1
|
Li L, Zhang T, Farhab M, Xia XX, Reza AMMT, Kyaw PO, Chen F, Aly Sayed Ismail E, Xue G, Zhong P, Cheng Y, Yuan YG. Comprehensive analysis of circRNAs and lncRNAs involvement in the development of skeletal muscle in myostatin-deficient rabbits. Anim Biotechnol 2025; 36:2465624. [PMID: 40009466 DOI: 10.1080/10495398.2025.2465624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Myostatin (MSTN) protein, lncRNAs, and circRNAs regulate skeletal muscle growth and development. This work aims to compare the expression patterns of circRNAs and lncRNAs in the gluteus maximus tissue of wild-type (WT) and MSTN gene knockout (KO) rabbits. Within the gluteus maximus tissue of three WT and four MSTN KO rabbits, we analyzed the expression profiles of circRNAs and lncRNAs. After identifying the differently expressed RNAs, the biological pathways implicated were ascertained by performing enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We identified differences in the expression of 251 circRNAs (79 upregulated and 172 downregulated), 176 lncRNAs (53 upregulated and 123 downregulated), and 1178 mRNAs (408 upregulated and 770 downregulated) between WT and MSTN KO rabbits. Target genes were significantly enriched in pathways associated with protein synthesis and catabolism, such as oxidative phosphorylation, ubiquitin-mediated proteolysis, the FoxO signaling pathway, and the pentose phosphate pathway, as identified through GO and KEGG enrichment analyses. The constructed network indicates that a class of circRNAs and lncRNAs is engaged in MSTN-mediated regulation of skeletal muscle development. These findings provide valuable insights for innovative therapeutic, diagnostic, and preventive approaches to muscle disorders.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Xiao-Xiao Xia
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Republic of Turkiye
| | - Paing Oo Kyaw
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Fenglei Chen
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | | | - Gang Xue
- Nantong City Haimen District Yangtze River Delta White Goat Breeding Research Institute, Jiangsu, Nantong, China
| | - Ping Zhong
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yong Cheng
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
2
|
Degens H, Patel K, Matsakas A. Myostatin Knockout Mice Have Larger Muscle Fibers With Normal Function and Morphology. Muscle Nerve 2025; 71:1122-1131. [PMID: 40026240 PMCID: PMC12060642 DOI: 10.1002/mus.28389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION We assessed whether muscle fibers in myostatin knockout (MSTN-/-) mice are just larger or also exhibit morphological, metabolic, and functional differences from MSTN+/+ mice. METHODS We compared single fiber contractile properties and histological fiber properties in muscles from MSTN-/- and MSTN+/+ mice. RESULTS Even though in permeabilized muscle fibers from the extensor digitorum longus and soleus muscle maximal force was higher (p < 0.001) there were no significant differences in specific power (power per unit volume), specific tension (force per cross-sectional area), maximal shortening velocity, or curvature of the force-velocity relationship between MSTN-/- and MSTN+/+ mice. In histological sections of the soleus muscle, fibers were larger (p < 0.001), but the succinate dehydrogenase staining intensity and capillary density did not differ significantly between MSTN-/- and MSTN+/+ mice, which was explicable by the larger number of capillaries around a fiber (p < 0.001). A model showed no significant differences in soleus muscle oxygenation. DISCUSSION The larger force-generating capacity of fibers from MSTN-/- mice is explicable by the larger fiber cross-sectional area. The data indicate that muscle fibers from MSTN-/- mice are quantitatively, but not qualitatively different from muscle fibers from MSTN+/+ mice. Myostatin inhibition may help increase muscle mass in conditions accompanied by muscle weakness without a detrimental impact on muscle quality, but systemic side effects need to be considered.
Collapse
Affiliation(s)
- Hans Degens
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
- Lithuanian Sports UniversityInstitute of Sport Science and InnovationsKaunasLithuania
| | - Ketan Patel
- School Biological SciencesUniversity of ReadingReadingUK
| | - A. Matsakas
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
3
|
Kang MJ, Hwang SK, Park CH, Moon JW, Kim DW, Bae SE, Kim JH, Nam JM, Kim SJ, Bang J, Lim HJ, Uhm KO, Kim HS. Cedrol derivative attenuates muscle atrophy through regulation of myostatin transcription via Ca 2+-CaMK-FoxO3a signaling pathways. Exp Cell Res 2025; 448:114577. [PMID: 40286862 DOI: 10.1016/j.yexcr.2025.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Sarcopenia is a progressive and generalized muscle wasting syndrome characterized by loss of muscle strength and mass. Although many drug candidates have been developed to treat sarcopenia, their results were unsuccessful due to adverse or off-target effects. In this study, we identified a cedrol derivative which is a bioactive sesquiterpene having substantial suppressive effects on muscle atrophy. We demonstrated that the cedrol analog regulated myostatin expression via transcriptional regulation and that the cedrol derivative regulated this expression more effectively than the original form. Cedrol derivative stimulated Ca2+ via the mouse olfactory receptor 23 (MOR23) and induced interactions between phospho-CaMKII and FoxO3a in a calcium-dependent manner. In animal models, the transcript-level expressions of myostatin and MuRF1 were lower in the extensor digitorum longus (EDL) and soleus muscles of mice fed with cedrol-derivative diet. These findings reveal that cedrol derivative suppresses sarcopenia by inhibiting myostatin and MuRF1 expressions in both in vitro and in vivo models, thus suggesting that cedrol derivatives can be potential therapeutic agents for sarcopenia.
Collapse
Affiliation(s)
- Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea; Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Sung Kwan Hwang
- MFC CO., LTD 35, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Chang Ha Park
- MFC CO., LTD 35, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Do Won Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Se Eun Bae
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hyeon Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Nam
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Hyun Joung Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Cheongju-si, Republic of Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Mastaitis JW, Gomez D, Raya JG, Li D, Min S, Stec M, Kleiner S, McWilliams T, Altarejos JY, Murphy AJ, Yancopoulos GD, Sleeman MW. GDF8 and activin A blockade protects against GLP-1-induced muscle loss while enhancing fat loss in obese male mice and non-human primates. Nat Commun 2025; 16:4377. [PMID: 40360507 PMCID: PMC12075787 DOI: 10.1038/s41467-025-59485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists act via appetite suppression and caloric restriction. These treatments can result in significant muscle loss, likely due to evolutionary mechanisms protecting against food scarcity as muscle is a major energy utilizer. One mechanism that reduces muscle mass involves activation of type II activin receptors, ActRIIA/B, which yield profound muscle growth in humans when blocked. We previously demonstrated GDF8, also known as myostatin, and activin A are the two major ActRIIA/B ligands mediating muscle minimization. Here, we report that dual blockade can also prevent muscle loss associated with glucagon-like peptide-1 receptor agonists - and even increase muscle mass - in both obese mice and non-human primates; moreover, this muscle preservation enhances fat loss and is metabolically beneficial. These data raise the possibility that supplementing glucagon-like peptide-1 receptor agonist treatment with GDF8 and activin A blockade could greatly improve the quality of weight loss during the treatment of obesity in humans.
Collapse
Affiliation(s)
| | | | - José G Raya
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diana Li
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Soo Min
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao X, Huang F, Sun Y, Li L. Mechanisms of endurance and resistance exercise in type 2 diabetes mellitus: A Narrative review. Biochem Biophys Res Commun 2025; 761:151731. [PMID: 40179737 DOI: 10.1016/j.bbrc.2025.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
In the treatment and management of type 2 diabetes mellitus (T2DM), exercise therapy has received increasing attention due to its accessibility and cost-effectiveness. Regular physical exercise improves glycemic control by ameliorating insulin resistance (IR) and reducing the risk of complications. However, the distinct mechanisms underlying the efficacy of endurance training (ET) and resistance training (RT) in T2DM remain incompletely understood. This review systematically compares the molecular pathways through which ET and RT improve IR, focusing on epigenetic regulation, metabolic reprogramming, and anti-inflammatory effects. We highlight that RT enhances protein synthesis via the IGF-1/PI3K/AKT/mTOR pathway, while ET predominantly improves mitochondrial biogenesis and lipid oxidation through AMPK/SIRT1/PGC-1α signaling. Additionally, ET exerts immunomodulatory effects by suppressing pro-inflammatory cytokines (e.g., TNF-α) and elevating anti-inflammatory myokines (e.g., IL-6). These findings provide a mechanistic basis for personalized exercise prescriptions in T2DM management.
