1
|
Ye Y, Liu T, Xu F, Shen J, Xu S. Integrated analyses reveal CXCL11 as an inhibitor in ovarian cancer and its facilitation of an M1 macrophage switch via the JAK2/STAT1 pathway. Int Immunopharmacol 2025; 159:114900. [PMID: 40409100 DOI: 10.1016/j.intimp.2025.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
M1-like tumor-associated macrophages (TAMs) have been put forth as a critical component in the advancement of cancer biology, including oncogenesis, development, invasion, metastasis, and the formation of tumor microenvironment (TME). Nevertheless, there has been a paucity of research examining the functions and associated molecular mechanisms of the M1-like TAMs in ovarian cancer (OC). The objective of this study is twofold: first, to gain a deeper understanding of the positive role of M1-like TAMs in OC; and second, to identify reliable biomarkers to stratify the risk of disease progression in OC patients via integrated analyses. Leveraging combined single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic data, we systematically identified M1 macrophage-associated molecules and established their prognostic significance in OC. CXCL11 was pinpointed as the central biomarker, with its protective role further validated through bioinformatics analyses and in vitro functional assays. Collectively, our findings advance the understanding of M1 macrophage-related molecular networks in OC and reveal CXCL11 as a dual-functional entity: a favorable prognostic biomarker and a positive regulatory molecule of M1 polarization via the JAK2-STAT1 pathway. These insights position CXCL11 as a promising therapeutic target and prognostic indicator for OC, offering a new perspective for the immunotherapy of OC.
Collapse
Affiliation(s)
- Yingjun Ye
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingwei Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangfang Xu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiacheng Shen
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Zhou J, Liu Y. Investigating the causal relationship between immune cells and colorectal cancer risk using bidirectional and multivariable Mendelian randomization analysis. J Recept Signal Transduct Res 2025:1-10. [PMID: 40285728 DOI: 10.1080/10799893.2025.2491068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES This study explores the relationship between immune recognition diversity and colorectal cancer (CRC) risk using a bidirectional Mendelian randomization approach. METHODS Genetic data from 731 immune cell types were analyzed, with data sourced from the IEU and FinnGen databases and CRC data from genome-wide association studies on the Finnish population. Forward and reverse Mendelian randomization analyses were conducted, with sensitivity analyses to assess pleiotropic effects. RESULTS Analyses revealed a significant association between increased Effector Memory CD4 and CD8 T cells and higher CRC risk (odds ratio [OR] = 1.11, 95% confidence interval [CI] = 1.04-1.18, p = .0008). Conversely, elevated CD45 on natural killer T cells was associated with a lower CRC risk (OR = 0.93, 95% CI = 0.88-0.98, p = .0095), indicating a protective effect. Sensitivity analyses confirmed no pleiotropic effects. CONCLUSIONS These findings highlight specific immune cells' roles in CRC pathogenesis, suggesting potential avenues for immune-targeted therapies and CRC prevention. Given the rising global incidence of CRC, understanding immune cell roles is crucial for advancing effective treatments.
Collapse
Affiliation(s)
- Jiajie Zhou
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yeliu Liu
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
3
|
Adams S, Demaria S, Rinchai D, Wang E, Novik Y, Oratz R, Fenton-Kerimian M, Levine PG, Li X, Marincola F, Jin P, Stroncek D, Goldberg J, Bedognetti D, Formenti SC. Topical TLR7 agonist and radiotherapy in patients with metastatic breast cancer. J Immunother Cancer 2025; 13:e011173. [PMID: 40187749 PMCID: PMC11973781 DOI: 10.1136/jitc-2024-011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonists and radiation therapy hold promise for cancer immunotherapy. We conducted a phase I/II trial combining topical imiquimod (IMQ, a TLR-7 agonist) and local radiotherapy (RT) in patients with metastatic breast cancer accompanied by longitudinal transcriptional analysis of tumor biopsies. METHODS The primary objective of the trial (NCT01421017) was to assess systemic responses by immune-related response criteria (irRC) after an 8-week cycle of topical IMQ and concurrent local RT (cohort 1). An amendment to the trial added two cohorts, both received one dose of cyclophosphamide (CTX) administered 1 week before study treatment initiation, IMQ/RT/CTX (cohort 2) and RT/CTX control (cohort 3). Cutaneous metastases were prospectively assigned to treatment with IMQ and RT (area A) or IMQ alone (area B). Secondary objectives were safety (Common Terminology Criteria for Adverse Events criteria) and local response in skin metastases. In all IMQ cohorts, tumors were biopsied before treatment and at 2 and 3 weeks. RESULTS 31 patients were enrolled (n=12, n=12, and n=7, in cohort 1, 2, and 3, respectively), with 4 out of 24 patients in the IMQ cohorts showing systemic tumor responses (two complete responses (CR) and two partial responses (PR)). No objective responses were observed in the seven patients enrolled in the control arm (RT alone). The treatment was well-tolerated, no grade 4-5 treatment-related adverse events occurred and grade 3 AEs were manageable (anemia, local pain, and local ulceration, n=1 each). Local objective responses were observed in 19/24 (9 CR and 10 PR) and 5/24 (5 PR) in areas treated with combined IMQ-RT and IMQ alone, respectively (p<0.001). All 24 patients treated with IMQ underwent serial biopsies, and 84 samples yielded sufficient material for transcriptional analyses. These revealed that the presence of a T-helper 1 functional orientation of the tumor microenvironment paralleled by the downregulation of DNA-repair genes was associated with CR after IMQ+RT, but not after IMQ alone. No post-treatment activation of immune-effector functions was observed in stable and progressing lesions. CONCLUSIONS Our findings support the safety and clinical efficacy of combining topical IMQ with local RT for recurrent breast cancer, with evidence of local and occasional systemic antitumor activity. TRIAL REGISTRATION NUMBER NCT01421017.
