1
|
Peng W, Jiang Q, Wu Y, He L, Li B, Bei W, Yang X. The role of glutathione for oxidative stress and pathogenicity of Streptococcus suis. Virulence 2025; 16:2474866. [PMID: 40048653 PMCID: PMC11901377 DOI: 10.1080/21505594.2025.2474866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in S. suis. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in S. suis. GshAB and GshT were found in S. suis glutathione synthesis and import by bioinformatics. In vitro, inactivation of gshAB and gshT led to increased sensitivity to oxidative stress. Inactivation of gshT led to growth defects in the medium. The intracellular glutathione content of gshAB or gshT deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of gshAB and gshT mutants was lower than that of the WT strain. Moreover, the virulence of gshAB and gshT deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of S. suis. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuting Wu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li He
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Yang Y, Wei L, You W, Huang H, Wang S, Hou D, Qin C, Su Z, Li M. A simple colorimetric and paper-based-smartphone sensing platform based on the enhanced peroxidase-like activity of Al doping Prussian blue for point-of-care detection of GSH. Talanta 2025; 293:128020. [PMID: 40164025 DOI: 10.1016/j.talanta.2025.128020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Glutathione (GSH) is a very important antioxidant and also participates in many important physiological processes, accurate determination of GSH in food and blood fluid is crucial for human health. Herein, we introduce a simple colorimetric and paper-based-smartphone dual signal output platform for point-of-care (POC) detection of GSH in garlic and human serum. The experiment revealed that the peroxidase-like activity of Aluminum-doped Prussian blue (AlPB) could be enhanced by the doping of Al element on Prussian blue. AlPB exhibited excellent peroxidase-like activity and efficiently catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to generate blue oxidized TMB, resulting in an absorbance and color-based-smartphone dual signal readouts. Enzyme kinetic studies also indicated that the AlPB showed high affinity towards TMB. Hence, a reliable colorimetric and color-based-smartphone dual signal readouts assay was constructed based on AlPB-mediated the peroxidase-like activity, it was used for highly sensitive colorimetric and POC detection of GSH in food and human serum within 7 min with a wide range of linear response from 1 to 20 μM, a low detection limit of 0.1748 μM. This work demonstrates a novel and versatile strategy to develop superior peroxidase mimics and holds great potential for rapid and portable detection of GSH in food, healthcare and clinical diagnosis, and also open promising avenues for more powerful paper-based POC tests.
Collapse
Affiliation(s)
- Ying Yang
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Liuyan Wei
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Weiqin You
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Huisha Huang
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Shuai Wang
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Dandan Hou
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Chujun Qin
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| | - Mei Li
- Pharmaceutical College, Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| |
Collapse
|
3
|
Dong J, Zhang S, Chan YK, Lai S, Deng Y. Vacancies-rich Z-scheme VdW heterojunction as H 2S-sensitized synergistic therapeutic nanoplatform against refractory biofilm infections. Biomaterials 2025; 320:123258. [PMID: 40090255 DOI: 10.1016/j.biomaterials.2025.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Encapsulated in a self-produced negatively charged extracellular polymeric substance (EPS) matrix, the wound infected bacterial biofilms exhibit formidable resistance to conventional positively charged antibiotics and host's immune responses, which can undoubtedly lead to persistent infections and lethal complications. Nevertheless, developing efficacious strategies to root out stubborn biofilm and promote tissue regeneration still remains a challenge. To resolve this dilemma, a versatile vacancies-rich Z-scheme MoSSe Van der Waals heterojunction (MoSSe VdW HJ) is rationally fabricated as nanoplatform for hydrogen sulfide (H2S)-sensitized synergistic therapy of wound bacterial biofilm infection. The rich anion vacancies and Z-scheme heterostructure make the fabricated MoSSe VdW HJ can effectively augment H2S, localized hyperthermia, and reactive oxygen species production under the stimulation of biofilm microenvironments (BME) and irradiation of 808 nm near-infrared (NIR) light. Therefore, MoSSe VdW HJ is capable to integrate H2S gas, chemodynamic, photothermal, and photodynamic therapies to effectively destroy eDNA and polysaccharides in the EPS matrix, thereby breaching the biofilm barrier to eradicate bacteria and facilitate wound healing. The synergistic strategy exhibits superior anti-biofilm and wound repair effects both in vivo and in vitro, thus providing guideline for the development of BME and NIR light activated synergistic therapeutics to fight against refractory biofilm infections.
Collapse
Affiliation(s)
- Jianwen Dong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shuting Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077, Hong Kong, China
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China.
| |
Collapse
|
4
|
Truszkowska M, Reisenberger E, Kali G, Stengel D, Saleh A, Seybold A, Kipura T, Kwiatkowski M, Bernkop-Schnürch A. Exploring glutathione-decorated micelles for drug delivery: A promise for enhanced cellular uptake. Colloids Surf B Biointerfaces 2025; 252:114664. [PMID: 40174534 DOI: 10.1016/j.colsurfb.2025.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
This study aimed to evaluate the effect of thiolated micelles on the cellular uptake of their payload. Reduced and oxidized glutathione were covalently attached to palmitic acid via amide bond formation. Micelles formed with these thiolated surfactants (MP-GSH and MP-GSSG-P) were evaluated regarding critical micellar concentration (CMC) and hemolytic activity. Cytotoxicity was evaluated on HEK 293 and HeLa cells. Diffusion of micelles in these cells was evaluated by fluorescence correlation spectroscopy (FCS). Furthermore, cellular uptake of micelles containing coumarin-6 as model drug was analyzed by flow cytometry and confocal laser scanning microscopy. CMC of MP-GSSG-P, MP-GSH, and palmitic acid micelles (MPA) was determined to be 0.455 mM, 0.166 mM, and 0.046 mM, respectively. At a concentration of 0.5 % MP-GSSG-P, MP-GSH, and MPA caused around 80 % hemolysis. In HEK cells, MP-GSSG-P exhibited toxicity at a concentration of 0.25 %, while MP-GSH showed toxicity at 0.06 % after 4 hours of incubation. In contrast, HeLa cells were more resilient, with only MP-GSH showing toxicity at 0.25 %. Diffusivity of MP-GSH and MP-GSSG-P within the cells was higher than that of MPA. Cellular uptake studies demonstrated a significantly (p < 0.05) enhanced internalization of MP-GSH and MP-GSSG-P, that was 112-fold and 270-fold higher in HEK 293 cells and 12-fold and 60-fold higher in HeLa cells when compared to MPA. These findings suggest that MP-GSH and MP-GSSG-P could serve as promising vehicles for enhancing cellular uptake of drugs.
Collapse
Affiliation(s)
- Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Elsa Reisenberger
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari, Southeast Sulawesi 93231, Indonesia
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, Innsbruck 6020, Austria
| | - Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| |
Collapse
|
5
|
Fan Z, Hong R, Li S, Kong L, Zhou Q, Ma T, Chen H, Pan C. Embryonic exposure to GenX causes reproductive toxicity by disrupting the formation of the blood-testis barrier in mouse offspring. Toxicology 2025; 515:154161. [PMID: 40268268 DOI: 10.1016/j.tox.2025.154161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
As a replacement for perfluorooctanoic acid, hexafluoropropylene oxide dimer acid, commercially referred to as "GenX", has attracted significant attention. However, a comprehensive understanding of the reproductive systems of male offspring exposed to GenX is lacking. This study aimed to investigate how embryonic exposure to GenX affects the reproductive development of male offspring and the underlying mechanisms. We administered GenX daily via gavage (2 mg/kg body weight/day) to the mice from day 12.5 of pregnancy until delivery. Our results suggested that embryonic exposure to GenX led to delayed onset of puberty in male offspring, with destruction of the testicular structure, disruption of the blood-testis barrier, decreased serum testosterone levels, decreased sperm count, impaired sperm motility, and increased rates of sperm abnormalities. We investigated the mechanism of blood-testis barrier breakdown in vitro by treating Sertoli cells (TM4) with GenX. GenX exposure caused the accumulation of senescent TM4 cells, decreased their glutathione (GSH) levels, and increased their oxidized glutathione levels. GenX inhibited glutaminase activity in TM4 cells, leading to decreased GSH synthesis, increased intracellular oxidative stress, and subsequent TM4 cell senescence, ultimately compromising the blood-testis barrier. Our findings indicated that embryonic exposure to GenX may cause Sertoli cell senescence by altering glutamine metabolism, disrupting the blood-testis barrier, and resulting in abnormal reproductive development in male offspring.
Collapse
Affiliation(s)
- Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Runyang Hong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Key Lab of Non-Coding RNA Basic and Clinical Translational Research, Yangzhou University, Yangzhou, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Key Lab of Non-Coding RNA Basic and Clinical Translational Research, Yangzhou University, Yangzhou, China
| | - Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Key Lab of Non-Coding RNA Basic and Clinical Translational Research, Yangzhou University, Yangzhou, China
| | - Qiyue Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Key Lab of Non-Coding RNA Basic and Clinical Translational Research, Yangzhou University, Yangzhou, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Key Lab of Non-Coding RNA Basic and Clinical Translational Research, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Gao Y, Li J, Wang W, Tian Y. Molecular and physiological responses of black rockfish (Sebastes schlegelii) to short- and medium-term ocean acidification. ENVIRONMENTAL RESEARCH 2025; 275:121431. [PMID: 40118312 DOI: 10.1016/j.envres.2025.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Ocean acidification (OA) is one of the greatest threats to marine species, with widespread impacts on their physiological functions. However, the adaptive capacities of many marine species to OA and the underlying mechanisms remain unclear. In this study, we investigated the effects of short-term (4 days) and medium-term (30 days) CO2 exposure (pH 8.0, 7.6, and 7.3) on black rockfish (Sebastes schlegelii), focusing on histopathological changes in gill tissues, ion transport biomarkers, oxidative stress indicators, and transcriptomic responses. The results showed that both short-term and medium-term OA induced significant morphological changes in gill tissues, including epithelial lifting, hyperplasia, hypertrophy, and lamellar clubbing, which are likely adaptive mechanisms for maintaining homeostasis. Both Na+/K+-ATPase and carbonic anhydrase (CA) activities increased significantly in both short- and medium-term exposure, while Ca2+-ATPase activity was elevated only in the short-term, suggesting differential enzyme regulation over time to sustain ionic balance. Additionally, oxidative stress indicators (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx)) were significantly elevated after both exposure durations, indicating that the antioxidant defense system was activated. Moreover, the integrated biomarker response (IBR) index further indicated that the stress response was more pronounced during short-term exposure. Transcriptomic analysis reveals significant alterations in pathways related to calcium signaling, cytoskeletal structure, energy metabolism, and oxidative stress following short-term exposure. In contrast, medium-term exposure leads to significant enrichment of pathways associated with cell-environment interactions, highlighting the molecular adaptations of S. schlegelii to OA-induced stress. These findings provide valuable insights into the mechanisms of OA tolerance in S. schlegelii and contribute to understanding the adaptability of marine species in future ocean environments.
