1
|
Pashaie F, Benne N, Holzapfel PIP, Veenendaal T, Bikker FJ, Heesterbeek DAC, Broere F, Veldhuizen EJA. PMAP-37: A versatile cathelicidin for neutralizing bacteria and viruses. Microb Pathog 2025; 204:107568. [PMID: 40228754 DOI: 10.1016/j.micpath.2025.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Antimicrobial peptides (AMPs), such as cathelicidins, show dual functionality by directly combating pathogens and indirectly eliminating them through stimulation of the immune system, generating interest in their therapeutic potential. Pigs have a large set of 11 cathelicidins, of which PMAP-37 is relatively understudied compared to some of the better-known cathelicidins. This study describes the effectiveness of PMAP-37 against both bacteria and viruses. PMAP-37 exhibited potent in vitro antimicrobial activity against both Gram-positive (Bacillus globigii) and Gram-negative bacteria (Escherichia coli) with minimum bactericidal concentrations (MBCs) of 2.5 and 5 μM, respectively. PMAP-37 caused a rapid permeabilization of E. coli's outer and inner membranes within 5 min, indicating its efficacy in disrupting bacterial cell membranes. Furthermore, PMAP-37 neutralized nitric oxide production in a macrophage cell line stimulated with various forms of LPS, Lipid A, or LTA in a dose-dependent manner. Flow cytometric analysis confirmed PMAP-37's capacity to inhibit LPS binding to macrophages, while zeta potential analysis showed the peptide's capacity to neutralize the negative charge of both the E. coli membrane and LPS micellular surfaces. Interestingly, PMAP-37 also exhibited antiviral activity against an important porcine pathogen, the porcine epidemic diarrhea virus (PEDV). These findings underscore the multifunctional properties of PMAP-37, and provide potential leads for future therapeutic use within the pig industry.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Naomi Benne
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Philippa I P Holzapfel
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA, Amsterdam, the Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Femke Broere
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases & Immunology, Division Virology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2025; 17:1563-1583. [PMID: 39693007 PMCID: PMC12055905 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
3
|
Lei Y, He D, Zhao X, Miao L, Cao Z. Structure, function, and therapeutic potential of defensins from marine animals. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110365. [PMID: 40318710 DOI: 10.1016/j.fsi.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Defensins are a type of host defense peptides (HDPs), belonging to a family of cationic antimicrobial peptides (AMPs) that exhibit activity against various infectious microorganisms including bacteria, viruses, and fungi. Due to the uniqueness of the ocean's ecological environment, defensins from marine animals have a rich biodiversity and some special molecular features so as to possess significant potential. They exert antibacterial activity by binding to cell membranes, forming specific channels, or interacting with lipid II. These peptides can be utilized through various nanotechnologies, such as antimicrobial peptide-antibiotic conjugates, nanonets, and nanoparticle-based drug delivery systems, to enhance their antibacterial activities and broaden their spectra. This review summarizes the structural characteristics and classification of defensins from marine animals (mainly fish and shellfish), outlines their evolutionary trajectory, and discusses their antibacterial, antiviral, immune-regulation, and reproductive functions. Finally, the future therapeutic potential of defensins from marine animals is highlighted for fighting antibiotic resistance and treating other diseases. This review provides new insights into the future development of marine resources and natural peptides.
Collapse
Affiliation(s)
- Yining Lei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Dangui He
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Xiao Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Lixia Miao
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
4
|
Halawa M, ElSayed RMR, Aderibigbe T, Newman PM, Reid BE, Carabetta VJ. Biosimilars Targeting Pathogens: A Comprehensive Review of Their Role in Bacterial, Fungal, Parasitic, and Viral Infections. Pharmaceutics 2025; 17:581. [PMID: 40430873 PMCID: PMC12115129 DOI: 10.3390/pharmaceutics17050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Biosimilars represent medicinal products that exhibit a high degree of similarity to an already sanctioned reference biologic agent, with negligible clinically significant disparities concerning safety, purity, or potency. These therapeutic modalities are formulated as economically viable substitutes for established biologics, thereby facilitating increased accessibility to sophisticated treatments for a range of medical conditions, including infectious diseases caused by bacterial, fungal, and viral pathogens. The current landscape of biosimilars includes therapeutic proteins, such as monoclonal antibodies, antimicrobial peptides, antiviral peptides, and antifungal peptides. Here, we discuss the obstacles inherent in the development of biosimilars, including the rapid mutation rates of pathogens. Furthermore, we discuss innovative technologies within the domain, including antibody engineering, synthetic biology, and cell-free protein synthesis, which exhibit potential for improving the potency and production efficiency of biosimilars. We end with a prospective outlook to highlight the importance and capacity of biosimilars to tackle emerging infectious diseases, highlighting the imperative need for ongoing research and financial commitment.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.H.); (T.A.); (P.M.N.); (B.E.R.)
| | - Ramez M. Rashad ElSayed
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 21521, Egypt;
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.H.); (T.A.); (P.M.N.); (B.E.R.)
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.H.); (T.A.); (P.M.N.); (B.E.R.)
| | - Briana E. Reid
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.H.); (T.A.); (P.M.N.); (B.E.R.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.H.); (T.A.); (P.M.N.); (B.E.R.)
| |
Collapse
|
5
|
Xiao B, Wang J, Xing J, He L, Xu C, Wu A, Li J. Unlocking the Potential of Antimicrobial Peptides: Cutting-Edge Advances and Therapeutic Potential in Combating Bacterial Keratitis. Bioconjug Chem 2025; 36:311-331. [PMID: 39970053 DOI: 10.1021/acs.bioconjchem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial keratitis is a prevalent, and severe corneal illness resulting from bacterial pathogens. Failure to administer a timely and suitable therapy may lead to corneal opacity, ulceration, significant vision impairment, or potential blindness. Current clinical interventions for bacterial keratitis involve the administration of topical antimicrobial agents and systemic antibiotics. However, the misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant bacteria. Additionally, the restricted antibacterial spectrum and possible adverse effects of antibiotics have provided considerable obstacles to traditional therapies. This highlights the urgent need for novel and highly effective antimicrobial agents. Antimicrobial peptides (AMPs) are a class of naturally occurring or synthetically designed small molecules that have gained significant attention due to their unique antimicrobial mechanisms and low risk of resistance development. AMPs exhibit promising potential in treating bacterial keratitis through direct antibacterial mechanisms, such as inhibiting cell wall synthesis, disrupting cell membranes, and interfering with nucleic acid metabolism, as well as indirect mechanisms, including modulation of the host immune response. This review provides a comprehensive overview of the antibacterial mechanisms of AMPs and their advancements in the treatment of bacterial keratitis. It emphasizes the role of various modification strategies and artificial-intelligence-assisted design in enhancing the antibacterial efficacy, stability, and biocompatibility of AMPs. Furthermore, this review discusses the latest progress in combining AMPs with delivery systems for improved therapeutic outcomes. Finally, the review highlights the current challenges and future perspectives of AMPs in bacterial keratitis treatment, providing valuable insights for developing novel AMPs with high antibacterial efficacy, stability, and safety for bacterial keratitis therapies.