Collapse
Affiliation(s)
- Xinwen Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China; Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Fengwei Huang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yidi Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
6
|
Suehiro T, Kozuru H, Matusmoto K, Kugiyama Y, Motoyoshi Y, Saeki A, Nagaoka S, Yamasaki K, Komori A, Yatsuhashi H. Changes in serum myostatin levels among patients with type C liver cirrhosis treated with direct-acting antivirals. Hepatol Res 2025; 55:631-637. [PMID: 40317867 DOI: 10.1111/hepr.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/13/2024] [Accepted: 01/04/2025] [Indexed: 05/07/2025]
Abstract
AIM To clarify whether direct-acting antiviral treatment improves serum myostatin levels of patients with cirrhosis caused by hepatitis C virus. METHODS A total of 99 patients with type C liver cirrhosis were administered direct-acting antiviral treatment. The median age was 73 years, and 58 patients were women. We measured the levels of serum myostatin, decorin, follistatin, and insulin-like growth factor-1, as well as the skeletal muscle mass index at baseline. We measured the sustained virological response at 48 weeks. RESULTS Serum myostatin levels of the Child-Pugh class B or C group (n = 30) were significantly higher than those of the Child-Pugh class A group (n = 69) at baseline. The multivariate analysis indicated that the total bilirubin level and Mac-2 binding protein glycosylation isomer level were independent factors associated with serum myostatin levels. Serum myostatin levels significantly decreased, whereas the skeletal muscle mass index and insulin-like growth factor-1 level were significantly increased at 48 weeks. CONCLUSIONS Direct-acting antiviral treatment decreased serum myostatin levels and may improve sarcopenia in patients with cirrhosis.
Collapse
Affiliation(s)
- Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kosuke Matusmoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yasuhide Motoyoshi
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Nagasaki, Japan
| |
Collapse
|
7
|
Yang H, Zheng Y, Yu T, Wu B, Liu Z, Liu S, Sun X, Zhou L. A functional role for myostatin in muscle hyperplasia and hypertrophy revealed by comparative transcriptomics in Yesso scallop Patinopecten yessoensis. Int J Biol Macromol 2025; 307:142308. [PMID: 40118415 DOI: 10.1016/j.ijbiomac.2025.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Elucidating the molecular regulatory mechanisms underlying muscle growth and development is of profound significance in aquaculture. Yesso scallop is a cold-water bivalve of considerable economic importance, having its primary edible component of adductor muscle. In this study, comparative transcriptomics and histological analysis at different sampling times after Myostatin (MSTN) interference were performed to identify the potential candidate genes potentially involved in muscle growth and development. The comparative transcriptomics revealed that growth factors and cytokines, extracellular matrix proteins and ubiquitin-proteasome system are potentially involved in muscle hypertrophy and hyperplasia. After MSTN interference, striated adductor muscle displays significant muscle hypertrophy (51.77 % increase on day 7 and 59.83 % increase on day 21) and muscle hyperplasia (59.36 % increase on day 7 and 61.83 % increase on day 21). WGCNA identifies the key darkolivegreen module, which may play crucial roles in muscle hyperplasia and hypertrophy within the striated muscle of the scallop. Five key transcription factors (zf-CCCH, zf-C2H2, PPP1R10, LRRFIP2, and Gon4) are identified by analyzing the co-expression patterns of core genes within the module. These findings will aid in understanding the regulatory mechanisms of muscle growth in scallops and provide a basis for genetic improvement in shellfish aquaculture.
Collapse
Affiliation(s)
- Hongsu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China; Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
8
|
Wu Y, Lee TH, Cheng OH, Peden EK, Li Q, Wang J, Huang F, Melancon MP, Sheikh-Hamad D, Wang T, Truong L, Mitch WE, Liang M, Cheng J. Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula by Yes-Associated Protein 1 (YAP1) Signaling. J Am Soc Nephrol 2025; 36:845-858. [PMID: 39883520 PMCID: PMC12059102 DOI: 10.1681/asn.0000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
Key Points Atrophied muscle–derived myostatin stimulated mesenchymal stem cell differentiation and adverse arteriovenous (AV) fistula remodeling through yes-associated protein 1 (YAP1) activation. Treatment with myostatin peptibody inhibited muscle wasting and blocked mesenchymal stem cell activation and AV fistula fibrosis. A light-sensitive drug-release strategy was engineered for the periadventitial delivery of verteporfin to improve AV fistula patency. Background Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. The aim of this study was to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure. Methods Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with CKD. The roles of myostatin and yes-associated protein 1 (YAP1) in regulating the transdifferentiation of adventitial mesenchymal stem cells (MSCs) and intima hyperplasia in AV fistula were investigated. Nanoparticles carrying a YAP1 inhibitor, verteporfin, with light irradiation–controlled release were synthesized and applied to AV fistula. Results Increased trichrome signals and stenosis were observed in AV fistulas from mice treated with myostatin and from mice with CKD. By contrast, blocking myostatin function with an anti-myostatin peptibody not only improved body weight and muscle size in CKD mice but also decreased neointima formation in AV fistulas. In cultured MSCs, myostatin induced YAP1 expression, promoting the differentiation of MSCs into myofibroblasts and inducing extracellular matrix deposition. Red light irradiation–controlled release of verteporfin from nanoparticles blocked YAP1 activation and alleviated myostatin-induced MSC activation. Periadventitial application and red light irradiation of nanoparticles carrying verteporfin significantly suppressed stiffening and neointima formation in AV fistula. Conclusions CKD induced muscle wasting, leading to increased production of myostatin, which stimulated MSC activation and vascular fibrosis linked to AV fistula stenosis. YAP1 signaling was activated in these processes. Red light irradiation–controlled release of verteporfin offered a feasible approach for local vascular drug intervention to improve AV fistula maturation.
Collapse
Affiliation(s)
- Yongdong Wu
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Tae Hoon Lee
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Owen H. Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Eric K. Peden
- Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Qingtian Li
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Fengzhang Huang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Sheikh-Hamad
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Tao Wang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Luan Truong
- Department of Pathology and Genomic medicine, Houston Methodist Hospital, Houston, Texas
| | - William E. Mitch
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Su Y, Mou S, Song Y, Zhang H, Zhang Q. Genome-wide identification of the TGF-β superfamily and their expression in the Chinese mitten crab Eriocheir sinensis. Sci Rep 2025; 15:12709. [PMID: 40223023 PMCID: PMC11994790 DOI: 10.1038/s41598-025-97772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Transforming growth factor-β superfamily genes are multifunctional cytokines that play central roles in the regulation of cell proliferation, differentiation, apoptosis, adhesion, and migration. Identifying the TGF-β superfamily in crabs could provide a basis for elucidating the genetic regulatory mechanism of growth, development, sex differentiation and environmental adaptation. To understand the complexity and evolution of the TGF-β superfamily in the Chinese mitten crab Eriocheir sinensis, this study comprehensively and systematically analysed this superfamily in the genome of E. sinensis. A total of 9 TGF-β superfamily genes have been identified, including EsBMP2, EsBMP3, EsBMP7, EsBMP10, EsBMP15, EsGDF8, EsUnivin, EsINHB and EsINHBB. A wide variation in the number of motifs and CDSs was found among different subfamilies. The expression of EsBMP2 and EsBMP7 suggested that these genes may be the main genes controlling embryonic development in E. sinensis. EsBMP2, EsBMP7 and EsBMP10 are very highly expressed in the gills. The TGF-β superfamily genes presented different expression patterns during limb regeneration and molting. In addition, this gene family also responds to environmental stresses, including nanoplastic stress, cadmium stress, air exposure, and high-salinity stress, which provides a new perspective for understanding the strong tolerance and adaptability of crabs to environmental stress. To our knowledge, this study is the first genome-wide investigation of the TGF-β superfamily in crabs. This study identified the sequence structure, phylogenetic relationship, and gene expression profiles of the TGF-β superfamily genes in the Chinese mitten crab, and the above results lay a foundation for further investigation of the evolution and biological functions of this gene family.
Collapse
Affiliation(s)
- Yu Su
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Siyu Mou
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yifan Song
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Huanglong Zhang
- Bureau of Agriculture and Rural Affairs, Quanzhou, 362100, Hui'an County, China
| | - Qian Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
10
|
Borok MJ, Zaidan L, Relaix F. Transposon expression and repression in skeletal muscle. Mob DNA 2025; 16:18. [PMID: 40217332 PMCID: PMC11992895 DOI: 10.1186/s13100-025-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 04/14/2025] Open
Abstract
Transposons and their derivatives make up a major proportion of the human genome, but they are not just relics of ancient genomes. They can still be expressed, potentially affecting the transcription of adjacent genes, and can sometimes even contribute to their coding sequence. Active transposons can integrate into new sites in the genome, potentially modifying the expression of nearby loci and leading to genetic disorders. In this review, we highlight work exploring the expression of transposons in skeletal muscles and transcriptional regulation by the KRAB-ZFP/KAP1/SETDB1 complex. We next focus on specific cases of transposon insertion causing phenotypic variation and distinct muscular dystrophies, as well as the implication of transposon expression in immune myopathies. Finally, we discuss the dysregulation of transposons in facioscapulohumeral dystrophy and aging.
Collapse
Affiliation(s)
- Matthew J Borok
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France.
| | - Louai Zaidan
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France
| | - Frederic Relaix
- University Paris-Est Créteil, INSERM U955 IMRB, Créteil, 94010, France.
- École Nationale Vétérinaire d'Alfort U955 IMRB, Maisons-Alfort, 94700, France.
