1
|
Zhou L, Cui M, Yu J, Liu Y, Zeng F, Liu Y. Identification of Versican as a target gene of the transcription Factor ZNF587B in ovarian cancer. Biochem Pharmacol 2025; 237:116946. [PMID: 40228636 DOI: 10.1016/j.bcp.2025.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Ovarian cancer is the most lethal malignancy affecting the female reproductive system, with its progression and metastasis being significant contributors to patient mortality. Our previous study identified the zinc finger protein ZNF587B as a potential tumor suppressor that inhibited the proliferation, migration and invasion of ovarian cancer cells, although the underlying mechanism remains elusive. In this study, ZNF587B was demonstrated to bind directly to the promoter region of Versican (VCAN), a high molecular weight chondroitin sulfate glycoprotein, and repress its transcription using Chromatin immunoprecipitation-qPCR (ChIP-qPCR), luciferase reporter assays, and immunofluorescence (IF). Moreover, in vivo and in vitro assays revealed that the effect of ZNF587B knockdown on ovarian cancer proliferation may be mediated through VCAN. Not only that, patients with reduced expression of ZNF587B and increased expression of VCAN exhibit a poorer prognosis. The potential mechanism behind this may involve its impact on the phosphorylation process of AKT.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Jian Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
2
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Khan S, Khan MM, Badruddeen, Ahmad U, Akhtar W, Islam A. Exploring NMDAR pathways in ischemic stroke: implications for neurotoxic and neuroprotective mechanisms and therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04357-8. [PMID: 40490524 DOI: 10.1007/s00210-025-04357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025]
Abstract
Stroke is one of the leading causes of disability and mortality worldwide, with ischemic stroke representing the most prevalent and devastating form. This review offers an in-depth exploration of the critical role of N-Methyl-D-Aspartate Receptor (NMDAR) signaling in mediating the brain's response to ischemic injury. NMDAR activation triggers glutamate excitotoxicity, setting off a cascade of neurotoxic events that lead to mitochondrial dysfunction and the generation of reactive oxygen species (ROS). These damaging processes not only intensify neuronal injury but also activate apoptotic pathways, including p53-mediated and Notch signaling. Furthermore, the review highlights necroptosis as a key cell death mechanism in ischemic injury and examines the subsequent disruption of the blood-brain barrier (BBB), which exacerbates brain damage. In the context of neuroprotective signaling, we explore the distinct roles of synaptic and extrasynaptic NMDAR activation, neurotrophic factor-mediated signaling, and the intricate crosstalk between neurotoxic and neuroprotective pathways. This review also explores novel hypotheses and emerging perspectives in NMDAR-mediated ischemic stroke, highlighting potential mechanisms and therapeutic implications. Additionally, it covers cutting-edge experimental approaches to investigate NMDAR function in stroke and provides critical insights into conflicting findings in NMDAR research, addressing key controversies and their impact on future studies. Therapeutic strategies targeting ischemic stroke are critically examined, with an emphasis on potential interventions that could mitigate the effects of ischemia. The review also highlights ongoing clinical trials investigating novel therapeutic approaches and outlines the future direction of ischemic stroke therapy. This comprehensive review offers a deep understanding of the complex molecular mechanisms involved in ischemic stroke via NMDAR and provides valuable insights into the promising therapeutic avenues that could lead to more effective treatments.
Collapse
Affiliation(s)
- Sara Khan
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Muazzam Khan
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India.
| | - Badruddeen
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India
| | - Usama Ahmad
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India
| | - Wasim Akhtar
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India
| | - Anas Islam
- Department of Pharmacy, Integral University, Kursi Road, Dasauli, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
4
|
Song M, Wang H, Tian X, Gao J, Song C, Zhao Y, Jiang S, Lu W, Guo C, Lv Y, Zhao P, Li C, Song X, Chang T, Lou Y, Wang H. TIPE2 protein restrains invariant NKT activation and protects against immune-mediated hepatitis in mice. Hepatology 2025; 81:1671-1684. [PMID: 39325944 DOI: 10.1097/hep.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Concanavalin A (ConA) administration induces rapid and severe liver injury in mice, and invariant natural killer T (iNKT) cells are recognized to be the key effector cells in this process. However, the underlying regulatory mechanisms are not well defined. APPROACH AND RESULTS We found that iNKT cells constitutively expressed TIPE2 (tumor necrosis factor-α-induced protein 8-like 2, or TNFAIPL2). Genetic TIPE2 ablation strongly sensitized mice to ConA-induced hepatitis, accompanied by hyperactivation of iNKT cells. Moreover, Tipe2-/- mice were also more susceptible to α-galactosylceramide-induced liver injury, with elevated serum ALT levels and enhanced proinflammatory cytokine production. CD1d signaling blockade or iNKT cell elimination through antibodies reduced the effect of TIPE2 deficiency on liver injury. Mechanistic studies revealed that TIPE2 in iNKT cells functioned as a negative regulator, limiting iNKT cell activity and cytokine production through PIP3- AKT/mTOR pathway. TIPE2-mediated protection from liver injury was further validated by the administration of adeno-associated viruses expressing TIPE2, which effectively ameliorated ConA-induced hepatic injury. However, TIPE2 was dispensable in 2 other liver injury models, including D-GalN/LPS and acetaminophen-induced hepatitis. CONCLUSIONS Our findings reveal a new role of TIPE2 in the attenuation of iNKT cell-mediated hepatic injury. We propose that TIPE2 serves as an important regulator of immune homeostasis in the liver and might be exploited for the therapeutic treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Miaomiao Song
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Han Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xueqin Tian
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jingtao Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chen Song
- Department of Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shan Jiang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Cun Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong University, Zibo, Shandong, China
| | - Chuang Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangfeng Song
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Tomás A, Pojo M. PIK3CA Mutations: Are They a Relevant Target in Adult Diffuse Gliomas? Int J Mol Sci 2025; 26:5276. [PMID: 40508087 PMCID: PMC12154018 DOI: 10.3390/ijms26115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Gliomas are the most common and lethal malignant primary brain tumors in adults, associated with the highest number of years of potential life lost. The latest WHO classification for central nervous system tumors highlighted the need for new biomarkers of diagnosis, prognosis, and response to therapy. The PI3K/Akt signaling pathway is clearly implicated in tumorigenesis, being one of the most frequently altered pathways in cancer. Activating PI3KCA mutations are oncogenic and can influence both prognosis and treatment response in various tumor types. In gliomas, however, studies have reported inconsistent PIK3CA mutational frequencies, ranging from 0% to 30%. Furthermore, the impact of these alterations on glioma diagnosis, prognosis, and therapy response remains unclear. Current evidence suggests that PIK3CA mutations may represent early and constitutive events in glioma development, associated with worse glioblastoma prognoses, earlier recurrences, and widespread disease. Among these, the hotspot mutation H1047R has been particularly associated with a more aggressive phenotype while also modulating the neuronal microenvironment. In this review, we examine the clinical relevance of PIK3CA mutations across different cancers, with a particular focus on their emerging role in glioma. Moreover, we also discuss the therapeutic potential and challenges of targeting PIK3CA mutations in the context of glioma.
