1
|
An C, Jiang C, Pei W, Li A, Wang M, Wang Y, Wang H, Zuo L. Intestinal epithelial cells in health and disease. Tissue Barriers 2025:2504744. [PMID: 40401816 DOI: 10.1080/21688370.2025.2504744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
This comprehensive review delves into the pivotal role of intestinal epithelial cells in the context of various diseases. It provides an in-depth analysis of the diverse types and functions of these cells, explores the influence of multiple signaling pathways on their differentiation, and elucidates their critical roles in a spectrum of diseases. The significance of the gastrointestinal tract in maintaining overall health is extremely important and cannot be exaggerated. This complex and elongated organ acts as a crucial link between the internal and external environments, making it vulnerable to various harmful influences. Preserving the normal structure and function of the gut is essential for well-being. Intestinal epithelial cells serve as the primary defense mechanism within the gastrointestinal tract and play a crucial role in preventing harmful substances from infiltrating the body. As the main components of the digestive system, they not only participate in the absorption and secretion of nutrients and the maintenance of barrier function but also play a pivotal role in immune defense. Therefore, the health of intestinal epithelial cells is of vital importance for overall health.
Collapse
Affiliation(s)
- Chenchen An
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Chonggui Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Wangxiang Pei
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Ao Li
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Minghui Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune- Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Schmid S, Mirchia K, Tietze A, Liu I, Siewert C, Nückles J, Schittenhelm J, Behling F, Snuderl M, Hartmann C, Brandner S, Paine SML, Korshunov A, Hasselblatt M, Coras R, Epari S, Stadelmann C, Zechel S, Simon M, Wilson Y, Gianno F, Lucas CHG, Zherebitskiy V, Kaimaktchiev VB, Robinson L, Aldape K, Hoving EW, Tops BBJ, Perera AA, Göller P, Hernáiz Driever P, Wesseling P, Koch A, Perry A, Sahm F, Jones DTW, Capper D. VGLL fusions define a new class of intraparenchymal central nervous system schwannoma. Neuro Oncol 2025; 27:1031-1045. [PMID: 39713960 PMCID: PMC12083230 DOI: 10.1093/neuonc/noae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Intracerebral schwannomas are rare tumors resembling their peripheral nerve sheath counterparts but localized in the central nervous system (CNS). They are not classified as a separate tumor type in the 2021 World Health Organization classification. This study aimed to compile and characterize these rare neoplasms morphologically and molecularly. METHODS We analyzed 20 tumor samples by histology, RNA next-generation sequencing, DNA-methylation profiling, copy number analyses, and single-nucleus RNA sequencing (snRNA-seq). Clinical data, including age, sex, and disease progression, were collected. Magnetic resonance imaging (MRI) series were included when available. RESULTS All cases with tissue available for histology review (n = 13) were morphologically consistent with intracerebral schwannoma, but differed in their extent of glial fibrillary acidic protein staining. All (n = 20) shared DNA-methylation profiles distinct from other CNS tumors, as well as from Vestigial-like family (VGLL)-altered peripheral nerve sheath tumors. Most cases (n = 14/17) harbored fusions of either Vestigial-like family member 3 (VGLL3) or Vestigial-like Family member 1 (VGLL1) (CHD7::VGLL3 [n = 9/17] and EWSR1::VGLL1 [n = 5/17]). In 2 cases, the presence of a VGLL3 fusion was also confirmed by copy number analyses (n = 2/17). MRI (n = 4) showed well-defined, nodular tumors with strong, homogeneous enhancement and no diffusion restriction. Tumors were located throughout the neuroaxis (supratentorial [n = 15], infratentorial [n = 4], and spinal [n = 1]). snRNA-seq of a VGLL1-fused tumor indicated VGLL1 upregulation in 28.6% of tumor cells (n = 1). During a median follow-up of 1.8 years (range 3 months-9 years), none of the tumors recurred (n = 10). CONCLUSIONS We identify and define a new benign tumor class, designated VGLL-altered intraparenchymal CNS schwannomas. These tumors feature VGLL alterations and a specific DNA-methylation profile, with schwannoma-like histopathology and CNS localization, akin to previously classified intracerebral schwannomas.
Collapse
Affiliation(s)
- Simone Schmid
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Kanish Mirchia
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Anna Tietze
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuroradioloie, Berlin, Germany
| | - Ilon Liu
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neurology, Berlin, Germany
| | - Christin Siewert
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Jakob Nückles
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany
| | - Felix Behling
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center, Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls University Tübingen, Germany
| | - Matija Snuderl
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon M L Paine
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Roland Coras
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sridhar Epari
- Neurooncology Disease Management Group, Tata Memorial Centre, Dr Ernest Borges Marg and Homi Bhabha National Institute, Mumbai, India
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Michèle Simon
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Yelena Wilson
- Department of Pathology, Akron Children’s, Ohio, USA
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
- Department of Laboratory Medicine and Pathobiology–Neuropathology, Hospital for Sick Children (SickKids), Toronto, Ontario, Canada
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Viktor Zherebitskiy
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vassil B Kaimaktchiev
- Providence Hood River Memorial Hospital, Hood River, Oregon, USA
- Department of Pathology, The Dalles, Oregon, USA
| | - Lorraina Robinson
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Centre for Cancer Research, Bethesda, Maryland, USA
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ashwyn Augustine Perera
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Pauline Göller
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Berlin, Germany
- German HIT-LOGGIC-Registry of low-grade glioma in children and adolescents
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Arend Koch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Neuropathologie, Berlin, Germany
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - David T W Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
4
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
5
|
Bao G, Zhai M, Yan Y, Wang Y, Damirin A. LPAR6 Inhibits the Progression of Hepatocellular Carcinoma (HCC) by Suppressing the Nuclear Translocation of YAP/TAZ. Int J Mol Sci 2025; 26:4205. [PMID: 40362442 PMCID: PMC12071778 DOI: 10.3390/ijms26094205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Lysophosphatidic acid (LPA), a key bioactive lipid, modulates cellular functions through interactions with LPA receptors (LPAR1-6) of the G protein-coupled receptor (GPCR) family, participating in both physiological and pathological processes. While LPA/LPAR signaling typically promotes cancer progression by regulating angiogenesis and cancer cell metastasis, our study unexpectedly reveals that LPA exhibits an inhibitory effect on cellular activity in hepatocellular carcinoma (HCC). We further investigate the specific receptor subtypes mediating these effects and elucidate the underlying mechanisms at the cellular, tissue, and organismal levels. Pharmacological studies demonstrated that LPA predominantly inhibits HCC progression through activation of LPAR6. Mechanistically, LPA/LPAR6 activation suppresses HCC proliferation, migration, and epithelial-mesenchymal transition (EMT). In vivo, LPAR6 overexpression in a nude mouse xenograft model significantly reduced tumor growth rate and volume, accompanied by decreased Ki-67 expression in tumor tissues, as shown by immunohistochemical analysis. Transcriptomic analysis combined with Western blot experiments demonstrated that LPA/LPAR6 inhibits YAP/TAZ nuclear translocation, thereby suppressing HCC cell proliferation and migration. In conclusion, these findings suggest that enhancing LPAR6 expression or developing LPAR6 agonists may offer a promising therapeutic strategy for adjuvant cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Alatangaole Damirin
- School of Life Sciences, Inner Mongolia University, Hohhot 010110, China; (G.B.)