Collapse
Affiliation(s)
- Bingru Xiao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Xing
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Lulu He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Chen Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
6
|
An S, Cui J, Yang W, Zhang M, Yu H, Lu J, Tian Y, Qiao L, Wang X, Bao L, Zhao P. HAS-CIRCpedia-5280 sponges miR-4712-5p inhibited colon cancer autophagyinduced by human beta-defensin-1. J Transl Med 2025; 23:281. [PMID: 40050987 PMCID: PMC11883960 DOI: 10.1186/s12967-024-05860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Among all malignancies, colorectal cancer ranks third in incidence rate and second in mortality rate. Human beta-defensin-1 (hBD-1) has broad-spectrum antimicrobial properties, and it plays an important role in the tumor microenvironment. Circular ribonucleic acids (circRNAs) regulate the proliferation and progression of colorectal cancer cells via cancer-related signaling pathways. METHODS Cell proliferation was assessed using the Cell Counting Kit-8 assay to determine the optimal hBD-1 concentration. Intracellular autophagic vesicles were visualized via monodansylcadaverine staining. In addition, the levels of AKT and mammalian target of rapamycin (mTOR)-associated signaling proteins were analyzed via Western blot analysis. CircRNA microarrays and quantitative real-time polymerase chain reaction were used to identify differentially expressed circRNAs in colon cancer cell lines. The functional role of HAS-CIRCpedia-5280 in vitro was demonstrated by overexpressing HAS-CIRCpedia-5280 and inhibiting miR-4712-5p. HAS-CIRCpedia-5280 could be a sponge of miR-4712-5p, mimicking the effect induced by HAS-CIRCpedia-5280 overexpression in colon cancer cells. RESULTS hBD-1 inhibited the proliferation of colon cancer cells and increased the number of intracellular autophagic vesicles. In addition, hBD-1 inhibited the AKT/mTOR signaling pathway, thereby enhancing cellular autophagy. Further, the interaction of HAS-CIRCpedia-5280 and miR-4712-5p was investigated. hBD-1 upregulated the expression level of HAS-CIRCpedia-5280 and downregulated the expression level of miR-4712-5p in colon cancer cells. Subsequently, the overexpression of HAS-CIRCpedia-5280 or the inhibition of miR-4712-5p activated the AKT/mTOR signaling pathway, leading to cellular autophagy inhibition. Conversely, the mimicry of miR-4712-p counteracted the effect of HAS-CIRCpedia 5280 overexpression in colon cancer cells by inhibiting the activation of the AKT/mTOR signaling pathway and, thereby, enhancing cellular autophagy. CONCLUSION hBD-1 can have an inhibitory effect against cell proliferation in colon cancer SW-620/HCT-116 cells via the HAS-CIRCpedia-5280/miR-4712-5p-mediated activation of autophagy.
Collapse
Affiliation(s)
- Shixiang An
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Jiaxian Cui
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Wenhong Yang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Mingyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Huiling Yu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Yunpeng Tian
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Lu Qiao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China
| | - Xiumei Wang
- Medical Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010020, China.
| | - Lili Bao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| |
Collapse
|
7
|
Jahan I, Zhang L. Exploring the Interaction of RBD with Human β Defensin Type 2 Point Mutants: Insights from Molecular Dynamics Simulations. J Phys Chem B 2025; 129:1927-1933. [PMID: 39929747 DOI: 10.1021/acs.jpcb.4c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The global health crisis triggered by the SARS-CoV-2 virus has highlighted the urgent need for effective treatments. As existing drugs are not specifically targeted at this virus, there is a growing interest in exploring natural antimicrobial peptides such as defensin as potential therapeutic options. Human β defensin type 2 (hBD-2), which is a cationic cysteine-rich peptide, serves as the initial barrier against bacterial and fungal invaders in mammals. It can bind with Spike-RBD and occupy the same site as the ACE2 receptor, thereby hindering viral entry into cells expressing ACE2. To explore the effect of different point mutations on the binding of hBD-2 with RBD, the binding dynamics and interactions between hBD-2 point mutants with RBD were studied and compared with that of RBD&hBD-2 wild-type complex. In total, 247 hBD-2 point mutants were built with the mutation sites at the binding region of hBD-2 (RES18-30) with the RBD of CoV-2. All-atom molecular dynamics simulations were carried out on RBD binding with hBD-2 point mutants. Analysis based on root-mean-square deviation (RMSD), hydrogen bonds analysis, and binding free energy using the MM/PBSA method revealed that many point mutants of hBD-2 exhibit weaker binding with RBD compared to the wild type; however, a subset of mutants, including C20I, C20K, R22W, R23H, R23L, Y24L, K25F, K25H, G28Y, T29R, and C30K, displayed enhanced binding with RBD. The findings can offer insights designing hBD-2-based novel drugs to combat SARS-CoV-2 in the long term.
Collapse
Affiliation(s)
- Ishrat Jahan
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
Lee J, Mohammad N, Han K, Flagg-Dowie T, Magallon M, Brantly ML, Serban KA. Alpha-defensins increase NTHi binding but not engulfment by the macrophages enhancing airway inflammation in Alpha-1 antitrypsin deficiency. Front Immunol 2025; 16:1543729. [PMID: 40013145 PMCID: PMC11861504 DOI: 10.3389/fimmu.2025.1543729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Neutrophilic inflammation and a high level of free α-defensins are main features of chronic airway inflammation in alpha-1 antitrypsin-deficient (AATD) individuals. Despite the antimicrobial activities of α-defensins by direct bacterial killing and by modulation of immune responses, AATD individuals are paradoxically burdened by recurrent exacerbation triggered by bacterial infections, frequently with nontypeable Haemophilus influenzae (NTHi). Previous studies demonstrated that high, rather than low α-defensin level could modulate the local pro-inflammatory milieu of bronchial epithelial cells and macrophages promoting chronic inflammation and lower pathogen phagocytosis. IgG-mediated phagocytosis and NTHi adherence, engulfment and phagocytosis were measured in human alveolar macrophages and monocyte-derived macrophages (MDM) isolated from patients with AATD and from healthy individuals. A high concentration of free α-defensins induced NTHi adherence to MDMs but decreased IgG-mediated phagocytosis by MDMs. The decreased phagocytosis was associated with TLR4 activation, downstream signaling via NF-κB p65 and marked increased secretion of inflammatory cytokines, CXCL8, IL-1b, and TNFα by the α-defensin-treated and NTHi-infected MDMs. Exogenous AAT treatment and TLR4 inhibitor decreased TNFα expression in α-defensin-treated cells. Dampening the downstream effects of a high concentration of α-defensins may render AAT and TLR4 inhibitors as potential therapies to decrease NTHi colonization and increase its clearance by phagocytosis in AATD individuals.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Kyudong Han
- Department of Microbiology, College of Bio-convergence, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Tammy Flagg-Dowie
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Maria Magallon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Karina A. Serban
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
9
|
Jin J, Yim HCH, Chang HME, Wang Y, Choy KHK, Chan SY, Alqawasmeh OAM, Liao J, Jiang XT, Chan DYL, Fok EKL. DEFB119 stratifies dysbiosis with distorted networks in the seminal microbiome associated with male infertility. PNAS NEXUS 2024; 3:pgae419. [PMID: 39359400 PMCID: PMC11443970 DOI: 10.1093/pnasnexus/pgae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Infertility is associated with the alteration of the seminal microbiome. However, the onset of dysbiosis remains controversial and the involvement of host factors remains elusive. This study investigates the alterations of the seminal microbiome in male infertility and examines the association and function of DEFB119, a reproductive-tract-specific host antimicrobial peptide, on the seminal microbiome and male fertility. While we observed comparable genera, diversity and evenness of bacterial communities, a marked decrease in the modularity of the metacommunities was observed in patients with abnormal spermiogram (n = 57) as compared to the control (n = 30). A marked elevation of DEFB119 was observed in a subpopulation of male infertile patients (n = 5). Elevated seminal DEFB119 was associated with a decrease in the observed genera, diversity and evenness of bacterial communities, and further distortion of the metacommunities. Mediation analysis suggests the involvement of elevated DEFB119 and dysbiosis of the seminal microbiome in mediating the abnormalities in the spermiogram. Functional experiments showed that recombinant DEFB119 significantly decrease the progressive motility of sperm in patients with abnormal spermiogram. Moreover, DEFB119 demonstrated species-specific antimicrobial activity against common seminal and nonseminal species. Our work identifies an important host factor that mediates the host-microbiome interaction and stratifies the seminal microbiome associated with male infertility. These results may lead to a new diagnostic method for male infertility and regimens for formulating the microbiome in the reproductive tract and other organ systems.
