaluate the feasibility of using exosomal miRNAs from PDAC tissues and serum as biomarkers for early detection and prognosis. MATERIALS & METHODS Exosomes were isolated from healthy individuals and PDAC patients via tissue and serum samples, then identified by analyzing their particle size and protein content. PDAC-specific exosomal miRNAs were identified using a microRNA array. A large cohort was subsequently recruited to validate these findings. The diagnostic capacity of the identified miRNAs was assessed using the Brier score and area under the curve (AUC). Verified miRNAs were also used to confirm intracellular mRNA change patterns. RESULTS The combination of miR142-3p, miR148a-3p, and CA199 showed a higher AUC (0.747) compared to CA199 alone (0.716) in ROC curve analysis. Gene Ontology (GO) annotations revealed that the two-miRNA panel was associated with multiple oncogenic pathways. DISCUSSION 142-3p and miR148a-3p were identified as specific to PDAC and, when combined with CA199, improved diagnostic accuracy. Their involvement in oncogenic pathways underscores their relevance as diagnostic and prognostic biomarkers. CONCLUSION MiR142-3p and miR148a-3p, alongside CA199, show promise as non-invasive biomarkers for early detection and prognosis of PDAC, improving diagnostic accuracy.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Zhang Chen
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming Tian
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Xin Yan
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiangdong Gongye
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhicheng Liu
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
8
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Sekar S, Srikanth S, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Vellingiri B, Renu K, Madhyastha H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin Transl Oncol 2024:10.1007/s12094-024-03815-8. [PMID: 39704958 DOI: 10.1007/s12094-024-03815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the complex process of cancer metastasis by facilitating cellular communication and influencing the microenvironment to promote the spread and establishment of cancer cells in distant locations. This paper explores the process of EV biogenesis, explaining their various sources that range from endosomal compartments to plasma membrane shedding. It also discusses the complex mechanisms that control the sorting of cargo within EVs, determining their chemical makeup. We investigate the several functions of EVs in promoting the spread of cancer to other parts of the body. These functions include influencing the immune system, creating environments that support the formation of metastases before they occur, and aiding in the transformation of cells from an epithelial to a mesenchymal state. Moreover, we explore the practical consequences of EV cargo, such as nucleic acids, proteins, and lipids, in influencing the spread of cancer cells, from the beginning of invasion to the creation of secondary tumor sites. Examining recent progress in the field of EV-based diagnostics and treatments, we explore the potential of EVs as highly promising biomarkers for predicting the course of cancer and as targets for therapeutic intervention. This review aims to provide a complete understanding of the biology of EVs in the context of cancer metastasis. By unravelling the nuances of EV biology, it seeks to pave the way for new tactics in cancer detection, treatment, and management.
Collapse
Affiliation(s)
- Sneha Sekar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandhya Srikanth
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, 151401, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
10
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
11
|
Zeng Y, Yin Y, Zhou X. Insights into Microbiota-Host Crosstalk in the Intestinal Diseases Mediated by Extracellular Vesicles and Their Encapsulated MicroRNAs. Int J Mol Sci 2024; 25:13001. [PMID: 39684711 PMCID: PMC11641152 DOI: 10.3390/ijms252313001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Microorganisms that colonize the intestine communicate with the host in various ways and affect gut function and health. Extracellular vesicles (EVs), especially their encapsulated microRNAs (miRNAs), participate in the complex and precise regulation of microbiota-host interactions in the gut. These roles make miRNAs critically important for the prevention, diagnosis, and treatment of intestinal diseases. Here, we review the current knowledge on how different sources of EVs and miRNAs, including those from diets, gut microbes, and hosts, maintain gut microbial homeostasis and improve the intestinal barrier and immune function. We further highlight the roles of EVs and miRNAs in intestinal diseases, including diarrhea, inflammatory bowel disease, and colorectal cancer, thus providing a perspective for the application of EVs and miRNAs in these diseases.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
15
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
16
|
Guo J, Zhong L, Momeni MR. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol Toxicol 2024; 40:77. [PMID: 39283408 PMCID: PMC11405467 DOI: 10.1007/s10565-024-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Gastrointestinal (GI) cancers are common cancers that are responsible for a large portion of global cancer fatalities. Due to this, there is a pressing need for innovative strategies to identify and treat GI cancers. MicroRNAs (miRNAs) are short ncRNAs that can be considered either cancer-causing or tumor-inhibiting molecules. MicroRNA-155, also known as miR-155, is a vital regulator in various cancer types. This miRNA has a carcinogenic role in a variety of gastrointestinal cancers, including pancreatic, colon, and gastric cancers. Since the abnormal production of miR-155 has been detected in various malignancies and has a correlation with increased mortality, it is a promising target for future therapeutic approaches. Moreover, exosomal miR-155 associated with tumors have significant functions in communicating between cells and establishing the microenvironment for cancer in GI cancers. Various types of genetic material, such as specifically miR-155 as well as proteins found in cancer-related exosomes, have the ability to be transmitted to other cells and have a function in the advancement of tumor. Therefore, it is critical to conduct a review that outlines the diverse functions of miR-155 in gastrointestinal malignancies. As a result, we present a current overview of the role of miR-155 in gastrointestinal cancers. Our research highlighted the role of miR-155 in GI cancers and covered critical issues in GI cancer such as pharmacologic inhibitors of miRNA-155, miRNA-155-assosiated circular RNAs, immune-related cells contain miRNA-155. Importantly, we discussed miRNA-155 in GI cancer resistance to chemotherapy, diagnosis and clinical trials. Furthermore, the function of miR-155 enclosed in exosomes that are released by cancer cells or tumor-associated macrophages is also covered.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Zhong
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | |
Collapse
|
17
|
D'Antonio C, Liguori GL. Dormancy and awakening of cancer cells: the extracellular vesicle-mediated cross-talk between Dr. Jekill and Mr. Hyde. Front Immunol 2024; 15:1441914. [PMID: 39301024 PMCID: PMC11410588 DOI: 10.3389/fimmu.2024.1441914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer cell dormancy is a reversible process whereby cancer cells enter a quiescent state characterized by cell cycle arrest, inhibition of cell migration and invasion, and increased chemoresistance. Because of its reversibility and resistance to treatment, dormancy is a key process to study, monitor, and interfere with, in order to prevent tumor recurrence and metastasis and improve the prognosis of cancer patients. However, to achieve this goal, further studies are needed to elucidate the mechanisms underlying this complex and dynamic dual process. Here, we review the contribution of extracellular vesicles (EVs) to the regulation of cancer cell dormancy/awakening, focusing on the cross-talk between tumor and non-tumor cells in both the primary tumor and the (pre-)metastatic niche. Although EVs are recognized as key players in tumor progression and metastasis, as well as in tumor diagnostics and therapeutics, their role specifically in dormancy induction/escape is still largely elusive. We report on the most recent and promising results on this topic, focusing on the EV-associated nucleic acids involved. We highlight how EV studies could greatly contribute to the identification of dormancy signaling pathways and a dormancy/early awakening signature for the development of successful diagnostic/prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Concetta D'Antonio