Collapse
Affiliation(s)
- Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | | | - Ena Wang
- Sidra Medical and Research Center, Ar-Rayyan, Qatar
| | - Yelena Novik
- Department of Medicine, NYU Langone Health, New York, New York, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Xiaochun Li
- Division of Biostatistics, NYU Langone Health, New York, New York, USA
| | | | - Ping Jin
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - Judith Goldberg
- Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Grossman School of Medicine
| | | | | |
Collapse
|
4
|
Zhou D, Cui Y, Liang T, Wu Z, Yan H, Li Y, Yin W, Lin Y, You Q. Pan-cancer analysis identifies CLEC12A as a potential biomarker and therapeutic target for lung adenocarcinoma. Cancer Cell Int 2025; 25:128. [PMID: 40181336 PMCID: PMC11967068 DOI: 10.1186/s12935-025-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
C-type lectin domain family 12 member A (CLEC12A) is a type II transmembrane glycoprotein widely expressed in innate immune cells, where it plays a crucial role in immune modulation and has been implicated in cancer progression. However, its precise function in oncogenesis and immune infiltration remains incompletely understood. To investigate this, we utilized multiple databases to assess the mRNA and protein expression levels of CLEC12A across normal tissues and a broad spectrum of cancers. We also evaluated its prognostic and diagnostic significance in pan-cancer contexts. Furthermore, the relationship between CLEC12A expression and immune cell infiltration, immune checkpoints, and immune predictors was explored. In addition, Weighted Gene Co-Expression Network Analysis (WGCNA) and differential expression analysis were performed to examine the biological relevance of CLEC12A in lung adenocarcinoma (LUAD). We also leveraged various databases to predict CLEC12A's response to immunotherapy and drug sensitivity. Finally, in vitro experiments validated the functional role of CLEC12A in LUAD. Our comprehensive pan-cancer analysis revealed that CLEC12A exhibited distinct expression patterns across different cancer types, suggesting its potential as both a diagnostic and prognostic biomarker. Notably, CLEC12A expression was strongly correlated with immune cell infiltration, immune checkpoints, and immune predictors. Functional enrichment analysis highlighted that increased CLEC12A expression in LUAD was associated with a variety of immune-related biological processes and pathways. Moreover, CLEC12A showed significant predictive value for immunotherapy outcomes, and several drugs targeting CLEC12A were identified. In vitro experiments further demonstrated that CLEC12A overexpression inhibited the proliferation, migration, and invasion of LUAD cells. Taken together, our findings position CLEC12A as a promising candidate for cancer detection, prognosis, and as a therapeutic target, particularly in LUAD, where it may serve as a potential target for both immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Desheng Zhou
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianxiang Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhenpeng Wu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiping Yan
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Yunen Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Qiang You
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Kamel GAM, Attia RA, Al-Noman HG, Salama LA. Advancement insights in cancer vaccines: mechanisms, types, and clinical applications. Mol Biol Rep 2025; 52:290. [PMID: 40053260 DOI: 10.1007/s11033-025-10370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
Immunotherapy can treat cancer by boosting the immune system to mark and destroy cancer cells. Cancer vaccine is a promising therapeutic strategy in immunotherapy. Cancer vaccines are divided into four groups according to different preparation techniques: cell-based vaccine, virus-based vaccine, peptide-based vaccine, and nucleic acid-based vaccine. Cancer vaccines can be given with traditional treatments or another immunotherapy to give better results and overcome tumor resistance. The cancer vaccine is a promising immunotherapy that could stimulate the immune response to kill cancer cells and create immune surveillance. However, much work is still needed to identify neoantigens, optimize the vaccination platform, and develop combination therapy to improve the efficacy of immunotherapy. This review highlights the mechanism of action of cancer vaccines, the main four groups of cancer vaccines regarding their development, research progress, and clinical applications, and how to assess immune response following cancer vaccination.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Uruk University, Baghdad, Iraq.