- EFS IMRB, Créteil, 94010, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Mondor, Service d'Histologie, Créteil, 94010, France.
| |
Collapse
|
11
|
Barone M, Baccaro P, Molfino A. An Overview of Sarcopenia: Focusing on Nutritional Treatment Approaches. Nutrients 2025; 17:1237. [PMID: 40218995 PMCID: PMC11990658 DOI: 10.3390/nu17071237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Sarcopenia is a syndrome characterized by the progressive and generalized loss of skeletal muscle mass and strength. This condition is associated with physical disability, decreased quality of life, and increased mortality. Therefore, reducing the prevalence of sarcopenia could significantly lower healthcare costs. Sarcopenia can be classified into primary and secondary sarcopenia. The former is related to aging and begins after the fourth decade of life; after that, there is a muscle loss of around 8% per decade until age 70 years, which subsequently increases to 15% per decade. On the other hand, secondary sarcopenia can affect all individuals and may result from various factors including physical inactivity, malnutrition, endocrine disorders, neurodegenerative diseases, inflammation, and cachexia. Understanding the multiple mechanisms involved in the onset and progression of sarcopenia allows for us to develop strategies that can prevent, treat, or at least mitigate muscle loss caused by increased protein breakdown. One potential treatment of sarcopenia is based on nutritional interventions, including adequate caloric and protein intake and specific nutrients that support muscle health. Such nutrients include natural food rich in whey protein and omega-3 fatty acids as well as nutritional supplements like branched-chain amino acids, β-hydroxy-β-methylbutyrate, and vitamin D along with food for special medical purposes. It is important to emphasize that physical exercises, especially resistance training, not only promote muscle protein synthesis on their own but also work synergistically with nutritional strategies to enhance their effectiveness.
Collapse
Affiliation(s)
- Michele Barone
- Gastroenterology Unit, Department of Precision and Regenerative Medicine, University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Palmina Baccaro
- Gastroenterology Unit, Department of Precision and Regenerative Medicine, University of Bari, Policlinic University Hospital, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
12
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
13
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 PMCID: PMC11893237 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
15
|
de Souza Leite F, Lambert MR, Zhang TY, Conner JR, Paulo JA, Oliveira SF, Thakurta S, Bowles J, Gussoni E, Gygi SP, Widrick JJ, Kunkel LM. Muscle-specific increased expression of JAG1 improves skeletal muscle phenotype in dystrophin-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642857. [PMID: 40161820 PMCID: PMC11952387 DOI: 10.1101/2025.03.12.642857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Therapeutic strategies for Duchenne Muscular Dystrophy (DMD) will likely require complementary approaches. One possibility is to explore genetic modifiers that improve muscle regeneration and function. The beneficial effects of the overexpression of Jagged-1 were described in escaper golden retriever muscular dystrophy (GRMD) dogs that had a near-normal life and validated in dystrophin-deficient zebrafish (1). To clarify the underlying biology of JAG1 overexpression in dystrophic muscles, we generated a transgenic mouse (mdx5cv-JAG1) model that lacks dystrophin and overexpresses human JAG1 in striated muscles. Skeletal muscles from mdx5cv-JAG1 and mdx5cv mice were studied at one, four, and twelve-month time points. JAG1 expression in mdx5cv-JAG1 increased by three to five times compared to mdx5cv. Consequently, mdx5cv-JAG1 muscles were significantly bigger and stronger than dystrophic controls, along with an increased number of myofibers. Proteomics data show increased dysferlin in mdx5cv-JAG1 muscles and an association of Nsd1 with the phenotype. Our data supports the positive effect of JAG1 overexpression in dystrophic muscles.
Collapse
Affiliation(s)
- Felipe de Souza Leite
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James R. Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sheldon Furtado Oliveira
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Thakurta
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Bowles
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Choi S, Park JW, Lee SI, Shin S. Overexpression of Syndecan-4 inhibits myogenesis by regulating the expression of myogenic regulatory factors. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:410-420. [PMID: 40264532 PMCID: PMC12010220 DOI: 10.5187/jast.2024.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 01/20/2024] [Indexed: 04/24/2025]
Abstract
Syndecan-4, a type of heparan sulfate proteoglycan, plays an important role in muscle development, regeneration, and maintenance. Although the important effects of Syndecan-4 on the regulation of myogenesis in mice, turkeys, and bovines have been consistently reported, the molecular mechanisms of Syndecan-4 in myogenesis are not well understood. In this study, the role of Syndecan-4 in regulating myogenesis was investigated in quail myoblast (QM7) cells, which constituting a quail myogenic cell line. Overexpression of Syndecan-4 inhibited myogenesis, resulting in reduced myoblast fusion and shorter myotubes than in the control group. Therefore, the cells overexpressing Syndecan-4 showed a smaller total myotube area than did the control cells. Furthermore, these cells had lesser myosin heavy chain proteins, suggesting that muscle differentiation is inhibited by Syndecan-4. To investigate the inhibitory effect of Syndecan-4 on myogenic differentiation, the mRNA expression levels in several genes known to regulate myoblast proliferation and differentiation were compared. Myogenic regulatory factors, including myogenic factor 5, myogenic differentiation 1, and myogenin, showed significantly different expressions between the groups during myogenesis. Myostatin, a negative regulator of muscle growth, showed significantly higher expression on day 4 in cells overexpressing Syndecan-4. In conclusion, Syndecan-4 could delay and inhibit muscle differentiation by regulating the expression levels of myogenic factors and muscle growth regulator in quail myocytes. This study provides valuable information regarding the role of Syndecan-4 in myogenesis, which may aid in improving the production of poultry meat.
Collapse
Affiliation(s)
- Sarang Choi
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Jeong-Woong Park
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
17
|
Hai C, Wang L, Wu D, Pei D, Yang Y, Liu X, Zhao Y, Bai C, Su G, Bao Z, Yang L, Li G. Loss of Myostatin leads to low production of CH 4 by altering rumen microbiota and metabolome in cattle. Int J Biol Macromol 2025; 294:139533. [PMID: 39761884 DOI: 10.1016/j.ijbiomac.2025.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH4 emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH4 production was lower. Macrogenomic analysis revealed a significant decrease in rumen archaea, with reduced Richness indices (P = 0.036). The MSTN-KO cattle also showed altered archaea distribution and composition at different taxonomic levels. LEfSe results showed changes in 21 methanogenic archaea clades, with obligately hydrogen (H2)-dependent methylotrophs Candidatus Methanoplasma termitum species belonging to Methanomassiliicoccales order demonstrating the most significant decrease. Rumen metabolites revealed a decrease in the ratio of acetate to propionate, indicating a shift in rumen fermentation pattern towards propionate fermentation. Additionally, the changing trend of methanogenic archaea is consistent with the evolution of methanogens, and this is correlated with the higher levels of linoleic acid in the rumen of MSTN-KO cattle. Linoleic acid affects the utilization of H2 by methanogenic archaea, leading to a reduction in obligately H2-dependent methylotrophs. Our study suggests that MSTN-KO cattle have potential as an economically and ecologically benign breed for reducing methane emissions.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuqing Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
18
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
19
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
20
|
Zhuang M, Gu Y, Wang Z, He X, Chen N. Effects of 12-week whole-body vibration training versus resistance training in older people with sarcopenia. Sci Rep 2025; 15:6981. [PMID: 40011687 PMCID: PMC11865505 DOI: 10.1038/s41598-025-91644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Sarcopenia is a syndrome commonly found in older people. The aim of this study was to evaluate the effects of whole-body vibration training (WBVT) and resistance training (RT) on body composition, muscle strength, physical performance and blood biomarkers in older people with sarcopenia. We conducted a 12-week, 3-times-weekly assessor-blinded, randomized controlled trial of 27 older people with sarcopenia aged ≥ 65 years. Subjects were randomized into WBVT group (n = 14) and RT group (n = 13). The primary outcome was knee extension strength (KES). Secondary outcomes were body composition [body weight, body mass index (BMI), percentage of body fat (PBF), and appendicular skeletal muscle mass index (ASMI)], muscle strength [handgrip strength (HS)], physical performance [gait speed (GS), 5-time chair stand test (5CST), and short physical performance battery (SPPB)], blood biomarkers (inflammatory factors, hormones, growth factors, and muscle injury biomarker), and quality of life questionnaire [medical outcomes study short-form 36 (SF-36)]. After 12-week intervention, in the WBVT group, we observed significant improvements in body composition (weight, BMI, PBF and ASMI), muscle strength (KES), physical performance (GS, SPPB and 5CST), blood biomarkers [insulin-like growth factor 1 (IGF-1), growth hormone, follistatin (FST) and creatine kinase (CK)] and quality of life. In the RT group, we observed significant improvements in body composition (weight, BMI and PBF), muscle strength (KES), physical performance (GS and SPPB), blood biomarkers (growth hormone, FST and CK) and quality of life. Between-group comparisons were only significant for KES (P = 0.007) and the role-physical (RP) dimension of the SF-36 (P = 0.007). WBVT and RT both improved the physical condition of older people with sarcopenia. RT excelled in muscle strength, but WBVT offered an alternative for those with restrictions. WBVT's low risk and flexibility suited diverse conditions, providing a new rehabilitation option for patients with sarcopenia.