| |
Collapse
|
6
|
Pant K, Peixoto E, Gradilone SA. Primary Cilia in Hepatic Biliary Hyperplasia: Implications for Liver Diseases. Semin Liver Dis 2025. [PMID: 40118103 DOI: 10.1055/a-2563-9791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Primary cilia, hair-like projections on the surface of various cell types, play crucial roles in sensing and regulating environmental cues within the liver, particularly among cholangiocytes. These structures detect changes in bile composition, flow, and other biochemical signals, integrating this information to modulate cellular processes. Dysfunction in cholangiocyte cilia-whether due to structural abnormalities or genetic mutations-has been linked to an array of cholangiopathies and ciliopathies. These include conditions such as biliary atresia, cholangiocarcinoma, primary sclerosing cholangitis, and polycystic liver diseases, each with distinct clinical phenotypes influenced by impaired ciliary function. Given the complexity of the ciliary proteome and its role in cellular signaling, including the Hedgehog, Wnt, and TGR5 pathways, ciliary dysfunction disrupts essential signaling cascades, thus driving disease progression. While over 40 gene mutations are associated with ciliopathic features, there may be additional contributors within the expansive ciliary proteome. This study synthesizes current knowledge on cholangiocyte cilia, emphasizing their mechanistic role in liver disease, and highlights emerging therapeutic strategies aimed at restoring ciliary function. In conclusion, ciliotherapies are proposed as a promising approach for addressing cholangiopathies, with the potential to shift the current therapeutic landscape.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- Masonic Cancer Centre, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Yu M, Wang J, Zhang X, Zhang H, Li C, Li J, Lin J, Zheng J, Huang L, Li Y, Sun S. The mechanism of YAP/TAZ transactivation and dual targeting for cancer therapy. Nat Commun 2025; 16:3855. [PMID: 40274828 PMCID: PMC12022045 DOI: 10.1038/s41467-025-59309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) play key roles in cancers through transcriptional outputs. However, their transactivation mechanisms remain unclear, and effective targeting strategies are lacking. Here, we show that YAP/TAZ possess a hydrophobic transactivation domain (TAD). TAD knockout prevents tumor establishment due to growth defects and enhances immune attack. Mechanistically, TADs facilitate preinitiation complex (PIC) assembly by recruiting the TATA-binding protein-associated factor 4 (TAF4)-dependent TFIID complex and enhance RNA polymerase II (Pol II) elongation through mediator complex subunit 15 (MED15)-dependent mediator recruitment for the expressions of oncogenic/immune-suppressive programs. The synthesized peptide TJ-M11 selectively disrupts TAD interactions with MED15 and TAF4, suppressing tumor growth and sensitizing tumors to immunotherapy. Our findings demonstrate that YAP/TAZ TADs exhibit dual functions in PIC assembly and Pol II elongation via hydrophobic interactions, which represent actionable targets for cancer therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Man Yu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Juebei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Ren F, Yi Y, Lu T, Liu X, Cui G, Huang S, Parada LF, Chen J. Synthetic lethality through Gsk3β inhibition in glioma stem cells via the WNT-WWC1-YAP axis. Oncogene 2025:10.1038/s41388-025-03418-9. [PMID: 40269262 DOI: 10.1038/s41388-025-03418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor driven by glioma stem cells (GSCs), which contribute to tumor growth and therapeutic resistance. This study investigates the effects of Gsk3β inhibition on GSC viability, focusing on the role of the canonical WNT signaling pathway. We found that Gsk3β inhibition activates the WNT pathway, leading to upregulation of Wwc1, which downregulates Yap via Lats1 phosphorylation. This reduces GSC proliferation, self-renewal, and enhances chemosensitivity. Analysis of clinical datasets revealed that WNT pathway activation correlates with improved prognosis in proneural gliomas, particularly in IDH1-mutated tumors. Our findings suggest that targeting the WNT-WWC1-YAP axis, particularly through Gsk3β inhibition, could induce synthetic lethality in GSCs and provide a promising therapeutic strategy for gliomas. These results highlight the potential of exploiting WNT-induced synthetic lethality as a novel approach for glioma treatment.