Collapse
Affiliation(s)
- Jing Jin
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Howard Chi Ho Yim
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - Hsiao Mei Ellie Chang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yiwei Wang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kathleen Hoi Kei Choy
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sze Yan Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Odai A M Alqawasmeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jinyue Liao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiao-Tao Jiang
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ellis Kin Lam Fok
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
10
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
12
|
Walker AA, Chin YKY, Guo S, Jin J, Wilbrink E, Goudarzi MH, Wirth H, Gordon E, Weirauch C, King GF. Structure and bioactivity of an insecticidal trans-defensin from assassin bug venom. Structure 2024; 32:1348-1357.e4. [PMID: 38889720 DOI: 10.1016/j.str.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evienne Wilbrink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Fontys University of Applied Sciences, Eindhoven 5612 AR, the Netherlands
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Hayden Wirth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Eric Gordon
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Christiane Weirauch
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
14
|
Sabit H, Pawlik TM, Abdel-Ghany S, Arneth B. Defensins: Exploring Their Opposing Roles in Colorectal Cancer Progression. Cancers (Basel) 2024; 16:2622. [PMID: 39123348 PMCID: PMC11311076 DOI: 10.3390/cancers16152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global healthcare burden, with a particularly concerning rising incidence among younger adults. This trend may highlight potential links between diet, gut microbiome, and CRC risk. Novel therapeutic options have been increasingly based on the understanding of molecular mechanisms and pathways. The PI3K/AKT/mTOR pathway, a crucial cell growth regulator, offers a promising target for CRC therapy. mTOR, a key component within this pathway, controls cell growth, survival, and metabolism. Understanding the specific roles of defensins, particularly human β-Defensin 1 (HBD-1), in CRC is crucial. HBD-1 exhibits potent antimicrobial activity and may influence CRC development. Deciphering defensin expression patterns in CRC holds the promise of improved understanding of tumorigenesis, which may pave the way for improved diagnostics and therapies. This article reviews recent advances in understanding regarding how HBD-1 influences CRC initiation and progression, highlighting the molecular mechanisms by which it impacts CRC. Further, we describe the interaction between defensins and mTOR pathway in CRC.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, 250 Cunz Hall, 1841 Neil Ave. Columbus, OH 43210, USA;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
15
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Andrés MT, Fierro P, Antuña V, Fierro JF. The Antimicrobial Activity of Human Defensins at Physiological Non-Permeabilizing Concentrations Is Caused by the Inhibition of the Plasma Membrane H +-ATPases. Int J Mol Sci 2024; 25:7335. [PMID: 39000442 PMCID: PMC11242853 DOI: 10.3390/ijms25137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and β-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.
Collapse
Affiliation(s)
- María T. Andrés
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- SamerLabs SL, Asturias Technology Park, 33428 Llanera, Spain
| | - Patricia Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Primary Care Emergency Service, Cantabrian Health Service, 39000 Santander, Spain
| | - Victoria Antuña
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
| | - José F. Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Deparment of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
17
|
Wang L, Su J, Liu Z, Ding S, Li Y, Hou B, Hu Y, Dong Z, Tang J, Liu H, Liu W. Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis. BioData Min 2024; 17:20. [PMID: 38951833 PMCID: PMC11218417 DOI: 10.1186/s13040-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major microvascular complication of diabetes and has become the leading cause of end-stage renal disease worldwide. A considerable number of DN patients have experienced irreversible end-stage renal disease progression due to the inability to diagnose the disease early. Therefore, reliable biomarkers that are helpful for early diagnosis and treatment are identified. The migration of immune cells to the kidney is considered to be a key step in the progression of DN-related vascular injury. Therefore, finding markers in this process may be more helpful for the early diagnosis and progression prediction of DN. METHODS The gene chip data were retrieved from the GEO database using the search term ' diabetic nephropathy '. The ' limma ' software package was used to identify differentially expressed genes (DEGs) between DN and control samples. Gene set enrichment analysis (GSEA) was performed on genes obtained from the molecular characteristic database (MSigDB. The R package 'WGCNA' was used to identify gene modules associated with tubulointerstitial injury in DN, and it was crossed with immune-related DEGs to identify target genes. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on differentially expressed genes using the 'ClusterProfiler' software package in R. Three methods, least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest (RF), were used to select immune-related biomarkers for diagnosis. We retrieved the tubulointerstitial dataset from the Nephroseq database to construct an external validation dataset. Unsupervised clustering analysis of the expression levels of immune-related biomarkers was performed using the 'ConsensusClusterPlus 'R software package. The urine of patients who visited Dongzhimen Hospital of Beijing University of Chinese Medicine from September 2021 to March 2023 was collected, and Elisa was used to detect the mRNA expression level of immune-related biomarkers in urine. Pearson correlation analysis was used to detect the effect of immune-related biomarker expression on renal function in DN patients. RESULTS Four microarray datasets from the GEO database are included in the analysis : GSE30122, GSE47185, GSE99340 and GSE104954. These datasets included 63 DN patients and 55 healthy controls. A total of 9415 genes were detected in the data set. We found 153 differentially expressed immune-related genes, of which 112 genes were up-regulated, 41 genes were down-regulated, and 119 overlapping genes were identified. GO analysis showed that they were involved in various biological processes including leukocyte-mediated immunity. KEGG analysis showed that these target genes were mainly involved in the formation of phagosomes in Staphylococcus aureus infection. Among these 119 overlapping genes, machine learning results identified AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1 and FSTL1 as potential tubulointerstitial immune-related biomarkers. External validation suggested that the above markers showed diagnostic efficacy in distinguishing DN patients from healthy controls. Clinical studies have shown that the expression of AGR2, CX3CR1 and FSTL1 in urine samples of DN patients is negatively correlated with GFR, the expression of CX3CR1 and FSTL1 in urine samples of DN is positively correlated with serum creatinine, while the expression of DEFB1 in urine samples of DN is negatively correlated with serum creatinine. In addition, the expression of CX3CR1 in DN urine samples was positively correlated with proteinuria, while the expression of DEFB1 in DN urine samples was negatively correlated with proteinuria. Finally, according to the level of proteinuria, DN patients were divided into nephrotic proteinuria group (n = 24) and subrenal proteinuria group. There were significant differences in urinary AGR2, CCR2 and DEFB1 between the two groups by unpaired t test (P < 0.05). CONCLUSIONS Our study provides new insights into the role of immune-related biomarkers in DN tubulointerstitial injury and provides potential targets for early diagnosis and treatment of DN patients. Seven different genes ( AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1, FSTL1 ), as promising sensitive biomarkers, may affect the progression of DN by regulating immune inflammatory response. However, further comprehensive studies are needed to fully understand their exact molecular mechanisms and functional pathways in DN.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiaming Su
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjie Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yaotan Li
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Hu
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoxi Dong
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
18
|
Chen M, Hu Z, Shi J, Xie Z. Human β-defensins and their synthetic analogs: Natural defenders and prospective new drugs of oral health. Life Sci 2024; 346:122591. [PMID: 38548013 DOI: 10.1016/j.lfs.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
As a family of cationic host defense peptides, human β-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.