Collapse
Affiliation(s)
- Min Zhuang
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yifan Gu
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhou Wang
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangfeng He
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Nan Chen
- Department of Rehabilitation, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhong C, Zeng X, Yi X, Yang Y, Hu J, Yin R, Chen X. The Function of Myostatin in Ameliorating Bone Metabolism Abnormalities in Individuals with Type 2 Diabetes Mellitus by Exercise. Curr Issues Mol Biol 2025; 47:158. [PMID: 40136413 PMCID: PMC11941426 DOI: 10.3390/cimb47030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE The molecular mechanisms involved in bone metabolism abnormalities in individuals with type 2 diabetes mellitus (T2DM) are a prominent area of investigation within the life sciences field. Myostatin (MSTN), a member of the TGF-β superfamily, serves as a critical negative regulator of skeletal muscle growth and bone metabolism. Current research on the exercise-mediated regulation of MSTN expression predominantly focuses on its role in skeletal muscle. However, due to the intricate and multifaceted mechanical and biochemical interactions between muscle and bone, the precise mechanisms by which exercise modulates MSTN to enhance bone metabolic disorders in T2DM necessitate additional exploration. The objective of this review is to systematically synthesize and evaluate the role of MSTN in the development of bone metabolism disorders associated with T2DM and elucidate the underlying mechanisms influenced by exercise interventions, aiming to offer novel insights and theoretical recommendations for enhancing bone health through physical activity. METHODS Relevant articles in Chinese and English up to July 2024 were selected using specific search terms and databases (PubMed, CNKI, Web of Science); 147 studies were finally included after evaluation, and the reference lists were checked for other relevant research. RESULTS Myostatin's heightened expression in the bone and skeletal muscle of individuals with T2DM can impede various pathways, such as PI3K/AKT/mTOR and Wnt/β-catenin, hindering osteoblast differentiation and bone mineralization. Additionally, it can stimulate osteoclast differentiation and bone resorption capacity by facilitating Smad2-dependent NFATc1 nuclear translocation and PI3K/AKT/AP-1-mediated pro-inflammatory factor expression pathways, thereby contributing to bone metabolism disorders. Physical exercise plays a crucial role in ameliorating bone metabolism abnormalities in individuals with T2DM. Exercise can activate pathways like Wnt/GSK-3β/β-catenin, thereby suppressing myostatin and downstream Smads, CCL20/CCR6, and Nox4 target gene expression, fostering bone formation, inhibiting bone resorption, and enhancing bone metabolism in T2DM. CONCLUSION In the context of T2DM, MSTN has been shown to exacerbate bone metabolic disorders by inhibiting the differentiation of osteoblasts and the process of bone mineralization while simultaneously promoting the differentiation and activity of osteoclasts. Exercise interventions have demonstrated efficacy in downregulating MSTN expression, disrupting its downstream signaling pathways, and enhancing bone metabolism.
Collapse
Affiliation(s)
- Chenghao Zhong
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xinyu Zeng
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Xiaoyan Yi
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Yuxin Yang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Jianbo Hu
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| | - Rongbin Yin
- School of Physical Education and Sport, Soochow University, Suzhou 215006, China;
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China; (C.Z.); (X.Z.); (X.Y.); (Y.Y.); (J.H.)
| |
Collapse
|
22
|
Egerman MA, Zhang Y, Donne R, Xu J, Gadi A, McEwen C, Salmon H, Xiong K, Bai Y, Germino M, Barringer K, Jimenez Y, Del Pilar Molina-Portela M, Shavlakadze T, Glass DJ. ActRII or BMPR ligands inhibit skeletal myoblast differentiation, and BMPs promote heterotopic ossification in skeletal muscles in mice. Skelet Muscle 2025; 15:4. [PMID: 39994804 PMCID: PMC11853584 DOI: 10.1186/s13395-025-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Prior studies suggested that canonical Activin Receptor II (ActRII) and BMP receptor (BMPR) ligands can have opposing, distinct effects on skeletal muscle depending in part on differential downstream SMAD activation. It was therefore of interest to test ActRII ligands versus BMP ligands in settings of muscle differentiation and in vivo. METHODS AND RESULTS In human skeletal muscle cells, both ActRII ligands and BMP ligands inhibited myogenic differentiation: ActRII ligands in a SMAD2/3-dependent manner, and BMP ligands via SMAD1/5. Surprisingly, a neutralizing ActRIIA/B antibody mitigated the negative effects of both classes of ligands, indicating that some BMPs act at least partially through the ActRII receptors in skeletal muscle. Gene expression analysis showed that both ActRII and BMP ligands repress muscle differentiation genes in human myoblasts and myotubes. In mice, hepatic BMP9 over-expression induced liver toxicity, caused multi-organ wasting, and promoted a pro-atrophy gene signature despite elevated SMAD1/5 signaling in skeletal muscle. Local overexpression of BMP7 or BMP9, achieved by intramuscular AAV delivery, induced heterotopic ossification. Elevated SMAD1/5 signaling with increased expression of BMP target genes was also observed in sarcopenic muscles of old rats. CONCLUSIONS The canonical ActRII ligand-SMAD2/3 and BMP ligand-SMAD1/5 axes can both block human myoblast differentiation. Our observations further demonstrate the osteoinductive function of BMP ligands while pointing to a potential relevancy of blocking the BMP-SMAD1/5 axis in the setting of therapeutic anti-ActRIIA/B inhibition.
Collapse
Affiliation(s)
- Marc A Egerman
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yuhong Zhang
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Romain Donne
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianing Xu
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Abhilash Gadi
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Corissa McEwen
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Hunter Salmon
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Mary Germino
- Imaging Sciences, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Kevin Barringer
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Yasalp Jimenez
- Inflammation & Immune Diseases, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Tea Shavlakadze
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - David J Glass
- Aging/Age-Related Disorders, 777 Old Saw Mill River Road, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| |
Collapse
|
23
|
Jia M, Li F, Wu T, Chen N. Exerkines: Potential regulators of ferroptosis. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101032. [PMID: 39988270 PMCID: PMC12002844 DOI: 10.1016/j.jshs.2025.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/25/2025]
Abstract
Ferroptosis is a programmed cell death, and its mechanism involves multiple metabolic pathways, such as iron and lipid metabolism, and redox homeostasis. Exerkines are important mediators that optimize cellular homeostasis and maintain physiological health during exercise stimulation. This article comprehensively examines the mechanisms and regulatory networks for governing ferroptosis and summarizes the impact of exercise and exerkines on ferroptosis under varying load intensities and disease contexts. Notably, despite its significant efficacy and minimal side effects, the therapeutic and prognostic potential of exercise in ferroptosis-related diseases remains largely unexplored. This article, by summarizing recent progresses in the regulation of exerkines-mediated ferroptosis, could further uncover the preventive or alleviative mechanisms of some diseases upon exercise interventions, which will be beneficial to design exercise interventional strategies for alleviating disease progression through the regulation of ferroptosis.
Collapse
Affiliation(s)
- Min Jia
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
24
|
Huang X, Xu C, Zhang J, Wu W, Wang Z, Pang Q, Liu Z, Liu B. Endurance exercise remodels skeletal muscle by suppressing Ythdf1-mediated myostatin expression. Cell Death Dis 2025; 16:96. [PMID: 39948064 PMCID: PMC11825732 DOI: 10.1038/s41419-025-07379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Exercise can improve health via skeletal muscle remodeling. Elucidating the underlying mechanism may lead to new therapeutics for aging-related loss of skeletal muscle mass. Here, we show that endurance exercise suppresses expression of YT521-B homology domain family (Ythdf1) in skeletal muscle, which recognizes the N6-methyladenosine (m6A). Ythdf1 deletion phenocopies endurance exercise-induced muscle hypertrophy in mice increases muscle mitochondria content and type I fiber specification. At the molecular level, Ythdf1 recognizes and promotes the translation of m6A-modified Mstn mRNA, which encodes a muscle growth inhibitor, Myostatin. Loss of Ythdf1 leads to hyperactivation of skeletal muscle stem cells (MuSCs), also called satellite cells (SCs), enhancing muscle growth and injury-induced regeneration. Our data reveal Ythdf1 as a key regulator of skeletal muscle homeostasis, provide insights into the mechanism by which endurance exercise promotes skeletal muscle remodeling and highlight potential strategies to prevent aging-related muscle degeneration.
Collapse
Affiliation(s)
- Xin Huang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Chenzhong Xu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Zimei Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Zuojun Liu
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, China.