Collapse
Affiliation(s)
- Fangfang Ren
- National Institute of Biological Sciences, Beijing, China
| | - Yulan Yi
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Ting Lu
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Xinze Liu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Gang Cui
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Song Huang
- National Institute of Biological Sciences, Beijing, China
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
9
|
Neyazi B, Swiatek VM, Karimpour MA, Stassen S, Stein KP, Rashidi A, Dumitru CA, Sandalcioglu IE. The Role of Hippo Signaling in Brain Arteriovenous Malformations: Molecular Insights into Post-Embolization Remodeling. Int J Mol Sci 2025; 26:3791. [PMID: 40332417 PMCID: PMC12028238 DOI: 10.3390/ijms26083791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Brain arteriovenous malformations (bAVMs) are complex vascular lesions with significant clinical risks. The Hippo signaling pathway, particularly its downstream effector YAP, plays a crucial role in angiogenesis and vascular remodeling. This study investigates the role of YAP and related molecular markers in bAVMs, focusing on the effects of embolization. Immunohistochemical analysis was conducted on tissue samples from bAVM patients (n = 127), as well as on healthy blood vessels (n = 17). YAP, HIF-1α, FGFR1, CTGF, and CYR61 expression were quantified and correlated with clinical parameters. Results: In healthy vessels, YAP exhibited nuclear localization in (sub)endothelial cells and the tunica media, while CTGF and CYR61 were detected in the cytoplasm and extracellular matrix. The expression of YAP, CTGF, and CYR61 was significantly lower in bAVM tissues. Embolized bAVMs exhibited significantly higher expression of YAP, CTGF, and CYR61 compared to non-embolized tissues, suggesting a link between embolization and pro-angiogenic signaling. Additionally, FGFR1 was upregulated in embolized tissues. These results suggest that upregulation of YAP expression via the Hippo pathway might play a key role in bAVM pathophysiology. Embolization may further promote vascular remodeling. Dysregulation of YAP and related molecules in bAVMs warrants further studies to explore potential therapeutic strategies targeting the Hippo pathway.
Collapse
Affiliation(s)
- Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany; (V.M.S.); (M.A.K.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
11
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2025; 27:470-479. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
12
|
Tan S, Jiang X, Liu Z, Li X. The role of the Hippo/YAP pathway in the physiological activities and lesions of lens epithelial cells. Front Cell Dev Biol 2025; 13:1524814. [PMID: 40196848 PMCID: PMC11973341 DOI: 10.3389/fcell.2025.1524814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
The Hippo/YAP pathway is a signaling pathway that plays an important role in cell proliferation, survival, differentiation, cell fate determination, organ size, and tissue homeostasis. Lens epithelial cells (LECs), located on the anterior surface of the lens, are the parental cells responsible for growth and development of the transparent ocular lens. During lens development, LECs undergo a process of differentiation where they exit the cell cycle and transform into lens fiber cells (LFCs), which constitute the majority of the lens structure. YAP is involved in the proliferation and differentiation of LECs, the maintenance of nuclear morphology, cell polarity, cell apical polarity complex, and connexin morphology. The role of the ordered arrangement of LFCs has been demonstrated in several animal studies, and Yap1 heterozygous deletion mice exhibit cataracts. The mechanism of the Hippo/YAP pathway in the physiological activities and lesions of LECs is complex, which is of great significance to understanding the development of the lens and the pathogenesis of lens-related diseases.
Collapse
Affiliation(s)
| | | | - Ziyuan Liu
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
14
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
16
|
Bhavnagari HM, Shah FD. Decoding gene expression profiles of Hippo signaling pathway components in breast cancer. Mol Biol Rep 2025; 52:216. [PMID: 39928181 DOI: 10.1007/s11033-025-10299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The Hippo signaling pathway is an evolutionarily conserved, tumor suppressor, stem cell pathway. This is the very less explored pathway in Breast Cancer. It is a crucial regulator of several biological processes, such as organ size, differentiation, tissue homeostasis, cellular proliferation, and stemness. Interestingly, deregulation of this pathway leads to tumorigenesis. Hence, the present study aims to identify the role of the Hippo signaling pathway in Breast Cancer. MATERIALS AND METHODS The mRNA expression of the Hippo signaling pathway molecules was evaluated in 120 pre-therapeutic patients by quantitative real-time PCR. Statistical analysis was carried out using SPSS 23. The association between the gene expression and clinicopathological parameters was analyzed by the paired sample t-test, and Pearson chi-square test. ROC curve analysis was carried out using Med Cal. A p-value of ≤ 0.05 was considered statistically significant. RESULTS The hippo signaling pathway contains 10 core components i.e.SAV1, MOB1A, MOB1B, MST1, MST2, LATS1, LATS2, YAP, TAZ, and TEAD1 which were downregulated in malignant tissues as compared to adjacent normal tissue in breast cancer. In the correlation of hippo signaling pathway molecules with clinico pathological parameters, only LATS1, MST1, and SAV1 were found to be significantly negatively associated with stages of Breast Cancer. MOB1B was found to be significantly positively correlated with stages of Breast Cancer. ROC curve analysis of YAP, TAZ, LATS2, and TEAD showed significant discrimination between adjacent normal and malignant tissue. CONCLUSION In the current study, all the molecules of the hippo signaling pathway i.e. YAP, TAZ, LATS1, LATS2, MST1, MST2, SAV1, MOB1, MOB1B, TEAD1 were downregulated in BC suggesting the activation of hippo pathway which played a significant role in tumor suppression.
