1
|
Zhang S, Lin T, Bao Y, She J, Liu X, Hu J, Peng A, Liu X, Huang H. Integrated Multiomics Analyses Reveal Molecular Insights into How Intermittent Fasting Ameliorates Obesity and Increases Fertility in Male Mice. Nutrients 2025; 17:1029. [PMID: 40292466 PMCID: PMC11945891 DOI: 10.3390/nu17061029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Intermittent fasting (IF) has been increasingly recognized for its potential to mitigate obesity and diabetes. However, it remains unclear whether IF can alleviate metabolic disorder-induced male infertility. The aim of this study was to investigate the potential of IF to improve fertility outcomes in obese mice. Methods: Eight-week-old C57BL/6J mice were fed a high-fat diet (HFD) for 24 weeks to induce obesity, followed by alternate-day fasting for 6 weeks. We assessed obesity-related metabolic changes and fertility issues postintervention. Comprehensive metabolomic and transcriptomic analyses of serum and testicular samples were used to identify significant metabolic pathway modifications attributable to IF. Results: IF effectively alleviated obesity-induced male infertility, demonstrating significant attenuation of body weight gain and restoration of testicular morphology. IF normalized hypogonadism-associated testosterone depletion and improved sperm parameters. Testis multi-omics integration revealed IF-mediated reprogramming of testicular purine metabolism, coupled with coordinated regulation of glycolipid metabolism and inflammatory-immune homeostasis. Reproductive competence was enhanced as evidenced by statistically elevated successful mating rates and embryonic developmental progression. Serum metabolomics further identified metabolites involved in amino acid metabolism, glycolipid metabolism, and inflammation (e.g., methionine, BCAA, glutathione, and spermidine) may serve as potential targets for treating obesity-related metabolic disorders. Additionally, multidimensional analysis highlighted the crucial role of allantoin in alleviating obesity and related reproductive dysfunction. Conclusions: IF not only resolves obesity-induced metabolic issues but also alleviates male infertility by regulating bioactive metabolites and gene expression linked to glycolipid metabolism, energy homeostasis, and immune responses in the testis. Our study provides a theoretical basis for IF as a clinical treatment for obesity-induced male infertility.
Collapse
Affiliation(s)
- Shuyu Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
| | - Tingting Lin
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yucheng Bao
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200003, China
| | - Junsen She
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xuanqi Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiaxue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aibing Peng
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinmei Liu
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200030, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China
| |
Collapse
|
2
|
Yu J, Guo Z, Zhang J. Research progress of the SLFN family in malignant tumors. Front Oncol 2024; 14:1468484. [PMID: 39558948 PMCID: PMC11570580 DOI: 10.3389/fonc.2024.1468484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
The Schlafen (SLFN) gene family has emerged as a critical subject of study in recent years, given its involvement in an array of cellular functions such as proliferation, differentiation, immune responses, viral infection inhibition, and DNA replication. Additionally, SLFN genes are linked to chemosensitivity, playing a pivotal role in treating malignant tumors. Human SLFNs comprise three domains: the N-terminal, middle (M), and C-terminal. The N- and C-terminal domains demonstrate nuclease and helicase/ATPase activities, respectively. Meanwhile, the M-domain likely functions as a linker that connects the enzymatic domains of the N- and C-terminals and may engage in interactions with other proteins. This paper aims to present a comprehensive overview of the SLFN family's structure and sequence, examine its significance in various tumors, and explore its connection with immune infiltrating cells and immune checkpoints. The objective is to assess the potential of SLFNs as vital targets in cancer therapy and propose novel strategies for combined treatment approaches.
Collapse
Affiliation(s)
- Jiale Yu
- Inner Mongolia Medical University, Hohhot, China
- School of Basic Medicine, Chifeng University, Chifeng, China
| | - Zhijuan Guo
- Department of Pathology, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junyi Zhang
- School of Basic Medicine, Chifeng University, Chifeng, China
| |
Collapse
|
3
|
Mu A, Okamoto Y, Katsuki Y, Takata M. The role of SLFN11 in DNA replication stress response and its implications for the Fanconi anemia pathway. DNA Repair (Amst) 2024; 141:103733. [PMID: 39096698 DOI: 10.1016/j.dnarep.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/26/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Ragland SA, Kagan JC. Waking the sleeping giant: Single-stranded DNA binds Schlafen 11 to initiate innate immune responses. Sci Immunol 2024; 9:eadp4474. [PMID: 38875318 DOI: 10.1126/sciimmunol.adp4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Single-stranded DNA containing CGT/A motifs binds to the helicase domain of Schlafen 11 (SLFN11) to initiate cell death and cytokine production via SLFN11 ribonuclease activity (see related Research Article by Zhang et al.).
Collapse
Affiliation(s)
- Stephanie A Ragland
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
6
|
Zhou J, Zhang MY, Gao AA, Zhu C, He T, Herman JG, Guo MZ. Epigenetic silencing schlafen-11 sensitizes esophageal cancer to ATM inhibitor. World J Gastrointest Oncol 2024; 16:2060-2073. [PMID: 38764821 PMCID: PMC11099458 DOI: 10.4251/wjgo.v16.i5.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo. CONCLUSION SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mei-Ying Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ai-Ai Gao
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng Zhu
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Tao He
- Departments of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, United States
| | - Ming-Zhou Guo
- School of Medicine, NanKai University, Tianjin 300071, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Perez RE, Eckerdt F, Platanias LC. Schlafens: Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:1805. [PMID: 38791884 PMCID: PMC11119473 DOI: 10.3390/cancers16101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The interferon (IFN) family of immunomodulatory cytokines has been a focus of cancer research for over 50 years with direct and indirect implications in cancer therapy due to their properties to inhibit malignant cell proliferation and modulate immune responses. Among the transcriptional targets of the IFNs is a family of genes referred to as Schlafens. The products of these genes, Schlafen proteins, exert important roles in modulating cellular proliferation, differentiation, immune responses, viral replication, and chemosensitivity of malignant cells. Studies have demonstrated that abnormal expression of various Schlafens contributes to the pathophysiology of various cancers. Schlafens are now emerging as promising biomarkers and potentially attractive targets for drug development in cancer research. Here, we highlight research suggesting the use of Schlafens as cancer biomarkers and the rationale for the development of specific drugs targeting Schlafen proteins.
Collapse
Affiliation(s)
- Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Tilmisani M, Alhazmi S, ALnajashi H, Alyoubi R. Overview of Structural and Functional Insights of SLFN12 Associated With Different Diseases. Cureus 2024; 16:e59515. [PMID: 38832156 PMCID: PMC11145927 DOI: 10.7759/cureus.59515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Schlafen12 is a member of the Schlafen gene family where Slfns have been linked to many functions such as anti-proliferation and cell differentiation, viral replication inhibition, migration of cancer cells and invasion prevention, and sensitivity to DNA-damaging medicines. Researchers are interested in studying the biochemical mechanisms that control thymocyte development to extract and describe gene expression and transcriptionally elevated by the process of positive selection that led to the discovery of this novel gene family. This review aims to give adequate knowledge about human SLFN12 by reviewing the most notable papers from five reliable databases regarding SLFN12 milestones and alterations in SLFN12 expression in various disease discoveries from 1997 to the present. In conclusion, SLFN12 seems to be linked with autoimmune diseases such as multiple sclerosis. Furthermore, SLFN12 levels could modify the effects of radiation and chemotherapy.
Collapse
Affiliation(s)
- Mayasim Tilmisani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, SAU
- Blood Transfusion Services, King Abdulaziz University Hospital, Jeddah, SAU
| | - Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, SAU
- Central Lab of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, SAU
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, SAU
| | - Hind ALnajashi
- Neurology Division, Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Reem Alyoubi
- Pediatric Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
9
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Flynn J, Ahmadi MM, McFarland CT, Kubal MD, Taylor MA, Cheng Z, Torchia EC, Edwards MG. Crowdsourcing temporal transcriptomic coronavirus host infection data: Resources, guide, and novel insights. Biol Methods Protoc 2023; 8:bpad033. [PMID: 38107402 PMCID: PMC10723038 DOI: 10.1093/biomethods/bpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.