Collapse
Affiliation(s)
- Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Lisboa Francisco Gentil (IPOLFG) E.P.E., 1099-023 Lisbon, Portugal;
- NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Lisboa Francisco Gentil (IPOLFG) E.P.E., 1099-023 Lisbon, Portugal;
| |
Collapse
|
6
|
Bi J, Song L, Guo Q, Chen X, Gong Y, Wu H, Zhang F, Wang J, Zhang G. Effect of urolithin A on intracellular survival of Mycobacterium tuberculosis by regulating AKT-FOXO1-mediated autophagy. mSphere 2025; 10:e0006125. [PMID: 40207917 DOI: 10.1128/msphere.00061-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Tuberculosis (TB), resulting from Mycobacterium tuberculosis (Mtb), is one of the leading causes of morbidity and mortality in humans worldwide. Host-directed therapy (HDT) is a novel approach for treating TB, particularly those with drug resistance. Urolithin A (UroA) produced through bioconversion of plant-derived ellagic acid by gut microbes has been proven to have multiple beneficial effects in a variety of diseases without showing undesired adverse reactions. However, whether UroA has antimycobacterial effect and the underlying mechanism has not yet been reported. Here, we found that UroA significantly inhibited Mtb growth within both macrophages and mice. Moreover, UroA promoted the activation of autophagy in Mtb-infected macrophages via the protein kinase B-Forkhead box protein O1 signaling pathway, which contributed to the antimycobacterial effect of UroA. Additionally, UroA suppressed the survival of clinically isoniazid (INH)-resistant Mtb (C2) within macrophages, and the combination of UroA and INH synergistically enhanced host elimination of Mtb H37Rv. Therefore, UroA may be utilized as a potential candidate for HDT and as an adjunctive therapy with first-line anti-TB drugs.IMPORTANCEHost-directed therapy (HDT) is a novel approach for treating tuberculosis (TB), particularly those with drug resistance. Urolithin A (UroA) produced through bioconversion of plant-derived ellagic acid by gut microbes has been proven to have multiple beneficial effects in a variety of diseases without showing undesired adverse reactions. We found that UroA significantly inhibited Mycobacterium tuberculosis (Mtb) growth within macrophages. Moreover, UroA suppressed the survival of clinically isoniazid (INH)-resistant Mtb (C2) within macrophages, and the combination of UroA and INH synergistically enhanced host elimination of Mtb H37Rv. Therefore, UroA may be utilized as a potential candidate for HDT and as an adjunctive therapy with first-line anti-TB drugs.
Collapse
Affiliation(s)
- Jing Bi
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
| | - Li Song
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
| | - Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
| | - Xi Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yaqi Gong
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haojia Wu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
| | - Fan Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
| | - Jingbin Wang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southwest Medical University, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Rayamajhi A, Gyawali N, Karki D, Pérez-Caltzontzin LE, Peña-Corona SI, Cortés H, Adhikari A, Leyva-Gómez G, Uprety Y, Habtemariam S, Kiyekbayeva L, Sharifi-Rad J. Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential. Discov Oncol 2025; 16:683. [PMID: 40335865 PMCID: PMC12058641 DOI: 10.1007/s12672-025-02409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
In recent years, magnolol (MG), a natural active compound of polyphenolic nature, has garnered significant interest for its anti-cancer effects. Numerous studies conducted on cell lines and animal models have indicated a positive impact of administering drugs or semi-synthesized products derived from MG, including a decreased incidence of various cancers. This review aims to illustrate the underlying cellular and molecular basis of its actions. The article includes in-depth explanations of phytochemistry, semi-synthetic derivatives, bioavailability, pharmacokinetics, preclinical research, anti-tumor mechanisms, human clinical studies, toxicity, side effects, and safety. It also demonstrates that, in contrast to the wealth of synthetic medications, MG is highly effective against bladder, colon, gastric, skin, liver, lung, gallbladder, and prostate cancers. The findings of this review indicate that MG is a promising candidate as an anti-tumor agent, and future research should focus on developing new semi-synthetic derivative compounds with potential anti-tumor properties.
Collapse
Affiliation(s)
- Asmita Rayamajhi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nisha Gyawali
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Deepa Karki
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Luis E Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, México
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| | - Yadav Uprety
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent, ME4 4 TB, UK
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Iran.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
9
|
Ke H, Chen Z, Chen L, Zhang H, Wang Y, Song T, Bi A, Li Q, Sheng H, Jia Y, Chen W, Xiong H. FK506-binding proteins: Emerging target and therapeutic opportunity in multiple tumors. Int J Biol Macromol 2025; 307:141914. [PMID: 40064252 DOI: 10.1016/j.ijbiomac.2025.141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The FK506-binding protein (FKBP) family plays a key role in a variety of tumors and is involved in the regulation of important signaling pathways including AKT, NF-κB and p53, which affects cell proliferation, migration, and multiple cell death modes. Here, we summarize the findings that different FKBP family members exhibit dual functions of promoting or inhibiting tumorigenesis in different types of tumors. The expression levels of FKBP family members are closely related to the prognosis of patients, thus might be used as potential diagnostic and prognostic biomarkers. In the future, it is necessary to combine single-cell sequencing to resolve the spatial distribution of FKBP isoforms, develop clinical validation to promote the translation from molecular mechanism to precision therapy.
Collapse
Affiliation(s)
- Hang Ke
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Long Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tao Song
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihong Bi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Weijun Chen
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Mulpuri N, Yao XQ, Hamelberg D. Uncovering the Role of Distal Regions in PDK1 Allosteric Activation. ACS BIO & MED CHEM AU 2025; 5:299-309. [PMID: 40255282 PMCID: PMC12006859 DOI: 10.1021/acsbiomedchemau.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 04/22/2025]
Abstract
Allosteric regulation is a pivotal mechanism governing a wide array of cellular functions. Essential to this process is a flexible biomolecule allowing distant sites to interact through coordinated or sequential conformational shifts. Phosphoinositide-dependent kinase 1 (PDK1) possesses a conserved allosteric binding site, the PIF-pocket, which regulates the kinase's ATP binding, catalytic activity, and substrate interactions. We elucidated the allosteric mechanisms of PDK1 by comparing conformational ensembles of the kinase bound with different small-molecule allosteric modulators in the PIF-pocket with that of the modulator-free kinase. Analysis of over 48 μs of simulations consistently shows that the allosteric modulators predominantly influence the conformational dynamics of specific distal regions from the PIF-pocket, driving allosteric activation. Furthermore, a recently developed advanced difference contact network community analysis is employed to elucidate allosteric communications. This approach integrates multiple conformational ensembles into a single community network, offering a valuable tool for future studies aimed at identifying function-related dynamics in proteins.