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, Naples, Italy
| |
Collapse
|
18
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
20
|
Schioppa T, Gaudenzi C, Zucchi G, Piserà A, Vahidi Y, Tiberio L, Sozzani S, Del Prete A, Bosisio D, Salvi V. Extracellular vesicles at the crossroad between cancer progression and immunotherapy: focus on dendritic cells. J Transl Med 2024; 22:691. [PMID: 39075551 PMCID: PMC11288070 DOI: 10.1186/s12967-024-05457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Extracellular vesicles (EVs) are nanosized heat-stable vesicles released by virtually all cells in the body, including tumor cells and tumor-infiltrating dendritic cells (DCs). By carrying molecules from originating cells, EVs work as cell-to-cell communicators in both homeostasis and cancer but may also represent valuable therapeutic and diagnostic tools. This review focuses on the role of tumor-derived EVs (TEVs) in the modulation of DC functions and on the therapeutic potential of both tumor- and DC-derived EVs in the context of immunotherapy and DC-based vaccine design. TEVs were originally characterized for their capability to transfer tumor antigens to DCs but are currently regarded as mainly immunosuppressive because of the expression of DC-inhibiting molecules such as PD-L1, HLA-G, PGE2 and others. However, TEVs may still represent a privileged system to deliver antigenic material to DCs upon appropriate engineering to reduce their immunosuppressive cargo or increase immunogenicity. DC-derived EVs are more promising than tumor-derived EVs since they expose antigen-loaded MHC, costimulatory molecules and NK cell-activating ligands in the absence of an immunosuppressive cargo. Moreover, DC-derived EVs possess several advantages as compared to cell-based drugs such as a higher antigen/MHC concentration and ease of manipulation and a lower sensitivity to immunosuppressive microenvironments. Preclinical models showed that DC-derived EVs efficiently activate tumor-specific NK and T cell responses either directly or indirectly by transferring antigens to tumor-infiltrating DCs. By contrast, however, phase I and II trials showed a limited clinical efficacy of EV-based anticancer vaccines. We discuss that the future of EV-based therapy depends on our capability to overcome major challenges such as a still incomplete understanding of their biology and pharmacokinetic and the lack of standardized methods for high-throughput isolation and purification. Despite this, EVs remain in the limelight as candidates for cancer immunotherapy which may outmatch cell-based strategies in the fullness of their time.
Collapse
Affiliation(s)
- Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Yasmin Vahidi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur- Italia, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| |
Collapse
|
21
|
Lenart M, Siemińska I, Szatanek R, Mordel A, Szczepanik A, Rubinkiewicz M, Siedlar M, Baj-Krzyworzeka M. Identification of miRNAs Present in Cell- and Plasma-Derived Extracellular Vesicles-Possible Biomarkers of Colorectal Cancer. Cancers (Basel) 2024; 16:2464. [PMID: 39001526 PMCID: PMC11240749 DOI: 10.3390/cancers16132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Globally, an increasing prevalence of colorectal cancer (CRC) prompts a need for the development of new methods for early tumor detection. MicroRNAs (also referred to as miRNAs) are short non-coding RNA molecules that play a pivotal role in the regulation of gene expression. MiRNAs are effectively transferred to extracellular vesicle (EVs) membrane sacs commonly released by cells. Our study aimed to examine the expression of miRNAs in four CRC cell lines and EVs derived from them (tumor EVs) in comparison to the normal colon epithelium cell line and its EVs. EVs were isolated by ultracentrifugation from the culture supernatant of SW480, SW620, SW1116, HCT116 and normal CCD841CoN cell lines and characterized according to the MISEV2023 guidelines. MiRNAs were analyzed by small RNA sequencing and validated by quantitative PCR. The performed analysis revealed 22 common miRNAs highly expressed in CRC cell lines and effectively transferred to tumor EVs, including miR-9-5p, miR-182-5p, miR-196b-5p, miR-200b-5p, miR-200c-3p, miR-425-5p and miR-429, which are associated with development, proliferation, invasion and migration of colorectal cancer cells, as well as in vesicle maturation and transport-associated pathways. In parallel, normal cells expressed miRNAs, such as miR-369 and miR-143, which play a role in proinflammatory response and tumor suppression. The analysis of selected miRNAs in plasma-derived EVs and tumor samples from CRC patients showed the similarity of miRNA expression profile between the patients' samples and CRC cell lines. Moreover, miR-182-5p, miR-196-5p, miR-425-5p and miR-429 were detected in several EV samples isolated from patients' plasma. Our results suggest that miR-182-5p, miR-196b-5p and miR-429 are differentially expressed between EVs from CRC patients and healthy donors, which might have clinical implications.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Izabela Siemińska
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Anna Mordel
- Department of Clinical Immunology, University Children's Hospital of Cracow, 30-663 Krakow, Poland
| | - Antoni Szczepanik
- Third Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Mateusz Rubinkiewicz
- Second Department of Surgery, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| |
Collapse
|
22
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
23
|
Bhadra M, Sachan M. An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection. Heliyon 2024; 10:e30328. [PMID: 38707279 PMCID: PMC11068823 DOI: 10.1016/j.heliyon.2024.e30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
As one of the deadliest gynaecological cancers, ovarian cancer has been on the list. With lesser-known symptoms and lack of an accurate detection method, it is still difficult to catch it early. In terms of both the diagnosis and outlook for cancer, liquid biopsy has come a long way with significant advancements. Exosomes, extracellular components commonly shed by cancerous cells, are nucleic acid-rich particles floating in almost all body fluids and hold enormous promise, leading to minimallyinvasive molecular diagnostics. They have been shown as potential biomarkers in liquid biopsy, being implicated in tumour growth and metastasis. In order to address the drawbacks of ovarian cancer tumor heterogeneity, a liquid biopsy-based approach is being investigated by detecting cell-free nucleic acids, particularly non-coding RNAs, having the advantage of being less invasive and more prominent in nature. microRNAs are known to actively contribute to cancer development and their existence inside exosomes has also been made quite apparent which can be leveraged to diagnose and treat the disease. Extraction of miRNAs and exosomes is an arduous execution, and while other approaches have been investigated, none have produced results that are as encouraging due to limits in time commitment, yield, and, most significantly, damage to the exosomal structure resulting discrepancies in miRNA-based expression profiling for disease diagnosis. We have briefly outlined and reviewed the difficulties with exosome isolation techniques and the need for their standardization. The several widely used procedures and their drawbacks in terms of the exosomal purity they may produce have also been outlined.