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
25
|
Elashry MI, Schneider VC, Heimann M, Wenisch S, Arnhold S. CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice. J Dev Biol 2025; 13:5. [PMID: 39982358 PMCID: PMC11843916 DOI: 10.3390/jdb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Victoria C. Schneider
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| |
Collapse
|
26
|
Wang Y, Li X, Xu T, Li H, Liu J, Yang Q, Li W, Zidan SRS, Jiang C, Yuan Y, Tang R, Yu L, Li L, Zhang X, Li D. Long-Day Photoperiod Improves the Growth and Muscle Quality of Grass Carp ( Ctenopharyngodon idella). Foods 2025; 14:504. [PMID: 39942096 PMCID: PMC11817249 DOI: 10.3390/foods14030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
To investigate the effects of photoperiods on the growth and muscle quality indicators of grass carp (Ctenopharyngodon idella), 225 fish (109.65 ± 3.62 g) were randomly assigned into five different photoperiod groups (0L:24D, 8L:16D, 12L:12D, 16L:8D, and 24L:0D). The experiment spanned a 75-day period, after which sampling and analysis were performed. Compared with the 0L:24D and 8L:16D groups, the 12L:12D and 16L:8D groups significantly promoted the growth of grass carp (p < 0.05). The texture parameters of the muscle in the 0L:24D and 16L:8D groups were significantly greater than those in the 12L:12D group (p < 0.05). The crude protein content was significantly higher in the 12L:12D and 16L:8D groups (p < 0.05). The amino acid content and muscle fiber characteristics, as well as the mRNA levels of myostatin (mstn), myogenic factor 5 (myf5), type I collagen α1 (col1α1), and α2 (col1α2), along with the hydroxyproline and collagen contents, were all significantly influenced by the photoperiod (p < 0.05). The lysine (Lys), aspartic acid (Asp), and alanine (Ala) contents in the muscle and muscle fiber density of grass carp reached the highest levels under the 16L:8D treatment (p < 0.05). Collectively, these results indicate that a 16L:8D photoperiod is optimal for enhancing both the growth and muscle quality indicators of grass carp. The findings of this study offer valuable scientific references for the precise regulation of grass carp quality when using a photoperiod, and they are anticipated to foster the further development and optimization of strategies for improving grass carp quality.
Collapse
Affiliation(s)
- Yin Wang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuxu Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Tingting Xu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Huacheng Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Jieya Liu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- College of Life Sciences and Technology, Tarim University, Alar 843300, China
| | - Qiushi Yang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wenhan Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Sayed R. S. Zidan
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Animal Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Chengchen Jiang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Yutian Yuan
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Liqin Yu
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xi Zhang
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Dapeng Li
- Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (X.L.); (T.X.); (H.L.); (J.L.); (Q.Y.); (W.L.); (S.R.S.Z.); (C.J.); (Y.Y.); (R.T.); (L.Y.); (L.L.); (X.Z.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| |
Collapse
|
27
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
29
|
Luo X, Wang J, Ju Q, Li T, Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech Ageing Dev 2025; 223:112020. [PMID: 39667622 DOI: 10.1016/j.mad.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Sarcopenia, a common condition observed in the elderly, presenting a significant public health challenge due to its high prevalence, insidious onset and diverse systemic effects. Despite ongoing research, the precise etiology of sarcopenia remains elusive. Aging-related processes, which included inflammation, oxidative stress, compromised mitochondrial function and apoptosis, have been implicated in its development. Notably, effective pharmacological treatments for sarcopenia are currently lacking, highlighting the necessity for a deeper understanding of its pathogenesis and causative factors to enable proactive interventions. This article is aimed to provide an extensive overview of the pathogenesis of sarcopenia, along with a summary of current treatment and prevention strategies.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qingqing Ju
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianyu Li
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China; Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China.
| |
Collapse
|
30
|
Zuo H, Jiang W, Gao J, Ma Z, Li C, Peng Y, Jin J, Zhan X, Lv W, Liu X, Hu J, Zhang M, Jia Y, Xu Z, Tang J, Zheng R, Zuo B. SYISL Knockout Promotes Embryonic Muscle Development of Offspring by Modulating Maternal Gut Microbiota and Fetal Myogenic Cell Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410953. [PMID: 39680624 PMCID: PMC11809340 DOI: 10.1002/advs.202410953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum. Both fecal microbiota transplantation and butyrate feeding significantly increase muscle fiber numbers in offspring, with butyrate inhibiting histone deacetylases and increasing histone acetylation in embryonic muscle. Combined analysis of RNA-seq between wild-type and SYISL knockout mice with ChIP-seq for H3K9ac and H3K27ac reveals that SYISL and maternal microbiota interaction regulates myogenesis via the butyrate-HDAC-H3K9ac/H3K27ac pathway. Furthermore, scRNA-seq analysis shows that SYISL knockout alone significantly increases the number and proportion of myogenic cells and their dynamics, independently of regulating histone acetylation levels. Cell communication analysis suggests that this may be due to the downregulation of signaling pathways such as MSTN and TGFβ. Overall, multiple pathways are highlighted through which SYISL influences embryonic muscle development, offering valuable insights for treating muscle diseases and improving livestock production.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianwei Gao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zhibo Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Chen Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Jingjing Hu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Mengdi Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Yiming Jia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medicine ScienceHubei University of MedicineShiyan442000China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Agriculture Animal GeneticsBreeding and Reproduction of the Ministry of EducationHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
31
|
Johnson D, Ridolfo A, Mueller R, Chermack M, Brockhouse J, Tadiwala J, Jain A, Bertram K, Garg K. Biosponge-Encased Placental Stem Cells for Volumetric Muscle Loss Repair. Adv Wound Care (New Rochelle) 2025; 14:83-100. [PMID: 39171894 DOI: 10.1089/wound.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Objective: Volumetric muscle loss (VML) leads to permanent muscle mass and functional impairments. While mesenchymal stromal cells (MSCs) and their secreted factors can aid muscle regeneration, MSCs exhibit limited persistence in injured tissue post-transplantation. Human placental-derived stem cells (hPDSCs), sharing surface markers with MSCs, demonstrate superior regenerative potential due to their fetal origin. Previously, a biosponge (BS) scaffold was shown to augment muscle regeneration post-VML. This study aims to coapply BS therapy and hPDSCs to further enhance muscle recovery following VML. Approach: A VML defect was created by removing ∼20% of the tibialis anterior muscle mass in male Lewis rats. Injured muscles were either left untreated or treated with BS or BS-encapsulated hPDSCs cultured under normoxic or hypoxic conditions. On day 28 postinjury, peak isometric torque was measured, and the muscle was harvested for analysis. Results: BS encapsulated hPDSCs subjected to hypoxic preconditioning persisted in larger quantities and enhanced muscle mass at day 28 postinjury. BS encapsulated hPDSCs cultured under normoxic or hypoxic conditions increased small myofibers (<500 µm2) percentage, MyoD protein expression, and both pro- and anti-inflammatory macrophage marker expression. BS encapsulated hPDSCs also reduced fibrosis and BS remodeling rate. Innovation: This study is the first to examine the therapeutic effects of hPDSCs in a rat VML model. A BS carrier and hypoxic preconditioning were investigated to mitigate low cell survival postimplantation. Conclusion: hPDSCs augment the regenerative effect of BS. Combining hPDSCs and BS emerges as a promising strategy worthy of further investigation.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Amelia Ridolfo
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Ryan Mueller
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Megan Chermack
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Avantika Jain
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
32
|
Deguchi K, Ushiroda C, Hidaka S, Tsuchida H, Yamamoto-Wada R, Seino Y, Suzuki A, Yabe D, Iizuka K. Chrebp Deletion and Mild Protein Restriction Additively Decrease Muscle and Bone Mass and Function. Nutrients 2025; 17:488. [PMID: 39940346 PMCID: PMC11819777 DOI: 10.3390/nu17030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Carbohydrate and protein restriction are associated with sarcopenia and osteopenia, but the underlying mechanisms remain unclear. We aimed to determine whether mild protein restriction affects muscle and bone function in wild-type (WT) and homozygous carbohydrate response element binding protein (Chrebp) knockout (KO) mice. Methods: Eighteen-week-old male wild-type and homozygous carbohydrate response element binding protein (Chrebp) knockout (KO) mice were fed a control diet (20% protein) or a low-protein diet (15% protein) for 12 weeks. We estimated the muscle weight and limb grip strength as well as the bone mineral density, bone structure, and bone morphometry. Results: Chrebp deletion and a low-protein diet additively decreased body weight (WT control-KO low-protein: mean difference with 95% CI, 8.7 [6.3, 11.0], p < 0.0001) and epidydimal fat weight (1.0 [0.7, 1.2], p < 0.0001). Chrebp deletion and a low-protein diet additively decreased tibialis anterior muscle weight (0.03 [0.01, 0.05], p = 0.002) and limb grip strength (63.9 [37.4, 90.5], p < 0.0001) due to a decrease in insulin/insulin-like growth factor 1 mRNA and an increase in myostatin mRNA. In contrast, Chrebp deletion increased bone mineral density (BMD) (WT control-KO control: -6.1 [-1.0, -2.3], p = 0.0009), stiffness (-21.4 [-38.8, -4.1], p = 0.011), cancellous bone BV/TV (-6.517 [-10.99, -2.040], p = 0.003), and the number of trabeculae (-1.1 [-1.8, -0.5], p = 0.0008). However, in KO mice, protein restriction additively decreased BMD (KO control-KO low-protein: 8.1 [4.3, 11.9], p < 0.0001), bone stiffness (38.0 [21.3, 54.7], p < 0.0001), cancellous bone BV/TV (7.7 [3.3, 12.2], p = 0.006), and the number of trabeculae (1.2 [0.6, 1.9], p = 0.0004). The effects of mild protein restriction on bone formation parameters (osteoid volume (WT control-WT low-protein: -1.7 [-2.7, -0.7], p = 0.001) and the osteoid surface (-11.2 [-20.8, -1.5], p = 0.02) were observed only in wild-type (WT) mice. The levels of bone resorption markers, such as the number of osteoclasts on the surface, the number of osteoclasts, and surface erosion, did not differ between the groups. Conclusions: Both Chrebp deletion and protein restriction led to a decrease in muscle and bone function; therefore, an adequate intake of carbohydrates and proteins is important for maintaining muscle and bone mass and function. Further studies will be needed to elucidate the mechanisms by which ChREBP deletion and a low-protein diet cause osteosarcopenia.