Collapse
Affiliation(s)
- Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
19
|
Finkina EI, Shevchenko OV, Fateeva SI, Tagaev AA, Ovchinnikova TV. Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1499. [PMID: 38891308 PMCID: PMC11174490 DOI: 10.3390/plants13111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Currently, the spread of fungal infections is becoming an urgent problem. Fungi of the Candida genus are opportunistic microorganisms that cause superficial and life-threatening systemic candidiasis in immunocompromised patients. The list of antifungal drugs for the treatment of candidiasis is very limited, while the prevalence of resistant strains is growing rapidly. Therefore, the search for new antimycotics, including those exhibiting immunomodulatory properties, is of great importance. Plenty of natural compounds with antifungal activities may be extremely useful in solving this problem. This review evaluates the features of natural antimicrobial peptides, namely plant defensins as possible prototypes of new anticandidal agents. Plant defensins are important components of the innate immune system, which provides the first line of defense against pathogens. The introduction presents a brief summary regarding pathogenic Candida species, the pathogenesis of candidiasis, and the mechanisms of antimycotic resistance. Then, the structural features of plant defensins, their anticandidal activities, their mechanisms of action on yeast-like fungi, their ability to prevent adhesion and biofilm formation, and their combined action with conventional antimycotics are described. The possible mechanisms of fungal resistance to plant defensins, their cytotoxic activity, and their effectiveness in in vivo experiments are also discussed. In addition, for the first time for plant defensins, knowledge about their immunomodulatory effects is also presented.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia (T.V.O.)
| | | | | | | | | |
Collapse
|
20
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Zhao YX, Cui Y, Li XH, Yang WH, An SX, Cui JX, Zhang MY, Lu JK, Zhang X, Wang XM, Bao LL, Zhao PW. Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506. World J Gastrointest Oncol 2024; 16:1465-1478. [PMID: 38660658 PMCID: PMC11037056 DOI: 10.4251/wjgo.v16.i4.1465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality. Human β-defensin-1 (hBD-1) may play an integral function in the innate immune system, contributing to the recognition and destruction of cancer cells. Long non-coding RNAs (lncRNAs) are involved in the process of cell differentiation and growth. AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin (mTOR) pathway and autophagy in human colon cancer SW620 cells. METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration. Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation. Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway. Additionally, p-mTOR (Ser2448), Beclin1, and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis. RESULTS hBD-1 inhibited the proliferative ability of SW620 cells, as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1. hBD-1 decreased the expression of p-mTOR (Ser2448) protein and increased the expression of Beclin1 and LC3II/I protein. Furthermore, bioinformatics analysis identified seven lncRNAs (2 upregulated and 5 downregulated) related to the mTOR pathway. The lncRNA TCONS_00014506 was ultimately selected. Following the inhibition of the lncRNA TCONS_00014506, exposure to hBD-1 inhibited p-mTOR (Ser2448) and promoted Beclin1 and LC3II/I protein expression. CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital, The Fourth Hospital, Hohhot 010035, Inner Mongolia Autonomous Region, China
| | - Yan Cui
- College of Humanities and Education, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xin-Hong Li
- Department of Radiotherapy, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Wen-Hong Yang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Shi-Xiang An
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Jia-Xian Cui
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Min-Yu Zhang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Jing-Kun Lu
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xuan Zhang
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Xiu-Mei Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Li-Li Bao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Peng-Wei Zhao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| |
Collapse
|
22
|
Schwaderer AL, Rajadhyaksha E, Canas J, Saxena V, Hains DS. Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Arch 2024; 476:565-578. [PMID: 38227050 DOI: 10.1007/s00424-024-02905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.
Collapse
Affiliation(s)
- Andrew L Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA.
| | - Evan Rajadhyaksha
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Jorge Canas
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Vijay Saxena
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - David S Hains
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| |
Collapse
|
23
|
Rycyk-Bojarzyńska A, Kasztelan-Szczerbińska B, Cichoż-Lach H, Surdacka A, Roliński J. Human Neutrophil Alpha-Defensins Promote NETosis and Liver Injury in Alcohol-Related Liver Cirrhosis: Potential Therapeutic Agents. J Clin Med 2024; 13:1237. [PMID: 38592082 PMCID: PMC10931661 DOI: 10.3390/jcm13051237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Neutrophils are thought to play a pivotal role in the pathogenesis of many inflammatory diseases, such as hepatitis, liver cirrhosis, etc. Activated human neutrophils release human neutrophil peptides (HNP1-3) or alpha-defensins that are antimicrobial peptides in azurophil granules. Furthermore, HNP1-3 build a scaffold of neutrophil extracellular traps (NETs) and promote the process of programmed cell death called NETosis. Our study aimed to investigate the role of alpha-defensins in the pathogenesis of alcohol-related liver cirrhosis (ALC). Methods: The concentrations of alpha-defensins in the plasma of 62 patients with ALC and 24 healthy subjects were measured by ELISA. The patients with ALC were prospectively recruited based on the severity of liver dysfunction according to the Child-Pugh and Model of End-Stage Liver Disease-Natrium (MELD-Na) scores, modified Maddrey's Discriminant Function (mDF), and the presence of ALC complications. Results: The concentrations of alpha-defensins in plasma were significantly higher in the ALC patients than in the controls. The plasma levels of HNP1-3 correlated with the MELD and mDF scores. ALC subgroups with MELD > 20 and mDF > 32 displayed significantly higher HNP1-3 concentrations. The plasma levels of HNP1-3 revealed a good predictive AUC for hepatic encephalopathy and ascites development (0.81 and 0.74, respectively) and for patient survival (0.87) in those over 40 years of age. Conclusion: These findings suggest that alpha-defensins play an important role in the assessment of ALC.