Collapse
Affiliation(s)
- Yunhong Gao
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Jianchao Li
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Wenwen Wang
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Deep Sea and Polar Fisheries Research Center and Key Laboratory of Mariculture, Ministry of Education, Ocean Univerisity of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ocean University of China, Qingdao, China.
| |
Collapse
|
7
|
Avellaneda Penatti NM, Barros MH, Gomes F, Soares Netto LE, de Jesus Maciel K, Viala VL, Viana AM, Demasi M. Decreased levels of Prx1 are associated with proteasome impairment and mitochondrial dysfunction in the yeast Saccharomycescerevisiae. Arch Biochem Biophys 2025; 768:110406. [PMID: 40180294 DOI: 10.1016/j.abb.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In previous studies we reported the S-glutathionylation at Cys residues (C76 and C221) of the α5 subunit of the 20S catalytic unit of the yeast proteasome, later mutated to Ser residues. Notably, the strain with the α5-C76S mutation exhibited a reduced chronological life span when grown in glucose as the carbon source. In the present study, we aimed to explore the interplay between mitochondria and the proteasome, considering the α5-C76S-mutated strain as a model of proteasomal impairment. For this purpose, we focused on the growth of the C76S strain in glycerol/ethanol as the carbon source. C76S strain exhibited poor growth and morphological alterations under these conditions, while the proteasomal activity was significantly decreased. We observed decreased activity of the 30S and 26S complexes in the C76S strain, which were accompanied by increased pool of poly-ubiquitinylated proteins. Regarding mitochondrial function, O2 consumption and the concentration of total cellular ATP were significantly increased in the C76S strain. However, levels of peroxiredoxin-1 (Prx1), an important mitochondrial Cys-based peroxidase, were reduced in the C76S strain. In parallel, H2O2 release by mitochondrial respiration was augmented as well as decreased GSH/GSSG ratios, an important parameter of oxidative stress. These findings suggest that, despite increased O2 consumption and ATP production, the mitochondria from the C76S strain promotes an increased oxidative stress most probably due to decreased Prx1 levels. DNA fragmentation and increased cytoplasmic cytochrome C, two apoptotic markers, were observed in the C76S strain. To assess the role of Prx1 in the survival of the C76S strain, we overexpressed this peroxiredoxin in both wild type and C76S strains, which resulted in the partial recovery of the C76S strain phenotype and proteasome activity. The relationship between decreased Prx1 concentration and proteasome impairment remains under investigation.
Collapse
Affiliation(s)
| | - Mário Henrique Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | | | | | - Ana Mara Viana
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brazil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Chen D, Zhong J, Jiang W, Wu P, Ma Y, Liu Y, Ren H, Jin X, Zhou X, Feng L. Dietary phytic acid damages the intestinal mucus barrier and structural integrity in the grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110300. [PMID: 40147507 DOI: 10.1016/j.fsi.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Phytic acid (PA) is a common anti-nutritional factor found in plant-based protein sources. Our previous research demonstrated that dietary PA negatively affected the growth of grass carp. Intestinal health plays a vital role in the growth, development, and disease resistance of fish. Therefore, in order to comprehensively reveal the impact of PA on the intestines of fish, we further used the grass carp to investigate the impact of PA on the intestines of fish. The 540 grass carp (120.56 ± 0.51 g) were separated into 6 groups and provided with diets that included varying levels of PA (0, 0.8, 1.6, 2.4, 3.2, and 4.0 %) over 60 days. The findings suggested that a higher level of PA in diet, particularly at 3.2 %-4.0 %, led to a decrease in the goblet cell number as well as a reduced expression of mucin 2 and mucin 3 in the intestine. Concurrently, there was an increase in 8-hydroxy-2'-deoxyguanosine, active oxygen species, protein carbonyl, and malondialdehyde. These changes were accompanied by lower anti-superoxide anion activity, total antioxidant capacity, and anti-hydroxyl radical activity, as well as lower activity and gene expression of antioxidant enzymes. The DNA fragmentation in the intestine increased. Additionally, the bcl-2-associated X protein, Fas-ligand, apoptotic protease activating factor-1, cysteine aspartate protease (caspase) 8, caspase 9, and caspase 3 gene expression was increased, while the expression of B-cell lymphoma 2, myeloid cell leukemia-1b, and inhibitor of apoptosis protein was decreased. The gene expression of tight junction-associated molecules (such as claudin-b, -3c, and -7b and zonula occludens-2b) was decreased, whereas the expression of claudin-15b and myosin light chain kinase was increased. These data suggested that dietary PA may compromise the intestinal mucus barrier and the structural integrity of grass carp by inducing a goblet cell number decrease, causing oxidative damage, promoting apoptosis, and disrupting tight junctions. These results indicated that we must consider the potential threat posed by PA to the intestine of grass carp when utilizing plant-based protein sources.
Collapse
Affiliation(s)
- Daiyu Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yaobin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
9
|
Sedrati F, Bouzahouane H, Menaa M, Khaldi F, Bouarroudj T, Gzara L, Bensalem M, Laouar O, Sleimi N, Nasri H, Silva CO, Ouali K. Histological and biochemical evidence of Cr 2O 3 and Al 2O 3 nanoparticles toxicity in the marine gastropod Stramonita haemastoma: A preliminary application of integrated biomarker response (IBR). Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110159. [PMID: 40010532 DOI: 10.1016/j.cbpc.2025.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Nanoparticles (NPs) have actively contributed to nanotechnologies advancement over the last years, due to the unique properties they possess compared to their pristine counterparts. Consequently, NPs found wide applications in various fields such as the medical, biomedical, chemical, agro-food industries, and cosmetology. NP's extensive uses could lead to their release into the environment, especially in the marine ecosystems, considered as NPs sink, resulting in harmful effects on organisms. Concerns regarding NPs' toxicity in aquatic organisms have emerged, however, several points remain unexplored. In the present study, the toxicity of chromium oxide (Cr2O3 = 42 nm) and aluminum oxide (Al2O3 = 38 nm) NPs (1 mg/L, 2.5 mg/L, and 5 mg/L) in the gills of the marine gastropod Stramonita haemastoma was assessed through time (7, 14, and 28 days) by a multi-biomarker, Integrated biomarkers response (IBR), and Histological analysis. Both NPs induced varied changes in the antioxidant system, suggesting the onset of oxidative stress marked by superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE), metallothionein (MT), and malondialdehyde (MDA) levels imbalance. Varied histological alterations in the gills of S. haemastoma were also observed including inflammation, hypertrophy, and lamellar fusion, IBR proved to be a promising tool for assessing NPs toxicity in gastropods. In this study results indicated the co-response of reduced glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), CAT, SOD, and MT after 28 days of exposure. S. haemastoma showed sensitivity to all exposure concentrations of NPs thus validating this species as a suitable indicator of NPs contamination and toxicity.
Collapse
Affiliation(s)
- Fateh Sedrati
- Laboratory of Sciences and Technology of Water and Environment. Mohamed Cherif Messaadia University, BP 1553, 41000 Souk Ahras, Algeria. https://x.com/fateh_sedr34395
| | - Hana Bouzahouane
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras 41000, Algeria; Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba 23000, Algeria.
| | - Mohcen Menaa
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras 41000, Algeria
| | - Fadila Khaldi
- Laboratory of Sciences and Technology of Water and Environment. Mohamed Cherif Messaadia University, BP 1553, 41000 Souk Ahras, Algeria; Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras 41000, Algeria
| | - Tayeb Bouarroudj
- Center for Scientific and Technical Research in Physico-Chemical Analyzes (CRAPC), BP384, Bou-Ismail, Tipaza, RP 42004, Algeria
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box: 80200, Jeddah 21589, Saudi Arabia
| | - Mounira Bensalem
- University August 20, 1955, Skikda, Bp26, El Hadaik, Skikda, Algeria
| | - Omar Laouar
- Central laboratory of pathology and molecular biology, CHU, Annaba, Algeria; Faculty of Medicine, Badji Mokhtar University, BP 12, El Hadjar, Annaba 23000, Algeria
| | - Noomene Sleimi
- RME-Laboratory of Resources, Materials, and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Hichem Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Carla O Silva
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba 23000, Algeria
| |
Collapse
|
10
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
11
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Zhao Y, Xu T, Wu Z, Li N, Liang Q. Rebalancing redox homeostasis: A pivotal regulator of the cGAS-STING pathway in autoimmune diseases. Autoimmun Rev 2025; 24:103823. [PMID: 40286888 DOI: 10.1016/j.autrev.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Autoimmune diseases (ADs) arise from the breakdown of immune tolerance to self-antigens, leading to pathological tissue damage. Proinflammatory cytokine overproduction disrupts redox homeostasis across diverse cell populations, generating oxidative stress that induces DNA damage through multiple mechanisms. Oxidative stress-induced alterations in membrane permeability and DNA damage can lead to the recognition of double-stranded DNA (dsDNA), mitochondrial DNA (mtDNA) and micronuclei-DNA (MN-DNA) by DNA sensors, thereby initiating activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. While previous reviews have characterized cGAS-STING activation in autoimmunity, the reciprocal regulation between redox homeostasis and cGAS-STING activation remains insufficiently defined. This narrative review examines oxidative stress-mediated DNA damage as a critical driver of pathological cGAS-STING signaling and delineates molecular mechanisms linking redox homeostasis to autoimmune pathogenesis. Furthermore, we propose therapeutic strategies that combine redox restoration with the attenuation of aberrant cGAS-STING activation, thereby establishing a mechanistic foundation for precision interventions in autoimmune disorders. METHODS: The manuscript is formatted as a narrative review. We conducted a comprehensive search strategy using electronic databases such as PubMed, Google Scholar and Web of Science. Various keywords were used, such as "cGAS-STING," "Redox homeostasis," "Oxidative stress," "pentose phosphate pathway," "Ferroptosis," "mtDNA," "dsDNA," "DNA damage," "Micronuclei," "Reactive oxygen species," "Reactive nitrogen species," "Nanomaterial," "Autoimmune disease," "Systemic lupus erythematosus," "Type 1 diabetes," "Rheumatoid arthritis," "Multiple sclerosis," "Experimental autoimmune encephalomyelitis," "Psoriasis," etc. The titles and abstracts were reviewed for inclusion into this review. After removing duplicates and irrelevant studies, 174 articles met inclusion criteria (original research, English language).