Collapse
Affiliation(s)
- James Flynn
- Illumina Corporation, San Diego, CA 92122, United States
| | - Mehdi M Ahmadi
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | - Mark A Taylor
- Bioinfo Solutions LLC, Parker, CO 80134, United States
| | - Zhang Cheng
- Illumina Corporation, San Diego, CA 92122, United States
| | - Enrique C Torchia
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
11
|
Ding J, Wang S, Liu Q, Duan Y, Cheng T, Ye Z, Cui Z, Zhang A, Liu Q, Zhang Z, Zhang N, Liu Q, An N, Zhao J, Yi D, Li Q, Wang J, Zhang Y, Ma L, Guo S, Wang J, Liang C, Zhou J, Cen S, Li X. Schlafen-5 inhibits LINE-1 retrotransposition. iScience 2023; 26:107968. [PMID: 37810251 PMCID: PMC10551903 DOI: 10.1016/j.isci.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Long interspersed element 1 (LINE-1) is the only currently known active autonomous transposon in humans, and its retrotransposition may cause deleterious effects on the structure and function of host cell genomes and result in sporadic genetic diseases. Host cells therefore developed defense strategies to restrict LINE-1 mobilization. In this study, we demonstrated that IFN-inducible Schlafen5 (SLFN5) inhibits LINE-1 retrotransposition. Mechanistic studies revealed that SLFN5 interrupts LINE-1 ribonucleoprotein particle (RNP) formation, thus diminishing nuclear entry of the LINE-1 RNA template and subsequent LINE-1 cDNA production. The ability of SLFN5 to bind to LINE-1 RNA and the involvement of the helicase domain of SLFN5 in its inhibitory activity suggest a mechanism that SLFN5 binds to LINE-1 RNA followed by dissociation of ORF1p through its helicase activity, resulting in impaired RNP formation. These data highlight a new mechanism of host cells to restrict LINE-1 mobilization.
Collapse
Affiliation(s)
- Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shujie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qipeng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuqing Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tingting Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongjie Ye
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhanding Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiuyu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ni An
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinhui Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Liang
- The Lady Davis Institute-Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Alvi E, Mochizuki AL, Katsuki Y, Ogawa M, Qi F, Okamoto Y, Takata M, Mu A. Mouse Slfn8 and Slfn9 genes complement human cells lacking SLFN11 during the replication stress response. Commun Biol 2023; 6:1038. [PMID: 37833372 PMCID: PMC10575959 DOI: 10.1038/s42003-023-05406-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The Schlafen (SLFN)11 gene has been implicated in various biological processes such as suppression of HIV replication, replication stress response, and sensitization of cancer cells to chemotherapy. Due to the rapid diversification of the SLFN family members, it remains uncertain whether a direct ortholog of human SLFN11 exists in mice. Here we show that mSLFN8/9 and hSLFN11 were rapidly recruited to microlaser-irradiated DNA damage tracks. Furthermore, Slfn8/9 expression could complement SLFN11 loss in human SLFN11-/- cells, and as a result, reduced the growth rate to wild-type levels and partially restored sensitivity to DNA-damaging agents. In addition, both Slfn8/9 and SLFN11 expression accelerated stalled fork degradation and decreased RPA and RAD51 foci numbers after DNA damage. Based on these results, we propose that mouse Slfn8 and Slfn9 genes may share an orthologous function with human SLFN11. This notion may facilitate understanding of SLFN11's biological role through in vivo studies via mouse modeling.
Collapse
Affiliation(s)
- Erin Alvi
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Biochemical Cell Dynamics, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako L Mochizuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- CiRA Foundation, Kyoto, Japan
| | - Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Minori Ogawa
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Fei Qi
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Chen J, Zhang Y, Zhang H, Zhang M, Dong H, Qin T, Gao S, Wang S. IL-24 is the key effector of Th9 cell-mediated tumor immunotherapy. iScience 2023; 26:107531. [PMID: 37680459 PMCID: PMC10480301 DOI: 10.1016/j.isci.2023.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Th9 cells are powerful effector T cells for cancer immunotherapy. However, the underlying antitumor mechanism of Th9 cells still needs to be further elucidated. Here, we show that Th9 cells express high levels of not only IL-9, but also IL-24. We found that knockout of Il24 gene in Th9 cells promotes Th9 cell proliferation in vitro, but decreases Th9 cell survival in vitro and in vivo. Interestingly, knockout of Il24 gene in Th9 cells decreases the tumor-specific cytotoxicity of Th9 cells in vitro. In addition, immunotherapy with Il24 knockout Th9 cells exhibit less tumor inhibition than regular Th9 cells in mouse tumor models. We found that inhibition of Foxo1 by a specific inhibitor downregulates IL-24 expression in Th9 cells and decreases Th9 cell antitumor efficacy in vivo. Our results identify IL-24 as a powerful antitumor effector of Th9 cells and provide a target in Th9 cell-mediated tumor therapy.
Collapse
Affiliation(s)
- Jintong Chen
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| | - Yunwei Zhang
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Hua Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - He Dong
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - Tianxue Qin
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Sujun Gao
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Siqing Wang
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
14
|
Tu T, Yuan Y, Liu X, Liang X, Yang X, Yang Y. Progress in investigating the relationship between Schlafen5 genes and malignant tumors. Front Oncol 2023; 13:1248825. [PMID: 37771431 PMCID: PMC10523568 DOI: 10.3389/fonc.2023.1248825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Schlafen5(SLFN5)gene belongs to the third group of the Schlafen protein family. As a tumor suppressor gene, SLFN5 plays a pivotal role in inhibiting tumor growth, orchestrating cell cycle regulation, and modulating the extent of cancer cell infiltration and metastasis in various malignancies. However, the high expression of SLFN 5 in some tumors was positively correlated with lymph node metastasis, tumor stage, and tumor grade. This article endeavors to elucidate the reciprocal relationship between the SLFN5 gene and malignant tumors, thereby enhancing our comprehension of the intricate mechanisms underlying the SLFN5 gene and its implications for the progression, invasive potential, and metastatic behavior of malignant tumors. At the same time, this paper summarizes the basis of SLFN 5 as a new biomarker of tumor diagnosis and prognosis, and provides new ideas for the target treatment of tumor.
Collapse
Affiliation(s)
- Teng Tu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Ye Yuan
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaoxue Liu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xin Liang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaofan Yang
- The 1st Clinical Medical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Yue Yang
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| |
Collapse
|
15
|
Qi F, Alvi E, Ogawa M, Kobayashi J, Mu A, Takata M. The ribonuclease domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response. Genes Cells 2023; 28:663-673. [PMID: 37469008 DOI: 10.1111/gtc.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
The SLFN11 gene participates in cell fate decision following cancer chemotherapy and encodes the N-terminal ribonuclease (RNase) domain and the C-terminal helicase/ATPase domain. How these domains contribute to the chemotherapeutic response remains controversial. Here, we expressed SLFN11 containing mutations in two critical residues required for RNase activity in SLFN11-/- cells. We found that this mutant was still able to suppress DNA damage tolerance, destabilized the stalled replication forks, and perturbed recruitment of the fork protector RAD51. In contrast, we confirmed that the helicase domain was essential to accelerate fork degradation. The fork degradation by the RNase mutant was dependent on both DNA2 and MRE11 nuclease, but not on MRE11's novel interactor FXR1. Collectively, these results supported the view that the RNase domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response.
Collapse
Affiliation(s)
- Fei Qi
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Erin Alvi
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minori Ogawa
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junya Kobayashi
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Department of Interdisciplinary Environmental Sciences, Graduate School of Human and Environmental Sciences, Kyoto University, Kyoto, Japan
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Jitobaom K, Sirihongthong T, Boonarkart C, Phakaratsakul S, Suptawiwat O, Auewarakul P. Human Schlafen 11 inhibits influenza A virus production. Virus Res 2023; 334:199162. [PMID: 37356582 PMCID: PMC10410578 DOI: 10.1016/j.virusres.2023.199162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Schlafen (SLFN) proteins are a subset of interferon-stimulated early response genes with antiviral properties. An antiviral mechanism of SLFN11 was previously demonstrated in human immunodeficiency virus type 1 (HIV-1)-infected cells, and it was shown that SLFN11 inhibited HIV-1 virus production in a codon usage-specific manner. The codon usage patterns of many viruses are vastly different from those of their hosts. The codon usage-specific inhibition of HIV-1 expression by SLFN11 suggests that SLFN11 may be able to inhibit other viruses with a suboptimal codon usage pattern. However, the effect of SLFN11 on the replication of influenza A virus (IAV) has never been reported. The induction of SLFN11 expression was observed upon IAV infection. The reduction of SLFN11 expression also promotes influenza virus replication. Moreover, we found that overexpression of SLFN11 could reduce the expression of a reporter gene with a viral codon usage pattern, and the inhibition of viral hemagglutinin (HA) gene was codon-specific as the expression of codon optimized HA was not affected. These results indicate that SLFN11 inhibits the influenza A virus in a codon-specific manner and that SLFN11 may contribute to innate defense against influenza A viruses.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Ornpreya Suptawiwat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
17
|
Hou P, Hao W, Qin B, Li M, Zhao R, Cui S. Structural and biochemical characterization of Schlafen11 N-terminal domain. Nucleic Acids Res 2023; 51:7053-7070. [PMID: 37293979 PMCID: PMC10359600 DOI: 10.1093/nar/gkad509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Schlafen11 (SLFN11) is one of the most studied Schlafen proteins that plays vital roles in cancer therapy and virus-host interactions. Herein, we determined the crystal structure of the Sus scrofa SLFN11 N-terminal domain (NTD) to 2.69 Å resolution. sSLFN11-NTD is a pincer-shaped molecule that shares an overall fold with other SLFN-NTDs but exhibits distinct biochemical characteristics. sSLFN11-NTD is a potent RNase cleaving type I and II tRNAs and rRNAs, and with preference to type II tRNAs. Consistent with the codon usage-based translation suppression activity of SLFN11, sSLFN11-NTD cleaves synonymous serine and leucine tRNAs with different efficiencies in vitro. Mutational analysis revealed key determinates of sSLFN11-NTD nucleolytic activity, including the Connection-loop, active site, and key residues essential for substrate recognition, among which E42 constrains sSLFN11-NTD RNase activity, and all nonconservative mutations of E42 stimulated RNase activities. sSLFN11 inhibited the translation of proteins with a low codon adaptation index in cells, which mainly dependent on the RNase activity of the NTD because E42A enhanced the inhibitory effect, but E209A abolished inhibition. Our findings provide structural characterization of an important SLFN11 protein and expand our understanding of the Schlafen family.