Collapse
Affiliation(s)
- Anna Rycyk-Bojarzyńska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Beata Kasztelan-Szczerbińska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.-S.); (H.C.-L.)
| | - Agata Surdacka
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-059 Lublin, Poland; (A.S.); (J.R.)
| |
Collapse
|
24
|
Theotonio dos Santos LF, Barbeiro HV, Barbeiro DF, de Souza HP, Pinheiro da Silva F. Antimicrobial peptides and other potential biomarkers of critical illness in SARS-CoV-2 patients with acute kidney injury. AMPAKI-CoV study. Physiol Rep 2024; 12:e15945. [PMID: 38328863 PMCID: PMC10851028 DOI: 10.14814/phy2.15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Antimicrobial peptides (AMPs) constitute a complex network of 10-100 amino acid sequence molecules widely distributed in nature. While over 300 AMPs have been described in mammals, cathelicidins and defensins remain the most extensively studied. Some publications have explored the role of AMPs in COVID-19, but these findings are preliminary, and in vivo studies are still lacking. In this study, we report the plasma levels of five AMPs (LL-37, α-defensin 1, α-defensin 3, β-defensin 1, and β-defensin 3), using the ELISA technique (MyBioSource, San Diego, CA, United States, kits MBS2601339 (beta-defensin 1), MBS2602513 (beta-defensin 3), MBS703879 (alpha-defensin 1), MBS706289 (alpha-defensin 3), MBS7234921 (LL37)), and the measurement of six cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1), through the magnetic bead immunoassay Milliplex® and the MAGPIX® System (MilliporeSigma, Darmstadt, Germany, kit HCYTOMAG-60 K (cytokines)), in 15 healthy volunteers, 36 COVID-19 patients without Acute Kidney Injury (AKI) and 17 COVID-19 patients with AKI. We found increased levels of α-defensin 1, α-defensin 3 and β-defensin 3, in our COVID-19 population, when compared to healthy controls, along with higher levels of interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1. These findings suggest that these AMPs and cytokines may play a crucial role in the systemic inflammatory response and tissue damage characterizing severe COVID-19. The levels of α-defensin 1 and α-defensin 3 were significantly higher in COVID-19 AKI group in comparison to the non-AKI group. Furthermore, IL-10 and the product IL-10 × IL-1B showed excellent performance in discriminating AKI, with AUCs of 0.86 and 0.88, respectively. Among patients with COVID-19, AMPs may play a key role in the inflammation process and disease progression. Additionally, α-defensin 1 and α-defensin 3 may mediate the AKI process in these patients, representing an opportunity for further research and potential therapeutic alternatives in the future.
Collapse
Affiliation(s)
| | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrasil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrasil
| | - Heraldo Possolo de Souza
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrasil
| | | |
Collapse
|
25
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, Ahmad H, Maarof M, Motta A, Fauzi MB. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng 2024; 15:20417314241280359. [PMID: 39398382 PMCID: PMC11468004 DOI: 10.1177/20417314241280359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Shahabudin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Raniya Adiba Mohd Razif
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Arka Sanyal
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anushikha Ghosh
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
27
|
Nguyen AT, Kim M, Kim YE, Kim H, Kim KY. Filipendula glaberrima Nakai extract inhibits the bacterial infection by induction of HBD2 and HBD3 expression, and reduction of the inflammatory activity. Microbiol Immunol 2023; 67:456-467. [PMID: 37525428 DOI: 10.1111/1348-0421.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Defensins and inflammation are innate immune barriers of the body against infectious pathogens. Searching for a compound that can inhibit infectious diseases by affecting human β-defensin (HBD) and proinflammatory cytokines is the new trend in research to control bacterial infection. The aim of this study is to provide a natural compound, Filipendula glaberrima Nakai extract (FGE), which is able to induce the expression of an antimicrobial defensin as well as reduce inflammation. FGE induced the expression of HBD2 and HBD3 through activating both p38 and NF-κB signaling pathways. Furthermore, FGE inhibited the expression of TNF-α and IL-6 via p38 and NF-κB pathways in Staphylococcus aureus-stimulated THP1 cells. Injection of FGE alleviated cutaneous erythema and swelling caused by S. aureus injection in mice ears. Taken together, FGE could reduce bacterial infection by inducing the expression of defensin and anti-inflammatory activity.
Collapse
Affiliation(s)
- Anh-Thu Nguyen
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin, 1732, Korea
| | - Minho Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin, 1732, Korea
| | - Ye-Eun Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin, 1732, Korea
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co., Ltd, Yongin, 17104, Korea
| | - Ki-Young Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin, 1732, Korea
| |
Collapse
|
28
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
29
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
30
|
Deng T, Zheng H, Zhu Y, Liu M, He G, Li Y, Liu Y, Wu J, Cheng H. Emerging Trends and Focus in Human Skin Microbiome Over the Last Decade: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:2153-2173. [PMID: 37583484 PMCID: PMC10424697 DOI: 10.2147/ccid.s420386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Background Human skin microbiome is the first barrier against exogenous attack and is associated with various skin disease pathogenesis and progression. Advancements in high-throughput sequencing technologies have paved the way for a deeper understanding of this field. Based on the bibliometric analysis, this investigation aimed to identify the hotspots and future research trends associated with human skin microbiomes studied over the past decade. Methods The published research on skin microbiome from January 2013 to January 2023 was retrieved from the Web of Science Core Collection. Data cleaning processes to ensure robust data and the bibliometrix packages R, CiteSpace, VOSviewer, Origin, and Scimago Graphica for bibliometric and visual analyses were utilized. Results A total of 1629 published documents were analyzed. The overall publication trend steadily increased, with relatively fast growth in 2017 and 2020. The United States of America has the highest number of publications and citations and shows close collaborations with China and Germany. The University of California, San Diego, indicated a higher number of publications than other institutions and the fastest growth rate. The top three most publishing journals on this topic are Microorganisms, Frontiers in Microbiology, and Experimental dermatology. Gallo RL is the most influential author with the highest h- and g-index and most publications in skin microecology, followed by Grice EA and Kong HH. The top 10 most frequently used keywords in recent years included skin microbiome, microbiome, staphylococcus aureus, diversity, atopic dermatitis, skin, bacteria, infections, gut microbiota, and disease. Conclusion The skin microbiome is an area of research that requires continuous analysis, and even with much-achieved progress, future research will further be aided as technology develops.
Collapse
Affiliation(s)
- Tinghan Deng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ying Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Guanjin He
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ya Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Yichen Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
31
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
Bogdanov IV, Fateeva SI, Voropaev AD, Ovchinnikova TV, Finkina EI. Immunomodulatory Effects of the Pea Defensin Psd1 in the Caco-2/Immune Cells Co-Culture upon Candida albicans Infection. Int J Mol Sci 2023; 24:7712. [PMID: 37175419 PMCID: PMC10178127 DOI: 10.3390/ijms24097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Candidiasis is one of the most common fungal diseases that can pose a threat to life in immunodeficient individuals, particularly in its disseminated form. Not only fungal invasion but also fatal infection-related inflammation are common causes of systemic candidiasis. In this study, we investigated in vitro immunomodulatory properties of the antifungal pea defensin Psd1 upon Candida albicans infection. Using the real-time PCR, we showed that Psd1 inhibited the antimicrobial peptide HBD-2 and pro-inflammatory cytokines IL-1 and IL-8 downregulation at mRNA level in epithelium cells caused by C. albicans infection. By using the Caco-2/immune cells co-culture upon C. albicans infection and the multiplex xMAP assay, we demonstrated that this pathogenic fungus induced a pronounced host defense response; however, the cytokine responses were different in the presence of dendritic cells or monocytes. We revealed that Psd1 at a low concentration (2 µM) had a pronounced immunomodulatory effect on the Caco-2/immune cells co-culture upon fungal infection. Thus, we hypothesized that the pea defensin Psd1 might be an effective agent in the treatment of candidiasis not only due to its antifungal activity, but also owing to its ability to modulate a protective immune response upon infection.