Collapse
Affiliation(s)
- Nagaraju Mulpuri
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Xin-Qiu Yao
- Department
of Chemistry, University of Nebraska at
Omaha, Omaha, Nebraska 68182-0266, United States
| | - Donald Hamelberg
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| |
Collapse
|
11
|
Sun S, Wang Z, Xu X, Ding X, Xu J, Nan X, Li X, Xu J, Ren Z. Mechanisms of Differential Sensitivity to Ethanol-Induced Apoptosis in Mouse Spinal Cord at Different Developmental Stages-Akt/GSK Signaling and BAX. Mol Neurobiol 2025; 62:4301-4318. [PMID: 39441330 DOI: 10.1007/s12035-024-04510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The current study investigated differences in ethanol-induced apoptosis of spinal cord dorsal horn neurons at different developmental stages and the molecular mechanisms involved. A mouse ethanol intervention model was established on postnatal days 4, 7, and 12. Primary cells were derived from the spinal cord at postnatal day 4. Western blotting, immunofluorescence, and flow cytometry were used to detect apoptosis-related proteins in the spinal cord and primary cells. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes originating from the Gene Expression Omnibus dataset GSE184615 was conducted. Effects on Akt/GSK3β pathway proteins were investigated using the GSK3β inhibitor AR-A014418, and the Akt inhibitor DHA. Lentiviral knockdown and overexpression of intervening GSK3β were used in HT22 cell lines to investigate the effects of alcohol on GSK 3β and caspase proteins. J-aggregates, reactive oxygen species assays, and calcein-AM assays were used to investigate mitochondrial function and cell viability. Ethanol caused downregulation of Akt activity and upregulation of GSK3β activity and apoptosis. DHA, AR-A014418, and knockdown of GSK3β effectively counteracted ethanol-induced apoptosis, whereas overexpression of GSK3β enhanced the injury process. PI3K activity was unchanged during these processes. Fluorescence colocalization analysis indicated that BAX was translocated to mitochondria during the apoptotic process. BAX was downregulated as the spinal cord developed, consistent with a reduced susceptibility to ethanol-induced apoptosis. Akt/GSK3β signaling and BAX together determine the direction of alcohol-induced apoptosis and its susceptibility to change during developmental stages in the spinal cord.
Collapse
Affiliation(s)
- Shuaichen Sun
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zizhuo Wang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoxiang Xu
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xihui Ding
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianguang Xu
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Privine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiang Nan
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jinyong Xu
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Privine, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul MN, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco SE, de Stanchina E, Vanaja K, Rosen N. Diet induced insulin resistance is due to induction of PTEN expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645201. [PMID: 40196497 PMCID: PMC11974787 DOI: 10.1101/2025.03.25.645201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Insulin resistance is a condition associated with obesity, type 2 diabetes(T2D), hyperinsulinemia, hyperglycemia and defined by reduced sensitivity to insulin signaling. Molecular causes and early signaling events underlying insulin resistance are not well understood. Here we show that insulin activation of PI3K/AKT/mTOR signaling in insulin target tissues, causes mTORC1 induction of PTEN translation, a negative regulator of PI3K signaling. We hypothesized that insulin resistance is due to insulin dependent induction of PTEN that prevents further increases in PI3K signaling. In a diet induced animal model of obesity and insulin resistance, we show that PTEN levels are increased in fat, muscle, and liver. Hyperinsulinemia and PTEN induction are followed by hyperglycemia, severe glucose intolerance, and hepatic steatosis. In response to chronic hyperinsulinemia, PTEN remains increased, while AKT activity is induced transiently before settling down to a PTEN-high and AKT-low state in the tissues, predicted by computational modeling of the PTEN-AKT feedback loop. Treatment with PTEN and mTORC1 inhibitors prevent and reverse the effect of PTEN induction, rescue insulin resistance and increase PI3K/AKT signaling. Thus, we show that PTEN induction by increased insulin levels elevates feedback inhibition of the pathway causing insulin resistance, its associated phenotypes, and is a potential therapeutic target.
Collapse
|
13
|
de Moraes FCA, Sano VKT, Pereira CRM, de Laia EA, Stecca C, Magalhães MCF, Tarantino P. Effects of AKT Inhibitors for PIK3CA/AKT1/PTEN-Altered Advanced or Metastatic Breast Cancer: A Meta-Analysis of Randomized Clinical Trials. Clin Breast Cancer 2025:S1526-8209(25)00079-5. [PMID: 40254500 DOI: 10.1016/j.clbc.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE We aimed to answer the following question: How effective is the addition of AKT inhibitors to the treatment of advanced or metastatic breast cancer? METHODS We searched PubMed, Embase and Cochrane for randomized controlled trials (RCTs) that investigated AKT inhibitors for advanced or metastatic BC. We computed hazard-ratios (HRs) for binary endpoints. RESULTS A total of 5 RCTs were included in the meta-analysis, comprising 1,334 patients with BC. The use of AKT inhibitors demonstrated a significant improvement in OS (HR 0.70; 95% CI, 0.58-0.85; P < .001) and PFS (HR 0.6797; 95% CI, 0.5499-0.8403; P < .001) in the overall population. Within the PIK3CA/AKT1/PTEN-altered subgroup (n = 645), the OS rate also significantly favored AKT inhibitors over the control group (HR 0.62; 95% CI, 0.42-0.92; P = .019), as well as PFS (HR 0.5224; 95% CI, 0.3366-0.8105; P = .004). CONCLUSIONS Our findings suggest that the incorporation of AKT inhibitors holds promise for treating patients with advanced or metastatic PIK3CA/AKT1/PTEN-altered BC.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Stecca
- Department of Medical Oncology, Mackenzie Evangelical University Hospital, Curitiba, Paraná, Brazil
| | | | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
14
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
15
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
16
|
Song BF, Li BJ, Sun Y, Li M, Rao T, Ruan Y, Cheng F. GOLPH3 promotes calcium oxalate-induced renal injury and fibrosis through Golgi stress-mediated apoptosis and inflammatory responses. Sci Rep 2025; 15:7640. [PMID: 40038402 PMCID: PMC11880244 DOI: 10.1038/s41598-025-91638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
A common urological disorder, calcium oxalate (CaOx) stones are the most common form of kidney stones. Deposition of CaOx crystals leads to tubular damage, interstitial fibrosis, and chronic kidney disease. Understanding the intrinsic mechanisms of kidney stone formation is essential for the prevention of kidney stones and the development of new therapeutic agents. The Golgi apparatus is a key organelle in the secretory pathway of eukaryotic cells, which plays an important role in the sorting, modification, and transport of proteins within the cell, and has been reported to be involved in several diseases, including prostate tumors, gastrointestinal tumors, sepsis, and so on. GOLPH3 is also known as GPP34, GMx33, or MIDAS. It is a glycoprotein that regulates traffic between the trans-Golgi network and the cell membrane. However, its role in renal injury caused by CaOx crystal deposition is still unclear. Results from immunohistochemistry, qRT-PCR, western blot, and public database single nucleotide RNA-seq showed that GOLPH3 was significantly upregulated in kidney stone patients and animal kidneys. Significant inhibition of Golgi stress, apoptosis, and renal fibrosis by GOLPH3 inhibition with siRNA in CaOx-stimulated HK-2 cells. The PI3K\AKT\mTOR signaling pathway was inhibited by GOLPH3 knockdown, which may be associated with reduced inflammatory response and apoptosis, as well as restoration of Golgi morphology and function. In conclusion, GOLPH3 plays a critical role in CaOx-induced kidney injury by promoting Golgi stress and increasing inflammatory responses, apoptosis, and renal fibrosis, suggesting that GOLPH3 is a potential therapeutic target for kidney stones.