Collapse
Affiliation(s)
- Pengjiao Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| | - Wei Hao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| | - Mengyun Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| | - Rong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, PR China
| |
Collapse
|
18
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, Genescà M, Grau-Expósito J, Duran-Castells C, Rogenmoser S, Böttcher R, Jungfleisch J, Oliva B, Martinez JP, Li M, David M, Yamagishi M, Ruiz-Riol M, Brander C, Tsunetsugu-Yokota Y, Buzon MJ, Díez J, Meyerhans A. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 2023; 6:487. [PMID: 37165099 PMCID: PMC10172343 DOI: 10.1038/s42003-023-04841-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Katarína Frazão Smutná
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Florencia E Alonso
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kerstin Geiger
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Selina Rogenmoser
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - René Böttcher
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer Jungfleisch
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andreas Meyerhans
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
20
|
Xu QP, Deng K, Zhang Z, Shang H. SLFN5 promotes reversible epithelial and mesenchymal transformation in ovarian cancer. J Ovarian Res 2023; 16:33. [PMID: 36747204 PMCID: PMC9901157 DOI: 10.1186/s13048-023-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer is a disease with increasing incidence worldwide, and there is an urgent need for chemotherapy and biological targeted therapy. Epithelial-mesenchymal transformation (EMT) is an important initiation stage for tumor cells to acquire the ability to invade and metastasize. A growing number of findings suggest that human Schlafen family member 5(SLFN5) plays a key role in malignancy. However, the role of SLFN5 in ovarian cancer cells has not been fully elucidated. Samples were collected from patients with ovarian cancer diagnosed in Hangzhou First People's Hospital, and the expression of SLFN5 was detected by fluorescence quantitative PCR. The relationship between SLFN5 expression and the progression and malignancy of ovarian cancer was analyzed by using the expression profile data from the Cancer Genome Atlas (TCGA) database. The mRNA expression levels of SLFN5 related upstream and downstream signaling pathways were studied by fluorescence quantitative PCR. Silencing SLFN5 was performed by siRNA transfection. The expression of SLFN5 and transfer-related proteins was examined by Western blot. Transwell and wound healing experiments investigated the migration and invasion ability of ovarian cancer cells. TCGA database analysis results showed that in the population with high SLFN5 expression, compared with the group with low SLFN5 expression, OS was worse (P = 0.011). SLFN5 silencing had a significant inhibitory effect on EMT and invasion movement of ovarian cancer cells. RT-PCR method was used to detect the mRNA changes of SLFN5 in ovarian cancer tissue and adjacent tissue. It was found that the expression of SLFN5 in ovarian cancer tissue was increased, with a significant difference (P < 0.05). Together, these results suggest that SLFN5 may play a synergistic role in tumorigenesis and development of ovarian cancer cells, providing a potential target for future drug development for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qiao Ping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou, First People's Hospital, Hangzhou, 310006, China
| | - Kui Deng
- Westlake Institute for Advanced Study, Zhejiang, Hangzhou, 310024, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
21
|
Hamada S, Kano S, Murai J, Suzuki T, Tsushima N, Mizumachi T, Suzuki M, Takashima T, Taniyama D, Sakamoto N, Fujioka Y, Ohba Y, Homma A. Schlafen family member 11 indicates favorable prognosis of patients with head and neck cancer following platinum-based chemoradiotherapy. Front Oncol 2023; 12:978875. [PMID: 36741698 PMCID: PMC9892834 DOI: 10.3389/fonc.2022.978875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
Recently, Schlafen family member 11 (SLFN11) has been reported to increase the sensitivity of cancer cells to DNA-damaging agents, including platinum derivatives; thus, SLFN11 may be a predictive biomarker for platinum-based chemoradiotherapy (CRT). In this study, we examined whether SLFN11 expression was associated with the therapeutic outcome of platinum-based CRT in head and neck squamous cell carcinoma (HNSCC). We performed immunohistochemical analyses for SLFN11 expression in 161 HNSCC tissues from patients who had been administered cisplatin-based CRT and examined the correlation between SLFN11 expression and progression-free survival (PFS). Additionally, SLFN11 expression was examined in 10 paired samples obtained before and after CRT in patients with local failure. Furthermore, in vitro experiments were performed using several HNSCC cell lines and isogenic SLFN11-knockout cells to assess the association between SLFN11 expression and drug sensitivity. PFS was found to be significantly better in the SLFN11-positive group than in the SLFN11-negative group among the 161 patients (5-year PFS: 78.8% vs. 52.8%, respectively, p < 0.001). Similar results were observed for the PFS at each primary site. The percentage of SLFN11 positivity was lower in tumor samples from patients with local failure after CRT than that in the corresponding primary tumors before CRT in 8 of 10 cases. Results of the in vitro assay demonstrated that SLFN11-knockout cells exhibited reduced sensitivity to DNA-damaging agents but not to the non-DNA-damaging agent docetaxel. Our findings suggest that SLFN11 may serve as a potential biomarker for predicting the response of HNSCC patients to platinum-based CRT.
Collapse
Affiliation(s)
- Seijiro Hamada
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan,*Correspondence: Satoshi Kano,
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nayuta Tsushima
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takatsugu Mizumachi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Vit G, Hirth A, Neugebauer N, Kraft BN, Sigismondo G, Cazzola A, Tessmer C, Duro J, Krijgsveld J, Hofmann I, Berger M, Klüter H, Niehrs C, Nilsson J, Krämer A. Human SLFN5 and its Xenopus Laevis ortholog regulate entry into mitosis and oocyte meiotic resumption. Cell Death Dis 2022; 8:484. [PMID: 36477080 PMCID: PMC9729291 DOI: 10.1038/s41420-022-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The Schlafen gene family was first described in mice as a regulator of thymocyte development. Further studies showed involvement of human orthologs in different processes related with viral replication, cellular proliferation, and differentiation. In recent years, a new role for human Slfn11 in DNA replication and chromatin remodeling was described. As commonly observed in many gene families, Slfn paralogs show a tissue-specific expression. This made it difficult to reach conclusions which can be valid in different biological models regarding the function of the different Schlafen proteins. In the present study, we investigate the involvement of SLFN5 in cell-cycle regulation and cell proliferation. A careful analysis of SLFN5 expression revealed that SLFN5 is highly expressed in proliferating tissues and that the protein is ubiquitously present in all the tissues and cell line models we analyzed. Very interestingly, SLFN5 expression oscillates during cell cycle, peaking during S phase. The fact that SLFN5 interacts with protein phosphatase 2A and that SLFN5 depletion causes cell cycle arrest and cellular apoptosis, suggests a direct involvement of this human paralog in cell cycle progression and cellular proliferation. We substantiated our in vitro and in cellulo results using Xenopus laevis oocytes to show that mRNA depletion of the unique Slfn gene present in Xenopus, whose protein sequence shares 80% of homology with SLFN5, recapitulates the phenotype observed in human cells preventing the resumption of meiosis during oocyte development.