Collapse
Affiliation(s)
- Hunayna M Bhavnagari
- Life Science Department, Gujarat University, Ahmedabad, Gujarat, India
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
17
|
Li M, Wang R, Yan T, Tao X, Gao S, Wang Z, Chai Y, Qiu S, Chen W. Dual effects of DLG5 (disks large homolog 5 gene) modulation on chemotherapy-induced thrombocytopenia and nausea/vomiting via the hippo signalling pathway. Br J Pharmacol 2025; 182:1090-1106. [PMID: 39529470 DOI: 10.1111/bph.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The CAPEOX (combination of oxaliplatin and capecitabine) chemotherapy protocol is widely used for colorectal cancer treatment, but it can lead to chemotherapy-induced adverse effects (CRAEs). EXPERIMENTAL APPROACH To uncover the mechanisms and potential biomarkers for CRAE susceptibility, we performed whole-genome sequencing on normal colorectal tissue (CRT) before adjuvant chemotherapy. This is followed by in vivo and in vitro verifications for selected gene and CRAE pair. KEY RESULTS Our analysis revealed specific germline mutations linked to Grade 2 (or higher) chemotherapy-induced thrombocytopenia (CIT) and nausea/vomiting (CINV). Notably, both CRAEs were associated with mutations in the DLG5 gene. We found that DLG5 mutations related to CIT were associated with increased gene expression, while those associated with CINV were linked to suppressed gene expression, as indicated by the Genotype-Tissue Expression (GTEX) database. In megakaryocytes, overexpression of human DLG5 suppressed the hippo signalling pathway and induced YAP expression. In zebrafish, overexpression of human DLG5 not only reduced platelet production but also inhibited thrombus formation. Subsequent qPCR analysis revealed that DLG5 overexpression affected genes involved in cytoskeleton formation and alpha-granule formation, which could impact the normal generation of proplatelets. CONCLUSION AND IMPLICATIONS We identified a series of germline mutations associated with susceptibility to CIT and CINV. Of particular interest, we demonstrated that induced and suppressed DLG5 expression is respectively related to CIT and CINV. These findings shed light on the involvement of the hippo signalling pathway and DLG5 in the development of CRAEs, providing valuable insights into potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yan
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yunsheng Chai
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals (Basel) 2025; 15:344. [PMID: 39943114 PMCID: PMC11815730 DOI: 10.3390/ani15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Increasing global demand for animal proteins warrants improved productivity by genetic selection of superior cattle and faster dissemination of genetics. Availability of more progeny for genomic selection should maximize chances of identifying animals with desirable traits and increase selection pressure. OPU and IVP of embryos using these oocytes will substantially increase calves produced compared to conventional embryo transfer (ET). The OPU-IVP technology not only supports genetic improvement but also contributes to reducing environmental impacts of livestock production systems by improving efficiency and optimizing resources, aligning with the Sustainable Development Goals of the United Nations. However, there are several factors influencing the success of OPU-IVP. This review is focused on these factors and the impacts of in vitro culture conditions on the lipid content of embryos and potential role of L-carnitine, a lipolytic agent, on developmental competence of IVP embryos. The documented effects of L-carnitine and current knowledge regarding regulation of the Hippo signaling pathway suggest that supplementation of embryo culture media with L-carnitine will increase post-thaw survival of IVP embryos and their subsequent developmental competence by regulating lipid metabolism, production of reactive oxygen species, and Hippo signaling. Therefore, this review highlights current advancements in the field of OPU-IVP and potential areas for refining culture conditions to yield developmentally competent embryos that survive cryopreservation procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada (C.J.); (J.P.K.)
| |
Collapse
|
19
|
Xuan W, Song D, Hou J, Meng X. Regulation of Hippo-YAP1/TAZ pathway in metabolic dysfunction-associated steatotic liver disease. Front Pharmacol 2025; 16:1505117. [PMID: 39917623 PMCID: PMC11798981 DOI: 10.3389/fphar.2025.1505117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disease worldwide, but effective treatments are still lacking. Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation, and glutaminolysis are found to induce liver senescence and ferroptosis, which are hot topics in the research of MASLD. Recent studies have shown that Hippo-YAP1/TAZ pathway is involved in the regulations of metabolism disorders, senescence, ferroptosis, inflammation, and fibrosis in MASLD, but their complex connections and contrast roles are also reported. In addition, therapeutics based on the Hippo-YAP1/TAZ pathway hold promising for MASLD treatment. In this review, we highlight the regulation and molecular mechanism of the Hippo-YAP1/TAZ pathway in MASLD and summarize potential therapeutic strategies for MASLD by regulating Hippo-YAP1/TAZ pathway.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jianghua Hou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
20
|
Izadi N, Solár P, Hašanová K, Zamani A, Akbar MS, Mrázová K, Bartošík M, Kazda T, Hrstka R, Joukal M. Breaking boundaries: role of the brain barriers in metastatic process. Fluids Barriers CNS 2025; 22:3. [PMID: 39780275 PMCID: PMC11708195 DOI: 10.1186/s12987-025-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, St Anne University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Klaudia Hašanová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Maryam Shahidian Akbar
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Klára Mrázová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Martin Bartošík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Tomáš Kazda
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
21
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
22
|
Du FY, Zhou F, Zhao N, Bao L, Hu CB, Lei J, Liu AQ, Gao YF, Bao LH, Ni H, Yu XR, Chen J, Sui BD. YAP1 mediates the dimensional and chemical coordination of immunoregulation and therapy in extensively passaged mesenchymal stem cells. Theranostics 2025; 15:1930-1948. [PMID: 39897564 PMCID: PMC11780522 DOI: 10.7150/thno.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) possess potent immunomodulatory capability, but occasionally, clinical application of MSCs is hindered by compromised cell functionality and insufficient therapeutic efficacy. Methods: Here, well-established mouse models of dextran sulfate sodium (DSS)-induced colitis and streptozotocin (STZ)-induced type 1 diabetes (T1D) were used to evaluate therapeutic immunomodulatory effects of human umbilical cord-derived MSCs. MSCs were examined at the fifth (P5) and the fifteenth (P15) passages, and three-dimensional (3D) culture was conducted by Matrigel incorporation. A series of biochemical, histopathological and cellular assays were performed to investigate the MSC function and therapeutic performance, and immunoregulation was evaluated by in vitro co-culture with T cells and in vivo analyses of T-cell infiltration into target tissues. RNA sequencing (RNA-seq) analysis followed by immunofluorescence staining, gene expression analyses and chemical regulation were used to investigate the molecular targets. Results: MSCs lose therapeutic immunomodulatory effects after extensive expansion to P15 when cell senescence occurs. Intriguingly, 3D preconditioning of MSCs in Matrigel promotes diminished immunoregulatory capability despite extensive passages, which benefits function of P15-MSCs to modulate T-cell subsets in co-culture, suppress infiltration of pro-inflammatory T cells in the colon and pancreas tissues after infusion, ameliorate systemic inflammation, and alleviate colitis and T1D in mice. Mechanistically, 3D culture provokes transcriptomic reprogramming of MSCs toward a Yes-associated protein 1 (YAP1)-marked, Hippo signaling pathway-upregulated state with promoted release of the anti-inflammatory cytokine, transforming growth factor-beta1 (TGF-β1). Moreover, chemical regulation of YAP1 by clinically relevant drugs, verteporfin (VP) and prostaglandin E2 (PGE2), affects TGF-β1 expression and the immunomodulatory capability of MSCs during dimensional culture. Conclusions: Taken together, these findings unravel YAP1-based dimensional and chemical coordination of expanded MSC immunoregulation, which will shed light on precisely controlled translational application.