Collapse
Affiliation(s)
- Bao-Feng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo-Jun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Adam J, Graf LM, Westermann S, Voehringer D, Krappmann S. Signaling events driving Aspergillus fumigatus-induced eosinophil activation. Int J Med Microbiol 2025; 318:151641. [PMID: 39719796 DOI: 10.1016/j.ijmm.2024.151641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis is an incurable disease caused by the environmental mold Aspergillus fumigatus. This hypersensitivity pneumonia is characterized by an inflammatory type 2 immune response, accompanied by influx of eosinophils into the lung. To investigate the mode of action of eosinophils and the signaling events triggered by A. fumigatus, we used an in vitro coculture system of murine bone marrow-derived eosinophils confronted with conidia. Using small-molecule inhibitors, we identified signaling modules of eosinophils in the course of A. fumigatus confrontation. Eosinophils reduced fungal metabolic activity, but inhibition of relevant signaling modules did not affect this phenomenon upon eosinophil confrontation. A. fumigatus-induced secretion of Th2 cytokines and chemokines by eosinophils engaged proto-oncogene tyrosine-protein kinase Src, phosphatidylinositol 3-kinase, p38 mitogen-activated protein kinase as well as calcium cations and to some extent serine/threonine-protein kinase Akt and protein arginine deiminase 4. Src and PI3K kinases were also involved in A. fumigatus-mediated ROS production and regulation of eosinophils surface receptors. Especially Src and PI3K inhibitors prevented A. fumigatus-induced eosinophil activation. Taken together, identification of signaling cascades of eosinophils during their interaction with A. fumigatus provides relevant insights into the host-pathogen interaction in the context of ABPA to yield therapeutic perspectives.
Collapse
Affiliation(s)
- Jasmin Adam
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Lisa-Marie Graf
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Stefanie Westermann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany
| | - Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany.
| |
Collapse
|
18
|
Huang Y, Lu H, Liu Y, Wang J, Xia Q, Shi X, Jin Y, Liang X, Wang W, Ma X, Wang Y, Gong M, Li C, Cang C, Cui Q, Chen C, Shen T, Liu L, Wang X. Micropeptide hSPAR regulates glutamine levels and suppresses mammary tumor growth via a TRIM21-P27KIP1-mTOR axis. EMBO J 2025; 44:1414-1441. [PMID: 39875724 PMCID: PMC11876615 DOI: 10.1038/s44318-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells. Furthermore, hSPAR/hSPAR-C also serves as an inhibitor of glutamine transporter SLC38A2 expression and thereby decreases the cellular glutamine levels specifically in cancer cells. The resultant glutamine deprivation sequentially triggers translocation of cytoplasmic P27KIP1 to lysosomes, where P27KIP1 disrupts the Ragulator complex and suppresses mTORC1 assembly. Administration of hSPAR or hSPAR-C significantly impedes breast cancer cell proliferation and tumor growth in xenograft models. These findings define hSPAR as an intrinsic control factor for cellular glutamine levels and as a novel tumor suppressor inhibiting mTORC1 assembly.
Collapse
Affiliation(s)
- Yan Huang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Hua Lu
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingan Xia
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiangmin Shi
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yan Jin
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaolin Liang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyi Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Meng Gong
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Canjun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunlei Cang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qinghua Cui
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan, Hubei, China
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China.
| |
Collapse
|
19
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
20
|
Tiwari A, Paithane U, Friedlein J, Tashiro K, Saulnier O, Barbosa K, Trinh Q, Hall B, Saha S, Soni A, Nakashima T, Bobkov A, Fujimoto LM, Murad R, Maurya S, Saraswat M, Sarmashghi S, Lange JT, Wu S, Masihi MB, Ghosh S, Hemmati G, Chapman O, Hendrikse L, James B, Luebeck J, Eisemann T, Tzaridis T, Rohila D, Leary R, Varshney J, Konety B, Dehm SM, Kawakami Y, Beroukhim R, Largaespada DA, Stein L, Chavez L, Suzuki H, Weiss WA, Zhao J, Deshpande A, Wechsler-Reya RJ, Taylor MD, Bagchi A. Synergistic RAS-MAPK and AKT Activation in MYC-Driven Tumors via Adjacent PVT1 Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638454. [PMID: 40027648 PMCID: PMC11870553 DOI: 10.1101/2025.02.17.638454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MYC-driven (MYC+) cancers are aggressive and often fatal. MYC dysregulation is a key event in these cancers, but overexpression of MYC alone is not always enough to cause cancer. Plasmocytoma Variant Translocation 1 (PVT1), a long non-coding RNA (lncRNA) adjacent to MYC on chromosome 8 is a rearrangement hotspot in many MYC+ cancers. In addition to being co-amplified with MYC, the genomic rearrangement at PVT1 involves translocation, which has had obscure functional consequences. We report that translocation at the PVT1 locus cause asymmetric enrichment of 5'-PVT1 and loss of 3'-PVT1. Despite being classified as a non-coding RNA, the retained 5' region of PVT1 generates a circular RNA (CircPVT1) that codes for the novel peptide we call Firefox (FFX). FFX augments AKT signaling and synergistically activates MYC and mTORC1 in these cells. Further, the 3' end of PVT1, which is lost during the translocation, codes for a tumor-suppressing micropeptide we named as Honeybadger (HNB). We demonstrate that HNB interacts with KRAS and disrupts the activation of KRAS effectors. Loss of HNB leads to activation of RAS/MAPK signaling pathway, and enhances MYC stability by promoting phosphorylation of MYC at Ser62. These findings identify PVT1 as a critical node that synchronizes MYC, AKT, and RAS-MAPK activities in cancer. Our study thus identifies a key mechanism by which rearrangements at the PVT1 locus activate additional oncogenic pathways that synergize with MYC to exacerbate the aggressiveness of MYC+ cancers. This newfound understanding explains the poor prognosis associated with MYC+ cancers and offers potential therapeutic targets that could be leveraged in treatment strategies for these cancers.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Utkarsha Paithane
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jordan Friedlein
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kojiro Tashiro
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Olivier Saulnier
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karina Barbosa
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Quang Trinh
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Bryan Hall
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shrawantee Saha
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aditi Soni
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Andrey Bobkov
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lynn Miya Fujimoto
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svetlana Maurya
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mayank Saraswat
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shahab Sarmashghi
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joshua T. Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Sihan Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meher Beigi Masihi
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Srija Ghosh
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gazal Hemmati
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Owen Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Liam Hendrikse
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian James
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jens Luebeck
- Department of Computer Science, University of California San Diego, La Jolla, CA
| | - Tanja Eisemann
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Theophilos Tzaridis