Collapse
Affiliation(s)
- Gianmatteo Vit
- grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Medical Faculty Mannheim, Institute for Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany ,grid.5254.60000 0001 0674 042XThe Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hirth
- grid.424631.60000 0004 1794 1771Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany, and Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nicolas Neugebauer
- grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Bianca N. Kraft
- grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Gianluca Sigismondo
- grid.7497.d0000 0004 0492 0584Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Cazzola
- grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Claudia Tessmer
- grid.7497.d0000 0004 0492 0584Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joana Duro
- grid.5254.60000 0001 0674 042XThe Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeroen Krijgsveld
- grid.7497.d0000 0004 0492 0584Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilse Hofmann
- grid.7497.d0000 0004 0492 0584Genomics and Proteomics Core Facility, Unit Antibodies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Berger
- grid.9619.70000 0004 1937 0538The Lautenberg Center for General and Tumor Immunology, The Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Harald Klüter
- grid.7700.00000 0001 2190 4373Medical Faculty Mannheim, Institute for Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Christof Niehrs
- grid.424631.60000 0004 1794 1771Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany, and Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jakob Nilsson
- grid.5254.60000 0001 0674 042XThe Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alwin Krämer
- grid.7700.00000 0001 2190 4373Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Fischietti M, Eckerdt F, Perez RE, Guillen Magaña JN, Mazewski C, Ho S, Gonzalez C, Streich LD, Beauchamp EM, Heimberger AB, Baran AH, Yue F, James CD, Platanias LC. SLFN11 Negatively Regulates Noncanonical NFκB Signaling to Promote Glioblastoma Progression. CANCER RESEARCH COMMUNICATIONS 2022; 2:966-978. [PMID: 36382088 PMCID: PMC9648417 DOI: 10.1158/2767-9764.crc-22-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor in nearly all instances, whose disease progression is driven in part by the glioma stem cell (GSC) subpopulation. Here, we explored the effects of Schlafen family member 11 (SLFN11) in the molecular, cellular, and tumor biology of GBM. CRISPR/Cas9-mediated knockout of SLFN11 inhibited GBM cell proliferation and neurosphere growth and was associated with reduced expression of progenitor/stem cell marker genes, such as NES, SOX2, and CD44. Loss of SLFN11 stimulated expression of NFκB target genes, consistent with a negative regulatory role for SLFN11 on the NFκB pathway. Furthermore, our studies identify p21 as a direct transcriptional target of NFκB2 in GBM whose expression was stimulated by loss of SLFN11. Genetic disruption of SLFN11 blocked GBM growth and significantly extended survival in an orthotopic patient-derived xenograft model. Together, our results identify SLFN11 as a novel component of signaling pathways that contribute to GBM and GSC with implications for future diagnostic and therapeutic strategies.
Significance:
We identify a negative regulatory role for SLFN11 in noncanonical NFκB signaling that results in suppression of the cell-cycle inhibitor p21. We provide evidence that SLFN11 contributes to regulation of stem cell markers in GBM, promoting the malignant phenotype. In addition, SLFN11 targeting triggers p21 expression and antitumor responses. Our studies define a highly novel function for SLFN11 and identify it as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Mariafausta Fischietti
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Candice Mazewski
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sang Ho
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Christopher Gonzalez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lukas D. Streich
- 4Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amy B. Heimberger
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aneta H. Baran
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Feng Yue
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 6Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C. David James
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C. Platanias
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
24
|
Xu J, Chen S, Liang J, Hao T, Wang H, Liu G, Jin X, Li H, Zhang J, Zhang C, He Y. Schlafen family is a prognostic biomarker and corresponds with immune infiltration in gastric cancer. Front Immunol 2022; 13:922138. [PMID: 36090985 PMCID: PMC9452737 DOI: 10.3389/fimmu.2022.922138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The Schlafen (SLFN) gene family plays an important role in immune cell differentiation and immune regulation. Previous studies have found that the increased SLFN5 expression in patients with intestinal metaplasia correlates with gastric cancer (GC) progression. However, no investigation has been conducted on the SLFN family in GC. Therefore, we systematically explore the expression and prognostic value of SLFN family members in patients with GC, elucidating their possible biological function and its correlation with tumor immune cells infiltration. TCGA database results indicated that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN13 expression was significantly higher in GC. The UALCAN and KM plotter databases indicated that enhanced the SLFN family expression was associated with lymph node metastasis, tumor stage, and tumor grade and predicted an adverse prognosis. cBioportal database revealed that the SLFN family had a high frequency of genetic alterations in GC (about 12%), including mutations and amplification. The GeneMANIA and STRING databases identified 20 interacting genes and 16 interacting proteins that act as potential targets of the SLFN family. SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 may be implicated in the immunological response, according to Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, Timer and TISIDB databases indicate that SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 are involved in the immune response. Furthermore, Timer, TCGA, and TISIDB databases suggested that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 expression in GC is highly linked with immune cell infiltration levels, immune checkpoint, and the many immune cell marker sets expression. We isolated three samples of peripheral blood mononuclear cell (PBMC) and activated T cells; the results showed the expression of SLFN family members decreased significantly when T cell active. In conclusion, the SLFN family of proteins may act as a prognostic indicator of GC and is associated with immune cell infiltration and immune checkpoint expression in GC. Additionally, it may be involved in tumor immune evasion by regulating T cell activation.
Collapse
Affiliation(s)
- Jiannan Xu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jianming Liang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tengfei Hao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huabin Wang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Guangyao Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xinghan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junchang Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Center of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| |
Collapse
|
25
|
Song J, Huang F, Chen L, Feng K, Jian F, Huang T, Cai YD. Identification of methylation signatures associated with CAR T cell in B-cell acute lymphoblastic leukemia and non-hodgkin’s lymphoma. Front Oncol 2022; 12:976262. [PMID: 36033519 PMCID: PMC9402909 DOI: 10.3389/fonc.2022.976262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
CD19-targeted CAR T cell immunotherapy has exceptional efficacy for the treatment of B-cell malignancies. B-cell acute lymphocytic leukemia and non-Hodgkin’s lymphoma are two common B-cell malignancies with high recurrence rate and are refractory to cure. Although CAR T-cell immunotherapy overcomes the limitations of conventional treatments for such malignancies, failure of treatment and tumor recurrence remain common. In this study, we searched for important methylation signatures to differentiate CAR-transduced and untransduced T cells from patients with acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. First, we used three feature ranking methods, namely, Monte Carlo feature selection, light gradient boosting machine, and least absolute shrinkage and selection operator, to rank all methylation features in order of their importance. Then, the incremental feature selection method was adopted to construct efficient classifiers and filter the optimal feature subsets. Some important methylated genes, namely, SERPINB6, ANK1, PDCD5, DAPK2, and DNAJB6, were identified. Furthermore, the classification rules for distinguishing different classes were established, which can precisely describe the role of methylation features in the classification. Overall, we applied advanced machine learning approaches to the high-throughput data, investigating the mechanism of CAR T cells to establish the theoretical foundation for modifying CAR T cells.
Collapse
Affiliation(s)
- Jiwei Song
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Fangfang Jian
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
26
|
The retroelement Lx9 puts a brake on the immune response to virus infection. Nature 2022; 608:757-765. [PMID: 35948641 DOI: 10.1038/s41586-022-05054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago1,2. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes3,4. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements5-8 has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype8-14. Mammalian transposable elements include recent acquisitions and ancient transposable elements that have been maintained in the genome over evolutionary time. The presence of ancient conserved transposable elements correlates positively with the likelihood of a regulatory function, but functional validation remains an essential step to identify transposable element insertions that have a positive effect on fitness. Here we show that CRISPR-Cas9-mediated deletion of a transposable element-namely the LINE-1 retrotransposon Lx9c11-in mice results in an exaggerated and lethal immune response to virus infection. Lx9c11 is critical for the neogenesis of a non-coding RNA (Lx9c11-RegoS) that regulates genes of the Schlafen family, reduces the hyperinflammatory phenotype and rescues lethality in virus-infected Lx9c11-/- mice. These findings provide evidence that a transposable element can control the immune system to favour host survival during virus infection.
Collapse
|
27
|
Ding L, Chakrabarti J, Sheriff S, Li Q, Thi Hong HN, Sontz RA, Mendoza ZE, Schreibeis A, Helmrath MA, Zavros Y, Merchant JL. Toll-like Receptor 9 Pathway Mediates Schlafen +-MDSC Polarization During Helicobacter-induced Gastric Metaplasias. Gastroenterology 2022; 163:411-425.e4. [PMID: 35487288 PMCID: PMC9329252 DOI: 10.1053/j.gastro.2022.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.