Collapse
Affiliation(s)
- Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Serafima I. Fateeva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
33
|
Colceriu MC, Aldea PL, Răchișan AL, Clichici S, Sevastre-Berghian A, Mocan T. Vesicoureteral Reflux and Innate Immune System: Physiology, Physiopathology, and Clinical Aspects. J Clin Med 2023; 12:jcm12062380. [PMID: 36983379 PMCID: PMC10058356 DOI: 10.3390/jcm12062380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Vesicoureteral reflux represents one of the most concerning topics in pediatric nephrology due to its frequency, clinical expression with the potential to evolve into chronic kidney disease, and last but not least, its socio-economic implications. The presence of vesicoureteral reflux, the occurrence of urinary tract infections, and the development of reflux nephropathy, hypertension, chronic kidney disease, and finally, end-stage renal disease represent a progressive spectrum of a single physiopathological condition. For the proper management of these patients with the best clinical outcomes, and in an attempt to prevent the spread of uropathogens' resistance to antibacterial therapy, we must better understand the physiopathology of urinary tract infections in patients with vesicoureteral reflux, and at the same time, we should acknowledge the implication and response of the innate immune system in this progressive pathological condition. The present paper focuses on theoretical aspects regarding the physiopathology of vesicoureteral reflux and the interconditionality between urinary tract infections and the innate immune system. In addition, we detailed aspects regarding cytokines, interleukins, antimicrobial peptides, and proteins involved in the innate immune response as well as their implications in the physiopathology of reflux nephropathy. New directions of study should focus on using these innate immune system effectors as diagnostic and therapeutic tools in renal pathology.
Collapse
Affiliation(s)
- Marius-Cosmin Colceriu
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Paul Luchian Aldea
- Department of Community Medicine, Discipline of Public Health and Management, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Liana Răchișan
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Nguyen AT, Kim M, Kim YE, Kim H, Lee S, Lee Y, Kim KY. MSF Enhances Human Antimicrobial Peptide β-Defensin (HBD2 and HBD3) Expression and Attenuates Inflammation via the NF- κB and p38 Signaling Pathways. Molecules 2023; 28:molecules28062744. [PMID: 36985716 PMCID: PMC10058637 DOI: 10.3390/molecules28062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Both defensin and inflammation are part of the human innate immune system that responds rapidly to pathogens. The combination of defensins with pro- or anti-inflammatory effects can be a potential research direction for the treatment of infection by pathogens. This study aimed to identify whether MSF (Miracle Synergy material made using Filipendula glaberrima), a probiotic lysate of Filipendula glaberrima extracts fermented with Lactiplantibacillus plantarum K8, activates the expression of human β-defensin (HBD2 and HBD3) to protect the host against pathogens and inhibit inflammation caused by S. aureus, in vitro with Western blot analysis, qRT-PCR and in vivo studies with a mouse model were used to evaluate the effects of MSF. The MSF treatment induced HBD2 and HBD3 expression via the p38 and NF-κB pathways. Furthermore, MSF treatment significantly reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8), also through p38 and NF-κB in S. aureus-induced inflammatory condition. MSF treatment remarkably reduced erythema in mice ears caused by the injection of S. aureus, while K8 lysate treatment did not initiate a strong recovery. Taken together, MSF induced the expression of HBD2 and HDB3 and activated anti-inflammatory activity more than the probiotic lysates of L. plantarum K8. These findings show that MSF is a potential defensin inducer and anti-inflammatory agent.
Collapse
Affiliation(s)
- Anh-Thu Nguyen
- Department of Genetics and Biotechnology, Kyung Hee University, Youngin 1732, Republic of Korea
| | - Minho Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Youngin 1732, Republic of Korea
| | - Ye-Eun Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Youngin 1732, Republic of Korea
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co., Ltd., Yongin 17104, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yunji Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong 27709, Republic of Korea
| | - Ki-Young Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Youngin 1732, Republic of Korea
| |
Collapse
|
35
|
Role of Defensins in Tumor Biology. Int J Mol Sci 2023; 24:ijms24065268. [PMID: 36982340 PMCID: PMC10049535 DOI: 10.3390/ijms24065268] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Defensins have long been considered as merely antimicrobial peptides. Throughout the years, more immune-related functions have been discovered for both the α-defensin and β-defensin subfamily. This review provides insights into the role of defensins in tumor immunity. Since defensins are present and differentially expressed in certain cancer types, researchers started to unravel their role in the tumor microenvironment. The human neutrophil peptides have been demonstrated to be directly oncolytic by permealizing the cell membrane. Further, defensins can inflict DNA damage and induce apoptosis of tumor cells. In the tumor microenvironment, defensins can act as chemoattractants for subsets of immune cells, such as T cells, immature dendritic cells, monocytes and mast cells. Additionally, by activating the targeted leukocytes, defensins generate pro-inflammatory signals. Moreover, immuno-adjuvant effects have been reported in a variety of models. Therefore, the action of defensins reaches beyond their direct antimicrobial effect, i.e., the lysis of microbes invading the mucosal surfaces. By causing an increase in pro-inflammatory signaling events, cell lysis (generating antigens) and attraction and activation of antigen presenting cells, defensins could have a relevant role in activating the adaptive immune system and generating anti-tumor immunity, and could thus contribute to the success of immune therapy.
Collapse
|
36
|
Altered Expression of Antimicrobial Peptides in the Upper Gastrointestinal Tract of Patients with Diabetes Mellitus. Nutrients 2023; 15:nu15030754. [PMID: 36771460 PMCID: PMC9919831 DOI: 10.3390/nu15030754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMP) are essential components of innate immunity with a broad range of antimicrobial activities against bacteria, viruses, and fungi. The aim of this study was to investigate AMP expression in the upper gastrointestinal tract in normal and pathological metabolic states in humans. Furthermore, we examined the correlation between vitamin D levels and AMP expression in the same cohort. Serum concentrations of 25-hydroxyvitamin D3 were measured, and mRNA expression of β-defensins HBD-1, -2, -3, -4, α-defensins HD-5 and -6 and cathelicidin in the upper gastrointestinal tract epithelia were determined by quantitative RT-PCR in 31 individuals (10 with type 2 diabetes, 10 with insulin resistance, and 11 healthy controls). The majority of the cohort showed low vitamin D concentrations, which were negatively correlated with mRNA expression levels of HBD-3 in corpus mucosa. HBD-1 and HBD-3 mRNA were expressed in corpus mucosa, with the former significantly decreased in patients with diabetes. Hence, we conclude that type 2 diabetes is associated with reduced AMP expression in the upper gastrointestinal tract, which might contribute towards epithelial barrier dysfunction and increased bacterial translocation in these patients.
Collapse
|
37
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
38
|
Farag AGA, Shoeib MAA, labeeb AZ, Sleem AS, Khallaf HMA, Khalifa AS, Elshaib ME, Elnaidany NF, Hanout HMA. Human beta-defensin 1 circulating level and gene polymorphism in non-segmental vitiligo Egyptian patients. An Bras Dermatol 2023; 98:181-188. [PMID: 36535830 PMCID: PMC9984704 DOI: 10.1016/j.abd.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 04/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vitiligo is an acquired depigmented skin disorder. It has a genetic and autoimmune background. Human beta defensin-1(HBD-1) plus its gene polymorphism were linked to some autoimmune disorders. OBJECTIVE To elucidate the possible role of HBD-1 in the pathogenesis of non-segmental vitiligo (NSV) through evaluation of HBD-1 serum levels and its single nucleotide polymorphism (SNP) in patients having NSV, in addition, to correlating the results with the extent of vitiligo in those patients. METHODS A current case-control study included 50 patients having NSV and 50 controls. The authors used Vitiligo Area Scoring Index (VASI) score to assess vitiligo severity and laboratory investigations to assess serum HBD-1 level using ELISA and defensin-beta1 (DEFB1) SNP using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS There were significantly lower HBD-1 serum levels in NSV cases than in controls (p < 0.001). There was a significant predominance of GG DEFB1 genotype and G allele in NSV patients in comparison to controls (p < 0.001). The levels of serum HBD-1 and DEFB1 genotypes were not associated or correlated significantly with any of the personal and clinical parameters of vitiligo patients. STUDY LIMITATION The small sample size. CONCLUSIONS DEFB1 gene polymorphism (GG genotype and G allele) may modulate vitiligo risk and contribute to vitiligo development in Egyptian populations. Decreased circulating HBD-1 levels might have an active role in vitiligo etiopathogenesis that could be mediated through its possible anti-inflammatory effects.