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepak Rohila
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robyn Leary
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Badrinath Konety
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Rush Medical College, Chicago, IL, USA
- Allina Health Cancer Institute, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yasuhiko Kawakami
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lincoln Stein
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Lukas Chavez
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital and Healthcare Center, San Diego, CA, USA
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - William A Weiss
- Departments of Neurology, Pediatrics, and Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jianhua Zhao
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aniruddha Deshpande
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert J. Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael D. Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Baylor College of Medicine
| | - Anindya Bagchi
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
21
|
Qiang M, Chen Z, Liu H, Dong J, Gong K, Zhang X, Huo P, Zhu J, Shao Y, Ma J, Zhang B, Liu W, Tang M. Targeting the PI3K/AKT/mTOR pathway in lung cancer: mechanisms and therapeutic targeting. Front Pharmacol 2025; 16:1516583. [PMID: 40041495 PMCID: PMC11877449 DOI: 10.3389/fphar.2025.1516583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Owing to its high mortality rate, lung cancer (LC) remains the most common cancer worldwide, with the highest malignancy diagnosis rate. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling (PAM) pathway is a critical intracellular pathway involved in various cellular functions and regulates numerous cellular processes, including growth, survival, proliferation, metabolism, apoptosis, invasion, and angiogenesis. This review aims to highlight preclinical and clinical studies focusing on the PAM signaling pathway in LC and underscore the potential of natural products targeting it. Additionally, this review synthesizes the existing literature and discusses combination therapy and future directions for LC treatment while acknowledging the ongoing challenges in the field. Continuous development of novel therapeutic agents, technologies, and precision medicine offers an increasingly optimistic outlook for the treatment of LC.
Collapse
Affiliation(s)
- Min Qiang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Zhe Chen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Junxue Dong
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinjun Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Huo
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jingjun Zhu
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yifeng Shao
- Department of General Surgery, Capital Institute of Pediatrics’ Children’s Hospital, Beijing, China
| | - Jinazun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bowei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Asnaghi R, Antonarelli G, Battaiotto E, Castellano G, Guidi L, Izzo D, Zagami P, Trapani D, Curigliano G. An update on promising and emerging protein kinase B/AKT inhibitors for breast cancer. Expert Opin Pharmacother 2025; 26:235-247. [PMID: 39846444 DOI: 10.1080/14656566.2025.2454290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION The PI3K pathway is crucial in breast cancer (BC), influencing cell survival, growth, and metabolism, with AKT playing a central role in treatment resistance. This pathway's involvement in breast carcinogenesis and its link to treatment resistance underscores the significance of targeting it in BC therapy. PI3K-pathway inhibitors offer new therapeutic avenues but bring challenges, especially due to toxicity issues that hinder their development. AREAS COVERED This review discusses the PI3K-pathway inhibitors used in BC, highlighting emerging, innovative strategies. EXPERT OPINION The introduction of mTOR inhibitors marked a key step in tackling hormone receptor-positive (HR+) BC, targeting endocrine resistance. However, toxicity concerns remain, especially with PIK3CA and AKT inhibitors. Selective PI3K-targeted agents aim to reduce off-target toxicity, enhancing patient adherence and control over the disease. New compounds employing allosteric mechanisms may further limit adverse effects and allow safer combination therapies, previously limited by toxicity. Advancements in dosing strategies focus on patient-centered outcomes, and synergistic agents are essential in advancing AKT-pathway inhibition, paving the way for a new phase in HR+ BC treatment.
Collapse
Affiliation(s)
- Riccardo Asnaghi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Battaiotto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Grazia Castellano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Davide Izzo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
24
|
Huang S, Gao D, Li Z, He H, Yu X, You X, Wu D, Du Z, Zeng J, Shi X, Hu Q, Nie Y, Zhang Z, Luo Z, Wang D, Zhao Z, Li L, Wang G, Wang L, Zhou Z, Chen D, Yang F. Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans. Bone Res 2025; 13:4. [PMID: 39746903 PMCID: PMC11695747 DOI: 10.1038/s41413-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons. However, the role of Sema3A in articular cartilage is still not clear. In the present studies, we investigated the functions of Sema3A in OA development in mice, non-human primates, and patients with OA. Sema3A has a protective effect on cartilage degradation, validated by the organoid culture in vitro and confirmed in chondrocyte-specific Sema3A conditional knockout mice. We demonstrated that Sema3A is a key molecule in maintaining cartilage homeostasis from chondrocyte hypertrophy via activating the PI3K pathway. The potential usage of Sema3A for OA treatment was validated in mouse and Rhesus macaque OA models through intra-articular injection of Sema3A, and also in patients by administering Sema3A containing platelet-rich plasma into the knee joints. Our studies demonstrated that Sema3A exerts a critical role in inhibiting neurite ingrowth and preventing chondrocyte hypertrophy in cartilage, and could be potentially used for OA treatment.
Collapse
Grants
- T2394532, 82072489 National Natural Science Foundation of China (National Science Foundation of China)
- 81874027 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R&D Program of China (2023YFA1801200, 2023YFA1801202),Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDB-SSW-SMC056),The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).Shenzhen Medical Research Fund (B2302011).
- 2021HXFH036, 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18026); 2021YFSY0003, 2022YFS0051,Sichuan Science Project; The Foundation of Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (NYKFKT2019007).
- The China Postdoctoral Science Foundational, 2023M743679.The Sanming Project of Medicine in Shenzhen (SZZYSM202311013)
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dashuang Gao
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- The seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Bao'an District TCM Hospital, Shenzhen, Guangdong, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ze Du
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiancheng Zeng
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Shi
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinshen Hu
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Nie
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Luo
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingli Li
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Wang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zongke Zhou
- Department of Orthopedics Surgery and Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Xiang X, Shuya P, Jiamin Z, Zihan Z, Xumei Y, Jingjin L. 3-Phosphoinositide-Dependent Kinase 1 as a Therapeutic Target for Treating Diabetes. Curr Diabetes Rev 2025; 21:47-56. [PMID: 38468518 DOI: 10.2174/0115733998278669240226061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been welldocumented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.