Collapse
Affiliation(s)
- Mridula Bhadra
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| |
Collapse
|
24
|
Girolimetti G, Pelisenco IA, Eusebi LH, Ricci C, Cavina B, Kurelac I, Verri T, Calcagnile M, Alifano P, Salvi A, Bucci C, Guerra F. Dysregulation of a Subset of Circulating and Vesicle-Associated miRNA in Pancreatic Cancer. Noncoding RNA 2024; 10:29. [PMID: 38804361 PMCID: PMC11130804 DOI: 10.3390/ncrna10030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplasia, characterized by early metastasis, low diagnostic rates at early stages, resistance to drugs, and poor prognosis. There is an urgent need to better characterize this disease in order to identify efficient diagnostic/prognostic biomarkers. Since microRNAs (miRNAs) contribute to oncogenesis and metastasis formation in PDAC, they are considered potential candidates for fulfilling this task. In this work, the levels of two miRNA subsets (involved in chemoresistance or with oncogenic/tumor suppressing functions) were investigated in a panel of PDAC cell lines and liquid biopsies of a small cohort of patients. We used RT-qPCR and droplet digital PCR (ddPCR) to measure the amounts of cellular- and vesicle-associated, and circulating miRNAs. We found that both PDAC cell lines, also after gemcitabine treatment, and patients showed low amounts of cellular-and vesicle-associated miR-155-5p, compared to controls. Interestingly, we did not find any differences when we analyzed circulating miR-155-5p. Furthermore, vesicle-related miR-27a-3p increased in cancer patients compared to the controls, while circulating let-7a-5p, miR-221-3p, miR-23b-3p and miR-193a-3p presented as dysregulated in patients compared to healthy individuals. Our results highlight the potential clinical significance of these analyzed miRNAs as non-invasive diagnostic molecular tools to characterize PDAC.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (G.G.); (T.V.); (M.C.); (F.G.)
| | - Iulia Andreea Pelisenco
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (I.A.P.); (A.S.)
| | - Leonardo Henry Eusebi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.H.E.); (C.R.); (B.C.); (I.K.)
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Claudio Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.H.E.); (C.R.); (B.C.); (I.K.)
- Pancreatic Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.H.E.); (C.R.); (B.C.); (I.K.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.H.E.); (C.R.); (B.C.); (I.K.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (G.G.); (T.V.); (M.C.); (F.G.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (G.G.); (T.V.); (M.C.); (F.G.)
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (I.A.P.); (A.S.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (G.G.); (T.V.); (M.C.); (F.G.)
| |
Collapse
|
25
|
Ramadan F, Saab R, Ghamloush F, Khoueiry R, Herceg Z, Gomez L, Badran B, Clezardin P, Hussein N, Cohen PA, Ghayad SE. Exosome-Mediated Paracrine Signaling Unveils miR-1246 as a Driver of Aggressiveness in Fusion-Negative Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1652. [PMID: 38730605 PMCID: PMC11083369 DOI: 10.3390/cancers16091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells' phenotype. Delivery of exosomal miR-1246 targets GSK3β and promotes β-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients' sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis.
Collapse
Affiliation(s)
- Farah Ramadan
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Raya Saab
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France;
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Philippe Clezardin
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1, 69008 Lyon, France
| | - Pascale A. Cohen
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, 13005 Marseille, France
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
26
|
Feng Y, Jin C, Wang T, Chen Z, Ji D, Zhang Y, Zhang C, Zhang D, Peng W, Sun Y. The Uridylyl Transferase TUT7-Mediated Accumulation of Exosomal miR-1246 Reprograms TAMs to Support CRC Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304222. [PMID: 38342611 PMCID: PMC11022710 DOI: 10.1002/advs.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Indexed: 02/13/2024]
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in promoting tumor growth and dissemination, motivating a search for key targets to interfere with the activation of TAMs or reprogram TAMs into the tumor-suppressive type. To gain insight into the mechanisms of macrophage polarization, a designed co-culture system is established, allowing for the education of macrophages in a manner that closely mimics the intricacies of TAMs in the tumor immune microenvironment (TIME). Through database mining, exosomal miR-1246 is identified and is then validated. Exosomal miR-1246-driven polarization of TAMs disrupts the infiltration and function of CD8+ T cells. Mechanically, the amassment of exosomal miR-1246 stems from TUT7-mediated degradation of small noncoding RNA, a process stabilized by SNRPB, but not the precursor of miR-1246. Moreover, an Exo-motif is present in the exosomal miR-1246 sequence, enabling it to bind with the exosomal sorting protein hnRNPA2B1. RNA-seq analysis reveals that exogenous miR-1246 modulates the polarization of TAMs at a post-transcriptional level, emphasizing the pivotal role of the NLRP3 in macrophage polarization. In conclusion, the findings underscore the importance of exosomal miR-1246 as a trigger of macrophage reprogramming and uncover a novel mechanism for its enhanced presence in the TIME.