Collapse
Affiliation(s)
- Lin Ding
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Jayati Chakrabarti
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Sulaiman Sheriff
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Qian Li
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hahn Nguyen Thi Hong
- Dinh Tien Hoang Institute of Medicine, Vietnam Union of Science and Technology Association, Institute of Biotechnology, Hanoi, Vietnam
| | - Ricky A Sontz
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Zoe E Mendoza
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Amanda Schreibeis
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yana Zavros
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Juanita L Merchant
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
28
|
Structural, molecular, and functional insights into Schlafen proteins. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:730-738. [PMID: 35768579 PMCID: PMC9256597 DOI: 10.1038/s12276-022-00794-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Schlafen (SLFN) genes belong to a vertebrate gene family encoding proteins with high sequence homology. However, each SLFN is functionally divergent and differentially expressed in various tissues and species, showing a wide range of expression in cancer and normal cells. SLFNs are involved in various cellular and tissue-specific processes, including DNA replication, proliferation, immune and interferon responses, viral infections, and sensitivity to DNA-targeted anticancer agents. The fundamental molecular characteristics of SLFNs and their structures are beginning to be elucidated. Here, we review recent structural insights into the N-terminal, middle and C-terminal domains (N-, M-, and C-domains, respectively) of human SLFNs and discuss the current understanding of their biological roles. We review the distinct molecular activities of SLFN11, SLFN5, and SLFN12 and the relevance of SLFN11 as a predictive biomarker in oncology. The diverse roles that Schlafen family proteins play in cell proliferation, immune modulation, and other biological processes make them promising targets for treating and tracking diseases, especially cancer. Ukhyun Jo and Yves Pommier from the National Cancer Institute in Bethesda, USA, review the molecular characteristics and structural features of Schlafen proteins. These proteins take their name from the German word for “sleep”, as the first described Schlafen proteins caused cells to stop dividing, although later reports found that related members of the same protein family serve myriad cellular functions, including in the regulation of DNA replication. A better understanding of Schlafen proteins could open up new avenues in cancer management, for instance, diagnostics that monitor activity levels of one such protein, SLFN11, could help oncologists predict how well patients might respond to anti-cancer therapies.
Collapse
|
29
|
Warsi S, Dahl M, Smith EMK, Rydström A, Mansell E, Sigurdsson V, Sjöberg J, Soneji S, Rörby E, Siva K, Grahn THM, Liu Y, Blank U, Karlsson G, Karlsson S. Schlafen2 is a regulator of quiescence in adult murine hematopoietic stem cells. Haematologica 2022; 107:2884-2896. [PMID: 35615926 PMCID: PMC9713563 DOI: 10.3324/haematol.2021.279799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/14/2022] Open
Abstract
Even though hematopoietic stem cells (HSC) are characterized by their ability to self-renew and differentiate, they primarily reside in quiescence. Despite the immense importance of this quiescent state, its maintenance and regulation is still incompletely understood. Schlafen2 (Slfn2) is a cytoplasmic protein known to be involved in cell proliferation, differentiation, quiescence, interferon response, and regulation of the immune system. Interestingly, Slfn2 is highly expressed in primitive hematopoietic cells. In order to investigate the role of Slfn2 in the regulation of HSC we have studied HSC function in the elektra mouse model, where the elektra allele of the Slfn2 gene contains a point mutation causing loss of function of the Slfn2 protein. We found that homozygosity for the elektra allele caused a decrease of primitive hematopoietic compartments in murine bone marrow. We further found that transplantation of elektra bone marrow and purified HSC resulted in a significantly reduced regenerative capacity of HSC in competitive transplantation settings. Importantly, we found that a significantly higher fraction of elektra HSC (as compared to wild-type HSC) were actively cycling, suggesting that the mutation in Slfn2 increases HSC proliferation. This additionally caused an increased amount of apoptotic stem and progenitor cells. Taken together, our findings demonstrate that dysregulation of Slfn2 results in a functional deficiency of primitive hematopoietic cells, which is particularly reflected by a drastically impaired ability to reconstitute the hematopoietic system following transplantation and an increase in HSC proliferation. This study thus identifies Slfn2 as a novel and critical regulator of adult HSC and HSC quiescence.
Collapse
Affiliation(s)
- Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University,Skåne University Hospital, Region Skåne,S. Warsi
| | - Maria Dahl
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Emma M. K. Smith
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Anna Rydström
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Els Mansell
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Valgardur Sigurdsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Julia Sjöberg
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University,Lund University Bioinformatics Core, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emma Rörby
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Kavitha Siva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Tan H. M. Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Yang Liu
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Ulrika Blank
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| |
Collapse
|
30
|
Schlafens Can Put Viruses to Sleep. Viruses 2022; 14:v14020442. [PMID: 35216035 PMCID: PMC8875196 DOI: 10.3390/v14020442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
The Schlafen gene family encodes for proteins involved in various biological tasks, including cell proliferation, differentiation, and T cell development. Schlafens were initially discovered in mice, and have been studied in the context of cancer biology, as well as their role in protecting cells during viral infection. This protein family provides antiviral barriers via direct and indirect effects on virus infection. Schlafens can inhibit the replication of viruses with both RNA and DNA genomes. In this review, we summarize the cellular functions and the emerging relationship between Schlafens and innate immunity. We also discuss the functions and distinctions of this emerging family of proteins as host restriction factors against viral infection. Further research into Schlafen protein function will provide insight into their mechanisms that contribute to intrinsic and innate host immunity.
Collapse
|
31
|
Metzner FJ, Huber E, Hopfner KP, Lammens K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res 2022; 50:1147-1161. [PMID: 35037067 PMCID: PMC8789055 DOI: 10.1093/nar/gkab1278] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
The Schlafen family belongs to the interferon-stimulated genes and its members are involved in cell cycle regulation, T cell quiescence, inhibition of viral replication, DNA-repair and tRNA processing. Here, we present the cryo-EM structure of full-length human Schlafen 5 (SLFN5) and the high-resolution crystal structure of the highly conserved N-terminal core domain. We show that the core domain does not resemble an ATPase-like fold and neither binds nor hydrolyzes ATP. SLFN5 binds tRNA as well as single- and double-stranded DNA, suggesting a potential role in transcriptional regulation. Unlike rat Slfn13 or human SLFN11, human SLFN5 did not cleave tRNA. Based on the structure, we identified two residues in proximity to the zinc finger motif that decreased DNA binding when mutated. These results indicate that Schlafen proteins have divergent enzymatic functions and provide a structural platform for future biochemical and genetic studies.
Collapse
Affiliation(s)
- Felix J Metzner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Elisabeth Huber
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| | - Katja Lammens
- Department of Biochemistry, Gene Center, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
32
|
Winkels H, Ghosheh Y, Kobiyama K, Kiosses WB, Orecchioni M, Ehinger E, Suryawanshi V, Herrera-De La Mata S, Marchovecchio P, Riffelmacher T, Thiault N, Kronenberg M, Wolf D, Seumois G, Vijayanand P, Ley K. Thymus-Derived CD4 +CD8 + Cells Reside in Mediastinal Adipose Tissue and the Aortic Arch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2720-2732. [PMID: 34740961 PMCID: PMC8612987 DOI: 10.4049/jimmunol.2100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Double-positive CD4+CD8αβ+ (DP) cells are thought to reside as T cell progenitors exclusively within the thymus. We recently discovered an unexpected CD4+ and CD8αβ+ immune cell population in healthy and atherosclerotic mice by single-cell RNA sequencing. Transcriptomically, these cells resembled thymic DPs. Flow cytometry and three-dimensional whole-mount imaging confirmed DPs in thymus, mediastinal adipose tissue, and aortic adventitia, but nowhere else. Deep transcriptional profiling revealed differences between DP cells isolated from the three locations. All DPs were dependent on RAG2 expression and the presence of the thymus. Mediastinal adipose tissue DPs resided in close vicinity to invariant NKT cells, which they could activate in vitro. Thymus transplantation failed to reconstitute extrathymic DPs, and frequencies of extrathymic DPs were unaltered by pharmacologic inhibition of S1P1, suggesting that their migration may be locally confined. Our results define two new, transcriptionally distinct subsets of extrathymic DPs that may play a role in aortic vascular homeostasis.
Collapse
Affiliation(s)
- Holger Winkels
- La Jolla Institute for Immunology, La Jolla, CA;
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Dennis Wolf
- University Hospital Freiburg, Freiburg, Germany; and
| | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
33
|
A wake-up call for cancer DNA damage: the role of Schlafen 11 (SLFN11) across multiple cancers. Br J Cancer 2021; 125:1333-1340. [PMID: 34294893 PMCID: PMC8576031 DOI: 10.1038/s41416-021-01476-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
DNA-damaging agents exploit increased genomic instability, a hallmark of cancer. Recently, inhibitors targeting the DNA damage response (DDR) pathways, such as PARP inhibitors, have also shown promising therapeutic potential. However, not all tumors respond well to these treatments, suggesting additional determinants of response are required. Schlafen 11 (SLFN11), a putative DNA/RNA helicase that induces irreversible replication block, is emerging as an important regulator of cellular response to DNA damage. Preclinical and emerging clinical trial data suggest that SLFN11 is a predictive biomarker of response to a wide range of therapeutics that cause DNA damage including platinum salts and topoisomerase I/II inhibitors, as well as PARP inhibitors, which has raised exciting possibilities for its clinical application. In this article, we review the function, prevalence, and clinical testing of SLFN11 in tumor biopsy samples and circulating tumor cells. We discuss mounting evidence of SLFN11 as a key predictive biomarker for a wide range of cancer therapeutics and as a prognostic marker across several cancer types. Furthermore, we discuss emerging areas of investigation such as epigenetic reactivation of SLFN11 and its role in activating immune response. We then provide perspectives on open questions and future directions in studying this important biomarker.