Collapse
Affiliation(s)
- Fang-Ying Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Feng Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Bao
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Cheng-Biao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Lei
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - An-Qi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying-Feng Gao
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Li-Hui Bao
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Hua Ni
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Xiao-Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
23
|
Ryu JR, Ko K, Sun W. Polarization of organoids by bioengineered symmetry breaking. IBRO Neurosci Rep 2024; 17:22-31. [PMID: 38881849 PMCID: PMC11176950 DOI: 10.1016/j.ibneur.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Symmetry breaking leading to axis formation and spatial patterning is crucial for achieving more accurate recapitulation of human development in organoids. While these processes can occur spontaneously by self-organizing capabilities of pluripotent stem cells, they can often result in variation in structure and composition of cell types within organoids. To address this limitation, bioengineering techniques that utilize geometric, topological and stiffness factors are increasingly employed to enhance control and consistency. Here, we review how spontaneous manners and engineering tools such as micropattern, microfluidics, biomaterials, etc. can facilitate the process of symmetry breaking leading to germ layer patterning and the formation of anteroposterior and dorsoventral axes in blastoids, gastruloids, neuruloids and neural organoids. Furthermore, brain assembloids, which are composed of multiple brain regions through fusion processes are discussed. The overview of organoid polarization in terms of patterning tools can offer valuable insights for enhancing the physiological relevance of organoid system.
Collapse
Affiliation(s)
- Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kahee Ko
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Ryu Y, Seo JH, Kim HS, Nam YJ, Bo Noh K, Oh SH, Hwang JS, Shin YJ. COL8A2 activation enhances function of corneal endothelial cells through HIPPO signaling/mitochondria pathway. Matrix Biol 2024; 134:119-131. [PMID: 39395654 DOI: 10.1016/j.matbio.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Corneal endothelial cells (CECs) are essential for maintaining corneal transparency and hydration through their barrier and pump functions. The COL8A2 gene encodes a component of the extracellular matrix of the cornea, which is crucial for the normal functioning of these cells. Mutations in COL8A2 are linked to corneal dystrophies, emphasizing the gene's importance in corneal health. The purpose of this research is to explore the effects of COL8A2 activation within CECs, to understand its contribution to cellular behavior and health. COL8A2 CRISPR/dCas9 activation system (aCOL8A2) was used to activate the COL8A2. In rats, wound healing and mitochondrial function were assessed after COL8A2 activation. As a result, aCOL8A2 promoted wound healing of rat corneal endothelium by increasing mitochondrial membrane potential. In cultured human CECs, proteomic analysis was performed to screen and identify the differential protein profiles between control and aCOL8A2 cells. Western blot was used to validate the differential proteins from both cells. Mitochondrial function and intracellular distribution were assessed by measuring ATP production and mitochondrial membrane potential. In cultured human CECs, aCOL8A2 increased COL8A2 and phospho-YAP levels. Transendothelial electrical resistance (TEER) was increased and actin cytoskeleton was attenuated by aCOL8A2. Gene ontology analysis revealed that the proteins were mainly involved in the regulation of folate biosynthesis, ECM-receptor interaction, cell differentiation, NADP activity and cytoskeleton. ATP production was increased, mitochondrial membrane potential was polarized and mitochondrial distribution was widespread in the aCOL8A2 group. In conclusion, aCOL8A2 induces a regulatory cascade affecting mitochondrial positioning and efficiency, mediated by alterations in the cytoskeletal architecture and the YAP signaling pathway. This sequence of events serves to bolster the functional capacities of corneal endothelial cells, including their pump and barrier functions, essential for corneal health and transparency.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Youn Joo Nam
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea; Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Gao Y, Wei H, Peng X, Wang C, Zhu H, Yin J. ER stress-induced YAP upregulation leads to chondrocyte phenotype loss in age-related osteoarthritis. Front Pharmacol 2024; 15:1476255. [PMID: 39600372 PMCID: PMC11588467 DOI: 10.3389/fphar.2024.1476255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease, leading to pain and restricted mobility. Age-related endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of OA, but the underlying mechanisms remain unclear. This study aims to explore the relationship between age-related ER stress, YAP overexpression, and chondrocyte phenotype loss in the development of OA. Methods Cartilage samples were collected from patients undergoing amputation, and age-related ER stress markers and YAP expression were assessed using immunohistochemical staining and qPCR. Transgenic mice with cartilage-specific YAP overexpression (YAPOE) were created, and Pamrevlumab was administered to evaluate its therapeutic effects. Results Higher expression of ER stress markers and YAP were showed in aged tissues compared to younger tissues. YAP overexpression led to decreased levels of cartilage phenotype markers and increased osteogenesis-related proteins. In vivo, YAPOE mice exhibited OA-like cartilage degeneration, which was mitigated by Pamrevlumab treatment. Conclusion Age-related ER stress induces YAP overexpression, contributing to OA pathogenesis. Pamrevlumab effectively prevents this phenotype loss in YAPOE mice, suggesting its potential as a therapeutic agent for OA. These findings provide new insights into the molecular mechanisms of OA and highlight the importance of targeting the ER stress-YAP-CTGF signaling pathway in OA treatment and prevention.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Wei