Collapse
Affiliation(s)
- Kanako Deguchi
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan; (K.D.); (C.U.); (R.Y.-W.)
| | - Chihiro Ushiroda
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan; (K.D.); (C.U.); (R.Y.-W.)
| | - Shihomi Hidaka
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake 470-1192, Japan; (S.H.); (Y.S.); (A.S.)
| | - Hiromi Tsuchida
- Department of Diabetes, Endocrinology and Metabolism, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.T.); (D.Y.)
| | - Risako Yamamoto-Wada
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan; (K.D.); (C.U.); (R.Y.-W.)
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake 470-1192, Japan; (S.H.); (Y.S.); (A.S.)
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake 470-1192, Japan; (S.H.); (Y.S.); (A.S.)
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.T.); (D.Y.)
- Departments of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan; (K.D.); (C.U.); (R.Y.-W.)
- Food and Nutrition Service Department, Fujita Health University Hospital, Toyoake 470-1192, Japan
| |
Collapse
|
33
|
Nishikawa H, Kim SK, Asai A. The Role of Myokines in Liver Diseases. Int J Mol Sci 2025; 26:1043. [PMID: 39940810 PMCID: PMC11817747 DOI: 10.3390/ijms26031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Myokine is a general term for hormones, peptides, and other substances secreted by skeletal muscle. Myokine has attracted much attention in recent years as a key substance for understanding the mechanism of "exercise and health". Skeletal muscle accounts for about 40% of the total human weight and is now recognized as an endocrine organ that produces myokines, which have physiological activity. Representative myokines include IL-6, myostatin, irisin, brain-derived neurotropic factor, fibroblast growth factor-21, and decorin. On the other hand, sarcopenia, defined by quantitative and qualitative loss of skeletal muscle, is a condition that has received much attention in recent years because of its close correlation with prognosis. In patients with chronic liver disease (CLD), sarcopenia is a common complication. Mechanisms underlying sarcopenia in CLD patients have been reported to involve protein-energy malnutrition, which is characteristic of patients with cirrhosis, signaling involved in protein synthesis and degradation, myokines such as myostatin and decorin, the ubiquitin-proteasome pathway, sex hormones such as testosterone, dysbiosis, and insulin resistance, etc., in addition to aging. Each of these pathological conditions is thought to be intricately related to each other, leading to sarcopenia. This review will summarize the relationship between CLD and myokines.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| |
Collapse
|
34
|
Steenwinkel TE, Pangas SA. Myostatin's flex on the reproductive hormone axis. Science 2025; 387:249-250. [PMID: 39818887 DOI: 10.1126/science.adu7735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
A muscle hormone controls the mammalian reproductive system.
Collapse
Affiliation(s)
- Tessa E Steenwinkel
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Ongaro L, Zhou X, Wang Y, Schultz H, Zhou Z, Buddle ERS, Brûlé E, Lin YF, Schang G, Hagg A, Castonguay R, Liu Y, Su GH, Seidah NG, Ray KC, Karp SJ, Boehm U, Ruf-Zamojski F, Sealfon SC, Walton KL, Lee SJ, Bernard DJ. Muscle-derived myostatin is a major endocrine driver of follicle-stimulating hormone synthesis. Science 2025; 387:329-336. [PMID: 39818879 DOI: 10.1126/science.adi4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins. Our results both challenge activin's eponymous role in FSH synthesis and establish an unexpected endocrine axis between skeletal muscle and the pituitary gland. Our data also suggest that efforts to antagonize myostatin to increase muscle mass may have unintended consequences on fertility.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Ziyue Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adam Hagg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM)-University of Montreal, Montreal, Quebec, Canada
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Los Angeles, CA, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
37
|
Fujimoto T, Tamura K, Nagayoshi K, Mizuuchi Y, Oh Y, Nara T, Matsumoto H, Horioka K, Shindo K, Nakata K, Ohuchida K, Nakamura M. Osteosarcopenia: the coexistence of sarcopenia and osteopenia is predictive of prognosis and postoperative complications after curative resection for colorectal cancer. Surg Today 2025; 55:78-89. [PMID: 38880803 DOI: 10.1007/s00595-024-02883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE To establish if osteosarcopenia is related to postoperative complications, prognosis, and recurrence of colorectal cancer (CRC) after curative surgery. METHODS The clinical data of 594 patients who underwent curative resection for CRC between January, 2013 and December, 2018 were analyzed retrospectively to examine the relationship between clinicopathological data and osteosarcopenia. The following definitions were used: sarcopenia, low skeletal muscle mass index; osteopenia, low bone mineral density on computed tomography at the level of the 11th thoracic vertebra; and osteosarcopenia, sarcopenia with osteopenia. RESULTS Osteosarcopenia was identified in 98 patients (16.5%) and found to be a significant risk factor for postoperative complications (odds ratio 2.53; p = 0.011). The 5-year overall survival (OS) and recurrence-free survival (RFS) rates of the patients with osteosarcopenia were significantly lower than those of the patients without osteosarcopenia (OS: 72.5% and 93.9%, respectively, p < 0.0001; RFS: 70.8% and 92.4%, respectively, p < 0.0001). Multivariate analysis identified osteosarcopenia as an independent prognostic factor associated with OS (hazard ratio 3.31; p < 0.0001) and RFS (hazard ratio 3.67; p < 0.0001). CONCLUSION Osteosarcopenia may serve as a predictor of postoperative complications and prognosis after curative surgery for CRC.
Collapse
Affiliation(s)
- Takaaki Fujimoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Koji Tamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshio Oh
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tsukasa Nara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
38
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
39
|
Ibrahim MM, Mahmoud MA. Pathological studies on skeletal muscle atrophy in common fish products from El-Jubail Province, Saudi Arabia. Sci Rep 2024; 14:30594. [PMID: 39715828 DOI: 10.1038/s41598-024-76880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/17/2024] [Indexed: 12/25/2024] Open
Abstract
In this study, 10 fish species, Jayan flounder (Pseudorhombus javanicus); Oriental sole (Eurgglossa arientalis); Oange-spotted grouper (Epinephelus coioides); Blacktip trevally (Caranx heberi); Towbar seabream (Acanthopagrus bifascia); Smalltooth emperor (Lethrinus microdon); Spangled emperio (Lethrinus nebulous); Sharptooth hammer croaker (Johnius vogleri); Bigeye croaker (Pennahia anea) and Redspine thread bream (Nemipterus nemurus), were examined in El-Jubail province, Saudi Arabia, Arabian Gulf region over three years from 2017 to 2020. The examined fish species showed muscular atrophy in a total percent of 1.1%, but with variable percentages of affections in each species. The highest incidence (2.06%) was oberved in Spangled emperior (Lethrinus nebulous) while the lowest incidence (0.40%) was in Orange spotted grouper (Epinephelus coioides) and Smalltooth emperor (Lethrinus microdon). The affected fishes appeared with sunken eyes, severe emaciation, and prominent loss of skeletal muscle mass. During dissection, the muscular tissue in some examined species was rough while in others, it was edematous and gelatinous, and the internal organs of all fishes were atrophied. For routine histopathological examination, the tissue samples were fixed in 10% buffered neutral formalin. The examined tissue sections of the affected muscles showed variable degrees of histopathological changes depending on the species. Vacuolation of muscle fibers, Zenker's necrosis and myophagia were common in some species, while melanophores aggregation, edema, and hemorrhages were the most commonly observed changes in others. This study focused on the impact of this myodegenerative disease on the marketability of these edible fish species. Further investigation is needed to understand the impact of genetic predisposition, environmental pollution and other etiological agents on the occurrence of this phenomenon in this location.