Collapse
Affiliation(s)
- Xie Xiang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Pan Shuya
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Jiamin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Zihan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Yang Xumei
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Liu Jingjin
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
26
|
Arner EN, Alzhanova D, Westcott JM, Hinz S, Tiron CE, Blø M, Mai A, Virtakoivu R, Phinney N, Nord S, Aguilera KY, Rizvi A, Toombs JE, Reese TC, Fey V, Micklem D, Gausdal G, Ivaska J, Lorens JB, Brekken RA. AXL-TBK1 driven AKT3 activation promotes metastasis. Sci Signal 2024; 17:eado6057. [PMID: 39689180 DOI: 10.1126/scisignal.ado6057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The receptor tyrosine kinase AXL promotes tumor progression, metastasis, and therapy resistance through the induction of epithelial-mesenchymal transition (EMT). Here, we found that activation of AXL resulted in the phosphorylation of TANK-binding kinase 1 (TBK1) and the downstream activation of AKT3 and Snail, a transcription factor critical for EMT. Mechanistically, we showed that TBK1 directly bound to and phosphorylated AKT3 in a manner dependent on the multiprotein complex mTORC1. Upon activation, AKT3 interacted with and promoted the nuclear accumulation of Snail, which led to increased EMT as assessed by marker abundance. In human pancreatic ductal adenocarcinoma tissue, nuclear AKT3 colocalized with Snail and correlated with worse clinical outcomes. Primary mouse pancreatic cancer cells deficient in AKT3 showed reduced metastatic spread in vivo, suggesting selective AKT3 inhibition as a potential therapeutic avenue for targeting EMT in aggressive cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dina Alzhanova
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill M Westcott
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefan Hinz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Crina Elena Tiron
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Regional Institute of Oncology, Iasi, Romania
| | | | | | - Reetta Virtakoivu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Natalie Phinney
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Ali Rizvi
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason E Toombs
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tanner C Reese
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidal Fey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | | | | | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - James B Lorens
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Domínguez-Martín H, Gavilán E, Parrado C, Burguillos MA, Daza P, Ruano D. Distinct UPR and Autophagic Functions Define Cell-Specific Responses to Proteotoxic Stress in Microglial and Neuronal Cell Lines. Cells 2024; 13:2069. [PMID: 39768160 PMCID: PMC11674117 DOI: 10.3390/cells13242069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Autophagy is a catabolic process involved in different cellular functions. However, the molecular pathways governing its potential roles in different cell types remain poorly understood. We investigated the role of autophagy in the context of proteotoxic stress in two central nervous system cell types: the microglia-like cell line BV2 and the neuronal-like cell line N2a. Proteotoxic stress, induced by proteasome inhibition, produced early apoptosis in BV2 cells, due in part to a predominant activation of the PERK-CHOP pathway. In contrast, N2a cells showcased greater resistance and robust induction of the IRE1α-sXbp1 arm of the UPR. We also demonstrated that proteotoxic stress activated autophagy in both cell lines but with different kinetics and cellular functions. In N2a cells, autophagy restored cellular proteostasis, while in BV2 cells, it participated in regulating phagocytosis. Finally, proteotoxic stress predominantly activated the mTORC2-AKT-FOXO1-β-catenin pathway in BV2 cells, while N2a cells preferentially induced the PDK1-AKT-FOXO3 axis. Collectively, our findings suggest that proteotoxic stress triggers cell-specific responses in microglia and neurons, with different physiological outcomes.
Collapse
Affiliation(s)
- Helena Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (H.D.-M.); (E.G.); (C.P.); (M.A.B.)
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla (US), 41013 Sevilla, Spain
| | - Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (H.D.-M.); (E.G.); (C.P.); (M.A.B.)
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla (US), 41013 Sevilla, Spain
| | - Celia Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (H.D.-M.); (E.G.); (C.P.); (M.A.B.)
| | - Miguel A. Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (H.D.-M.); (E.G.); (C.P.); (M.A.B.)
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla (US), 41013 Sevilla, Spain
| | - Paula Daza
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla (US), 41012 Sevilla, Spain;
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (H.D.-M.); (E.G.); (C.P.); (M.A.B.)
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla (US), 41013 Sevilla, Spain
| |
Collapse
|
28
|
Willis BS, Mongeon K, Dry H, Neveras IL, Bryan N, Pandya M, Roderick-Richardson J, Xu W, Yang L, Rosen A, Reimer C, Tuskova L, Klener P, Mettetal JT, Lenz G, Barry ST. Potent combination benefit of the AKT inhibitor capivasertib and the BCL-2 inhibitor venetoclax in diffuse large B cell lymphoma. Leukemia 2024; 38:2663-2674. [PMID: 39284898 PMCID: PMC11588655 DOI: 10.1038/s41375-024-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/28/2024] [Indexed: 11/27/2024]
Abstract
The therapeutic potential of targeting PI3K/AKT/PTEN signalling in B-cell malignancies remains attractive. Whilst PI3K-α/δ inhibitors demonstrate clinical benefit in certain B-cell lymphomas, PI3K signalling inhibitors have been inadequate in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in part, due to treatment related toxicities. Clinically, AKT inhibitors exhibit a differentiated tolerability profile offering an alternative approach for treating patients with B-cell malignancies. To explore how AKT inhibition complements other potential therapeutics in the treatment of DLBCL patients, an in vitro combination screen was conducted across a panel of DLCBL cell lines. The AKT inhibitor, capivasertib, in combination with the BCL-2 inhibitor, venetoclax, produced notable therapeutic benefit in preclinical models of DLBCL. Capivasertib and venetoclax rapidly induced caspase and PARP cleavage in GCB-DLBCL PTEN wildtype cell lines and those harbouring PTEN mutations or reduced PTEN protein, driving prolonged tumour growth inhibition in DLBCL cell line and patient derived xenograft lymphoma models. The addition of the rituximab further deepened the durability of capivasertib and venetoclax responses in a RCHOP refractory DLBCL in vivo models. These findings provide preclinical evidence for the rational treatment combination of AKT and BCL-2 inhibitors using capivasertib and venetoclax respectively alongside anti-CD20 antibody supplementation for treatment of patients with DLBCL.