Collapse
Affiliation(s)
- Yuchen Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Zhaoshun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Wang S, Zhang J, Fan M, Dong Z, Li L, Xu J, Yin W, Xu X. Gut microbiota and relevant metabolites analysis in perianal abscess of infants. BMC Microbiol 2025; 25:333. [PMID: 40426060 DOI: 10.1186/s12866-025-04020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
OBJECTIVES To explore the characteristics of the gut microbiota and metabolites in infants with perianal abscess compared with healthy infants, thereby providing a reference for treating perianal abscess in infants. METHODS The gut microbiota of 19 infants with perianal abscess and 21 healthy infants were compared using 16S rRNA gene sequencing. Metabolite compositions were compared between a subset of 16 infants with perianal abscess and 8 healthy infants. RESULTS Both groups showed significant differences in the abundance of the genera Ruminococcus (P = 0.002) and Parasutterella (P = 0.004). Five metabolic pathways, namely, steroid biosynthesis, one-carbon pool by folate, synthesis, secretion, and action of the parathyroid hormone, cholesterol metabolism, and tuberculosis, were significantly enriched. Three metabolites, namely, calcidiol, dihydrofolic acid, and taurochenodesoxycholic acid, were involved in these enriched pathways. CONCLUSION The study revealed significant differences in the composition of the gut microbiota and metabolites between healthy infants and those with perianal abscess, suggesting a potential association between the gut microbiota and infantile perianal abscess.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Jingfeng Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Mingfeng Fan
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Zhenmei Dong
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Laian Li
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Juan Xu
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China
| | - Wanbin Yin
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China.
| | - Xiangjun Xu
- Department of Anorectal Surgery, Affiliated Hospital of Jining Medical University, Jining, 272029, China.
| |
Collapse
|
14
|
Mao L, Lu J, Wen X, Song Z, Sun C, Zhao Y, Huang F, Chen S, Jiang D, Che W, Zhong C, Yu C, Li K, Lu X, Shi J. Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem Soc Rev 2025. [PMID: 40433941 DOI: 10.1039/d5cs00083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cuproptosis, a novel form of copper (Cu)-dependent programmed cell death, is induced by directly binding Cu species to lipoylated components of the tricarboxylic acid (TCA) cycle. Since its discovery in 2022, cuproptosis has been closely linked to the field of materials science, offering a biological basis and bright prospects for the use of Cu-based nanomaterials in various disease treatments. Owing to the unique physicochemical properties of nanomaterials, Cu delivery nanosystems can specifically increase Cu levels at disease sites, inducing cuproptosis to achieve disease treatment while minimizing the undesirable release of Cu in normal tissues. This innovative nanomaterial-mediated cuproptosis, termed as "nanocuproptosis", positions at the intersection of chemistry, materials science, pharmaceutical science, and clinical medicine. This review aims to comprehensively summarize and discuss recent advancements in cuproptosis across various diseases, with a particular focus on cancer. It delves into the biochemical basis of nanomaterial-mediated cuproptosis, the rational design for cuproptosis inducers, strategies for enhancing therapeutic specificity, and cuproptosis-centric synergistic cancer therapeutics. Beyond oncology, this review also explores the expanded applications of cuproptosis, such as antibacterial, wound healing, and bone tissue engineering, highlighting its great potential to open innovative therapeutic strategies. Furthermore, the clinical potential of cuproptosis is assessed from basic, preclinical to clinical research. Finally, this review addresses current challenges, proposes potential solutions, and discusses the future prospects of this burgeoning field, highlighting cuproptosis nanomedicine as a highly promising alternative to current clinical therapeutics.
Collapse
Affiliation(s)
- Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ji Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyu Wen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyi Song
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cai Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanru Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fang Huang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dongyang Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhong
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiangyu Lu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jianlin Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
15
|
Yang Y, Ma Y, Fan S, Zhu J, Ye B, Zhang R, Li J, Li H, Zheng Z, Li Y, Lv L. MLN4924 suppresses tumor metabolism and growth of clear cell renal cell carcinoma by stabilizing nuclear FBP1. Cell Death Discov 2025; 11:253. [PMID: 40419474 DOI: 10.1038/s41420-025-02426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 05/28/2025] Open
Abstract
Fructose-1, 6-bisphosphatase (FBP1) is a tumor suppressor and frequently deficient in various cancers, including clear cell renal cell carcinoma (ccRCC). VHL inactivation mutations are usually observed in ccRCC, which can lead to abnormal activation of the HIF signaling pathway. FBP1 could enter the nucleus and restrain HIF function in a non-enzymatic manner. However, its regulatory mechanism in ccRCC tumorigenesis remains poorly understood. Here, we report that nuclear FBP1 is degraded through the ubiquitin-proteasome pathway, and CUL4B acts as Cullin-RING E3 ubiquitin ligase (CRL) to promote the degradation of FBP1 in nucleus, while the neddylation inhibitor MLN4924 could inactivate CUL4B E3 ligase, block proteasomal degradation of FBP1 and suppress HIF target gene expression, including GLUT1, LDHA, PDK1 and VEGF, leading to decreased glucose uptake and lactate and NADPH production, thereby repressing tumor growth of ccRCC. Furthermore, MLN4924 sensitizes ccRCC to γ-glutamylcysteine synthetase inhibitor Buthionine sulfoximine (BSO) treatment in vivo. Collectively, these findings proposed that MLN4924 could inhibit the tumor growth of VHL deficiency-driven ccRCC by stabilizing FBP1, providing new target and strategy for clinic treatment of ccRCC.
Collapse
Affiliation(s)
- Yajing Yang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Ma
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shiyin Fan
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Zhu
- Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Bin Ye
- Department of paediatrics, Taizhou Central Hospital(Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Ruonan Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaxi Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongchen Li
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhencang Zheng
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China.
| | - Yufeng Li
- Department of Pediatric Nephrology, Rheumatology and Immunology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Lei Lv
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Li X, Yao L, Cho YC, Lee DY, Cho N, Yoo G, Choi SY, Yoon S, Lim JS. Alleviation of LPS-induced oxidative stress and inflammation by lesbicoumestan (7) via the increase of Nrf2 expression in mouse Kupffer cells. Toxicol Appl Pharmacol 2025; 501:117405. [PMID: 40414571 DOI: 10.1016/j.taap.2025.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/18/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Lesbicoumestans are a class of bioactive compounds isolated from the roots of Lespedeza bicolor (L. bicolor). These compounds have been reported to exhibit anticancer and antiproliferative activities. In this study, our primary focus was to examine the antioxidant capabilities of lesbicoumestan (7) (LC-7), a newly isolated coumestan from roots of L. bicolor, using lipopolysaccharide (LPS)-stimulated immortalized mouse Kupffer cells (ImKCs) as the experimental model. The investigation revealed that LC-7 played a pivotal role in inhibiting the production of reactive oxygen species (ROS). Additionally, LC-7 effectively restored the imbalanced glutathione(GSH)/glutathione disulfide ratio and enhanced the activity of glutathione peroxidase (GPx) following cellular exposure to LPS. Moreover, our investigation revealed that LC-7 exhibited the capacity to enhance the expression of heme oxygenase-1 (HO-1), leading to inhibition of nitric oxide (NO) and proinflammatory cytokines production induced by LPS. Notably, LC-7 did not significantly impact the nuclear factor kappa B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Intriguingly, LC-7 modulated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway by direct interaction with Kelch-like-ECH-associated protein 1 (Keap1). These findings suggest that LC-7 possesses antioxidant and anti-inflammatory properties in LPS-stimulated ImKCs by upregulating Nrf2 expression.
Collapse
Affiliation(s)
- Xiangying Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Da Young Lee
- R&D Center, CUOME BIO Co., Ltd., Sandan-gil, Hwasun-eup, Hwasun-gun, Jeollanam-do 58141, Republic of Korea
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Somy Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea.
| | - Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
Agbadua OG, Kúsz N, Berkecz R, Vass E, Csámpai A, Tóth G, Balogh GT, Marcourt L, Wolfender JL, Queiroz EF, Hunyadi A. New Insights into the French Paradox: Free Radical Scavenging by Resveratrol Yields Cardiovascular Protective Metabolites. J Med Chem 2025; 68:10031-10047. [PMID: 40331971 DOI: 10.1021/acs.jmedchem.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Resveratrol was subjected to a diversity-oriented synthesis using oxidative transformations by various biorelevant, biomimetic, or biomimetic-related chemical reagents. Using a combined strategy of ultrahigh-resolution profiling, bioactivity screening, and bioactivity-guided isolation, 19 metabolites were obtained. The compounds were tested for their in vitro enzyme inhibitory activity on angiotensin-1 converting enzyme (ACE), cyclooxygenase-1 and -2, and 15-lipoxygenase (LOX), and evaluated for their relevant drug-like properties in silico. The compounds demonstrated a generally increased cardiovascular protective and anti-inflammatory potential and better drug-likeness compared to resveratrol. Trans-δ-viniferin (6) was identified as a competitive, C-domain-selective ACE inhibitor that is over 20 times more potent than resveratrol. Further, trans-ε-viniferin (2) acted as an over 40 times stronger LOX inhibitor than resveratrol. While our results cannot be directly translated to the health benefits of dietary resveratrol consumption without further studies, it is demonstrated that biologically relevant oxidative environments transform resveratrol into potent cardiovascular protective and anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Orinamhe G Agbadua
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi str. 4, H-6720 Szeged, Hungary
| | - Elemér Vass
- Department of Organic Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, H-1085 Budapest, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös str. 6, H-6720 Szeged, Hungary
- Graduate Institute of Natural Products, Shih-Chuan first Rd. 100, Kaohsiung 807, Taiwan
| |
Collapse
|
18
|
Zhang J, Jiang WD, Wu P, Liu Y, Ma YB, Shi HQ, Kuang SY, Li SW, Tang L, Zhou XQ, Feng L. Dietary addition of fraxetin improved intestinal structure and growth performance in juvenile grass carp (Ctenopharyngodon idella): as a potential novel phytogenic feed additive. J Nutr Biochem 2025:109969. [PMID: 40412568 DOI: 10.1016/j.jnutbio.2025.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The well-being and development of fish are affected to varying degrees under the intensive aquaculture model, and the use of Chinese herbs for aquaculture disease control and feed additives has received increasing attention. This study examined fraxetin supplementation in juvenile grass carp to investigate its effects on growth and intestinal structure. There were 1080 grass carp (11.58 ± 0.01 g) assigned to 6 treatments, fed with fraxetin (0, 3.9, 7.9, 15.8, 31.5, and 63.1 mg/kg) for 60 days in each treatment. In our study, appropriate fraxetin significantly increased final body weight (FBW), percent weight gain (PWG), and specific growth rate (SGR) compared to the unadded group (P < 0.05), but did not affect feed efficiency (FE) (P > 0.05). The administration of 7.9 mg/kg of fraxetin significantly improved fish intestinal development and body composition. Appropriate dietary fraxetin significantly enhanced intestinal digestive enzymes and brush border enzyme activity (P < 0.05), decreased serum diamine oxidase (DAO) levels (P < 0.05), and decreased intestinal cell apoptosis (P < 0.05). Appropriate levels of fraxetin inhibited the RhoA/ROCK signaling pathway while upregulating both mRNA and protein expression of tight junction (TJ) and adherens junction (AJ) (P < 0.05). These changes significantly improved apical junction complex (AJC) integrity. In conclusion, dietary supplementation with appropriate levels of fraxetin added to the diets had a facilitating effect on digestion and absorption, improved intestinal structure, and promoted fish growth performance in juvenile grass carp. In addition, the optimal dietary fraxetin levels were evaluated to be 6.06 and 7.79 mg/kg based on linear regression analysis of PWG and DAO, respectively.