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Wang
- Department of Orthopedics Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhui Yin
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Xu Q, Jin Z, Yuan Z, Yu Z, Gao J, Zhao R, Li H, Ren H, Cao B, Wei B, Jiang L. YAP Promotes Chemoresistance to 5-FU in Colorectal Cancer Through mTOR/GLUT3 Axis. J Cancer 2024; 15:6784-6797. [PMID: 39668819 PMCID: PMC11632981 DOI: 10.7150/jca.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/28/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Although chemoresistance constitutes a significant barrier to the effectiveness of chemotherapy in colorectal cancer (CRC), its precise mechanisms remain unclear. YAP functions as an oncogene in various malignancies. However, the relationship between YAP and chemoresistance in CRC needs clarification. Methods: The expression level of YAP in CRC tissues was assessed through immunohistochemistry (IHC), and the impact of YAP on CRC cell chemoresistance was evaluated using the Cell Counting Kit-8, EdU, and flow cytometry assays. Meanwhile, tumor proliferation was assessed in vivo by analyzing the expression of PCNA and Ki-67 in subcutaneous tumors via IHC. In addition, the TUNEL assay was employed to evaluate tumor apoptosis levels and western blot was utilized to detect the mTOR/GLUT3 pathway-related protein expression to provide insights into the underlying mechanism. Results: YAP was highly expressed in CRC tissues and correlated with patient prognosis and clinicopathological features. Bioinformatic analysis based on the TCGA database revealed that YAP was associated with DNA replication, glycolysis, and the mTOR pathway. Meanwhile, YAP could enhance chemoresistance and glycolysis in CRC cells both in vitro and in vivo. Additional mechanistic experiments unveiled that YAP promoted CRC cell chemoresistance via the mTOR/GLUT3 axis. Conclusion: This study validated the role of YAP as an oncogene in CRC, as it promoted chemoresistance through the mTOR/GLUT3 axis. These results suggested YAP as a potential target for promoting the efficacy of chemotherapy in patients with CRC.
Collapse
Affiliation(s)
- Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhesi Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu,China
| | - Zhen Yuan
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiyuan Yu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jingwang Gao
- Department of General Surgery, Linfen Central Hospital, Linfen, Shanxi, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huiguang Ren
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
27
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
28
|
Tan N, Li Y, Ying J, Chen W. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J Transl Int Med 2024; 12:452-465. [PMID: 39513032 PMCID: PMC11538883 DOI: 10.1515/jtim-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Histological transformation from lung adenocarcinoma (ADC) to small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), squamous cell carcinoma (SCC), and sarcomatoid carcinoma (PSC) after targeted therapies is recognized as a mechanism of resistance in ADC treatments. Patients with transformed lung cancer typically experience a poor prognosis and short survival time. However, effective treatment options for these patients are currently lacking. Therefore, understanding the mechanisms underlying histological transformation is crucial for the development of effective therapies. Hypotheses including intratumoral heterogeneity, cancer stem cells, and alteration of suppressor genes have been proposed to explain the mechanism of histological transformation. In this review, we provide a comprehensive overview of the known molecular features and signaling pathways of transformed tumors, and summarized potential therapies based on previous findings.
Collapse
Affiliation(s)
- Nuopei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
30
|
Xu X, Wang Y, Han C, Lin J, Shen Q, Lan Y, Long L, Tan X, Liu J, Liu S, Luo L, Lv M, Zhang Y, Wang G, Zang G. Poison Turned Panacea: Arsenic Trioxide Loaded Hydrogel for Inhibiting Scar Formation in Wound Healing. ACS Biomater Sci Eng 2024; 10:6533-6544. [PMID: 39283699 DOI: 10.1021/acsbiomaterials.4c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Without intervention, the natural wound healing process can often result in scarring, which can have detrimental effects on both the physical and mental well-being of patients. Therefore, it is crucial to develop biomaterials that can promote healing without scarring. Regulating the Yes-associated protein-1/PDZ-binding motif (YAP/TAZ) signaling pathway is possible to reduce excessive fibrosis of fibroblasts and proliferation of vascular endothelial cells, ultimately impacting scar formation. Arsenic trioxide (ATO), an ancient drug with medicinal and toxic properties, has shown promise in regulating this pathway. An ATO-loaded hydrogel dressing (ATO@CS/SA) was created to facilitate scarless wound healing, utilizing chitosan (CS) and sodium alginate (SA) to prevent direct contact of ATO with the wound tissue and minimize potential side effects. In vitro studies demonstrated that low concentrations of ATO did not impact cell viability and even promoted proliferation and migration. Co-culturing the hydrogel with fibroblasts and vascular endothelial cells led to decreased expression levels of YAP and TAZ. Animal studies over a 90-day period revealed significant inhibition of scar formation with this system. Histological experiments further confirmed that the decreased expression of YAP and TAZ was responsible for this outcome. In conclusion, when administered at the appropriate dose, ATO can be repurposed from a traditional poison to a therapeutic agent, effectively suppressing excessive cell fibrosis and blood vessel proliferation and offering a novel approach to scar-free treatment.