Collapse
Affiliation(s)
- Mustafa M Ibrahim
- Animal Health Research Institute, Dokki, Giza, 12618, Egypt
- Ministry of Environment, Water and Agriculture., Fish Welfare Branch, El-Jubail Province, El-Jubail , Saudi Arabia
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
40
|
Zhang D, Zhang Q, Wu X, Wang L, Zhang X, Liu D, Yang X. Integrative Analysis of Chromatin Accessibility and Transcriptional Landscape Identifies Key Genes During Muscle Development in Pigs. Cells 2024; 13:2118. [PMID: 39768207 PMCID: PMC11727100 DOI: 10.3390/cells13242118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Many efforts have been made to reveal the mechanisms underlying skeletal muscle development because of its importance in animals. However, knowledge on chromatin accessibility, a prerequisite for gene expression, remains limited. Here, dynamic changes in chromatin accessibility were analyzed in the skeletal muscles of Min pigs at the ages of 30, 90, and 210 d using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). A total of 16,301 differentially accessible regions (DARs) associated with 7455 genes were identified among three developmental stages. Seven out of eight DARs selected for a functional analysis were found to regulate reporter gene expression significantly (p < 0.05), indicating that DARs are active in gene expression. A total of 2219 differentially expressed genes (DEGs) were identified with RNA sequencing (RNA-seq). Through integrated analyses of ATAC-seq and RNA-seq data, 54 DEG_DAR_genes and 61 transcription factors (TFs) were characterized as critical for muscle development. Among them, Kruppel-like factor 5 (KLF5), targeted to 36 DEG_DAR_genes, was the most important TF. The effects of KLF5 on DEG_DAR_gene expression were then analyzed with molecular biology techniques. KLF5 was found to regulate SLPI (secretory leukocyte proteinase inhibitor) expression by directly binding to the promoter; KLF5 was also involved in APOA1 (apolipoprotein A-I) expression through affecting the regulatory role of DAR located in the intron. These results indicate that the TFs identified were functional. Altogether, the chromatin accessibility region, TFs, and genes important for muscle development in Min pigs were identified. The results provide novel data for further revealing the mechanisms underlying the epigenetic regulation of muscle development.
Collapse
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (L.W.)
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.W.); (X.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.W.); (X.Z.)
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (L.W.)
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.W.); (X.Z.)
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (L.W.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.); (X.W.); (X.Z.)
| |
Collapse
|
41
|
Sartori G, Bertoldo F, Gretter A, Lovati FM, Caprino R, Viterale G, Crisafulli E. Impact of the visceral adipose tissue on bone quality in patients with untreated mild-to-severe obstructive sleep apnea. J Sleep Res 2024:e14397. [PMID: 39658313 DOI: 10.1111/jsr.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Obstructive sleep apnea (OSA) predominantly affects patients who are obese and causes systemic organ damage. Little is known about the relationship between fat distribution and bone impairment in these patients. We aimed to evaluate the impact of the visceral adipose tissue (VAT) on the bone quality of patients with OSA. In our prospective study, 49 untreated patients with mild-to-severe OSA underwent dual-energy X-ray absorptiometry. Polygraphy data were also collected. According to the recent reference values for European adults, patients were divided by the sex-related threshold of the VAT index into two categories: VAT index within limits (normal VAT [nVAT]) and increased VAT (iVAT). In all, 63% of the patients were in the iVAT category. Compared to patients with nVAT, those with iVAT had a higher prevalence of arterial hypertension (52% versus 22%) and diabetes (32% versus 6%), and higher values of mean nocturnal desaturation. Patients with iVAT had, in comparison to those with nVAT, lower values of the lumbar spine trabecular bone score (TBS; mean 1.24 versus 1.39; p < 0.001), TBS T-score (mean -1.82 versus -0.52; p < 0.001) and TBS Z-score (mean -0.35 versus 0.75; p = 0.002). Moreover, a close association was present between the VAT index and TBS lumbar spine L1-L4 (r2 linear 0.573; p < 0.001), and altered values of the TBS Z-score were associated with the severity of vertebral fractures. Finally, in a linear regression-adjusted model, the VAT index predicted TBS lumbar spine L1-L4 (β -0.323; p < 0.001). In patients with OSA VAT impacts bone quality. In these patients, the role of VAT as a metabolically active tissue should be considered.
Collapse
Affiliation(s)
- Giulia Sartori
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Francesco Bertoldo
- Emergency Medicine Unit, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Andrea Gretter
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Federica Margherita Lovati
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Rosaria Caprino
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Viterale
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ernesto Crisafulli
- Department of Medicine, Respiratory Medicine Unit, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
42
|
Broniec MN, Norland K, Thomas J, Wang X, Harris RA. The decorin and myostatin response to acute whole body vibration: impact of adiposity, sex, and race. Int J Obes (Lond) 2024; 48:1803-1808. [PMID: 39285213 PMCID: PMC11584384 DOI: 10.1038/s41366-024-01630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Traditional forms of exercise affect immune, metabolic, and myokine responses and contribute to a multitude of health benefits. Whole body vibration (WBV) has recently emerged as an exercise mimetic that may be more tolerable for those individuals that cannot perform traditional exercise. However, the myokines response to acute WBV in humans has yet to be fully elucidated. OBJECTIVE To characterize the decorin and myostatin response to acute whole body vibration (WBV) and determine the impact of adiposity, sex, and race. SUBJECTS One hundred twenty-nine adults (32.8 ± 0.4 years, 66.7% female, 53.5% non-Hispanic Black) were recruited as part of an ongoing, longitudinal twin cohort parent study. Participants were classified into three groups: those with obesity (OB: ≥30 kg/m2), those who are overweight (OW: ≥25 and <30 kg/m2), or those with normal weight (NW: <25 kg/m2) based on BMI. METHODS Blood was collected at baseline (PRE), immediately post (POST), and 1 h (1H), 3 h (3H), and 24 h (24H) post WBV. The acute WBV protocol consisted of 10 cycles of 1 min of vibration exercise followed by 30 s of standing rest. RESULTS The response was similar between NW and OW, so these groups were combined for analysis (NW/OW: BMI < 30 kg/m2). Overall, circulating concentrations of decorin were higher (p < 0.001) POST (8.80 ± 0.19 pg/mL) and significantly lower (p's ≤ 0.005) at 1H (8.66 ± 0.19 pg/mL) and 3H (8.68 ± 0.19 pg/mL), compared to PRE (8.71 ± 0.19 pg/mL). Decorin POST was greater (p = 0.016) in the OB group (8.82 ± 0.18 pg/mL) compared to the NW/OW group (8.77 ± 0.20 pg/mL). Overall, myostatin was higher (p = 0.002) POST (54.93 ± 1.04 pg/mL) and lower (p < 0.001) at 24H (49.13 ± 1.04 pg/mL) compared to PRE (53.49 ± 1.04 pg/mL). The myostatin response was lower (p's ≤ 0.001) in female and non-Hispanic White individuals compared to male and non-Hispanic Black individuals, respectively. CONCLUSIONS A single bout of WBV can facilitate the release of decorin and myostatin into circulation, a similar response to traditional exercise. Additionally, adiposity, sex and race should be considered when evaluating the myokines response to WBV.
Collapse
Affiliation(s)
- Morgan N Broniec
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kimberly Norland
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jeffrey Thomas
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ryan A Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
43
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
44
|
Millan-Domingo F, Garcia-Dominguez E, Gambini J, Olaso-Gonzalez G, Viña J, Gomez-Cabrera MC. Diet and exercise in frailty and sarcopenia. Molecular aspects. Mol Aspects Med 2024; 100:101322. [PMID: 39591800 DOI: 10.1016/j.mam.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process "per se", chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia. In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.
Collapse
Affiliation(s)
- Fernando Millan-Domingo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain; Programa Mejora S.L, 46002, Valencia, Spain; Sports Science and Innovation Research Group (GICED), Laboratory of Applied Sciences of Sport, Unidades Tecnológicas de Santander (UTS), Bucaramanga, 680006, Santander, Colombia
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Maria Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
45
|
Uchida A, Nakagawa K, Yoshimi K, Nagasawa Y, Yamaguchi K, Uesaka N, Tohara H. Intermittent breaking of isolation may ameliorate decrease in physical activity caused by isolation. PLoS One 2024; 19:e0314262. [PMID: 39602472 PMCID: PMC11602048 DOI: 10.1371/journal.pone.0314262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Social isolation affects physical functioning owing to psychological stress. We constructed a rat model to clarify the unexplored effects of social isolation and to determine whether environmental changes as an intervention against social isolation can reduce the stress-inducing effects of social isolation on physiological factors. Eight-week-old male rats were divided into three groups: group-housed, isolated, and intervention. Group-housed rats were kept 2 animals per cage. Isolated rats were kept 1 rat per cage. The intervention group alternated between the isolation and group-housed conditions. All rats were euthanized after 21 days. Their plasma, masseter muscles, and lower limb muscles were collected. Body weight, food intake, locomotor activity, muscle weight, and plasma corticosterone, ghrelin, and myostatin levels were measured. The results indicated that there were no significant differences between the group-housed and intervention groups for all outcomes. However, weight gain, food intake, and plasma corticosterone levels were higher in the isolated group than in the group-housed group. Plasma myostatin levels were higher in the isolated group than in the intervention group. Plasma ghrelin concentrations were lower in the isolated group than in the group-housed or intervention groups. In the isolated group, locomotor activity decreased compared to that in the intervention group. The lower limb muscle weight ratio also decreased in the isolated group compared to that in the group-housed and intervention groups. In conclusion, isolation decreased physical activity and affected body weight, food intake, and muscle weight; these changes were associated with corticosterone as a stress marker, ghrelin as an appetite-related factor, and myostatin, which is a growth inhibitor of skeletal muscles. Moreover, these changes were suppressed when the isolation time was reduced in the intervention group. The present study suggests that intermittent breaking of isolation may reduce the physical effects of isolation.