Collapse
Affiliation(s)
- Jie Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yao-Bin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - He-Qun Shi
- Guangzhou Cohoo Biotech Research & Development Centre, Guangzhou, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
19
|
Wu Y, Kawamoto Y, Sun J, Takahashi Y, Higuchi Y, Takakura Y. Improvement of Drug Release from an Aptamer Drug Conjugate Using Reductive-sensitive Linkers for Tumor-targeted Drug Delivery. AAPS J 2025; 27:95. [PMID: 40397061 DOI: 10.1208/s12248-025-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
The selective delivery of small molecule compounds such as Gemcitabine to tumor cells is a promising methodology for enhancing therapeutic efficacy and attenuating the side effects of anticancer drugs. Aptamers are useful as target-directed ligands for tumor-selective drug delivery due to their ability to bind specific proteins. However, the drug must be released from the aptamer after the conjugate is taken up by the cell to exert its pharmacological effect. In this study, we designed and synthesized a conjugate in which a linker cleaved by glutathione, which is highly expressed in tumor cells, was inserted between the aptamer (AS1411) and Gemcitabine. Almost all Gemcitabine was released from the conjugate after 30 min in the presence of 6 mM glutathione. AS1411 is known to bind to nucleolin, which is highly expressed on tumor cells. The cytotoxicity of the AS1411 and Gemcitabine conjugate with a disulfide bond on A549 cells was higher than that of the conjugate without a disulfide bond. Furthermore, the cytotoxicity of the disulfide-linked conjugate of AS1411 and Gemcitabine was higher in A549 cells than in MCF10A cells, which were used as the model of normal cells. These results indicate that disulfide conjugation enhanced the tumor cell-selective cytotoxicity of Gemcitabine with AS1411.
Collapse
Affiliation(s)
- You Wu
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Kawamoto
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan.
| | - Yoshinobu Takakura
- Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
20
|
Chen D, Guo Z, Yao L, Sun Y, Dian Y, Zhao D, Ke Y, Zeng F, Zhang C, Deng G, Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol 2025; 84:103686. [PMID: 40424719 DOI: 10.1016/j.redox.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS), regulators of cellular behaviors ranging from signaling to cell death, have complex production and control mechanisms to maintain a dynamic redox balance under physiological conditions. Redox imbalance is frequently observed in tumor cells, where ROS within tolerable limits promote oncogenic transformation, while excessive ROS induce a range of regulated cell death (RCD). As such, targeting ROS-mediated regulated cell death as a vulnerability in cancer. However, the precise regulatory networks governing ROS-mediated cancer cell death and their therapeutic applications remain inadequately characterized. In this Review, we first provide a comprehensive overview of the mechanisms underlying ROS production and control within cells, highlighting their dynamic balance. Next, we discuss the paradoxical nature of the redox system in tumor cells, where ROS can promote tumor growth or suppress it, depending on the context. We also systematically explored the role of ROS in tumor signaling pathways and revealed the complex ROS-mediated cross-linking networks in cancer cells. Following this, we focus on the intricate regulation of ROS in RCD and its current applications in cancer therapy. We further summarize the potential of ROS-induced RCD-based therapies, particularly those mediated by drugs targeting specific redox balance mechanisms. Finally, we address the measurement of ROS and oxidative damage in research, discussing existing challenges and future prospects of targeting ROS-mediated RCD in cancer therapy. We hope this review will offer promise for the clinical application of targeting oxidative stress-mediated regulated cell death in cancer therapy.
Collapse
Affiliation(s)
- Danyao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhe Ke
- The First Affliated Hospital of Shihezi University, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China.
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Chang L, Qin C, Wu J, Jiang H, Xu Q, Chen J, Xu X, Zhang X, Guan M, Deng X. The crosstalk between glutathione metabolism and non-coding RNAs in cancer progression and treatment resistance. Redox Biol 2025; 84:103689. [PMID: 40403492 DOI: 10.1016/j.redox.2025.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025] Open
Abstract
Excessive reactive oxygen species (ROS) are closely associated with the initiation and progression of cancers. As the most abundant intracellular antioxidant, glutathione (GSH) plays a critical role in regulating cellular ROS levels, modulating physiological processes, and is intricately linked to tumor progression and drug resistance. However, the underlying mechanisms remain not fully elucidated. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of GSH levels. Different ncRNAs modulate various pathways involved in GSH metabolism, and these regulatory targets have the potential to serve as therapeutic targets for enhancing cancer treatment. In this review, we summarize the functions of GSH metabolism and highlight the significance of ncRNA-mediated regulation of GSH in cancer progression, drug resistance, and clinical applications.
Collapse
Affiliation(s)
- Lu Chang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Chao Qin
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jianbo Wu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Mattos R, Fioretto MN, Dos Santos SAA, Ribeiro IT, Emílio-Silva MT, Portela LMF, Lima CAH, Seiva FRF, Justulin LA. Maternal malnutrition induces inflammatory pathways and oxidative stress in the dorsolateral prostate of male offspring rats. Biogerontology 2025; 26:109. [PMID: 40381043 DOI: 10.1007/s10522-025-10251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Maternal conditions during pregnancy can influence the long-term health of offspring. In particular, maternal malnutrition (MM), such as protein restriction, affects the development of several organs, including the male reproductive system. This study examined how a low-protein maternal diet impacts the structure and function of the dorsolateral prostate (DLP) in aging male rats. Male offspring were divided into two groups: A control group (CTR), whose mothers received a normal protein diet (17%) during pregnancy and lactation, and a low-protein group (GLLP), whose mothers received a low-protein diet (6%) during the same period. At 540 days of age, the offspring were euthanized, and the DLPs were collected for analysis. The GLLP group showed significant structural changes in the DLP, including increased epithelial and reduced stromal compartments. These rats also had lower levels of probasin (a prostate-specific protein), along with a higher number of mast cells, CD68 + macrophages, and IL-10 protein expression, indicating inflammation. Antioxidant balance was disrupted: Glutathione (GSH) levels increased, while catalase (CAT) and superoxide dismutase (SOD) decreased. The expression of SIRT1, a protein linked to aging and oxidative stress control, was reduced. In silico analysis using human prostate cancer data (PRAD-TCGA) revealed that biological pathways related to oxidative stress, immune response, and tissue remodeling were disrupted in both the rat model and human prostate cancer. In summary, maternal protein restriction leads to long-term changes in the dorsolateral prostate of aging male offspring, including inflammation, oxidative stress, and tissue remodeling. The reduced expression of SIRT1 may play a key role in these effects.
Collapse
Affiliation(s)
- Renato Mattos
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Luis A Justulin
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil.
| |
Collapse
|
23
|
Zhao T, Chen H, Song Z, Hou Y, Xu Y, Wang Q, Liu Q. Red emitting carbon dots for detection of endogenous glutathione with fluorescence enhancement and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125901. [PMID: 39961256 DOI: 10.1016/j.saa.2025.125901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Glutathione (GSH) as a key endogenous antioxidant plays the essential role in many bioprocesses, and the lack of GSH would result in a series of diseases. In order to develop a fluorescent indicator for monitoring the fluctuation of GSH and provide information for clinical diagnosis, the red fluorescence carbon dots containing double bonds (DB-CDs) were developed by one-pot hydrothermal process. Owing to photoinduced electron transfer (PET) process between the surface amine groups and the carbon core, the DB-CDs presented the weak fluorescence. Upon addition of GSH, PET process was inhibited by addition reaction between sulfhydryl group of GSH and double bonds, and the bright red fluorescence was exhibited with an emission maximum (λflmax) of 630 nm. A good linear relationship was exhibited in the range of 0.12-75 μM with the detection limit as low as 34.6 nM. Moreover, the cell imaging and the fast kinetic data all demonstrated that the DB-CDs could detect the endogenous GSH without interferences from metal ions and other amino acids, suggesting that the DB-CDs could be used as fluorescence probe for GSH detection in living systems.
Collapse
Affiliation(s)
- Tongtong Zhao
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Huilin Chen
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Ziyan Song
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Yujia Hou
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Yuan Xu
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Qin Wang
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China
| | - Qiaoling Liu
- College of Chemistry and Materials, Taiyuan Normal University, Shanxi 030619, China.
| |
Collapse
|
24
|
Dang D, Deogharkar A, McKolay J, Smith KS, Panwalkar P, Hoffman S, Tian W, Ji S, Azambuja AP, Natarajan SK, Lum J, Bayliss J, Manzeck K, Sweha SR, Hamanishi E, Pun M, Patel D, Rau S, Animasahun O, Achreja A, Ogrodzinski MP, Diessl J, Cotter J, Hawes D, Yang F, Doherty R, Franson AT, Hanaford AR, Eberhart CG, Raabe EH, Orr BA, Wechsler-Reya RJ, Chen B, Lyssiotis CA, Shah YM, Lunt SY, Banerjee R, Judkins AR, Prensner JR, Koschmann C, Waszak SM, Nagrath D, Simoes-Costa M, Northcott PA, Venneti S. Isocitrate dehydrogenase 1 primes group-3 medulloblastomas for cuproptosis. Cancer Cell 2025:S1535-6108(25)00172-2. [PMID: 40378837 DOI: 10.1016/j.ccell.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
MYC-driven group-3 medulloblastomas (MBs) are malignant pediatric brain cancers without cures. To define actionable metabolic dependencies, we identify upregulation of dihydrolipoyl transacetylase (DLAT), the E2-subunit of pyruvate dehydrogenase complex (PDC) in a subset of group-3 MB with poor prognosis. DLAT is induced by c-MYC and targeting DLAT lowers TCA cycle metabolism and glutathione synthesis. We also note upregulation of isocitrate dehydrogenase 1 (IDH1) gene expression in group-3 MB patient tumors and suppression of IDH1 epigenetically reduces c-MYC and downstream DLAT levels in multiple c-MYC amplified cancers. DLAT is a central regulator of cuproptosis (copper-dependent cell death) induced by the copper ionophore elesclomol. DLAT expression in group-3 MB cells correlates with increased sensitivity to cuproptosis. Elesclomol is brain-penetrant and suppresses tumor growth in vivo in multiple group-3 MB animal models. Our data uncover an IDH1/c-MYC dependent vulnerability that regulates DLAT levels and can be targeted to kill group-3 MB by cuproptosis.
Collapse
Affiliation(s)
- Derek Dang
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Akash Deogharkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John McKolay
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Simon Hoffman
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Wentao Tian
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sunjong Ji
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ana P Azambuja
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joanna Lum
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katie Manzeck
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stefan R Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Hamanishi
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Diya Patel
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sagar Rau
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jutta Diessl
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Allison R Hanaford
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eric H Raabe
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brent A Orr
- Division of Neuropathology, Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John R Prensner
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian M Waszak
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcos Simoes-Costa
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Liang Y, Cao X, Ma Z, Ma C, Wen H, Li M, Wu H, Liu T, Lu X, Lv H. Enterohepatic circulation-inspired nano-platform for less-hepatotoxicity hepatocellular carcinoma therapy. Int J Pharm 2025; 678:125693. [PMID: 40354905 DOI: 10.1016/j.ijpharm.2025.125693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis because it is often diagnosed after clinical deterioration and lacks effective therapies. The advent of tumor-targeting therapeutics provided a promise in the landscape of advanced HCC but it is still ongoing due to the indistinguishable receptor expression and receptor abundance between hepatocytes and HCC cells. Herein, a GSH-responsive prodrug, CA-PEG-ss-PTX, was synthesized with cholic acid (CA), paclitaxel (PTX) and polyethylene glycol (PEG) and further applied to physically encapsulate PTX, forming PTX/CA-PEG-ss-PTX (PTX/CPSP). PTX/CPSP gained enhanced liver accumulation via CA-mediated active targeting. After internalization in HCC cells, PTX/CPSP could rapidly disassociate and release PTX in response to the high-level GSH for tumor killing. However, it could remain intact in hepatocytes. Furthermore, CA-modification significantly increased the biliary excretion of PTX/CPSP and performed a "fast in ∼ fast out" drug delivery pattern in hepatocytes, thereby reducing the toxicity caused by excessive drug accumulation. Finally, PTX/CPSP displayed superior anti-HCC efficacy with tolerable toxicity. It is worth noting that PTX/CPSP achieved satisfied PTX loading efficiency (more than 30 %) by both chemical synthesis and physical encapsulation. In summary, with all parts being clinically available or endogenous, PTX/CPSP is considered a clinical potential HCC treatment strategy.