Collapse
Affiliation(s)
- Yifei Feng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chi Jin
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Tuo Wang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Zhihao Chen
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongsheng Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
27
|
Das R, Mehta DK, Gupta N. Understanding the Potential of mRNA as Biomarker to Revolutionize Diagnosis of Colorectal Cancer. Drug Res (Stuttg) 2024; 74:102-112. [PMID: 38350633 DOI: 10.1055/a-2244-6572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
MicroRNA as potential biomarker for early diagnosis, differentiating various stages, interpreting the success of postoperative curative surgery and predicting early relapse of Colorectal cancer.In the realm of medical research, the quest to find effective biomarkers for various diseases has always been a top priority. Colorectal cancer (CRC), one of the leading causes of cancer-related deaths worldwide, is no exception. The emergence of microRNA (mRNA) as a potential biomarker for CRC has sparked immense interest among scientists and clinicians alike. mRNA, a molecule responsible for translating genetic information into functional proteins, presents a promising avenue for early detection and personalized treatment of this deadly disease. By analyzing the specific patterns and levels of mRNA expression in CRC cells, researchers have the ability to identify signatures that can aid in accurate diagnosis, predict patient prognosis, and even guide targeted therapies. This breakthrough in molecular biology not only enhances our understanding of CRC but also holds the potential to revolutionize the field of cancer diagnostics and treatment. In this article, we will delve deeper into the potential of mRNA as a biomarker for CRC, exploring its benefits and challenges in the field of cancer research.
Collapse
Affiliation(s)
- Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Nidhi Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
28
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Li H, Chiang C, Kwak KJ, Wang X, Doddi S, Ramanathan LV, Cho SM, Hou Y, Cheng T, Mo X, Chang Y, Chang H, Cheng W, Tsai W, Nguyen LTH, Pan J, Ma Y, Rima XY, Zhang J, Reategui E, Chu Y, Chang PM, Chang P, Huang CF, Wang C, Shan Y, Li C, Fleisher M, Lee LJ. Extracellular Vesicular Analysis of Glypican 1 mRNA and Protein for Pancreatic Cancer Diagnosis and Prognosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306373. [PMID: 38204202 PMCID: PMC10953589 DOI: 10.1002/advs.202306373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Detecting pancreatic duct adenocarcinoma (PDAC) in its early stages and predicting late-stage patient prognosis undergoing chemotherapy is challenging. This work shows that the activation of specific oncogenes leads to elevated expression of mRNAs and their corresponding proteins in extracellular vesicles (EVs) circulating in blood. Utilizing an immune lipoplex nanoparticle (ILN) biochip assay, these findings demonstrate that glypican 1 (GPC1) mRNA expression in the exosomes-rich (Exo) EV subpopulation and GPC1 membrane protein (mProtein) expression in the microvesicles-rich (MV) EV subpopulation, particularly the tumor associated microvesicles (tMV), served as a viable biomarker for PDAC. A combined analysis effectively discriminated early-stage PDAC patients from benign pancreatic diseases and healthy donors in sizable clinical from multiple hospitals. Furthermore, among late-stage PDAC patients undergoing chemotherapy, lower GPC1 tMV-mProtein and Exo-mRNA expression before treatment correlated significantly with prolonged overall survival. These findings underscore the potential of vesicular GPC1 expression for early PDAC screenings and chemotherapy prognosis.
Collapse
|
30
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
31
|
Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis & monitoring treatment response of communicable & non-communicable diseases. Indian J Med Res 2024; 159:163-180. [PMID: 38577857 PMCID: PMC11050750 DOI: 10.4103/ijmr.ijmr_2344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT From an initial thought of being used as a cellular garbage bin to a promising target for liquid biopsies, the role of exosomes has drastically evolved in just a few years of their discovery in 1983. Exosomes are naturally secreted nano-sized vesicles, abundant in all types of body fluids and can be isolated intact even from the stored biological samples. Being stable carriers of genetic material (cellular DNA, mRNA and miRNA) and having specific cargo (signature content of originating cells), exosomes play a crucial role in pathogenesis and have been identified as a novel source of biomarkers in a variety of disease conditions. Recently exosomes have emerged as a promising 'liquid biopsy tool'and have shown great potential in the field of non-invasive disease diagnostics, prognostics and treatment response monitoring in both communicable as well as non-communicable diseases. However, there are certain limitations to overcome which restrict the use of exosome-based liquid biopsy as a gold standard testing procedure in routine clinical practices. The present review summarizes the current knowledge on the role of exosomes as the liquid biopsy tool in diagnosis, prognosis and treatment response monitoring in communicable and non-communicable diseases and highlights the major limitations, technical advancements and future prospects of the utilization of exosome-based liquid biopsy in clinical interventions.
Collapse
Affiliation(s)
- Rajbala Yadav
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Shweta Kushwaha
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
32
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
33
|
Fais S, Logozzi M. The Diagnostic and Prognostic Value of Plasmatic Exosome Count in Cancer Patients and in Patients with Other Pathologies. Int J Mol Sci 2024; 25:1049. [PMID: 38256122 PMCID: PMC10816819 DOI: 10.3390/ijms25021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The extent of both scientific articles and reviews on extracellular vesicles (EVs) has grown impressively over the last few decades [...].