Collapse
Affiliation(s)
- Xinyue Xu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Youwei Wang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Department of Orthopaedics Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingsong Lin
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Qingan Shen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Youyi Lan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Linjing Long
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Xudong Tan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiankai Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Siyi Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanxinhui Luo
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China
- Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
31
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Liu K, Li L, Li Y, Luo Y, Zhang Z, Wen W, Ding S, Huang Y, Liu M, Zhou C, Luo B. Creating a bionic scaffold via light-curing liquid crystal ink to reveal the role of osteoid-like microenvironment in osteogenesis. Bioact Mater 2024; 40:244-260. [PMID: 38973990 PMCID: PMC11226751 DOI: 10.1016/j.bioactmat.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.
Collapse
Affiliation(s)
- Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Zhaoyu Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Guangzhou, 510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, PR China
| |
Collapse
|
33
|
Zhu M, Li Y, Shen Q, Gong Z, Liu D. Sex hormone receptors, calcium-binding protein and Yap1 signaling regulate sex-dependent liver cell proliferation following partial hepatectomy. Dis Model Mech 2024; 17:dmm050900. [PMID: 39397390 PMCID: PMC11556313 DOI: 10.1242/dmm.050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Partial hepatectomy (PH) is commonly used to treat patients with hepatocellular carcinoma. The recovery of patients from PH depends on the initiation of liver regeneration, a process that mainly relies on liver cell proliferation. As sex affects the human liver regeneration progress, we investigated sex disparity in PH-induced liver regeneration in adult zebrafish. We found that, after PH, males began liver regeneration earlier than females in terms of liver cell proliferation and liver mass recovery, and this was associated with earlier activation of Yap1 signaling in male than female livers. We also found that androgen receptors regulated the sex-biased liver regeneration in a Yap1-dependent manner and that activated estrogen receptors are responsible for the later onset of female hepatocyte proliferation. Furthermore, we identified that S100A1, a calcium-binding protein, regulates the sex disparity in liver regeneration, as heterozygous S100A1 knockout inhibited Yap1 activity in male livers and delayed hepatocyte proliferation in males following PH. Thus, multiple pathways and/or their interplays contribute to the sex disparity in liver regeneration, suggesting that sex-biased therapeutic strategies are required for patients who have received PH-based therapies.
Collapse
Affiliation(s)
- Mingkai Zhu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Qiaosen Shen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Xia M, Liang C, Yuan Y, Luo J, Zeng Y, Zhang M, Tang J, Jiang Z, Gong Y, Xie C. UBR1 promotes anaplastic thyroid carcinoma progression via stabilizing YAP through monoubiquitylation. Sci Rep 2024; 14:19496. [PMID: 39174635 PMCID: PMC11341911 DOI: 10.1038/s41598-024-70458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive human malignancy without effective treatment. Yes-associated protein (YAP) is a critical effector of the Hippo pathway, which is essential in thyroid carcinogenesis. However, the underlying mechanisms of aberrant YAP expression in ATC are not completely understood. Ubiquitylation-related enzyme siRNA screening identified the ubiquitin protein ligase E3 component n-recognin 1 (UBR1) as a stabilizer of YAP in ATC cells. UBR1 deficiency reduced YAP protein levels and its target gene expression. UBR1 directly interacted with YAP and promoted its monoubiquitylation, competitively suppressing its polyubiquitylation and resulting in extended protein half-life. UBR1 depletion reduced ATC cell proliferation and migration in vitro. Xenograft tumor studies also suggested that UBR1 knockdown suppressed ATC cell growth in vivo. Furthermore, exogenous YAP expression partially reversed the inhibitive effects of UBR1 depletion on ATC cell proliferation and migration. Our studies demonstrated that UBR1 directly interacts with YAP and stabilized it in a monoubiquitylation-dependent manner, consequently promoting ATC tumorigenesis, suggesting that UBR1 might be a potentially therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Min Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiang Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxin Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mini Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawen Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
37
|
Liang J, Djurkovic MA, Leavitt CG, Shtanko O, Harty RN. Hippo signaling pathway regulates Ebola virus transcription and egress. Nat Commun 2024; 15:6953. [PMID: 39138205 PMCID: PMC11322314 DOI: 10.1038/s41467-024-51356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo "ON") where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is "OFF", unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
39
|
Kazimierczak U, Przybyla A, Smielowska M, Kolenda T, Mackiewicz A. Targeting the Hippo Pathway in Cutaneous Melanoma. Cells 2024; 13:1062. [PMID: 38920690 PMCID: PMC11201827 DOI: 10.3390/cells13121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer. In the advanced stage of development, it is resistant to currently available therapeutic modalities. Increased invasiveness and metastatic potential depend on several proteins involved in various signal transduction pathways. Hippo signaling plays a vital role in malignant transformation. Dysfunctions of the Hippo pathway initiate the expression of tumor growth factors and are associated with tumor growth and metastasis formation. This review summarizes the recent achievements in studying the role of the Hippo pathway in melanoma pathogenesis and points to the potential specific targets for anti-melanoma therapy.