Collapse
Affiliation(s)
- Yiping Liang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China; Phase I Clinical Trial Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000 Jiangsu, China
| | - Xinyi Cao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China
| | - Zhiwen Ma
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China; School of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006 Guangdong, China
| | - Chengge Ma
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China; Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016 Liaoning, China
| | - Haitong Wen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China
| | - Meng Li
- Yantai Service Center For Drug Evaluation & Inspection, Yantai 264003 Shandong, China
| | - Hangyi Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China
| | - Ting Liu
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Xiaoyu Lu
- Phase I Clinical Trial Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000 Jiangsu, China.
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198 Jiangsu, China.
| |
Collapse
|
26
|
Nakai T, Hirata K, Nagano K, Arai M, Uyama H, Hirata Y, Muraoka M. Effective Repeated Production of γ-glutamylcysteine, Essential For Intracellular Glutathione Production, Using Cellulose-immobilized Phytochelatin Synthase-like Enzyme NsPCS. Appl Biochem Biotechnol 2025; 197:3258-3270. [PMID: 39836300 PMCID: PMC12065762 DOI: 10.1007/s12010-024-05137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
γ-Glutamylcysteine (γ-EC) can increase intracellular glutathione (GSH) levels, which may prevent and alleviate age-related disorders and chronic diseases caused by oxidative damage. However, the commercial availability of γ-EC remains limited owing to its complex chemical synthesis from glutamate and cysteine. In this study, we have developed the method of the effective conversion of GSH to γ-EC to achieve the optimal reaction conditions for repeated batch production and potential application in industrial γ-EC production using the phytochelatin synthase-like enzyme NsPCS. For repeated batch conversion reactions, the optimal temperature was determined at 25 °C, where γ-EC showed good stability compared with that at 37 °C, leading to higher overall productivity. Cellulose sponges and microcrystalline cellulose (MCC) showed superior mechanical strength as immobilization carriers and greater stability and productivity than other materials. The total amounts of γ-EC obtained by NsPCS immobilized on the cellulose sponge and MCC were 305 mg and 291 mg, respectively, in a 5 mL reaction over five repeated batch reactions. These simple production processes are easily reproduced, and their high volumetric efficiency is promising for the industrial production of stable and low-cost γ-EC.
Collapse
Affiliation(s)
- Takuya Nakai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Kazumasa Hirata
- School of Pharmaceutical Sciences, Wakayama Medical University, Shichibancho 25-1, Wakayama, 640-8156, Japan
| | - Kazuya Nagano
- School of Pharmaceutical Sciences, Wakayama Medical University, Shichibancho 25-1, Wakayama, 640-8156, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Uyama
- Graduate School of Engineering, Osaka University, Suita Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yoshihiko Hirata
- Biochemical Laboratory, Saraya Co., Ltd., 24-12 Tamate-Cho, Kashiwara, Osaka, 582-0028, Japan
| | - Misa Muraoka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Chen JJ, Kang Y, Gallagher D, Herrmann N, Survilla K, Vieira D, Mah E, Graham SJ, Kiss A, Black SE, Ramirez J, Oh P, Marzolini S, Zukotynski KA, Kuo PH, Lanctôt KL. MRS demonstrates elevated brain glutathione in vascular mild cognitive impairment compared to cognitively normal coronary artery disease controls. Alzheimers Dement 2025; 21:e70230. [PMID: 40371694 PMCID: PMC12079349 DOI: 10.1002/alz.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Oxidative stress (OS) is implicated in dementia. While elevated peripheral OS biomarkers were observed in vascular mild cognitive impairment (vMCI), the role of central antioxidants remains unclear. We assessed levels of the major brain antioxidant glutathione (GSH) in vMCI compared to cognitively normal coronary artery disease (CAD) controls (CN). METHODS In vivo tissue-corrected GSH in the anterior cingulate cortex (ACC) and occipital cortex (OC) were quantified in persons with vMCI and CN using MEscher-GArwood Point RESolved magnetic resonance Spectroscopy. RESULTS Among participants (vMCI, n = 22, age [mean ± SD] = 67.4 ± 7.3; CN, n = 21, age = 66.7 ± 7.8), ACC-GSH (i.u. ± SD) was higher in vMCI (4.42 ± 0.59) versus CN (3.72 ± 1.01) (Z = -2.5, p = .01), even after controlling for age and sex (B [SE] = 0.74 [0.26], p = .007). Increased ACC-GSH correlated with poorer executive function (EF) (B [SE] = -0.31 [0.14], p = .04). OC-GSH showed no effect. DISCUSSION Higher ACC-GSH in vMCI may reflect a compensatory response to OS. ACC-GSH was negatively correlated with EF, suggesting a linkage between regional brain antioxidants and disease-relevant cognitive domains. HIGHLIGHTS Brain GSH was measured in vascular MCI and matched controls using MEGA-PRESS. In contrast to GSH deficits in AD, anterior cingulate GSH was elevated in vMCI. Brain GSH was correlated with disease-relevant cognitive domains in vMCI. The GSH antioxidant system may be etiologically implicated in vMCI.
Collapse
Affiliation(s)
- Jinghan Jenny Chen
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Yejin Kang
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Damien Gallagher
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Nathan Herrmann
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kate Survilla
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Danielle Vieira
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Ethan Mah
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Simon J. Graham
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Alex Kiss
- Department of Research Design and BiostatisticsSunnybrook Research InstituteTorontoOntarioCanada
| | - Sandra E. Black
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Sunnybrook HospitalTorontoOntarioCanada
- Graduate Department of Psychological Clinical ScienceUniversity of Toronto ScarboroughScarboroughOntarioCanada
- Neurology DivisionDepartment of MedicineSunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada
| | - Joel Ramirez
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Sunnybrook HospitalTorontoOntarioCanada
- Graduate Department of Psychological Clinical ScienceUniversity of Toronto ScarboroughScarboroughOntarioCanada
| | - Paul Oh
- KITE Toronto Rehabilitation InstituteToronto Rehabilitation Institute‐University Health NetworkTorontoOntarioCanada
| | - Susan Marzolini
- KITE Toronto Rehabilitation InstituteToronto Rehabilitation Institute‐University Health NetworkTorontoOntarioCanada
| | - Katherine A. Zukotynski
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Sunnybrook HospitalTorontoOntarioCanada
- Department of Medical ImagingMcMaster UniversityHamiltonOntarioCanada
| | - Phillip H. Kuo
- Department of RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Krista L. Lanctôt
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- KITE Toronto Rehabilitation InstituteToronto Rehabilitation Institute‐University Health NetworkTorontoOntarioCanada
| |
Collapse
|
28
|
Zhao Y, Chen M, Li G, Zhang L, Duan Y, Zhong P, Yang T, Yao Y, Wang Y, Gong G, Huang L, Liu Y, Wang Z. Antioxidant activity of differently sized and sulfated konjac glucomannan fragments prepared by the relay strategy. Int J Biol Macromol 2025; 307:142188. [PMID: 40112981 DOI: 10.1016/j.ijbiomac.2025.142188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Konjac glucomannan (KGM) is a polysaccharide with potential medical and functional properties. Here, the antioxidant and cytoprotective effects of sulfated and differently sized KGM fractions were investigated using various in vitro assays. The sulfated KGMs (SKGMs) were prepared via a relay strategy. First, Vitamin C (Vc)-H2O2 degradation was employed to obtain three soluble KGM fractions with different molecular weights. Second, nine KGM derivatives with varying sulfate content were obtained by the sulfur trioxide-pyridine method. The scavenging of DPPH, superoxide, and hydroxyl radicals was measured in vitro. The antioxidant activity of SKGM correlated positively with sulfate content. SKGM-I-2 displayed the most potent radical scavenging activity. Its purification by cellulose DEAE-52 column chromatography yielded four homogeneous fractions (SKGM-I-2a, SKGM-I-2b, SKGM-I-2c, and SKGM-I-2d). Pretreatment with SKGM-I-2d increased the viability of RAW264.7 cells exposed to H2O2. Moreover, SKGM-I-2d significantly increased the activity of superoxide dismutase and catalase, as well as the levels of glutathione, while regulating the expression of Keap1, Nrf2, and HO-1 in RAW264.7 cells. The present study suggests that SKGM-I-2d protects RAW264.7 cells against H2O2-induced oxidative injury through the activation of the Nrf2/Keap1 signaling pathway. These results provide a scientific basis for future studies linking the structural and functional features of KGM.
Collapse
Affiliation(s)
- Yilong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Min Chen
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guo Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lan Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxi Duan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Yang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxuan Yao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yizhe Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
29
|
Goo YT, Grigoriev V, Korzun T, Sharma KS, Singh P, Taratula OR, Marks DL, Taratula O. Blood-Brain Barrier-Penetrating Nanocarriers Enable Microglial-Specific Drug Delivery in Hypothalamic Neuroinflammation. Adv Healthc Mater 2025; 14:e2500521. [PMID: 40181631 DOI: 10.1002/adhm.202500521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Hypothalamic inflammation plays a pivotal role in appetite dysregulation across various pathological conditions, including cancer cachexia. However, delivering anti-inflammatory agents to microglia, key mediators of hypothalamic inflammation, remains challenging due to the unsurmountable blood-brain barrier (BBB). To overcome this challenge, dual peptide-functionalized polymeric nanocarriers capable of both BBB penetration and microglial targeting are engineered for systemic delivery of IRAK4 inhibitors to treat hypothalamic inflammation. After intravenous administration, the nanocarriers demonstrated efficient brain and hypothalamic accumulation in both acute (lipopolysaccharide-induced) and chronic (pancreatic cancer cachexia) neuroinflammation mouse models. Their microglial targeting capability is confirmed through hypothalamic immunohistochemistry and flow cytometry analysis using a BBB-microglia co-culture model. Systemic administration of IRAK4 inhibitor-loaded nanocarriers effectively attenuated hypothalamic inflammation in both animal models, as evidenced by marked reductions in pro-inflammatory cytokine expression. Treated animals displayed significantly increased food intake and improved body weight compared to the saline-treated group. In the cancer cachexia model, the treatment preserved muscle mass, reducing cachexia-induced gastrocnemius muscle loss by 50% relative to controls. These findings highlight the potential of this nanocarrier system as a promising therapeutic strategy for conditions characterized by hypothalamic dysfunction, particularly cancer cachexia, where neuroinflammation plays a crucial role in disease progression.