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
34
|
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S, Zhang C. Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci 2024; 115:155-169. [PMID: 37972389 PMCID: PMC10823290 DOI: 10.1111/cas.16014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Luyao Sun
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of BiologyHainan Medical UniversityHaikouChina
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mengyuan Yin
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Zeng
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yutong Ji
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yiming Hu
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| | - Chunyu Zhang
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| |
Collapse
|
35
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
36
|
ZHANG YUN, TANG SHALING, GAO YUBO, LU ZHONGTING, YANG YUAN, CHEN JING, LI TAO. Application of exosomal miRNA mediated macrophage polarization in colorectal cancer: Current progress and challenges. Oncol Res 2023; 32:61-71. [PMID: 38188683 PMCID: PMC10767244 DOI: 10.32604/or.2023.043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer (CRC) is a major global health problem with high morbidity and mortality rates. Surgical resection is the main treatment for early-stage CRC, but detecting it early is challenging. Therefore, effective therapeutic targets for advanced patients are still lacking. Exosomes, tiny vesicles in body fluids, play a crucial role in tumor metastasis, immune regulation, and drug resistance. Interestingly, they can even serve as a biomarker for cancer diagnosis and prognosis. Studies have shown that exosomes can carry miRNA, mediate the polarization of M1/M2 macrophages, promote the proliferation and metastasis of cancer cells, and affect the prognosis of CRC. Since the gastrointestinal tract has many macrophages, understanding the mechanism behind exosomal miRNA-mediated macrophage polarization in CRC treatment is crucial. This article summarizes recent advancements in the study of exosomal miRNAs in CRC and their potential as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- YUN ZHANG
- Department of Oncology, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - SHALING TANG
- Department of Oncology, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - YUBO GAO
- Department of Oncology, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - ZHONGTING LU
- Department of Oncology, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - YUAN YANG
- Department of Oncology, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - JING CHEN
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - TAO LI
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
37
|
Lohajová Behulová R, Bugalová A, Bugala J, Struhárňanská E, Šafranek M, Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol Res 2023; 72:S193-S207. [PMID: 37888964 PMCID: PMC10669947 DOI: 10.33549/physiolres.935153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer belongs to multifactorial diseases characterized by uncontrolled growth and proliferation of abnormal cells. Breast cancer, non-small cell lung cancer, and colorectal cancer are the most frequently diagnosed malignancies with a high mortality rate. These carcinomas typically contain multiple genetically distinct subpopulations of tumor cells leading to tumor heterogeneity, which promotes the aggressiveness of the disease. Early diagnosis is necessary to increase patient progression-free survival. Particularly, miRNAs present in exosomes derived from tumors represent potential biomarkers suitable for early cancer diagnosis. Identification of miRNAs by liquid biopsy enables a personalized approach with the subsequent better clinical management of patients. This review article highlights the potential of circulating exosomal miRNAs in early breast, non-small cell lung, and colorectal cancer diagnosis.
Collapse
Affiliation(s)
- R Lohajová Behulová
- Department of Clinical Genetics, St Elizabeth's Cancer Institute, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
38
|
Kim DH, Park H, Choi YJ, Im K, Lee CW, Kim DS, Pack CG, Kim HY, Choi CM, Lee JC, Ji W, Rho JK. Identification of exosomal microRNA panel as diagnostic and prognostic biomarker for small cell lung cancer. Biomark Res 2023; 11:80. [PMID: 37705067 PMCID: PMC10500735 DOI: 10.1186/s40364-023-00517-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) has an exceptionally poor prognosis; as most of the cases are initially diagnosed as extensive disease with hematogenous metastasis. Therefore, the early diagnosis of SCLC is very important and may improve its prognosis. METHODS To investigate the feasibility of early diagnosis of SCLC, we examined exosomal microRNAs (miRNAs) present in serum obtained from patients with SCLC. First, exosomes were isolated in serum from patients with SCLC and healthy individuals and were characterized using particle size and protein markers. Additionally, miRNA array was performed to define SCLC-specific exosomal miRNAs. Second, the obtained miRNAs were further validated employing a large cohort. Finally, the ability to diagnose SCLC was estimated by area under the curve (AUC), and intracellular mRNA change patterns were verified through validated miRNAs. RESULTS From the miRNA array results, we selected 51-miRNAs based on p-values and top 10 differentially expressed genes, and 25-miRNAs were validated using quantitative reverse transcription-polymerase chain reaction. The 25-miRNAs were further validated employing a large cohort. Among them, 7-miRNAs showed significant differences. Furthermore, 6-miRNAs (miR-3565, miR-3124-5p, miR-200b-3p, miR-6515, miR-3126-3p and miR-9-5p) were up-regulated and 1-miRNA (miR-92b-5p) was down-regulated. The AUC value of each miRNA sets between 0.64 and 0.76, however the combined application of 3-miRNAs (miR-200b-3p, miR-3124-5p and miR-92b-5p) remarkably improved the diagnostic value (AUC = 0.93). Gene ontology analysis revealed that the 3-miRNA panel is linked to various oncogene pathways and nervous system development. When the 3-miRNAs were introduced to cells, the resulting changes in total mRNA expression strongly indicated the presence of lung diseases, including lung cancer. In addition, the 3-miRNA panel was significantly associated with a poorer prognosis, although individual miRNAs have not been validated as prognostic markers. CONCLUSION Our study identified SCLC-specific exosomal miRNAs, and the 3-miRNAs panel (miR-200b-3p, miR-3124-5p and miR-92b-5p) may serve as a diagnostic and prognostic marker for SCLC.