Collapse
Affiliation(s)
| | - Kevin Mongeon
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | - Hannah Dry
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Nadezda Bryan
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | | | - Wendan Xu
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Li Yang
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Alan Rosen
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
29
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 PMCID: PMC11975432 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J. Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D. Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
30
|
Tsai HJ, Chang YF, Hsieh YJ, Wang JD, Wu CC, Ho MY, Cheng JC, Chen DP, Liao HR, Tseng CP. Human Disabled-2 regulates thromboxane A 2 signaling for efficient hemostasis in thrombocytopenia. Nat Commun 2024; 15:9816. [PMID: 39537612 PMCID: PMC11561248 DOI: 10.1038/s41467-024-54093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Fang Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Meng-Ying Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, North District, Taichung, 404, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Hsiang-Rui Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
31
|
Hu J, Zhang J, Han B, Qu Y, Zhang Q, Yu Z, Zhang L, Han J, Liu H, Gao L, Feng T, Dou B, Chen W, Sun F. PLXNA1 confers enzalutamide resistance in prostate cancer via AKT signaling pathway. Neoplasia 2024; 57:101047. [PMID: 39226661 PMCID: PMC11419896 DOI: 10.1016/j.neo.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Although targeting the androgen signaling pathway by androgen receptor (AR) inhibitors, including enzalutamide, has shown therapeutic effectiveness, inevitable emergence of acquired resistance remains a critical challenge in the treatment of advanced prostate cancer (PCa). Recognizing targetable genomic aberrations that trigger endocrine treatment failure holds great promise for advancing therapeutic interventions. Here, we characterized PLXNA1, amplified in a subset of PCa patients, as a contributor to enzalutamide resistance (ENZR). Elevated PLXNA1 expression facilitated PCa proliferation under enzalutamide treatment due to AKT signaling activation. Mechanistically, PLXNA1 recruited NRP1 forming a PLXNA1-NRP1 complex, which in turn potentiated the phosphorylation of the AKT. Either inhibiting PLXNA1-NRP1 complex with an NRP1 inhibitor, EG01377, or targeting PLXNA1-mediated ENZR with AKT inhibitors, abolished the pro-resistance phenotype of PLXNA1. Taken together, combination of AKT inhibitor and AR inhibitors presents a promising therapeutic strategy for PCa, especially in advanced PCa patients exhibiting PLXNA1 overexpression.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bo Han
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Ying Qu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Zhang
- Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Jingying Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jinan 250012, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
32
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Ahmad A, Kumar V, Kushwaha T, Kumar A, Sehgal D, Inampudi KK, Somlata. AGC family kinase of Entamoeba histolytica: Decoding the members biochemically. PLoS Pathog 2024; 20:e1012729. [PMID: 39561205 PMCID: PMC11642994 DOI: 10.1371/journal.ppat.1012729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, which is a significant global health concern. The virulence mechanisms underlying its pathogenicity are multifaceted and complex. However, endocytic processes and motility are well accepted virulence determinants. As previously reported, an AGCK family kinase, EhAGCK1 to be involved in trogocytosis exclusively while another one from same family named EhAGCK2 participates in all actin dependent endocytic processes. As the kinase dead mutants of EhAGCK1 showed significant defect in destruction of live host cells and also the localisation pattern of same is distinguishable from EhAGCK2. From observations so far, it appears that former initiates a distinguishable signaling cascade. In this work, we have demonstrated distinct biochemical properties of kinases involved in related yet distinguishable endocytic processes for the first time. Our biochemical characterization highlights distinct ion dependency of EhAGCK1 along with substrate specificity. We also show upstream activator of these kinases, 3-phosphoinositide dependent kinase 1 (PDK1) activity and its role in activating the kinase activity. The kinases exhibit property of autophosphorylation, and which may regulate the kinase activity subsequently. Summarily, these studies show that EhAGCK1 and EhAGCK2 show distinct biochemical properties which further confirm their unique role in related endocytic processes of trogocytosis and phagocytosis.
Collapse
Affiliation(s)
- Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Vikas Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
34
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
35
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
36
|
Qi Y, Sun J, Wang H, Yu H, Jin X, Feng X, Wang Y. Effects of arsenic exposure on the PI3K/Akt/NF-κB signaling pathway in the hippocampus of offspring mice at different developmental stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116830. [PMID: 39111240 DOI: 10.1016/j.ecoenv.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
The primary purpose of present study was to explore the effects of arsenic exposure on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear transcription factor-κB (NF-κB) signaling pathway in the hippocampus of offspring mice at different developmental stages. Sodium arsenite (NaAsO2) at doses of 0, 15, 30 or 60 mg/L administered to female mice and their pups. The nuclear translocation levels of NF-κB were assessed by EMSA. Real-time RT-PCR was used to measure Akt, NF-κB and PI3K mRNA levels. Protein expressions of PI3K, p-Akt, inhibitor kappa B kinase (IKK), p-NF-κB, protein kinase A (PKA), inhibitor kappa B (IκB), and cAMP response element-binding protein (CREB) were measured by Western blot. Results disclosed that exposure to 60 mg/L NaAsO2 could suppress NF-κB levels of nuclear translocation of postnatal day (PND) 20 and PND 40 mice. Arsenic downregulated the transcriptional and translational levels of PI3K, Akt and NF-κB. Additionally, protein expressions of p-IKK, p-IκB, PKA and p-CREB also reduced. Taken together, results of present study indicated that arsenic could downregulate the PI3K/Akt/NF-κB signaling pathway, particularly on PND 40, which might be involved in the cognitive impairments.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Zhuhai Center for Chronic Disease Control(the Third Hospital of Zhuhai), People's Republic of China
| | - Jiaqi Sun
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Huan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China; Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Xu Feng
- Department of Health Statistics, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
37
|
Siddika T, Shao R, Heinemann IU, O'Donoghue P. Delivery of AKT1 phospho-forms to human cells reveals differential substrate selectivity. IUBMB Life 2024; 76:632-646. [PMID: 38738523 DOI: 10.1002/iub.2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3β levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.
Collapse
Affiliation(s)
- Tarana Siddika
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Richard Shao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHDA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int J Mol Sci 2024; 25:9213. [PMID: 39273161 PMCID: PMC11394750 DOI: 10.3390/ijms25179213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Collapse
Affiliation(s)
- Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ingrid Wilza L. Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (A.F.T.G.); (W.F.d.M.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
39
|
Xing S, Xiong Z, Wang M, Li Y, Shi J, Qian Y, Lei J, Jia J, Zeng W, Huang Z, Jiang Y. Sophocarpine inhibits the progression of glioblastoma via PTEN/PI3K/Akt signaling pathway. Am J Cancer Res 2024; 14:3757-3772. [PMID: 39267674 PMCID: PMC11387860 DOI: 10.62347/sqjb1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most fatal primary brain tumor which lacks effective treatment drugs. Alkaloids are known as a class of potential anti-tumor agents. Sophocarpine, a tetracyclic quinazoline alkaloid derived from Sophora alopecuroides L., possesses several pharmacological effects including anti-tumor effects in some malignancies. However, the effect and mechanism of sophocarpine on GBM remains to be explored. In this study, based on in vitro experiments, we found that sophocarpine significantly inhibited the viability, proliferation and migration of GBM cells including U251 and C6 cells in a dose- and time-dependent manner. Besides, sophocarpine arrested GBM cell cycle in G0/G1 phase and induced their apoptosis. Subsequently, we found that sophocarpine upregulated the expression of PTEN, a GBM tumor suppressor, and downregulated PI3K/Akt signaling in GBM cells. Moreover, inactivating of PTEN with bpV(phen) trihydrate partially restored the anti-GBM effects of sophocarpine via PI3K/Akt signaling. Finally, sophocarpine significantly inhibited the growth of tumor both in subcutaneous and orthotopic U251 xenograft GBM model in nude mice via PTEN/PI3K/Akt axis. Taken together, these results suggested that sophocarpine impeded GBM progression via PTEN/PI3K/Akt axis both in vitro and in vivo, providing with a promising therapy for treating GBM.