Collapse
|
34
|
Vomhof-DeKrey EE, Stover AD, Labuhn M, Osman MR, Basson MD. Vil-Cre specific Schlafen 3 knockout mice exhibit sex-specific differences in intestinal differentiation markers and Schlafen family members expression levels. PLoS One 2021; 16:e0259195. [PMID: 34710177 PMCID: PMC8553116 DOI: 10.1371/journal.pone.0259195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The intestinal epithelium requires self-renewal and differentiation in order to function and adapt to pathological diseases such as inflammatory bowel disease, short gut syndrome, and ulcers. The rodent Slfn3 protein and the human Slfn12 analog are known to regulate intestinal epithelial differentiation. Previous work utilizing a pan-Slfn3 knockout (KO) mouse model revealed sex-dependent gene expression disturbances in intestinal differentiation markers, metabolic pathways, Slfn family member mRNA expression, adaptive immune cell proliferation/functioning genes, and phenotypically less weight gain and sex-dependent changes in villus length and crypt depth. We have now created a Vil-Cre specific Slfn3KO (VC-Slfn3KO) mouse to further evaluate its role in intestinal differentiation. There were increases in Slfn1, Slfn2, Slfn4, and Slfn8 and decreases in Slfn5 and Slfn9 mRNA expression that were intestinal region and sex-specific. Differentiation markers, sucrase isomaltase (SI), villin 1, and dipeptidyl peptidase 4 and glucose transporters, glucose transporter 1 (Glut1), Glut2, and sodium glucose transporter 1 (SGLT1), were increased in expression in VC-Slfn3KO mice based on intestinal region and were also highly female sex-biased, except for SI in the ileum was also increased for male VC-Slfn3KO mice and SGLT1 was decreased for both sexes. Overall, the variations that we observed in these VC-Slfn3KO mice indicate a complex regulation of intestinal gene expression that is sex-dependent.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Mary Labuhn
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Marcus R. Osman
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
35
|
Zheng Q, Duan L, Lou Y, Chao T, Guo G, Lu L, Zhang H, Zhao Y, Liang Y, Wang H. Slfn4 deficiency improves MAPK-mediated inflammation, oxidative stress, apoptosis and abates atherosclerosis progression in apolipoprotein E-deficient mice. Atherosclerosis 2021; 337:42-52. [PMID: 34757313 DOI: 10.1016/j.atherosclerosis.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis, a progressive inflammatory disease characterized by elevated inflammation and lipid accumulation in the aortic endothelium, arises in part from the infiltration of inflammatory cells into the vascular wall. However, it is not fully defined how inflammatory cells, especially macrophages, affect the pathogenesis of atherosclerosis. Schlafen4 (Slfn4) mRNA is remarkably upregulated upon ox-LDL stimulation in macrophages. Nonetheless, the role of Slfn4 in foam cell formation remains unclear. METHODS To determine whether and how Slfn4 regulates lesion macrophage function during atherosclerosis,we engineered ApoE-/-Slfn4-/- double-deficient mice on an ApoE-/- background and evaluated the deficiency of Slfn4 expression in atherosclerotic lesion formation in vivo. RESULTS Our results demonstrate that total absence of SLFN4 and the bone marrow-restricted deletion of Slfn4 in ApoE-/- mice remarkably diminish inflammatory cell numbers within arterial plaques as well as limit development of atherosclerosis in moderate hypercholesterolemia condition. This is linked to a marked reduction in the expression of proinflammatory cytokines, the generation of the reactive oxygen species (ROS) and the apoptosis of cells. Furthermore, the activation of MAPKs and apoptosis signaling pathways is compromised in the absence of Slfn4. CONCLUSIONS These findings demonstrate a novel role of Slfn4 in modulating vascular inflammation and atherosclerosis, highlighting a new target for the related diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guo Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liaoxun Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hongxia Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yucong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| |
Collapse
|
36
|
Al-Marsoummi S, Vomhof-DeKrey EE, Basson MD. Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:2238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Marc D. Basson
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
37
|
Su Z, Dutta A. De-stressing the T cells in need. Science 2021; 372:683-684. [PMID: 33986167 DOI: 10.1126/science.abi7265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
38
|
Heterozygous mutation SLFN14 K208N in mice mediates species-specific differences in platelet and erythroid lineage commitment. Blood Adv 2021; 5:377-390. [PMID: 33496736 DOI: 10.1182/bloodadvances.2020002404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Schlafen 14 (SLFN14) has recently been identified as an endoribonuclease responsible for cleaving RNA to regulate and inhibit protein synthesis. Early studies revealed that members of the SLFN family are capable of altering lineage commitment during T-cell differentiation by using cell-cycle arrest as a means of translational control by RNase activity. SLFN14 has been reported as a novel gene causing an inherited macrothrombocytopenia and bleeding in human patients; however, the role of this endoribonuclease in megakaryopoiesis and thrombopoiesis remains unknown. To investigate this, we report a CRISPR knock-in mouse model of SLFN14 K208N homologous to the K219N mutation observed in our previous patient studies. We used hematological analysis, in vitro and in vivo studies of platelet and erythrocyte function, and analysis of spleen and bone marrow progenitors. Mice homozygous for this mutation do not survive to weaning age, whereas heterozygotes exhibit microcytic erythrocytosis, hemolytic anemia, splenomegaly, and abnormal thrombus formation, as revealed by intravital microscopy, although platelet function and morphology remain unchanged. We also show that there are differences in erythroid progenitors in the spleens and bone marrow of these mice, indicative of an upregulation of erythropoiesis. This SLFN14 mutation presents distinct species-specific phenotypes, with a platelet defect reported in humans and a severe microcytic erythrocytosis in mice. Thus, we conclude that SLFN14 is a key regulator in mammalian hematopoiesis and a species-specific mediator of platelet and erythroid lineage commitment.
Collapse
|
39
|
SLFN11 promotes stalled fork degradation that underlies the phenotype in Fanconi anemia cells. Blood 2021; 137:336-348. [PMID: 32735670 DOI: 10.1182/blood.2019003782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary disorder caused by mutations in any 1 of 22 FA genes. The disease is characterized by hypersensitivity to interstrand crosslink (ICL) inducers such as mitomycin C (MMC). In addition to promoting ICL repair, FA proteins such as RAD51, BRCA2, or FANCD2 protect stalled replication forks from nucleolytic degradation during replication stress, which may have a profound impact on FA pathophysiology. Recent studies showed that expression of the putative DNA/RNA helicase SLFN11 in cancer cells correlates with cell death on chemotherapeutic treatment. However, the underlying mechanisms of SLFN11-mediated DNA damage sensitivity remain unclear. Because SLFN11 expression is high in hematopoietic stem cells, we hypothesized that SLFN11 depletion might ameliorate the phenotypes of FA cells. Here we report that SLFN11 knockdown in the FA patient-derived FANCD2-deficient PD20 cell line improved cell survival on treatment with ICL inducers. FANCD2-/-SLFN11-/- HAP1 cells also displayed phenotypic rescue, including reduced levels of MMC-induced chromosome breakage compared with FANCD2-/- cells. Importantly, we found that SLFN11 promotes extensive fork degradation in FANCD2-/- cells. The degradation process is mediated by the nucleases MRE11 or DNA2 and depends on the SLFN11 ATPase activity. This observation was accompanied by an increased RAD51 binding at stalled forks, consistent with the role of RAD51 antagonizing nuclease recruitment and subsequent fork degradation. Suppression of SLFN11 protects nascent DNA tracts even in wild-type cells. We conclude that SLFN11 destabilizes stalled replication forks, and this function may contribute to the attrition of hematopoietic stem cells in FA.