Collapse
Affiliation(s)
- Dong Ha Kim
- Asan Institute for Life Sciences, 05505, Seoul, South Korea
| | - Hyojeong Park
- Department of Biomedical Sciences, AMIST, 05505, Seoul, South Korea
| | - Yun Jung Choi
- Asan Institute for Life Sciences, 05505, Seoul, South Korea
| | - Kyungtaek Im
- Asan Institute for Life Sciences, 05505, Seoul, South Korea
| | - Chae Won Lee
- Department of Biomedical Sciences, AMIST, 05505, Seoul, South Korea
| | - Da-Som Kim
- Department of Biomedical Sciences, AMIST, 05505, Seoul, South Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hyun-Yi Kim
- NGeneS Inc, Asan-Si, Gyeonggi-do, South Korea
| | - Chang-Min Choi
- Department of Pulmonary Critical and Care Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, South Korea
| | - Wonjun Ji
- Department of Pulmonary Critical and Care Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Jin Kyung Rho
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
39
|
Patel RK, Rahman S, Schwantes IR, Bartlett A, Eil R, Farsad K, Fowler K, Goodyear SM, Hansen L, Kardosh A, Nabavizadeh N, Rocha FG, Tsikitis VL, Wong MH, Mayo SC. Updated Management of Colorectal Cancer Liver Metastases: Scientific Advances Driving Modern Therapeutic Innovations. Cell Mol Gastroenterol Hepatol 2023; 16:881-894. [PMID: 37678799 PMCID: PMC10598050 DOI: 10.1016/j.jcmgh.2023.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in the United States and accounts for an estimated 1 million deaths annually worldwide. The liver is the most common site of metastatic spread from colorectal cancer, significantly driving both morbidity and mortality. Although remarkable advances have been made in recent years in the management for patients with colorectal cancer liver metastases, significant challenges remain in early detection, prevention of progression and recurrence, and in the development of more effective therapeutics. In 2017, our group held a multidisciplinary state-of-the-science symposium to discuss the rapidly evolving clinical and scientific advances in the field of colorectal liver metastases, including novel early detection and prognostic liquid biomarkers, identification of high-risk cohorts, advances in tumor-immune therapy, and different regional and systemic therapeutic strategies. Since that time, there have been scientific discoveries translating into therapeutic innovations addressing the current management challenges. These innovations are currently reshaping the treatment paradigms and spurring further scientific discovery. Herein, we present an updated discussion of both the scientific and clinical advances and future directions in the management of colorectal liver metastases, including adoptive T-cell therapies, novel blood-based biomarkers, and the role of the tumor microbiome. In addition, we provide a comprehensive overview detailing the role of modern multidisciplinary clinical approaches used in the management of patients with colorectal liver metastases, including considerations toward specific molecular tumor profiles identified on next generation sequencing, as well as quality of life implications for these innovative treatments.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Alexandra Bartlett
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon
| | - Robert Eil
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon
| | - Khashayar Farsad
- Charles T. Dotter Department of Interventional Radiology, OHSU, Portland, Oregon
| | - Kathryn Fowler
- Department of Surgery, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Shaun M Goodyear
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Hematology and Oncology, School of Medicine, OHSU, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, OHSU, Portland, Oregon; School of Nursing, OHSU, Portland, Oregon
| | - Adel Kardosh
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Hematology and Oncology, School of Medicine, OHSU, Portland, Oregon
| | - Nima Nabavizadeh
- The Knight Cancer Institute, OHSU, Portland, Oregon; Department of Radiation Medicine, OHSU, Portland, Oregon
| | - Flavio G Rocha
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon
| | - V Liana Tsikitis
- The Knight Cancer Institute, OHSU, Portland, Oregon; Division of Gastrointestinal Surgery, Department of Surgery, OHSU, Portland, Oregon
| | - Melissa H Wong
- The Knight Cancer Institute, OHSU, Portland, Oregon; Department of Cell, Developmental and Cancer Biology, OHSU, Portland, Oregon
| | - Skye C Mayo
- Division of Surgical Oncology, Department of Surgery, OHSU, Portland, Oregon; The Knight Cancer Institute, OHSU, Portland, Oregon.
| |
Collapse
|
40
|
Garbin A, Contarini G, Damanti CC, Tosato A, Bortoluzzi S, Gaffo E, Pizzi M, Carraro E, Lo Nigro L, Vinti L, Pillon M, Biffi A, Lovisa F, Mussolin L. MiR-146a-5p enrichment in small-extracellular vesicles of relapsed pediatric ALCL patients promotes macrophages infiltration and differentiation. Biochem Pharmacol 2023; 215:115747. [PMID: 37591448 DOI: 10.1016/j.bcp.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Anaplastic large cell lymphoma (ALCL) is a CD30-positive lymphoma accounting for 20% of all pediatric T-cell lymphomas. Current first line treatment can cure most of ALCL patients but 10-30% of them are resistant or relapse. In this context, liquid biopsy has the potential to help clinicians in disease screening and treatment response monitoring. Small-RNA-sequencing analysis performed on plasma small-extracellular vesicles (s-EVs) from 20 pediatric anaplastic lymphoma kinase positive (ALK + ) ALCL patients at diagnosis revealed a specific miRNAs cargo in relapsed patients compared to non-relapsed, with seven miRNAs enriched in s-EVs of relapsed patients. MiR-146a-5p and miR-378a-3p showed a negative prognostic impact both in univariate and multivariate analysis, possibly representing, together with let-7 g-5p, a miRNA panel for the early identification of high-risk patients. Among them, miR-146a-5p is known to modulate tumor supporting-M2 macrophages differentiation, but the role of these cells in pediatric ALK + ALCL is still unknown. To elucidate the role of miR-146a-5p and M2 macrophages in pediatric ALCL disease, THP-1-derived macrophages were treated with s-EVs from ALK + ALCL cell lines, showing increased miR-146a-5p intracellular expression, migrating capability and M2-markers CD163 and Arginase-1 upregulation. In turn, conditioned media from M2 macrophages or miR-146a-5p-transfected THP-1 increased ALCL cells' aggressive features and were enriched in interleukin-8. Overall, these data suggest a role of miR-146a-5p in promoting macrophage infiltration and M2-like polarization in ALCL. Our findings incite further investigation on the role of M2 macrophages in ALCL aggressiveness and dissemination, also considering the novel treatment options targeting tumor associated macrophages.