Collapse
Affiliation(s)
- Yoon Tae Goo
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Vladislav Grigoriev
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Daniel L Marks
- Endevica Bio, 1935 Techny Rd, Northbrook, Illinois, 60062, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
30
|
Wood JPM, Chidlow G, Casson RJ. Glucose protects cultured retinal cells from oxidative injury via the pentose phosphate pathway. Free Radic Biol Med 2025; 232:142-157. [PMID: 40054635 DOI: 10.1016/j.freeradbiomed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Oxidative injury has been implicated in a range of common retinal neurodegenerative disorders. Protecting the retina from such an insult could therefore prove clinically beneficial. We sought to investigate whether glucose, acting via the pentose phosphate pathway (PPP), was able to counteract oxidative cytotoxicity to retinal cells in culture. EXPERIMENTAL Mixed retinal neuron-glial cultures were prepared from Sprague-Dawley rat neonates and used at 7 days in vitro; neuron-only and Müller glial cell-only mono-cultures were subsequently prepared from these cultures. At appropriate stages, cultures were treated with t-butyl hydroperoxide (tbH; 10 nM-1 mM) in glucose/pyruvate-free DMEM to induce oxidative stress. Some cultures were co-treated with glucose. Additional compounds were co-applied to inhibit glycolysis, PPP, cystine uptake, glutathione biosynthesis and glutathione reductase (GR). The effect of glucose on stimulation of reactive oxygen species (ROS), as well as levels of glutathione and NADPH were also investigated. RESULTS Oxidative stress resulted in cytotoxicity to both retinal neurons and glial cells. Glucose was able to abrogate the toxicity to glial cells in mono-cultures and mixed cultures, but could only provide protection to neurons in the mixed cultures when glial cells were also present. Glucose was additionally shown to prevent stimulation of ROS and oxidative stress-induced depletions of glutathione and NADPH. Inhibition of PPP, cystine uptake or GR all diminished the protective response of glucose. CONCLUSION Glucose prevented oxidative stress to retinal cells via the PPP. Neurons were not subjected to glucose-induced protection except when glial cells were present, implying the passage of a transmissible mediator or other protective action between the two cell types.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia
| | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA, 5000, Australia
| |
Collapse
|
31
|
Akano JJM, Molik ZA, Abolaji AO, Ogbole OO. Mitigating aluminum chloride-induced toxicity in Drosophila melanogaster with peptide fractions from Euphorbia species. Drug Chem Toxicol 2025; 48:687-696. [PMID: 39501706 DOI: 10.1080/01480545.2024.2421916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 05/27/2025]
Abstract
This study assessed the antioxidative and protective effects of peptide extracts from selected Euphorbia species on Aluminum Chloride (AlCl3)-induced toxicity in Drosophila melanogaster. Euphorbia humifusa (EHU), Euphorbia hirta (EHI), and Euphorbia graminae (EHG) were screened for bioactive peptides. The crude peptide extract and partially purified peptide fractions of all the plants were subjected to preliminary antioxidants activities through 2, 2-diphenyl-1-picrylhyhdrazyl (DPPH), and nitric oxide (NO) scavenging activities. The most active peptide fraction was subjected to biochemical studies using Drosophila melanogaster. Flies were treated with AlCl3 (100 mg/kg diet), peptide fraction (5 and 10 mg/kg diet), and cotreatment of AlCl3 and the fraction, respectively. After treatment, flies were homogenized for the determination of total thiol and Glutathione (non-protein thiol) content, catalase and Glutathione-S-transferase activities, and nitric oxide (nitrite/nitrate) and hydroperoxide levels. The antioxidant screening revealed that the peptide fraction from Euphorbia humifusa (PEHU) was the most significant compared to the control (ascorbic acid). The PEHU (5 and 10 mg/kg diet) maintained the redox status of the flies in the biochemical study. The PEHU significantly counteracted AlCl3-induced reduction in antioxidants (catalase, GST, GSH and Total thiol), increased nitric oxide levels, and acetylcholinesterase activity and prevented behavioral deficits flies. Hence, the peptide fraction of Euphorbia humifusa may shield against the life-threatening effects of free radicals associated with aluminum chloride toxicity.
Collapse
Affiliation(s)
- Jola-Jesu Mercy Akano
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Zainab Abiodun Molik
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Amos Olalekan Abolaji
- Drug Metabolism and Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
32
|
Wu Y, Hou J, Xiao H, Ye S, Tu D, Qiu R, Ma X, Zhao Y, Chen T, Li L. OsHDAC1 deacetylates the aldehyde dehydrogenase OsALDH2B1, repressing OsGR3 and decreasing salt tolerance in rice. PLANT PHYSIOLOGY 2025; 198:kiaf149. [PMID: 40329873 DOI: 10.1093/plphys/kiaf149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 05/07/2025]
Abstract
Salt stress poses a significant challenge to the growth and productivity of rice (Oryza sativa L.). Histone deacetylases (HDACs) play a vital role in modulating responses to various abiotic stresses. However, how OsHDAC1 responds to salt stress remains largely unknown. Here, we report that OsHDAC1 decreases salt tolerance in rice through posttranslational modification of metabolic enzymes. Specifically, the rice OsHDAC1 RNAi lines exhibited enhanced resilience to salt stress, while plants overexpressing OsHDAC1 were notably more sensitive. OsHDAC1 interacts with the aldehyde dehydrogenase (ALDH) OsALDH2B1 and deacetylates it at K311 and K531, triggering ubiquitin-proteasome-mediated degradation of OsALDH2B1. OsALDH2B1 can directly target OsGR3, which encodes a type of glutathione reductase critical for reactive oxygen species scavenging. Compared with wild-type plants, OsALDH2B1-overexpressing plants exhibited higher OsGR3 expression levels and increased salt resistance, whereas OsALDH2B1 RNAi lines showed reduced OsGR3 expression and lower salt resistance. Collectively, our data suggest that salt stress downregulates OsHDAC1, resulting in an increase in the acetylation level of OsALDH2B1, which in turn stabilizes OsALDH2B1 and promotes its activity in the regulation of OsGR3 transcription. This OsHDAC1/OsALDH2B1/OsGR3 regulatory module represents an alternative pathway for governing salt stress adaptation in rice.
Collapse
Affiliation(s)
- Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shiqi Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ronghua Qiu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Kou H, Qi L, Huang D, Wu J, Shi H, Yang H. Scalable Fabrication of High-Payload Dendrimer-Based Nanoparticles for Targeted Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24953-24962. [PMID: 40237537 DOI: 10.1021/acsami.5c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanoparticle-based therapeutics hold promise for the treatment of atherosclerosis, but challenges such as low drug-loading capacity and a lack of scalable, controllable production hinder their clinical translation. Flash nanoprecipitation, a continuous synthesis method, offers a potential solution for scalable and reproducible nanoparticle production. In this study, we employed a custom-designed multi-inlet vortex mixer to perform cross-linking reaction-enabled flash nanoprecipitation, facilitating controlled and scalable synthesis of cross-linked polyamidoamine (PAMAM) dendrimer nanoparticles. Notably, this approach allows simultaneous nanoparticle cross-linking and drug loading in a single step. The mannose moiety enabled specific targeting of macrophages via mannose receptors, enhancing the localization of the nanoparticles to atherosclerotic plaques. Atorvastatin calcium, a widely used clinical drug for atherosclerosis treatment, was selected as the model drug. This approach achieved both high production rates and high drug-loading capacities, with an output flow rate of 9.6 L/h and a nanoparticle concentration of approximately 0.4 g/L. The optimized formulation exhibited a drug-loading capacity of 37% and an encapsulation efficiency of 76%. In vitro and in vivo experiments demonstrated effective macrophage and plaque targeting, leading to significant therapeutic benefits. Treatment with these nanoparticles resulted in approximately 40% inhibition of aortic root plaque progression compared to the free drug-treated group. This scalable and efficient nanoparticle platform is a promising strategy for improving atherosclerosis treatment.
Collapse
Affiliation(s)
- Huari Kou
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Qi
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Da Huang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiandong Wu
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
34
|
Wang Z, Li X, Shi S, Shen R, Yang Y, Sun C, Liu Z, Zhang H, Zhang B. Construction of a novel highly selective NIR probe for monitoring the changes of glutathione levels in drug-induced liver injury. Chem Commun (Camb) 2025; 61:6514-6517. [PMID: 40190237 DOI: 10.1039/d5cc00870k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure, which is closely associated with oxidative stress. Glutathione (GSH), a vital sulfhydryl peptide, maintains cellular redox balance and signaling. In this study, we have successfully developed a highly selective near-infrared fluorescent probe, AH-F, which exhibits a 357-fold enhancement in fluorescence upon detection of GSH. With the aid of AH-F, the pertinent physiological parameters in a murine model were characterized by cellular and drug-induced liver injury, concurrently allowing for the assessment of the therapeutic efficacy of relevant pharmaceutical interventions.
Collapse
Affiliation(s)
- Zhiyuan Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xiao Li
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining Qinghai, 810007, China
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yue Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Haijuan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
35
|
Ukirade N, Choudhari U, Bhapkar S, Jadhav U, Jagtap S, Rane S. Enzyme-immobilized graphene oxide-based electrochemical biosensor for glutathione detection. RSC Adv 2025; 15:12987-12996. [PMID: 40271419 PMCID: PMC12013610 DOI: 10.1039/d4ra09033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Glutathione acts as a natural antioxidant in the human body and the reduction of its content is a sign of oxidative stress. In this study, a sensitive electrochemical sensor was developed using laccase enzyme immobilized onto graphene oxide (GO) for detection of glutathione. The surface of the indium tin oxide (ITO) was modified with GO via a drop casting method. Subsequently, laccase was immobilized onto the modified ITO decorated with GO. The modified electrode was characterized using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FTIR spectra of laccase/GO confirmed the successful immobilization of laccase onto GO sheets. FESEM analysis revealed the transformation from a layered, wrinkled structure to a compact, smooth surface with spherical laccase, confirming successful enzyme integration. Raman analysis confirmed successful laccase immobilization onto GO, as evidenced by structural changes in the D and G bands, highlighting the modification of the material. The cyclic voltammetry measurements revealed that laccase/GO/ITO exhibited better electrocatalytic activity toward oxidation of GSH in acetate buffer solution than the bare ITO electrode. This newly developed electrode exhibited a good response to glutathione with a wide linear range from 1 μM to 100 μM, a limit of detection of 0.89 μM and high sensitivity (6.51 μA μM-1). Furthermore, it exhibited excellent selectivity, repeatability, and long-term stability. The modified electrode was successfully used for the detection of GSH in a real sample, offering satisfactory results.