Collapse
|
40
|
Gu X, Zhou L, Chen L, Pan H, Zhao R, Guang W, Wan G, Zhang P, Liu D, Deng LL, Zhao W, Lu C. Human Schlafen 5 Inhibits Proliferation and Promotes Apoptosis in Lung Adenocarcinoma via the PTEN/PI3K/AKT/mTOR Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6628682. [PMID: 33860045 PMCID: PMC8009730 DOI: 10.1155/2021/6628682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human Schlafen 5 (SLFN5) is reported to inhibit or promote the proliferation of several specific types of cancer cells by our lab and other researchers. We are curious about its implications in lung adenocarcinoma (LUAC), a malignant tumor with a high incidence rate and high mortality. METHOD Lentiviral stable transfections of SLFN5-specific shRNA for knockdown and SLFN5 full-length coding sequence for overexpression were performed in LUAC cell for proliferation analysis in vitro and in vivo in nude mice. Clinical LUAC samples were collected for immunohistochemical analysis of SLFN5 protein levels. RESULTS We found that knockdown of endogenous SLFN5 upregulates cancer cell proliferation while inhibiting apoptosis. Besides, SLFN5 inhibition on proliferation was also observed in a nude mouse xenograft model. In contrast, overexpression of exogenous SLFN5 inhibited cell proliferation in vitro and in vivo and promoted apoptosis. As to the signaling pathway, we found phosphatase and tensin homolog on chromosome 10 (PTEN) was positively regulated by SLFN5, while its downstream signaling pathway AKT/mammalian target of rapamycin (mTOR) was inhibited. Moreover, compared with adjacent normal tissues, SLFN5 protein levels were markedly decreased in lung adenocarcinoma tissues. In conclusion, these suggest that human SLFN5 plays inhibitory roles in LUAC progression through the PTEN/PI3K/AKT/mTOR pathway, providing a potential target for developing drugs for lung cancer therapy in the future.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li Zhou
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Lei Chen
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiqing Pan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Rui Zhao
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Guang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Guoqing Wan
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dingsheng Liu
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weiming Zhao
- Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Changlian Lu
- Shanghai University of Medicine & Health Science Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
41
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
42
|
Vomhof-DeKrey EE, Lansing JT, Darland DC, Umthun J, Stover AD, Brown C, Basson MD. Loss of Slfn3 induces a sex-dependent repair vulnerability after 50% bowel resection. Am J Physiol Gastrointest Liver Physiol 2021; 320:G136-G152. [PMID: 33237796 PMCID: PMC7864235 DOI: 10.1152/ajpgi.00344.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Bowel resection accelerates enterocyte proliferation in the remaining gut with suboptimal absorptive and digestive capacity because of a proliferation-associated decrease in functional differentiation markers. We hypothesized that although schlafen 3 (Slfn3) is an important regulator of enterocytic differentiation, Slfn3 would have less impact on bowel resection adaptation, where accelerated proliferation takes priority over differentiation. We assessed proliferation, cell shedding, and enterocyte differentiation markers from resected and postoperative bowel of wild-type (WT) and Slfn3-knockout (Slfn3KO) mice. Villus length and crypt depth were increased in WT mice and were even longer in Slfn3KO mice. Mitotic marker, Phh3+, and the proliferation markers Lgr5, FoxL1, and platelet-derived growth factor-α (PDGFRα) were increased after resection in male WT, but this was blunted in male Slfn3KO mice. Cell-shedding regulators Villin1 and TNFα were downregulated in female mice and male WT mice only, whereas Gelsolin and EGFR increased expression in all mice. Slfn3 expression increased after resection in WT mice, whereas other Slfn family members 1, 2, 5, 8, and 9 had varied expressions that were affected also by sex difference and loss of Slfn3. Differentiation markers sucrase isomaltase, Dpp4, Glut2, and SGLT1 were all decreased, suggesting that enterocytic differentiation effort is incompatible with rapid proliferation shift in intestinal adaptation. Slfn3 absence potentiates villus length and crypt depth, suggesting that the differentiating stimulus of Slfn3 signaling may restrain mucosal mass increase through regulating Villin1, Gelsolin, EGFR, TNFα, and proliferation markers. Therefore, Slfn3 may be an important regulator not only of "normal" enterocytic differentiation but also in response to bowel resection.NEW & NOTEWORTHY The differentiating stimulus of Slfn3 signaling restrains an increase in mucosal mass after bowel resection, and there is a Slfn3-sex interaction regulating differentiation gene expression and intestinal adaptation. This current study highlights the combinatory effects of gender and Slfn3 genotype on the gene expression changes that contribute to the adaptation in intestinal cellular milleu (i.e. villus and crypt structure) which are utilized to compensate for the stress-healing response that the animals display in intestinal adaptation.
Collapse
Affiliation(s)
- Emilie E Vomhof-DeKrey
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Jack T Lansing
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
- Department of Biology, University of North Dakota, Grand Forks, North Dakota
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota
| | - Josey Umthun
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
- Department of Biology, University of North Dakota, Grand Forks, North Dakota
| | - Allie D Stover
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Christopher Brown
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Marc D Basson
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
43
|
Guo G, Wang Y, Hu XM, Li ZR, Tan J, Qiao WT. Human Schlafen 11 exploits codon preference discrimination to attenuate viral protein synthesis of prototype foamy virus (PFV). Virology 2020; 555:78-88. [PMID: 33465725 DOI: 10.1016/j.virol.2020.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022]
Abstract
Recently, the Schlafen (SLFN) proteins have been identified as a novel interferon-stimulated family with antiviral properties. In this study, we reported that SLFN11 inhibited prototype foamy virus (PFV) replication. Over-expression of human SLFN11 reduced viral production, while knockdown of SLFN11 enhanced viral infectivity. In addition, SLFN11 from cattle and African green monkey also suppressed PFV production. Both the ATPase activity and helicase activity of SLFN11 were required for its inhibitory function. Dephosphorylation activated the antiviral activity of SLFN11. More importantly, SLFN11 inhibited the expression of viral protein, which was rescued by viral gene codon optimization. Together, our results demonstrated that SLFN11 impaired PFV viral protein synthesis by exploiting the distinct codon usage between the virus and the host. These findings further broaden our understanding of the antiviral properties of the SLFN family and the molecular mechanism of PFV latent infection.
Collapse
Affiliation(s)
- Ge Guo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Yang Wang
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao-Mei Hu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuo-Ran Li
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Wen-Tao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
44
|
Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms 2020; 8:microorganisms8121965. [PMID: 33322320 PMCID: PMC7764263 DOI: 10.3390/microorganisms8121965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.
Collapse
|
45
|
Al-Marsoummi S, Pacella J, Dockter K, Soderberg M, Singhal SK, Vomhof-DeKrey EE, Basson MD. Schlafen 12 Is Prognostically Favorable and Reduces C-Myc and Proliferation in Lung Adenocarcinoma but Not in Lung Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:2738. [PMID: 32987632 PMCID: PMC7650563 DOI: 10.3390/cancers12102738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Schlafen 12 (SLFN12) is an intermediate human Schlafen that induces differentiation in enterocytes, prostate, and breast cancer. We hypothesized that SLFN12 influences lung cancer biology. We investigated survival differences in high versus low SLFN12-expressing tumors in two databases. We then adenovirally overexpressed SLFN12 (AdSLFN12) in HCC827, H23, and H1975 cells to model lung adenocarcinoma (LUAD), and in H2170 and HTB-182 cells representing lung squamous cell carcinoma (LUSC). We analyzed proliferation using a colorimetric assay, mRNA expression by RT-qPCR, and protein by Western blot. To further explore the functional relevance of SLFN12, we correlated SLFN12 with seventeen functional oncogenic gene signatures in human tumors. Low tumoral SLFN12 expression predicted worse survival in LUAD patients, but not in LUSC. AdSLFN12 modulated expression of SCGB1A1, SFTPC, HOPX, CK-5, CDH1, and P63 in a complex fashion in these cells. AdSLFN12 reduced proliferation in all LUAD cell lines, but not in LUSC cells. SLFN12 expression inversely correlated with expression of a myc-associated gene signature in LUAD, but not LUSC tumors. SLFN12 overexpression reduced c-myc protein in LUAD cell lines but not in LUSC, by inhibiting c-myc translation. Our results suggest SLFN12 improves prognosis in LUAD in part via a c-myc-dependent slowing of proliferation.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
| | - Jonathan Pacella
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
| | - Kaylee Dockter
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
| | - Matthew Soderberg
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Marc D. Basson
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (J.P.); (K.D.); (M.S.); (E.E.V.-D.)
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
46
|
Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res 2020; 394:112161. [PMID: 32619498 DOI: 10.1016/j.yexcr.2020.112161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Organisms encounter stress throughout their lives, and therefore require the ability to respond rapidly to environmental changes. Although transcriptional responses are crucial for controlling changes in gene expression, regulation at the translational level often allows for a faster response at the protein levels which permits immediate adaptation. The fidelity and robustness of protein synthesis are actively regulated under stress. For example, mistranslation can be beneficial to cells upon environmental changes and also alters cellular stress responses. Additionally, stress modulates both global and selective translational regulation through mechanisms including the change of aminoacyl-tRNA activity, tRNA pool reprogramming and ribosome heterogeneity. In this review, we draw on studies from both the prokaryotic and eukaryotic systems to discuss current findings of cellular adaptation at the level of translation, specifically translational fidelity and activity changes in response to a wide array of environmental stressors including oxidative stress, nutrient depletion, temperature variation, antibiotics and host colonization.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Paul Kelly
- The Ohio State University Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.