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Dermatology, Andrology and STDs Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt.
| | | | - Azza Zagloul labeeb
- Microbiology and Immunology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | - Asmaa Shaaban Sleem
- Microbiology and Immunology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | | | - Amany Salah Khalifa
- Clinical Pathology Department, Faculty of Medicine Menoufia University, Shebin EL-koum, Egypt
| | | | | | | |
Collapse
|
39
|
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. BIOMATERIALS TRANSLATIONAL 2023; 4:5-17. [PMID: 37206303 PMCID: PMC10189813 DOI: 10.12336/biomatertransl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
Cancer is a serious concern in public health worldwide. Numerous modalities including surgery, radiotherapy, and chemotherapy, have been used for cancer therapies in clinic. Despite progress in anticancer therapies, the usage of these methods for cancer treatment is often related to deleterious side effects and multidrug resistance of conventional anticancer drugs, which have prompted the development of novel therapeutic methods. Anticancer peptides (ACPs), derived from naturally occurring and modified peptides, have received great attention in these years and emerge as novel therapeutic and diagnostic candidates for cancer therapies, because of several advantages over the current treatment modalities. In this review, the classification and properties of ACPs, the mode of action and mechanism of membrane disruption, as well as the natural sources of bioactive peptides with anticancer activities were summarised. Because of their high efficacy for inducing cancer cell death, certain ACPs have been developed to work as drugs and vaccines, evaluated in varied phases of clinical trials. We expect that this summary could facilitate the understanding and design of ACPs with increased specificity and toxicity towards malignant cells and with reduced side effects to normal cells.
Collapse
|
40
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
41
|
Jaleel LK, Umran MA, Kaddo KB, Ad'hiah AH. Evaluation of human β‑defensins in the cerebrospinal fluid of suspected meningitis. Biomed Rep 2022; 18:10. [PMID: 36570800 PMCID: PMC9764057 DOI: 10.3892/br.2022.1592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Human β-defensins (HBDs) are an important class of antimicrobial peptides that have immunomodulatory functions; however, the role of HBDs have not been well explored in the pathogenesis of meningitis. A cross-sectional study was performed to explore the levels of HBD1, HBD2, HBD3, and HBD4 in the cerebrospinal fluid (CSF) of 176 suspected meningitis cases. CSF samples were first subjected to PCR analysis using a set of universal primers targeting a portion of the eubacteria 16S rRNA gene. The analysis demonstrated that 66 samples (37.5%) were PCR-positive, whilst 110 samples (62.5%) were PCR-negative. DNA sequence analysis of the PCR-positive products identified two broad categories of bacteria, Gram-negative (68.2%) and Gram-positive (31.8%). A total of 88 PCR-negative CSF samples showed abnormal leukocyte counts, glucose concentrations, and/or protein concentrations, and were considered abnormal (ABN). The remaining 22 CSF samples were considered normal (NOR). HBD1, HBD2, and HBD4 levels did not exhibit significant differences between PCR-positive, ABN, and NOR CSF samples. However, HBD3 levels were significantly higher in the ABN CSF samples than in the NOR CSF samples (P=0.005). HBD3 levels were also elevated in the PCR-positive CSF samples compared with the NOR CSF samples, but the difference was not significant (P=0.151). HBD2, HBD3, and HBD4 were correlated with leukocyte counts, glucose concentration, and protein concentration. In conclusion, HBD3 levels were significantly elevated in the CSF of suspected meningitis cases regardless of the cause of meningitis. The CSF levels of certain HBDs were affected by specific diagnostic laboratory parameters for meningitis, including leukocyte counts, glucose concentration, and protein concentration.
Collapse
Affiliation(s)
- Lena K. Jaleel
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10070, Iraq
| | - Mahfoodha A. Umran
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10070, Iraq
| | - Khansaa B.J. Kaddo
- Ibn-Sina Research Center, Corporation of Research and Industrial Development, Ministry of Industry and Minerals, Baghdad 10070, Iraq
| | - Ali H. Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad 10070, Iraq,Correspondence to: Professor Ali H. Ad'hiah, Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Karrada, Baghdad 10070, Iraq
| |
Collapse
|
42
|
Bibby JA, Agarwal D, Freiwald T, Kunz N, Merle NS, West EE, Singh P, Larochelle A, Chinian F, Mukherjee S, Afzali B, Kemper C, Zhang NR. Systematic single-cell pathway analysis to characterize early T cell activation. Cell Rep 2022; 41:111697. [PMID: 36417885 PMCID: PMC10704209 DOI: 10.1016/j.celrep.2022.111697] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Pathway analysis is a key analytical stage in the interpretation of omics data, providing a powerful method for detecting alterations in cellular processes. We recently developed a sensitive and distribution-free statistical framework for multisample distribution testing, which we implement here in the open-source R package single-cell pathway analysis (SCPA). We demonstrate the effectiveness of SCPA over commonly used methods, generate a scRNA-seq T cell dataset, and characterize pathway activity over early cellular activation. This reveals regulatory pathways in T cells, including an intrinsic type I interferon system regulating T cell survival and a reliance on arachidonic acid metabolism throughout T cell activation. A systems-level characterization of pathway activity in T cells across multiple tissues also identifies alpha-defensin expression as a hallmark of bone-marrow-derived T cells. Overall, this work provides a widely applicable tool for single-cell pathway analysis and highlights regulatory mechanisms of T cells.
Collapse
Affiliation(s)
- Jack A Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Divyansh Agarwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fariba Chinian
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Somabha Mukherjee
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany.
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Tan ZX, Tao R, Li SC, Shen BZ, Meng LX, Zhu ZY. Role of defensins in diabetic wound healing. World J Diabetes 2022; 13:962-971. [PMID: 36437862 PMCID: PMC9693740 DOI: 10.4239/wjd.v13.i11.962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The adverse consequences resulting from diabetes are often presented as severe complications. Diabetic wounds are one of the most commonly occurring complications in diabetes, and the control and treatment of this is costly. Due to a series of pathophysiological mechanisms, diabetic wounds remain in the inflammatory phase for a prolonged period of time, and face difficulty in entering the proliferative phase, thus leading to chronic non-healing wounds. The current consensus on the treatment of diabetic wounds is through multidisciplinary comprehensive management, however, standard wound treatment methods are still limited and therefore, more effective methods are required. In recent years, defensins have been found to play diverse roles in a variety of diseases; however, the molecular mechanisms underlying these activities are still largely unknown. Defensins can be constitutively or inductively produced in the skin, therefore, their local distribution is affected by the microenvironment of these diabetic wounds. Current evidence suggests that defensins are involved in the diabetic wound pathogenesis, and can potentially promote the early completion of each stage, thus making research on defensins a promising area for developing novel treatments for diabetic wounds. In this review, we describe the complex function of human defensins in the development of diabetic wounds, and suggest potential thera-peutic benefits.