Collapse
Affiliation(s)
- Neeta Ukirade
- Centre for Materials for Electronics Technology (C-MET) Panchawati, Off. Dr Bhabha Road Pune-411008 India
- Pratibha College of Commerce and Computer Studies Pune India
| | - Upasana Choudhari
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University Pune-411007 India
| | - Sunil Bhapkar
- Department of Microbiology, Savitribai Phule Pune University Pune-411007 India
| | - Umesh Jadhav
- Department of Microbiology, Savitribai Phule Pune University Pune-411007 India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University Pune-411007 India
| | - Sunit Rane
- Centre for Materials for Electronics Technology (C-MET) Panchawati, Off. Dr Bhabha Road Pune-411008 India
| |
Collapse
|
36
|
Zhang S, Xiao H, Lin Y, Tang X, Tong W, Shao B, Li H, Xu L, Ding X, Chai R. Targeting Programmed Cell Death in Acquired Sensorineural Hearing Loss: Ferroptosis, Necroptosis, and Pyroptosis. Neurosci Bull 2025:10.1007/s12264-025-01370-y. [PMID: 40261527 DOI: 10.1007/s12264-025-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025] Open
Abstract
Sensorineural hearing loss (SNHL), the most commonly-occurring form of hearing loss, is caused mainly by injury to or the loss of hair cells and spiral ganglion neurons in the cochlea. Numerous environmental and physiological factors have been shown to cause acquired SNHL, such as ototoxic drugs, noise exposure, aging, infections, and diseases. Several programmed cell death (PCD) pathways have been reported to be involved in SNHL, especially some novel PCD pathways that have only recently been reported, such as ferroptosis, necroptosis, and pyroptosis. Here we summarize these PCD pathways and their roles and mechanisms in SNHL, aiming to provide new insights and potential therapeutic strategies for SNHL by targeting these PCD pathways.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
| | - Xiaoqiong Ding
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China.
| |
Collapse
|
37
|
Demir M, Elbe H, Cetinavci D, Saruhan E. Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity. Inflammation 2025:10.1007/s10753-025-02301-9. [PMID: 40237932 DOI: 10.1007/s10753-025-02301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Dilan Cetinavci
- Department of Histology and Embryology, Mugla Training and Research Hospital, Mugla, Turkey
| | - Ercan Saruhan
- Department of Medical Biochemistry, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| |
Collapse
|
38
|
Zhang G, Zhou D, Hu R, Qin A, Tang BZ. Recent Advances in Aggregation-Induced Emission Bioconjugates. Bioconjug Chem 2025; 36:609-626. [PMID: 40167757 DOI: 10.1021/acs.bioconjchem.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Fluorescence imaging technology is playing increasing roles in modern personalized and precision medicine. Thanks to their excellent photophysical properties, organic luminogens featuring aggregation-induced emission (AIE) characteristics (AIEgens) have attracted considerable attention over the past two decades. Because of their superior biocompatibility, ease of processing and functionalization, excellent water solubility, high responsiveness, and exceptional signal-to-noise ratio (SNR) for biotargets, AIE bioconjugates, formed by covalently linking AIEgens with biomolecules, have emerged as an ideal candidate for bioapplications. In this review, we summarize the progress in preparation, properties, and application of AIE bioconjugates in the last five years. Moreover, the challenges and opportunities of AIE bioconjugates are also briefly discussed.
Collapse
Affiliation(s)
- Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
39
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
40
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
41
|
Yoshimura M, Sasayama R, Kajiwara T, Mori C, Nakasone Y, Inose T. Remote Silyl Groups Enhance Hydrolytic Stability and Photocleavage Efficiency in Carbamates for Protein Release. Angew Chem Int Ed Engl 2025:e202502376. [PMID: 40222957 DOI: 10.1002/anie.202502376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Photocleavable molecules are valuable tools for biological studies, enabling spatiotemporal activation of molecular functions within cellular environments. In particular, coumarin-based photolytic molecules are useful because of their ability to flexibly tune the wavelength of photostimulation through their structural modifications. Ideal photocleavable molecular tools require hydrolytic stability and selective susceptibility to photo stimuli. However, conventional coumarin-based molecules have not simultaneously achieved both highly efficient photocleavage and hydrolysis resistance. Herein, we proposed a novel molecular design concept that introduces a silyl group into coumarin-based molecules at a position remote from the photolabile bond, creating an ideal photocleavable molecule for chemical biology tools. The established orbital effect of the remotely introduced silyl group improves the photolysis efficiency of coumarin-based molecules, while its bulkiness substantially enhances their hydrolytic stability in aqueous environments and under enzymatic conditions. Furthermore, this improvement in molecular functionality contributes to the development of high-performance protein-release biomaterials.
Collapse
Affiliation(s)
- Masahiko Yoshimura
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryuto Sasayama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Mori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoko Inose
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- JST PRESTO, Saitama, 332-0012, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
42
|
Rana A, Katiyar A, Arun A, Berrios JN, Kumar G. Natural sulfur compounds in mental health and neurological disorders: insights from observational and intervention studies. Front Nutr 2025; 12:1534000. [PMID: 40271431 PMCID: PMC12014460 DOI: 10.3389/fnut.2025.1534000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Over the years, the global disease burden of neurological disorders (NDs) and mental disorders (MDs) has significantly increased, making them one of the most critical concerns and challenges to human health. In pursuit of novel therapies against MD and ND, there has been a growing focus on nutrition and health. Dietary sulfur, primarily derived from various natural sources, plays a crucial role in numerous physiological processes, including brain function. This review offers an overview of the chemical composition of several natural sources of the sulfur-rich substances such as isothiocyanates, sulforaphane, glutathione, taurine, sulfated polysaccharides, allyl sulfides, and sulfur-containing amino acids, all of which have neuroprotective properties. A multitude of studies have documented that consuming foods that are high in sulfur enhances brain function by improving cognitive parameters and reduces the severity of neuropathology by exhibiting antioxidant and anti-inflammatory properties at the molecular level. In addition, the growing role of natural sulfur compounds in repairing endothelial dysfunction, compromising blood-brain barrier and improving cerebral blood flow, are documented here. Furthermore, this review covers the encouraging results of supplementing sulfur-rich diets in many animal models and clinical investigations, along with their molecular targets in MD, such as schizophrenia, depression, anxiety, bipolar disorder, and autism spectrum disorder, and ND, such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS). The prospects of natural sulfur compounds show great promise as they have potential applications in nutraceuticals, medicines, and functional foods to enhance brain function and prevent diseases. However, additional research is required to clarify the mechanisms by which it works, enhance its bioavailability, and evaluate its long-term safety for broad use.
Collapse
Affiliation(s)
- Apeksha Rana
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Ashutosh Katiyar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| | - Alok Arun
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
- Department of Biological Sciences, California State University, Turlock, CA, United States
| | - Juan Negron Berrios
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR, United States
| | - Gaurav Kumar
- School of Life Sciences and Biotechnology, CSJM University, Kanpur, India
| |
Collapse
|
43
|
Andal KP, Kumar AS. In Situ Electrochemical Reduction of Imidacloprid involving a Nitroso-Intermediate-Trapped DWCNT and Its Biomimetic Cellular Oxidative Stress-Related Mediated Oxidation of Thiols. Chem Asian J 2025:e202401779. [PMID: 40195815 DOI: 10.1002/asia.202401779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Imidacloprid (IMP) is a widely used pesticide and insecticide known for its effectiveness in controlling pests and increasing crop yields. Exposure of the compound to water bodies has led to environmental pollution and adverse effects on human health. One major concern is the generation of oxidative-stress in the cellular system, which is often a result of IMP exposure. Although the exact mechanism of toxicity is not fully understood, it is believed that the nitroso-intermediate of IMP (IMP-NO) binds to acetylcholine receptors, disrupting neural function. Thiol pools in the blood serum act as antioxidants to mitigate the toxicity. This study presents an in situ electrochemical conversion of IMP into its key intermediate, IMP-NO, and its subsequent entrapment on a double-walled carbon nanotube-modified glassy carbon electrode (GCE/DWCNT@IMP-NO) as a surface confined redox-peak in a physiological solution. It was characterized by SEM, FTIR, Raman, SECM, and LC-MS techniques. The system exhibited excellent mediated oxidation of the thiol group, using cysteine as a model. The findings presented in this work correlate with observations related to cellular oxidative-stress and its thiol-assisted mitigation. Employing a Michaelis-Menten-type enzyme-substrate reaction mechanism and estimated the kinetic parameters. Chronoamperometric techniques were used to demonstrate the oxidative detection of thiol.
Collapse
Affiliation(s)
- Kandavel Preethika Andal
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
44
|
Liu J, Zhang X, Zhao B, Ling H, Li Y, Sun K, Chen S, Zhang Y, Zhai T, Zhang Y, Li F, Liu Q. In Situ Monitoring of Membrane Protein Dynamics Using High-Throughput Red-Light-Activated Single-Molecule Tracking. ACS NANO 2025; 19:13466-13478. [PMID: 40153256 DOI: 10.1021/acsnano.5c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Single-molecule tracking offers nanometer resolution for studying individual molecule dynamics but is often limited by sparse labeling to avoid signal overlap. We present Red-Light-Activated Single-molecule Tracking (RE-LAST) strategy to address this challenge utilizing a photoactivatable probe, SiR670. SiR670 combines traditional silicon rhodamine with a photocage called SO, quenching fluorescence via photoinduced electron transfer (PET). Red light triggers SiR670 excitation, generating singlet oxygen that oxidizes the SO cage, halting PET and restoring fluorescence. RE-LAST used red light for both activation and imaging, eliminating harmful UV exposure. This method enables high-throughput single-molecule tracking, achieving approximately 9 times more tracks than conventional methods and allowing detailed classification of CD56 membrane protein motion. Furthermore, in situ imaging of single live cells revealed the effects of triplet quencher and oxygen scavenging system (OSS) on membrane protein dynamics. While triplet quenchers like Trolox had minimal impact on protein movement patterns, OSS significantly accelerated protein movement and increased the proportion of mobile proteins. This approach provides a comprehensive method for investigating membrane protein dynamics in living cells, contributing to further developments in cellular and molecular biology.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yanzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Kuangshi Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Song Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yanxin Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Tianli Zhai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Fuyou Li
- Institute of Translational Medicine, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| |
Collapse
|
45
|
Zhou J, Lu P, He H, Zhang R, Yang D, Liu Q, Liu Q, Liu M, Zhang G. The metabolites of gut microbiota: their role in ferroptosis in inflammatory bowel disease. Eur J Med Res 2025; 30:248. [PMID: 40189555 PMCID: PMC11974165 DOI: 10.1186/s40001-025-02524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis, characterized by impaired function of the intestinal mucosal epithelial barrier. In recent years, ferroptosis, a novel form of cell death, has been confirmed to be involved in the pathological process of IBD and is related to various pathological changes, such as oxidative stress and inflammation. Recent studies have further revealed the complex interactions between the microbiome and ferroptosis, indicating that ferroptosis is an important target for the regulation of IBD by the gut microbiota and its metabolites. This article reviews the significant roles of gut microbial metabolites, such as short-chain fatty acids, tryptophan, and bile acids, in ferroptosis in IBD. These metabolites participate in the regulation of ferroptosis by influencing the intestinal microenvironment, modulating immune responses, and altering oxidative stress levels, thereby exerting an impact on the pathological development of IBD. Treatments based on the gut microbiota for IBD are gradually becoming a research hotspot. Finally, we discuss the potential of current therapeutic approaches, including antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, in modulating the gut microbiota, affecting ferroptosis, and improving IBD symptoms. With a deeper understanding of the interaction mechanisms between the gut microbiota and ferroptosis, it is expected that more precise and effective treatment strategies for IBD will be developed in the future.