Collapse
Affiliation(s)
- Anna Garbin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Giorgia Contarini
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Carlotta C Damanti
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Anna Tosato
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | | | - Enrico Gaffo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University of Padua, Padua, Italy
| | - Elisa Carraro
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Luca Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Pillon
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Alessandra Biffi
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Federica Lovisa
- Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica "Città della Speranza", Padua, Italy.
| |
Collapse
|
41
|
Badr D, Fouad MA, Hussein M, Salem S, Zekri A, Shouman S. Rebound increase in microRNA levels at the end of 5-FU-based therapy in colorectal cancer patients. Sci Rep 2023; 13:14237. [PMID: 37648713 PMCID: PMC10469181 DOI: 10.1038/s41598-023-41030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Treatment with 5-fluorouracil (5-FU) based therapy is still used for colorectal cancer (CRC). Epigenetics has become a focus of study in cancer because of its reversibility besides its known regulatory functions. In this study, we will monitor the change in microRNAs (miRNAs) levels with 5-FU-based therapy at baseline and after 3 and 6 months of treatment to be correlated with their prognostic potential. The expression levels of 5 miRNAs, namely miRNA223-3p, miRNA20a-5p, miRNA17-5p, miRNA19a-3p, and miRNA7-5p, were measured in the peripheral blood of 77 CRC patients, along with the expression of 3 proteins PTEN, ERK, and EGFR. At baseline, CRC patients had significantly higher levels of circulating miRNAs than healthy controls. This level was reduced after 3 months of 5-FU-based therapy, then increased after 6 months significantly in responder patients compared to non-responders. MiRNA19a-3p showed that significant pattern of change in the subgroups of patients with high ERK, EGFR, and PTEN protein levels, and its 6 months level after 5-FU-based therapy showed significance for the hazard of increased risk of disease recurrence and progression.
Collapse
Affiliation(s)
- Doaa Badr
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mariam A Fouad
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center. 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Marwa Hussein
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem Salem
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdelrahman Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Dai C, Wang K, Tan M, Hua Z, Xia L, Qin L. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4194-4203. [PMID: 37584160 DOI: 10.1039/d3ay01006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this work, based on a dual signal amplification strategy of enzyme-assisted signal amplification (EASA) and catalytic hairpin assembly (CHA), combined with the magnetic attraction effect, a capillary pump-driven surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) platform was developed for the sensitive detection of colorectal cancer-associated (CRC) microRNA (miRNA). During the detection process, the miRNA first undergoes an EASA reaction with hairpin DNA1 (hpDNA1) under the action of endonuclease, which generates a large amount of DNA2 cyclically. After that, DNA2 triggers the CHA reaction to proceed, which leads to the ligation of the SERS nanoprobes and the capture nanoprobes (hpDNA2-hpDNA3 complexes). Finally, as the reactant solution flows through the collection zone, the end products are magnetically attracted by the micro-magnets, generating many "hot spots" and leading to a triple amplification of the SERS signal. By quantitative analysis, the platform achieved ultra-low detection limits of miR-122 (4.26 aM) and miR-192 (4.71 aM) within a linear range of 10 aM-10 pM. In addition, the platform's results for clinical samples are highly consistent with those measured by qRT-PCR methods. Overall, the proposed LoC-SERS platform is expected to be an important tool for the early screening of CRC.
Collapse
Affiliation(s)
- Chun Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Kun Wang
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Tan
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Zhaolai Hua
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lin Xia
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
43
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
44
|
Li X, Wu X, Su X. Crosstalk between Exosomes and CAFs During Tumorigenesis, Exosomederived
Biomarkers, and Exosome-mediated Drug Delivery. LETT DRUG DES DISCOV 2023; 20:977-991. [DOI: 10.2174/1570180819666220718121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer‐Associated Fibroblasts (CAFs) originate from the activation of fibroblasts in the
Tumor Microenvironment (TME) during tumorigenesis, resulting in the promotion of tumor growth,
metabolism, and metastasis. Exosomes, which can locally or remotely transfer miRNAs, lncRNAs,
proteins, metabolites, and other substances to other cells, have a size and range distribution of 30 to
150 nm and have been described as new particles that mediate communication among neighboring
and/or distant cells. Exosomes have regulatory roles in the tumor microenvironment that are different
from those in the tumor cells, including mediating the regulation of tumor progression, delivery
of miRNAs involved in reprogramming Normal Fibroblasts (NFs) into CAFs, and the modulation of
tumor initiation and metastasis. Exosomes can be useful biomarkers of the tumor microenvironment
and for the therapy and diagnosis of different diseases. Relevant interactions with cancer cells reprogram
NFs into CAFs or allow cell-to-cell communication between CAFs and cancer cells. Several
researchers have started exploring the precise molecular mechanisms related to exosome secretion,
uptake, composition, and corresponding functions of their "cargo." However, little is known about
the processes by which exosomes affect cancer behavior and their potential use as diagnostic biomarkers
for cancer treatment. Therefore, the crosstalk between CAFs and exosomes during tumorigenesis
and the effects of exosomes as biomarkers and drug carriers for therapy are discussed in this
review.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of
Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery,
The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolian Autonomous Region,
China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of
Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China
| |
Collapse
|
45
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
46
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
48
|
Bonavita R, Scerra G, Di Martino R, Nuzzo S, Polishchuk E, Di Gennaro M, Williams SV, Caporaso MG, Caiazza C, Polishchuk R, D’Agostino M, Fleming A, Renna M. The HSPB1-p62/SQSTM1 functional complex regulates the unconventional secretion and transcellular spreading of the HD-associated mutant huntingtin protein. Hum Mol Genet 2023; 32:2269-2291. [PMID: 36971475 PMCID: PMC10321397 DOI: 10.1093/hmg/ddad047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 07/20/2023] Open
Abstract
Conformational diseases, such as Alzheimer, Parkinson and Huntington diseases, are part of a common class of neurological disorders characterized by the aggregation and progressive accumulation of proteins bearing aberrant conformations. Huntington disease (HD) has autosomal dominant inheritance and is caused by mutations leading to an abnormal expansion in the polyglutamine (polyQ) tract of the huntingtin (HTT) protein, leading to the formation of HTT inclusion bodies in neurons of affected patients. Interestingly, recent experimental evidence is challenging the conventional view by which the disease pathogenesis is solely a consequence of the intracellular accumulation of mutant protein aggregates. These studies reveal that transcellular transfer of mutated huntingtin protein is able to seed oligomers involving even the wild-type (WT) forms of the protein. To date, there is still no successful strategy to treat HD. Here, we describe a novel functional role for the HSPB1-p62/SQSTM1 complex, which acts as a cargo loading platform, allowing the unconventional secretion of mutant HTT by extracellular vesicles. HSPB1 interacts preferentially with polyQ-expanded HTT compared with the WT protein and affects its aggregation. Furthermore, HSPB1 levels correlate with the rate of mutant HTT secretion, which is controlled by the activity of the PI3K/AKT/mTOR signalling pathway. Finally, we show that these HTT-containing vesicular structures are biologically active and able to be internalized by recipient cells, therefore providing an additional mechanism to explain the prion-like spreading properties of mutant HTT. These findings might also have implications for the turn-over of other disease-associated, aggregation-prone proteins.