Collapse
Affiliation(s)
- Zhi-Xiang Tan
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Si-Cheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bing-Zheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lan-Xia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan-Yong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
44
|
Gürsoy M, Könönen E, He Q, Liukkonen A, Huumonen S, Gürsoy UK. Toll-like receptor-1, -2, and -6 genotypes in relation to salivary human beta-defensin-1, -2, -3 and human neutrophilic peptide-1. J Clin Periodontol 2022; 49:1185-1191. [PMID: 35817420 PMCID: PMC9796255 DOI: 10.1111/jcpe.13697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
AIM To examine whether functional gene polymorphisms of toll-like receptor (TLR)1, TLR2, and TLR6 are related to the salivary concentrations of human beta-defensins (hBDs)-1, -2, -3, and human neutrophilic peptide (HNP)-1. MATERIALS AND METHODS Polymorphisms of TLR1 (rs5743618), TLR2 (rs5743708), and TLR6 (rs5743810) were genotyped by PCR-based pyrosequencing from the salivary samples of 230 adults. Salivary hBD-1, -2, -3, and HNP-1 concentrations were measured using enzyme-linked immunosorbent assay. General and periodontal health examinations, including panoramic radiography, were available for all participants. RESULTS The genotype frequencies for wild types and variant types were as follows: 66.5% and 33.5% for TLR1, 95.5% and 4.5% for TLR2, and 25.1% and 74.9% for TLR6, respectively. The TLR2 heterozygote variant group exhibited higher salivary hBD-2 concentrations than the TLR2 wild-type group (p = .038). On the contrary, elevated hBD-2 concentrations were detected in the TLR6 wild-type group compared with the TLR6 heterozygote and homozygote variant group (p = .028). The associations between TLR6 genotypes and salivary hBD-2 concentrations remained significant after adjusting them for periodontal status, age, and smoking. CONCLUSION hBD-2 concentrations in saliva are related to TLR2 and TLR6 polymorphisms, but only the TLR6 genotype seems to exhibit an independent association with the salivary hBD-2 concentrations.
Collapse
Affiliation(s)
- Mervi Gürsoy
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland,Welfare DivisionOral Health CareTurkuFinland
| | - Eija Könönen
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Qiushui He
- Research Center for Infections and Immunity, Institute of BiomedicineUniversity of TurkuTurkuFinland,InFLAMES Research Flagship CentreUniversity of TurkuTurkuFinland
| | - Anna Liukkonen
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Sisko Huumonen
- Institute of DentistryUniversity of Eastern FinlandKuopioFinland,Department of Clinical RadiologyKuopio University HospitalKuopioFinland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| |
Collapse
|
45
|
Cho YH, Renouf MJ, Omotoso O, McPhee JB. Inflammatory bowel disease-associated adherent-invasive Escherichia coli have elevated host-defense peptide resistance. FEMS Microbiol Lett 2022; 369:6754321. [PMID: 36208952 DOI: 10.1093/femsle/fnac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.
Collapse
Affiliation(s)
- Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Michael J Renouf
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Oluwafikemi Omotoso
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
46
|
Niyonsaba F. Editorial: The role of neutrophils and its NETosis in autoimmunity and autoinflammation. Front Immunol 2022; 13:1035624. [DOI: 10.3389/fimmu.2022.1035624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
|
47
|
Elkjaer Greenwood Ormerod MB, Ueland T, Frogner Werner MC, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Composite immune marker scores associated with severe mental disorders and illness course. Brain Behav Immun Health 2022; 24:100483. [PMID: 35856063 PMCID: PMC9287150 DOI: 10.1016/j.bbih.2022.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background Low-grade inflammation has been implicated in the pathophysiology of severe mental disorders (SMDs) and a link between immune activation and clinical characteristics is suggested. However, few studies have investigated how patterns across immune markers are related to diagnosis and illness course. Methods A total of 948 participants with a diagnosis of schizophrenia (SCZ, N = 602) or bipolar (BD, N = 346) spectrum disorder, and 814 healthy controls (HC) were included. Twenty-five immune markers comprising cell adhesion molecules (CAMs), interleukin (IL)-18-system factors, defensins, chemokines and other markers, related to neuroinflammation, blood-brain barrier (BBB) function, inflammasome activation and immune cell orchestration were analyzed. Eight immune principal component (PC) scores were constructed by PC Analysis (PCA) and applied in general linear models with diagnosis and illness course characteristics. Results Three PC scores were significantly associated with a SCZ and/or BD diagnosis (HC reference), with largest, however small, effect sizes of scores based on CAMs, BBB markers and defensins (p < 0.001, partial η2 = 0.02-0.03). Number of psychotic episodes per year in SCZ was associated with a PC score based on IL-18 system markers and the potential neuroprotective cytokine A proliferation-inducing ligand (p = 0.006, partial η2 = 0.071). Conclusion Analyses of composite immune markers scores identified specific patterns suggesting CAMs-mediated BBB dysregulation pathways associated with SMDs and interrelated pro-inflammatory and neuronal integrity processes associated with severity of illness course. This suggests a complex pattern of immune pathways involved in SMDs and SCZ illness course.
Collapse
Affiliation(s)
| | - Thor Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KG Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Graalum, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Torp Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Andreas Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Lobognon VD, Alard JE. Could AMPs and B-cells be the missing link in understanding periodontitis? Front Immunol 2022; 13:887147. [PMID: 36211356 PMCID: PMC9532695 DOI: 10.3389/fimmu.2022.887147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Periodontal diseases are common inflammatory conditions characterized by bone loss in response to simultaneous bacterial aggression and host defenses. The etiology of such diseases is still not completely understood, however. It has been shown that specific pathogens involved in the build-up of dysbiotic biofilms participate actively in the establishment of periodontitis. This multifactorial pathology also depends on environmental factors and host characteristics, especially defenses. The immune response to the pathogens seems to be critical in preventing the disease from starting but also contributes to tissue damage. It is known that small molecules known as antimicrobial peptides (AMPs) are key actors in the innate immune response. They not only target microbes, but also act as immuno-modulators. They can help to recruit or activate cells such as neutrophils, monocytes, dendritic cells, or lymphocytes. AMPs have already been described in the periodontium, and their expression seems to be connected to disease activity. Alpha and beta defensins and LL37 are the AMPs most frequently linked to periodontitis. Additionally, leukocyte infiltrates, especially B-cells, have also been linked to the severity of periodontitis. Indeed, the particular subpopulations of B-cells in these infiltrates have been linked to inflammation and bone resorption. A link between B-cells and AMP could be relevant to understanding B-cells' action. Some AMP receptors, such as chemokines receptors, toll-like receptors, or purinergic receptors, have been shown to be expressed by B-cells. Consequently, the action of AMPs on B-cell subpopulations could participate to B-cell recruitment, their differentiation, and their implication in both periodontal defense and destruction.
Collapse
Affiliation(s)
- Vanessa Dominique Lobognon
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France
| | - Jean-Eric Alard
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France,Service d’Odontologie, University Hospital (CHU) de Brest, Brest, France,*Correspondence: Jean-Eric Alard,
| |
Collapse
|
49
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
50
|
Transcriptome Analysis Reveals the Multiple Functions of pBD2 in IPEC-J2 Cells against E. coli. Int J Mol Sci 2022; 23:ijms23179754. [PMID: 36077151 PMCID: PMC9456188 DOI: 10.3390/ijms23179754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.
Collapse
|