Collapse
Affiliation(s)
- Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Penghui Lu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruhan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dican Yang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qiong Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Guoshan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
46
|
Park MK, Choi BY, Kho AR, Lee SH, Hong DK, Kang BS, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Jung HH, Yang WI, Suh SW. L-theanine ameliorates traumatic-brain-injury-induced hippocampal neuronal death in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156457. [PMID: 40023064 DOI: 10.1016/j.phymed.2025.156457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major health concern, often resulting in significant brain damage and functional impairments. A key contributing factor to TBI-induced neuronal injury is the overactivation of AMPA glutamate receptors, leading to an increased influx of calcium and zinc ions. This study investigates the neuroprotective potential of l-theanine, known for its antioxidant potential and ability to enhance glutathione synthesis, against hippocampal damage in a TBI rat model. METHODS Rats subjected to TBIs were treated with two dosages of l-theanine (100 and 200 mg/kg) and an AMPA receptor inhibitor, NBQX (30 mg/kg). The neuronal damage assessment, conducted 24 h post-injury, involved a histological analysis, focusing on the factors of neuronal death, oxidative damage, and glial cell activation. The statistical analysis included the performance of an ANOVA followed by a Bonferroni post hoc test, with the data presented as mean ± SEM values and the significance determined at p < 0.05. RESULTS Treatment with l-theanine was observed to significantly mitigate the zinc accumulation, neuronal death, and cognitive impairments associated with TBI. These benefits are likely attributed to the inhibition of AMPA receptor activity and reduction in neuroinflammation, possibly enhanced as a result of increased glutathione production. CONCLUSION This study suggests that l-theanine can perform a neuroprotective role in TBI, modulating AMPA receptor activation and diminishing neuroinflammation. Its antioxidant and anti-inflammatory properties further enhance the material's potential use as a therapeutic agent for reducing hippocampal damage caused as a result of a TBI.
Collapse
Affiliation(s)
- Min Kyu Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Bo Young Choi
- Institute of Sport Science, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Physical Education, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Song Hee Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Beom Seok Kang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Chang Jun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Hyun Wook Yang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Seo Young Woo
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Se Wan Park
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Dong Yeon Kim
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Hyun Ho Jung
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| | - Won Il Yang
- Institute of Sport Science, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Physical Education, Hallym University, Chuncheon, 24252, Republic of Korea; Department of Sport Industry Studies, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
47
|
Zhang Z, Zhang H, Zhang P, Li R, Zhou J, Li J, Hu D, Huang R, Tang F, Liu J, Xu D, Zhang C, Tian X, Ma Y, Kwan P. D2HGDH Deficiency Regulates Seizures through GSH/Prdx6/ROS-Mediated Excitatory Synaptic Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404488. [PMID: 39739583 PMCID: PMC11967838 DOI: 10.1002/advs.202404488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Current antiepileptic drugs are ineffective in one-third of patients with epilepsy; however, identification of genes involved in epilepsy can enable a precision medicine approach. Here, it is demonstrated that downregulating D-2-hydroxyglutarate dehydrogenase (D2HGDH) enhances susceptibility to epilepsy. Furthermore, its potential involvement in the seizure network through synaptic function modulation is investigated. D2HGDH knockdown reduces the glutathione reduced (GSH)/glutathione oxidized (GSSG) ratio and elevates reactive oxygen species (ROS) levels within neurons. Oxidative stress may play a crucial role in the pathogenesis of epilepsy. The specific contribution of each pathway varies among patients, highlighting the complexity of this disease. In this study, downregulation of D2HGDH affects modulation of ROS levels, synaptic transmission, and seizure susceptibility. Furthermore, the acid calcium-independent phospholipase A2 (aiPLA2) inhibitor, MJ33, restores the GSH/GSSG balance and reverses the increase in ROS levels caused by D2HGDH knockdown, resulting in remission of epilepsy-related behaviors. The results demonstrate that downregulation of D2HGDH affects synaptic function by regulating ROS production. These findings support the use of targeted gene therapy as a potential alternative to antioxidant-based treatments for refractory epilepsy.
Collapse
Affiliation(s)
- Zhijuan Zhang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Hui Zhang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Peng Zhang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400010China
| | - Rong Li
- Department of NeurologyThe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Provincial Key Laboratory for Birth Defects and Genetic DiseasesFirst People's Hospital of Yunnan ProvinceKunming650051China
| | - Jinyu Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400010China
| | - Jiyuan Li
- Department of NeurologyThe First Hospital of Shanxi Medical UniversityShanxi030012China
| | - Danmei Hu
- Department of NeurologyShanxi Bethune HospitalShanxi030032China
| | - Rui Huang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Fenglin Tang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Jie Liu
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Demei Xu
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Chenlu Zhang
- Department of NeurologyThe First Hospital of Shanxi Medical UniversityShanxi030012China
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education)Chongqing Medical UniversityChongqing400016China
| | - Yuanlin Ma
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education)Chongqing Medical UniversityChongqing400016China
| | - Patrick Kwan
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
- Department of NeuroscienceCentral Clinical SchoolMonash UniversityMelbourne3004Australia
| |
Collapse
|
48
|
Su Z, Li Y, Lin Z, Huang Q, Fan X, Dong Z, Xia Q, Zhao P, Wang X. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection. INSECT MOLECULAR BIOLOGY 2025; 34:289-301. [PMID: 39482849 DOI: 10.1111/imb.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Silkworm, Bombyx mori, an economically significant insect, plays a crucial role in silk production. However, silkworm breeding is highly susceptible to various pathogens, particularly the Bombyx mori nucleopolyhedrovirus (BmNPV), which poses a serious threat. Recent metabonomic studies have provided insights into the metabolic changes associated with BmNPV infection. BmNPV infection has obvious temporal characteristics. However, few studies have investigated the silkworms infected in different periods. This study employed gas chromatography-mass spectrometry (GC-MS) to perform a comprehensive analysis of haemolymph metabolites in silkworms at 48, 72, 96 and 120 h post-infection (h.p.i.). Through the integration of time-course analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the study revealed distinct four-stage metabolic characteristics in the silkworm's response to BmNPV infection. At Stage 1 (48 h.p.i.), silkworms activate antioxidant defence mechanisms, with significant enrichment in metabolic pathways involving key antioxidants such as glutathione, to mitigate oxidative stress induced by viral invasion. By Stage 2 (72 h.p.i.), pathways related to amino acid metabolism and protein synthesis become active, indicating an increase in protein synthesis. In Stage 3 (96 h.p.i.), energy metabolism and substance transport pathways are significantly upregulated to support the rapid viral replication and the enhanced locomotor behaviour of silkworm. Finally, at Stage 4 (120 h.p.i.), there is a further enhancement of pathways related to energy metabolism, nucleic acid synthesis, and substance transport, which align with peak viral assembly and release. These findings contribute to an in-depth understanding of the biochemical basis of silkworm resistance to NPV.
Collapse
Affiliation(s)
- Zhenyue Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Li
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zihan Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xinyu Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
49
|
Hayashi Y, Saeki A, Yoshimoto S, Yano E, Yasukochi A, Kimura S, Utsunomiya T, Minami K, Aso Y, Hatakeyama Y, Lo YC, Hirata M, Jimi E, Kawakubo-Yasukochi T. 4-Octyl Itaconate Attenuates Cell Proliferation by Cellular Senescence via Glutathione Metabolism Disorders and Mitochondrial Dysfunction in Melanoma. Antioxid Redox Signal 2025; 42:547-565. [PMID: 39931827 DOI: 10.1089/ars.2024.0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Aims: Itaconate (IA) is synthesized in the citric acid cycle via cis-aconitate decarboxylase (ACOD1); however, its biological significance in cancer remains incompletely understood. In previous studies, 4-octyl itaconate (OI) was used as a membrane-permeable form of IA, but little detailed verification of the difference in biological activities between IA and OI exists. Here, we investigated the direct effects of IA and OI on melanoma. Results: The proliferation of melanoma cells treated with OI was significantly suppressed in vitro, and our transcriptomic analysis revealed drastic changes in the expression of glutathione metabolism-related genes in OI-treated cells. Indeed, OI treatment decreased intracellular glutathione levels, followed by increased production of reactive oxygen species and expression of γH2AX, a marker of DNA damage, and β-galactosidase, a marker of cellular senescence. We further showed that the mitochondrial respiratory capacity in B16 cells was significantly decreased by OI treatment. OI administration also suppressed the growth of B16 tumor transplants in vivo, and the expression of γH2AX was increased in tumor tissues of OI-treated mice. In addition, minimal effects of OI treatment were observed in melanocytes and normal tissues. We also proved that not only exogenous IA, which enters intracellularly, but also endogenous IA has little effect on melanoma proliferation activity, via an investigation using Acod1-overexpressing transfectants and Acod1-deficient mice. Conclusion: This work revealed that OI disrupts the antioxidant system via the collapse of glutathione metabolism and inhibits cancer cell proliferation. Antioxid. Redox Signal. 42, 547-565.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Ayaka Saeki
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shohei Yoshimoto
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Division of Biomedical Sciences, Department of Morphological Biology, Section of Pathology, Fukuoka Dental College, Fukuoka, Japan
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Atsushi Yasukochi
- Division of Maxillofacial Diagnostic and Surgical Sciences, Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoe Utsunomiya
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kento Minami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yi-Chen Lo
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
50
|
Cui X, Chen B, Chen Y, Zhou M, Cao L, Hu B, Wu J, Ma X, Ying T. Engineering Iridium Nanoclusters for Boosting Ferroptotic Cell Death by Regulating GPX4 and p53 Functions. Adv Healthc Mater 2025; 14:e2404895. [PMID: 40018815 DOI: 10.1002/adhm.202404895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Emerging evidence indicates that modulating glutathione peroxidase 4 (GPX4) to induce ferroptosis is a promising strategy for tumor treatment. However, most of the GPX4 small molecule inhibitors face limitations due to their poor delivery efficacy and low specificity of ferroptosis activation. Herein, a ferroptosis-inducing nanomedicine is developed that integrates nutlin-3 with iridium oxide nanoclusters (NUT-IrOx NCs) for enhanced ferroptosis-driven multimodal therapeutic efficacy in colorectal cancer (CRC). This NUT-IrOx NCs can induce glutathione (GSH) depletion via enhanced Ir (VI)-Ir (III) transition, while nutlin-3, a well-established inhibitor of the p53-MDM2 interaction, suppresses GSH production by modulation of the p53/SLC7A11/xCT signaling pathway. The reduction of intracellular GSH results in pronounced reductions of GPX4 enzymatic activity, consequently leading to lipid peroxidation accumulation and further enhancing ferroptosis-induced CRC therapy. This dual-pronged approach demonstrates robust anticancer therapeutic effects with favorable biocompatibility in both in vitro and in vivo CRC models. This study provides an effective strategy that highlights the benefits of inhibiting of GSH/GPX4 by activating multiple ferroptosis regulatory pathways, providing an alternative therapeutic avenue for CRC treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bin Chen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Chen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
| | - Mi Zhou
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lijun Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xinxin Ma
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, P. R. China
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong, University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|