Collapse
Affiliation(s)
| | | | - R Di Martino
- Institute for Endocrinology and Experimental Oncology “G. Salvatore,” National Research Council, 80131 Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy
| | - S Nuzzo
- IRCCS SYNLAB SDN, 80143 Naples, Italy
| | - E Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - M Di Gennaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - S V Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - C Caiazza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - R Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - M D’Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
| | - A Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - M Renna
- To whom correspondence should be addressed at: Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, Via S. Pansini, 5, Building 19, Corpi Bassi Sud (I floor), 80131 Naples, Italy. Tel: +39 081/7463623, Fax: +39 081-7463205;
| |
Collapse
|
49
|
Gherman A, Balacescu L, Popa C, Cainap C, Vlad C, Cainap SS, Balacescu O. Baseline Expression of Exosomal miR-92a-3p and miR-221-3p Could Predict the Response to First-Line Chemotherapy and Survival in Metastatic Colorectal Cancer. Int J Mol Sci 2023; 24:10622. [PMID: 37445798 DOI: 10.3390/ijms241310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The status of predictive biomarkers in metastatic colorectal cancer is currently underdeveloped. Our study aimed to investigate the predictive value of six circulating exosomal miRNAs derived from plasma (miR-92a-3p, miR-143-3p, miR-146a-5p, miR-221-3p, miR-484, and miR-486-5p) for chemosensitivity, resistance patterns, and survival. Thirty-one metastatic colorectal cancer patients were selected before receiving first-line irinotecan- or oxaliplatin-based chemotherapy. Blood samples were harvested at baseline and 4-6 months after the initiation of chemotherapy. The levels of exosomal expression for each miRNA were analyzed by qPCR. Our results for patients receiving first-line FOLFOX showed significantly higher baseline levels of miR-92a-3p (p = 0.007 **), miR-146a-5p (p = 0.036 *), miR-221-3p (p = 0.047 *), and miR-484 (p = 0.009 **) in non-responders (NR) vs. responders (R). Of these, miR-92a-3p (AUC = 0.735), miR-221-3p (AUC = 0.774), and miR-484 (AUC = 0.725) demonstrated a predictive ability to discriminate responses from non-responses, regardless of the therapy used. Moreover, Cox regression analysis indicated that higher expression levels of miR-92a-3p (p = 0.008 **), miR-143-3p (p = 0.009 **), miR-221-3p (p = 0.016 *), and miR-486-5p (p = 0.019 *) at baseline were associated with worse overall survival, while patients expressing higher baseline miR-92a-3p (p = 0.003 **) and miR-486-5p (p = 0.003 **) had lower rates of progression-free survival. No predictive values for candidate microRNAs were found for the post-chemotherapy period. In line with these findings, we conclude that the increased baseline exosomal expression of miR-92a-3p and miR-221-3p seems to predict a lack of response to chemotherapy and lower OS. However, further prospective studies on more patients are needed before drawing practice-changing conclusions.
Collapse
Affiliation(s)
- Alexandra Gherman
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Calin Popa
- "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Surgery, Surgery Unit No 3, University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Simona S Cainap
- Department of Mother and Child, Pediatric Cardiology, University of Medicine and Pharmacy "Iuliu Hatieganu", 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Paediatric Cardiology, Pediatric Clinic No 2, Emergency County Hospital for Children, 68 Motilor Street, 400370 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Zauner R, Wimmer M, Atzmueller S, Proell J, Niklas N, Ablinger M, Reisenberger M, Lettner T, Illmer J, Dorfer S, Koller U, Guttmann-Gruber C, Hofbauer JP, Bauer JW, Wally V. Biomarker Discovery in Rare Malignancies: Development of a miRNA Signature for RDEB-cSCC. Cancers (Basel) 2023; 15:3286. [PMID: 37444397 PMCID: PMC10340387 DOI: 10.3390/cancers15133286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.
Collapse
Affiliation(s)
- Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Sabine Atzmueller
- Center for Medical Research, Medical Faculty, Johannes-Kepler-University, 4020 Linz, Austria; (S.A.); (J.P.)
| | - Johannes Proell
- Center for Medical Research, Medical Faculty, Johannes-Kepler-University, 4020 Linz, Austria; (S.A.); (J.P.)
| | - Norbert Niklas
- Red Cross Transfusion Service of Upper Austria, 4020 Linz, Austria;
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Manuela Reisenberger
- Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| | - Johann W. Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
- Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (M.W.); (M.A.); (T.L.); (J.I.); (S.D.); (U.K.); (C.G.-G.); (J.P.H.); (J.W.B.)
| |
Collapse
|