Collapse
Affiliation(s)
- Urszula Kazimierczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Anna Przybyla
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
| | - Marianna Smielowska
- Department of Genome Engineering, The Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Rokietnicka Street 8, 61-806 Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland
| |
Collapse
|
40
|
Kim G, Bhattarai PY, Lim SC, Lee KY, Choi HS. Sirtuin 5-mediated deacetylation of TAZ at K54 promotes melanoma development. Cell Oncol (Dordr) 2024; 47:967-985. [PMID: 38112979 DOI: 10.1007/s13402-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE Nuclear accumulation of YAP/TAZ promotes tumorigenesis in several cancers, including melanoma. Although the mechanisms underlying the nuclear retention of YAP are known, those underlying the retention of TAZ remain unclear. Our study investigates a novel acetylation/deacetylation switch in TAZ, governing its subcellular localization in melanoma tumorigenesis. METHODS Immunoprecipitation/Western blot assessed TAZ protein interactions and acetylation. SIRT5 activity was quantified with enzyme-linked immunosorbent assay. Immunofluorescence indicated TAZ nuclear localization. TEAD transcriptional activity was measured through luciferase reporter assays. ChIP detected TAZ binding to the CTGF promoter. Transwell and wound healing assays quantified melanoma cell invasiveness and migration. Metastasis was evaluated using a mouse model via tail vein injections. Clinical relevance was explored via immunohistochemical staining of patient tumors. RESULTS CBP facilitated TAZ acetylation at K54 in response to epidermal growth factor stimulation, while SIRT5 mediated deacetylation. Acetylation correlated with phosphorylation, regulating TAZ's binding with LATS2 or TEAD. TAZ K54 acetylation enhanced its S89 phosphorylation, promoting cytosolic retention via LATS2 interaction. SIRT5-mediated deacetylation enhanced TAZ-TEAD interaction and nuclear retention. Chromatin IP showed SIRT5-deacetylated TAZ recruited to CTGF promoter, boosting transcriptional activity. In a mouse model, SIRT5 overexpression induced melanoma metastasis to lung tissue following the injection of B16F10 melanocytes via the tail vein, and this effect was prevented by verteporfin treatment. CONCLUSIONS Our study revealed a novel mechanism of TAZ nuclear retention regulated by SIRT5-mediated K54 deacetylation and demonstrated the significance of TAZ deacetylation in CTGF expression. This study highlights the potential implications of the SIRT5/TAZ axis for treating metastatic melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
41
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
42
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
43
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Song J, Kim HK, Cho H, Yoon SJ, Lim J, Lee K, Hwang ES. TAZ deficiency exacerbates psoriatic pathogenesis by increasing the histamine-releasing factor. Cell Biosci 2024; 14:60. [PMID: 38734624 PMCID: PMC11088771 DOI: 10.1186/s13578-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.
Collapse
Affiliation(s)
- Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jihae Lim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
45
|
Guvatova ZG, Kobelyatskaya AA, Kudasheva ER, Pudova EA, Bulavkina EV, Churov AV, Tkacheva ON, Moskalev AA. Matrisome Transcriptome Dynamics during Tissue Aging. Life (Basel) 2024; 14:593. [PMID: 38792614 PMCID: PMC11121957 DOI: 10.3390/life14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of macromolecules that provides structural support for the cells and plays a significant role in tissue homeostasis and repair. Growing evidence indicates that dysregulation of ECM remodeling contributes to various pathological conditions in the body, including age-associated diseases. In this work, gene expression data of normal human tissues obtained from the Genotype-Tissue Expression project, as well as data from MatrisomeDB 2.0, the ECM-protein knowledge database, are used to estimate the age-dependent matrisome transcriptome dynamics in the blood, heart, brain, liver, kidneys, lungs, and muscle. Differential gene expression (DE) analysis revealed dozens of matrisome genes encoding both structural elements of the ECM and ECM-associated proteins, which had a tissue-specific expression profile with age. Among common DE genes that changed expression with age in at least three tissues, COL18A1, MFAP1, IGFBP7, AEBP1, LTBP2, LTBP4, LG14, EFEMP1, PRELP, BGN, FAM20B, CTSC, CTSS, and CLEC2B were observed. The findings of the study also reveal that there are sex-specific alterations during aging in the matrisome gene expression. Taken together, the results obtained in this work may help in understanding the role of the ECM in tissue aging and might prove valuable for the future development of the field of ECM research in general.
Collapse
Affiliation(s)
- Zulfiya G. Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | | | - Eveline R. Kudasheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey V. Churov
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Olga N. Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| |
Collapse
|
46
|
Naser AN, Xing T, Tatum R, Lu Q, Boyer PJ, Chen YH. Colonic crypt stem cell functions are controlled by tight junction protein claudin-7 through Notch/Hippo signaling. Ann N Y Acad Sci 2024; 1535:92-108. [PMID: 38598500 PMCID: PMC11111361 DOI: 10.1111/nyas.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Neural and Behavioral Science Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Philip J. Boyer
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
47
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
48
|
Kim HK, Jeong H, Jeong MG, Won HY, Lee G, Bae SH, Nam M, Lee SH, Hwang GS, Hwang ES. TAZ deficiency impairs the autophagy-lysosomal pathway through NRF2 dysregulation and lysosomal dysfunction. Int J Biol Sci 2024; 20:2592-2606. [PMID: 38725855 PMCID: PMC11077375 DOI: 10.7150/ijbs.88897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Soo Han Bae
- College of Medicine, Severance Biomedical Science Institute, Yonsei University, Seoul 03722, Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
49
|
Qin L, Zhong Y, Li Y, Yang Y. TCM targets ferroptosis: potential treatments for cancer. Front Pharmacol 2024; 15:1360030. [PMID: 38738174 PMCID: PMC11082647 DOI: 10.3389/fphar.2024.1360030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Ferroptosis is caused by the accumulation of cellular reactive oxygen species that exceed the antioxidant load that glutathione (GSH) and phospholipid hydroperoxidases with GSH-based substrates can carry When the antioxidant capacity of cells is reduced, lipid reactive oxygen species accumulate, which can cause oxidative death. Ferroptosis, an iron-dependent regulatory necrosis pathway, has emerged as a new modality of cell death that is strongly associated with cancer. Surgery, chemotherapy and radiotherapy are the main methods of cancer treatment. However, resistance to these mainstream anticancer drugs and strong toxic side effects have forced the development of alternative treatments with high efficiency and low toxicity. In recent years, an increasing number of studies have shown that traditional Chinese medicines (TCMs), especially herbs or herbal extracts, can inhibit tumor cell growth and metastasis by inducing ferroptosis, suggesting that they could be promising agents for cancer treatment. This article reviews the current research progress on the antitumor effects of TCMs through the induction of ferroptosis. The aim of these studies was to elucidate the potential mechanisms of targeting ferroptosis in cancer, and the findings could lead to new directions and reference values for developing better cancer treatment strategies.
Collapse
Affiliation(s)
- Liwen Qin
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|