| |
Collapse
|
47
|
Human Schlafen 5 regulates reversible epithelial and mesenchymal transitions in breast cancer by suppression of ZEB1 transcription. Br J Cancer 2020; 123:633-643. [PMID: 32488136 PMCID: PMC7435190 DOI: 10.1038/s41416-020-0873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human Schlafen 5 (SLFN5) has been reported to inhibit or promote cell invasion in tumours depending on their origin. However, its role in breast cancer (BRCA) is undetermined. METHODS Differential expression analyses using The Cancer Genome Atlas (TCGA) data, clinical samples and cell lines were performed. Lentiviral knockdown and overexpression experiments were performed to detect changes in cell morphology, molecular markers and invasion. Chromatin immunoprecipitation-sequencing (ChIP-Seq) and luciferase reporter assays were performed to detect the SLFN5-binding motif. RESULTS TCGA, clinical samples and cell lines showed that SLFN5 expression was negatively correlated with BRCA metastasis. SLFN5 knockdown induced epithelial-mesenchymal transition (EMT) and enhanced invasion in BRCA cell lines. However, overexpression triggered mesenchymal-epithelial transition (MET). SLFN5 inhibited the expression of ZEB1 but not ZEB2, SNAI1, SNAI2, TWIST1 or TWIST2. Knockdown and overexpression of ZEB1 indicated that it was a mediator of the SLFN5-governed phenotype and invasion changes. Moreover, SLFN5 inhibited ZEB1 transcription by directly binding to the SLFN5-binding motif on the ZEB1 promoter, but a SLFN5 C-terminal deletion mutant did not. CONCLUSION SLFN5 regulates reversible epithelial and mesenchymal transitions, and inhibits BRCA metastasis by suppression of ZEB1 transcription, suggesting that SLFN5 could be a potential target for BRCA therapy.
Collapse
|
48
|
Conteduca V, Ku SY, Puca L, Slade M, Fernandez L, Hess J, Bareja R, Vlachostergios PJ, Sigouros M, Mosquera JM, Sboner A, Nanus DM, Elemento O, Dittamore R, Tagawa ST, Beltran H. SLFN11 Expression in Advanced Prostate Cancer and Response to Platinum-based Chemotherapy. Mol Cancer Ther 2020; 19:1157-1164. [PMID: 32127465 PMCID: PMC7440143 DOI: 10.1158/1535-7163.mct-19-0926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
Expression of the DNA/RNA helicase schlafen family member 11 (SLFN11) has been identified as a sensitizer of tumor cells to DNA-damaging agents including platinum chemotherapy. We assessed the impact of SLFN11 expression on response to platinum chemotherapy and outcomes in patients with metastatic castration-resistant prostate cancer (CRPC). Tumor expression of SLFN11 was assessed in 41 patients with CRPC treated with platinum chemotherapy by RNA sequencing (RNA-seq) of metastatic biopsy tissue (n = 27) and/or immunofluorescence in circulating tumor cells (CTC; n = 20). Cox regression and Kaplan-Meier methods were used to evaluate the association of SLFN11 expression with radiographic progression-free survival (rPFS) and overall survival (OS). Multivariate analysis included tumor histology (i.e., adenocarcinoma or neuroendocrine) and the presence or absence of DNA repair aberrations. Patient-derived organoids with SLFN11 expression and after knockout by CRISPR-Cas9 were treated with platinum and assessed for changes in dose response. Patients were treated with platinum combination (N = 38) or platinum monotherapy (N = 3). Median lines of prior therapy for CRPC was two. Median OS was 8.7 months. Overexpression of SLFN11 in metastatic tumors by RNA-seq was associated with longer rPFS compared with those without overexpression (6.9 vs. 2.8 months, HR = 3.72; 95% confidence interval (CI), 1.56-8.87; P < 0.001); similar results were observed for patients with SLFN11-positive versus SLFN11-negative CTCs (rPFS 6.0 vs. 2.2 months, HR = 4.02; 95% CI, 0.77-20.86; P = 0.002). A prostate-specific antigen (PSA) decline of ≥50% was observed in all patients with SLFN11 overexpression. No association was observed between SLFN11 expression and OS. On multivariable analysis, SLFN11 was an independent factor associated with rPFS on platinum therapy. Platinum response of organoids expressing SLFN11 was reduced after SLFN11 knockout. Our data suggest that SLFN11 expression might identify patients with CRPC with a better response to platinum chemotherapy independent of histology or other genomic alterations. Additional studies, also in the context of PARP inhibitors, are warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Judy Hess
- Weill Cornell Medicine, New York, New York
| | | | | | | | | | | | | | | | | | | | - Himisha Beltran
- Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Weill Cornell Medicine, New York, New York
| |
Collapse
|
49
|
Zhou C, Liu C, Liu W, Chen W, Yin Y, Li CW, Hsu JL, Sun J, Zhou Q, Li H, Hu B, Fu P, Atyah M, Ma Q, Xu Y, Dong Q, Hung MC, Ren N. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics 2020; 10:4627-4643. [PMID: 32292519 PMCID: PMC7150495 DOI: 10.7150/thno.42869] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most refractory malignancies worldwide. Schlafen family member 11 (SLFN11) has been reported to play an important role in inhibiting the production of human immunodeficiency virus 1 (HIV-1). However, whether SLFN11 also inhibits hepatitis B virus (HBV), and affects HBV-induced HCC remain to be systematically investigated. Methods: qRT-PCR, western blot and immunohistochemical (IHC) staining were conducted to investigate the potential role and prognostic value of SLFN11 in HCC. Then SLFN11 was stably overexpressed or knocked down in HCC cell lines. To further explore the potential biological function of SLFN11 in HCC, cell counting kit-8 (CCK-8) assays, colony formation assays, wound healing assays and transwell cell migration and invasion assays were performed in vitro. Meanwhile, HCC subcutaneous xenograft tumor models were established for in vivo assays. Subsequently, immunoprecipitation (IP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analyses were applied to understand the molecular mechanisms of SLFN11 in HCC. Co-IP, immunofluorescence and IHC staining were used to analyze the relationship between ribosomal protein S4 X-linked (RPS4X) and SLFN11. Finally, the therapeutic potential of SLFN11 with mTOR pathway inhibitor INK128 on inhibiting HCC growth and metastasis was evaluated in vitro and in vivo orthotopic xenograft mouse models. Results: We demonstrate that SLFN11 expression is decreased in HCC, which is associated with shorter overall survival and higher recurrence rates in patients. In addition, we show that low SLFN11 expression is associated with aggressive clinicopathologic characteristics. Moreover, overexpression of SLFN11 inhibits HCC cell proliferation, migration, and invasion, facilitates apoptosis in vitro, and impedes HCC growth and metastasis in vivo, all of which are attenuated by SLFN11 knockdown. Mechanistically, SLFN11 physically associates with RPS4X and blocks the mTOR signaling pathway. In orthotopic mouse models, overexpression of SLFN11 or inhibition of mTOR pathway inhibitor by INK128 reverses HCC progression and metastasis. Conclusions: SLFN11 may serve as a powerful prognostic biomarker and putative tumor suppressor by suppressing the mTOR signaling pathway via RPS4X in HCC. Our study may therefore offer a novel therapeutic strategy for treating HCC patients with the mTOR pathway inhibitor INK128.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjie Liu
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Institute of Fudan Minhang Academic Health System, and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L. Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jialei Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Hui Li
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Peiyao Fu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qianni Ma
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Fudan Minhang Academic Health System, and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Institute of Fudan Minhang Academic Health System, and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Vomhof-DeKrey EE, Umthun J, Basson MD. Loss of Schlafen3 influences the expression levels of Schlafen family members in ileum, thymus, and spleen tissue. PeerJ 2020; 8:e8461. [PMID: 32025381 PMCID: PMC6993753 DOI: 10.7717/peerj.8461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Schlafen (Slfn) family proteins are important for regulation of cell growth, cell differentiation and cell cycle progression. We sought to distinguish Slfn family expression in Slfn3 knockout (KO) mice after RNA sequencing analysis of Slfn3KO vs. wildtype (WT) mice revealed varying expressions of Slfn family in ileal mucosa. METHODS Quantitative PCR analysis of Slfn members was evaluated in ileal mucosa, thymus and spleen tissue since Slfn family members have roles in differentiating intestinal and immune cells. RESULTS Ileal mucosa of Slfn3KO mice displayed a decrease in Slfn3, 4, 8 and 9 while Slfn1 and 5 increased in mRNA expression vs. WT mice. Thymic tissue had a Slfn9 increase and a Slfn4 decrease while splenic tissue had a Slfn8 and Slfn9 increase in Slfn3KO mice vs. WT mice. These differential expressions of Slfn members could indicate a feedback regulatory mechanism within the Slfn family. Indeed, MATCH™ tool from geneXplain predicted that all Slfn members have regions in their promoters for the Kruppel-like factor-6 transcription factor. In addition, NFAT related factors, ING4, ZNF333 and KLF4 are also predicted to bind in up to 6 of the 8 Slfn promoters. This study further describes a possible autoregulatory mechanism amongst the Slfn family members which could be important in how they regulate the differentiation of various cell types.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Josey Umthun
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Marc D. Basson
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|