Collapse
Affiliation(s)
- Shuqiao Xing
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhenrong Xiong
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Mengmeng Wang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yifan Li
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- School of Medicine, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiali Shi
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jia Lei
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiamei Jia
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Weiquan Zeng
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| |
Collapse
|
40
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
41
|
Huang Y, Feng Q, Zhang Y, Zeng Y, Shi N, Chen Y, Tang X, Li Z. The effect of PDK1 in maintaining immune cell development and function. Biochem Biophys Res Commun 2024; 721:150106. [PMID: 38795634 DOI: 10.1016/j.bbrc.2024.150106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.
Collapse
Affiliation(s)
- Yu Huang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Qiuyue Feng
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yingying Zeng
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Nanxi Shi
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yiming Chen
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
42
|
Mumtaz SM, Khan MA, Jamal A, Hattiwale SH, Parvez S. Toxin-derived peptides: An unconventional approach to alleviating cerebral stroke burden and neurobehavioral impairments. Life Sci 2024; 351:122777. [PMID: 38851419 DOI: 10.1016/j.lfs.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.
Collapse
Affiliation(s)
- Sayed Md Mumtaz
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
43
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
He C, Li Y, Gan L, Lin Y, Zhang B, Ma L, Xue H. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis. J Endocrinol Invest 2024; 47:1971-1986. [PMID: 38285310 DOI: 10.1007/s40618-023-02293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Autoimmune Thyroiditis (AIT) is the most common thyroid disease; however, there were no measures to prevent the progression of the disease. The present study attempts to identify that Notch signaling regulates the differentiation of T helper 17 (Th17) cells by activating downstream Phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway participating in the thyroid injury of the experimental autoimmune thyroiditis (EAT). METHODS In vivo experiments, mice were randomly divided into 4 groups: a control group, an EAT group, and two groups with LY294002 treatment (pTg plus 25 mg/kg or 50 mg/kg LY294002, respectively). The degrees of thyroiditis were evaluated, and the percentage of Th17 cells, expression of interleukin-17A (IL-17A), and the main components of the Notch-PI3K signaling pathway were detected in different groups. In vitro experiments, two different dosages of LY294002 (25 and 50 μM) were used to intervene splenic mononuclear cells (SMCs) from EAT mice to further evaluate the regulatory effect of Notch-PI3K pathway on Th17 cells. RESULTS Our data demonstrate that the infiltration of Th17 cells and the expressions of IL-17A, Notch, hairy and split 1 (Hes1), p‑AKT (Ser473), p‑AKT (Thr308), p‑mTOR (Ser2448), S6K1, and S6K2 increased remarkably in EAT mice. After PI3K pathway was blocked, the degrees of thyroiditis were significantly alleviated, and the proportion of Th17 cells, the expression of IL-17A, and the above Notch-PI3K pathway-related molecules decreased in a dose-dependent manner. Additionally, the proportion of Th17 cells was positively correlated with the concentration of serum thyroglobulin antibody (TgAb), IL-17A, and Notch-PI3K pathway-related molecules mRNA levels. CONCLUSIONS Notch signal promotes the secretion of IL-17A from Th17 cells by regulating the downstream PI3K/AKT/mTORC1 pathway through Hes-Phosphatase and tensin homolog (PTEN) and participates in thyroid autoimmune damage, and the PI3K pathway inhibitor may play important effects on AIT by affecting Th17 cells differentiation.
Collapse
Affiliation(s)
- C He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - L Gan
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - B Zhang
- Nanchang University Queen Mary School, Nanchang, 330031, People's Republic of China
| | - L Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - H Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China.
| |
Collapse
|
45
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
46
|
Bastos IM, Rebelo S, Silva VLM. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem Biol Interact 2024; 398:111073. [PMID: 38823538 DOI: 10.1016/j.cbi.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cancer is a complex and multifaceted group of diseases with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. Dysregulation of normal signalling pathways in cancer contributes to the different hallmarks of this disease. The signalling pathway of which phosphatidylinositol 3-kinase (PI3K) is a part is not an exception. In fact, dysregulated activation of PI3K signalling pathways can result in unbridled cellular proliferation and enhanced cell survival, thereby fostering the onset and advancement of cancer. Therefore, there is substantial interest in developing targeted therapies specifically aimed at inhibiting the PI3K enzyme and its associated pathways. Also, the therapeutic interest on pyrazoles and indazoles has been growing due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as PI3K inhibitors, and they showed promising results. There are already some PI3K inhibitors approved by Food and Drug Administration (FDA), such as Idelalisib (Zydelig®) and Alpelisib (Piqray®). In this context, this review aims to address the importance of PI3K in cellular processes and its role in cancer. Additionally, it aims to report a comprehensive literature review of PI3K inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PI3K inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
47
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
48
|
Wißfeld J, Hering M, Ten Bosch N, Cui G. The immunosuppressive drug cyclosporin A has an immunostimulatory function in CD8 + T cells. Eur J Immunol 2024; 54:e2350825. [PMID: 38650034 DOI: 10.1002/eji.202350825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Cyclosporin A is a well-established immunosuppressive drug used to treat or prevent graft-versus-host disease, the rejection of organ transplants, autoimmune disorders, and leukemia. It exerts its immunosuppressive effects by inhibiting calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT), thus preventing its nuclear entry and suppressing T cell activation. Here we report an unexpected immunostimulatory effect of cyclosporin A in activating the mammalian target of rapamycin complex 1 (mTORC1), a crucial metabolic hub required for T cell activation. Through screening a panel of tool compounds known to regulate mTORC1 activation, we found that cyclosporin A activated mTORC1 in CD8+ T cells in a 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB/AKT)-dependent manner. Mechanistically, cyclosporin A inhibited the calcineurin-mediated AKT dephosphorylation, thereby stabilizing mTORC1 signaling. Cyclosporin A synergized with mTORC1 pathway inhibitors, leading to potent suppression of proliferation and cytokine production in CD8+ T cells and an increase in the killing of acute T cell leukemia cells. Consequently, relying solely on CsA is insufficient to achieve optimal therapeutic outcomes. It is necessary to simultaneously target both the calcineurin-NFAT pathway and the mTORC1 pathway to maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marvin Hering
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Mannheim, Germany
| | - Nora Ten Bosch
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guoliang Cui
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
49
|
Rosen N, Mukherjee R, Pancholi P, Sharma M, Solomon H, Timaul M, Thant C, McGriskin R, Hayatt O, Markov V, D'Allara J, Bekker S, Candelier J, Carrasco S, de Stanchina E, Vanaja K. Diet induced insulin resistance is due to induction of PTEN expression. RESEARCH SQUARE 2024:rs.3.rs-4021885. [PMID: 38978604 PMCID: PMC11230483 DOI: 10.21203/rs.3.rs-4021885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.
Collapse
|
50
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|