Collapse
Affiliation(s)
- Aritoshi Uchida
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Yuki Nagasawa
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kohei Yamaguchi
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Malicka A, Ali A, MacCannell ADV, Roberts LD. Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Exp Physiol 2024. [PMID: 39591977 DOI: 10.1113/ep092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Adipose tissue has an established endocrine function through the secretion of adipokines. However, a role for bioactive metabolites and lipids, termed metabokines and lipokines, is emerging in adipose tissue-mediated autocrine, paracrine and endocrine signalling and inter-organ communication. Traditionally seen as passive entities, metabolites are now recognized for their active roles in regulating cellular signalling and local and systemic metabolism. Distinct from white adipose tissue, specific endocrine functions have been attributed to thermogenic brown and beige adipose tissues. Brown and beige adipose tissues have been identified as sources of metabokines and lipokines, which influence diverse metabolic pathways, such as fatty acid β-oxidation, mitochondrial function and glucose homeostasis, across a range of tissues, including skeletal muscle, adipose tissue and heart. This review explores the intricate signalling mechanisms of brown and beige adipose tissue-derived metabokines and lipokines, emphasizing their roles in maintaining metabolic homeostasis and their potential dysregulation in metabolic diseases. Furthermore, we discuss the therapeutic potential of targeting these pathways, proposing that precise modulation of metabokine receptors and transporters could offer superior specificity and efficacy in comparison to conventional approaches, such as β-adrenergic signalling-stimulated activation of brown adipose tissue thermogenesis. Understanding the complex interactions between adipokines, metabokines and lipokines is essential for developing a systems-level approach to new interventions for metabolic disorders, underscoring the need for continued research in this rapidly evolving field.
Collapse
Affiliation(s)
- Anna Malicka
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Aysha Ali
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
47
|
Clarke SA, Eng PC, Comninos AN, Lazarus K, Choudhury S, Tsang C, Meeran K, Tan TM, Dhillo WS, Abbara A. Current Challenges and Future Directions in the Assessment of Glucocorticoid Status. Endocr Rev 2024; 45:795-817. [PMID: 38795365 PMCID: PMC11581704 DOI: 10.1210/endrev/bnae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Glucocorticoid (GC) hormones are secreted in a circadian and ultradian rhythm and play a critical role in maintaining physiological homeostasis, with both excess and insufficient GC associated with adverse effects on health. Current assessment of GC status is primarily clinical, often in conjunction with serum cortisol values, which may be stimulated or suppressed depending on the GC disturbance being assessed. In the setting of extreme perturbations in cortisol levels ie, markedly low or high levels, symptoms and signs of GC dysfunction may be overt. However, when disturbances in cortisol GC status values are less extreme, such as when assessing optimization of a GC replacement regimen, signs and symptoms can be more subtle or nonspecific. Current tools for assessing GC status are best suited to identifying profound disturbances but may lack sensitivity for confirming optimal GC status. Moreover, single cortisol values do not necessarily reflect an individual's GC status, as they are subject to inter- and intraindividual variation and do not take into account the pulsatile nature of cortisol secretion, variation in binding proteins, or local tissue concentrations as dictated by 11beta-hydroxysteroid dehydrogenase activity, as well as GC receptor sensitivity. In the present review, we evaluate possible alternative methods for the assessment of GC status that do not solely rely on the measurement of circulating cortisol levels. We discuss the potential of changes in metabolomic profiles, micro RNA, gene expression, and epigenetic and other novel biomarkers such as growth differentiating factor 15 and osteocalcin, which could in the future aid in the objective classification of GC status.
Collapse
Affiliation(s)
- Sophie A Clarke
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pei Chia Eng
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Department of Endocrinology, National University of Singapore, Singapore
| | - Alexander N Comninos
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Katharine Lazarus
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Sirazum Choudhury
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Christie Tsang
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
| | - Karim Meeran
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| |
Collapse
|
48
|
Li X, Cao Y, Liu Y, Fang W, Xiao C, Cao Y, Zhao Y. Effect of IGF1 on Myogenic Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells Through PI3K/AKT Signaling Pathway. Genes (Basel) 2024; 15:1494. [PMID: 39766763 PMCID: PMC11675145 DOI: 10.3390/genes15121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Cultivated meat, an alternative to conventional meat, has substantial potential for alleviating environmental and ethical concerns. This method of manufacturing meat involves the isolation of skeletal muscle satellite cells (SMSCs) from donor animals, after which they proliferate in vitro and differentiate into primitive muscle fibers. The aim of this research was to evaluate how the insulin-like growth factor 1 (IGF1) gene regulates the myogenic differentiation of bovine skeletal muscle satellite cells (bSMSCs). Methods: bSMSCs isolated from newborn calves were cultured to the third generation in vitro and differentiated into myoblasts via the serum withdrawal method. An overexpression lentivirus and siRNA targeting the IGF1 gene were constructed and transduced into bSMSCs, which were subsequently analyzed via real-time fluorescence quantitative PCR(qRT-PCR) and Western blots. The mRNA and protein levels of the myogenic differentiation markers myosin heavy chain (MyHC) and myogenin (MyoG) were determined. Results: The results revealed that the lentivirus overexpressing the IGF1 gene significantly increased the expression of MyHC and MyoG, whereas the expression of both the MyHC and MyoG mRNAs and proteins was strongly reduced by si-IGF1. Conclusions: IGF1 positively regulates the myogenic differentiation of bSMSCs. This study provides a reference for further elucidating the molecular mechanism by which the IGF1 gene regulates the myogenic differentiation of bSMSCs via the PI3K/Akt signaling pathway and lays a foundation for establishing a regulatory network of bovine muscle growth and development.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yu Liu
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Wenwen Fang
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Cheng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| | - Yang Cao
- Institute of Animal Biotechnology, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yumin Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Ji Lin Academy of Agricultural Sciences, Gongzhuling 136100, China; (X.L.); (Y.C.); (Y.L.); (W.F.); (C.X.)
| |
Collapse
|
49
|
Ishibashi C, Nakanishi K, Nishida M, Shinomiya H, Shinzawa M, Kanayama D, Yamamoto R, Kudo T, Nagatomo I, Yamauchi-Takihara K. Myostatin as a plausible biomarker for early stage of sarcopenic obesity. Sci Rep 2024; 14:28629. [PMID: 39562792 PMCID: PMC11577097 DOI: 10.1038/s41598-024-79534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Since sarcopenic obesity (SO) impacts negatively on our health, early detection of SO is essential. However, prevalence of SO in an apparently healthy population has not been well examined. This study aimed to elucidate the prevalence and related factors of SO in middle-aged women, and to investigate useful diagnostic criteria for SO. Body component analyses were conducted on 432 female Osaka University employees aged 30-59 during their health checkups. Healthy (H) and SO groups were defined using cutoff values of 5.7 kg/m2 for skeletal muscle mass index and 30% for percent body fat. Serum myostatin and insulin levels were additionally measured. Among 432 participants, the prevalence of SO was 6.3%. Grip strength (P < 0.0001) was lower and triglyceride (P = 0.0004) and low-density lipoprotein cholesterol (P = 0.0105) levels, and Homeostatic Model Assessment of Insulin Resistance (P = 0.0262) were higher in the SO group than in the H group. Serum myostatin levels in the SO group were lower than in the H group (3,107 pg/mL vs. 3,957 pg/mL, P = 0.0003). Myostatin levels may be suppressed in individuals with SO without any pre-existing conditions. Our diagnostic criteria for SO could reveal the risks for metabolic-related diseases and may be useful for the early detection of SO.
Collapse
Affiliation(s)
- Chisaki Ishibashi
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kaori Nakanishi
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Makoto Nishida
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Haruki Shinomiya
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Maki Shinzawa
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Daisuke Kanayama
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryohei Yamamoto
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kudo
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Izumi Nagatomo
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keiko Yamauchi-Takihara
- Health Care Division, Health and Counseling Center, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
50
|
Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Signaling Mediators in Skeletal Muscle. Antioxidants (Basel) 2024; 13:1383. [PMID: 39594525 PMCID: PMC11591548 DOI: 10.3390/antiox13111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin E (Vit E) deficiency studies underline the relevance of this vitamin in skeletal muscle (SkM) homeostasis. The knowledge of the effectors and modulators of Vit E action in SkM cells is limited, especially in aging and chronic diseases characterized by a decline in musculoskeletal health. Vit E comprises eight fat-soluble compounds grouped into tocopherols and tocotrienols, which share the basic chemical structure but show different biological properties and potentials to prevent diseases. Vit E has antioxidant and non-antioxidant activities and both favorable and adverse effects depending on the specific conditions and tissues. In this review, we focus on the actual knowledge of Vit E forms in SkM functions and new potential signaling effectors (i.e., bioactive sphingolipids and myokines). The possible advantages of Vit E supplementation in counteracting SkM dysfunctions in sarcopenia and under microgravity will also be discussed.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
- Interuniversity Institute of Myology, University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
| |
Collapse
|