| | - Rasha A Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Pharmacognosy Department, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Hifaa G Al-Noman
- Nogoud Medical Centre, Ministry of Health, Almadinah Almowarah, Saudi Arabia
| | - Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Microbiology and Immunology Department, College of Pharmacy, Uruk University, Baghdad, Iraq
| |
Collapse
|
6
|
Cottrell TR, Lotze MT, Ali A, Bifulco CB, Capitini CM, Chow LQM, Cillo AR, Collyar D, Cope L, Deutsch JS, Dubrovsky G, Gnjatic S, Goh D, Halabi S, Kohanbash G, Maecker HT, Maleki Vareki S, Mullin S, Seliger B, Taube J, Vos W, Yeong J, Anderson KG, Bruno TC, Chiuzan C, Diaz-Padilla I, Garrett-Mayer E, Glitza Oliva IC, Grandi P, Hill EG, Hobbs BP, Najjar YG, Pettit Nassi P, Simons VH, Subudhi SK, Sullivan RJ, Takimoto CH. Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols. J Immunother Cancer 2025; 13:e010928. [PMID: 40054999 PMCID: PMC11891540 DOI: 10.1136/jitc-2024-010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
Immunotherapy of cancer is now an essential pillar of treatment for patients with many individual tumor types. Novel immune targets and technical advances are driving a rapid exploration of new treatment strategies incorporating immune agents in cancer clinical practice. Immunotherapies perturb a complex system of interactions among genomically unstable tumor cells, diverse cells within the tumor microenvironment including the systemic adaptive and innate immune cells. The drive to develop increasingly effective immunotherapy regimens is tempered by the risk of immune-related adverse events. Evidence-based biomarkers that measure the potential for therapeutic response and/or toxicity are critical to guide optimal patient care and contextualize the results of immunotherapy clinical trials. Responding to the lack of guidance on biomarker testing in early-phase immunotherapy clinical trials, we propose a definition and listing of essential biomarkers recommended for inclusion in all such protocols. These recommendations are based on consensus provided by the Society for Immunotherapy of Cancer (SITC) Clinical Immuno-Oncology Network (SCION) faculty with input from the SITC Pathology and Biomarker Committees and the Journal for ImmunoTherapy of Cancer readership. A consensus-based selection of essential biomarkers was conducted using a Delphi survey of SCION faculty. Regular updates to these recommendations are planned. The inaugural list of essential biomarkers includes complete blood count with differential to generate a neutrophil-to-lymphocyte ratio or systemic immune-inflammation index, serum lactate dehydrogenase and albumin, programmed death-ligand 1 immunohistochemistry, microsatellite stability assessment, and tumor mutational burden. Inclusion of these biomarkers across early-phase immunotherapy clinical trials will capture variation among trials, provide deeper insight into the novel and established therapies, and support improved patient selection and stratification for later-phase clinical trials.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Queen's University Sinclair Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, Washington, DC, USA
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Christian M Capitini
- University of Wisconsin School of Medicine and Public Health and Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Collyar
- Patient Advocates In Research (PAIR), Danville, California, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Susan Halabi
- Duke School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Gary Kohanbash
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Holden T Maecker
- Stanford University School of Medicine, Stanford, California, USA
| | - Saman Maleki Vareki
- Department of Oncology and Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sarah Mullin
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara Seliger
- Campus Brandenburg an der Havel, Brandenburg Medical School, Halle, Germany
| | - Janis Taube
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wim Vos
- Radiomics.bio, Liège, Belgium
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas, Austin, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Sumit K Subudhi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Needham, Massachusetts, USA
| | | |
Collapse
|
7
|
Cesano A, Augustin R, Barrea L, Bedognetti D, Bruno TC, Carturan A, Hammer C, Ho WS, Kather JN, Kirchhoff T, Lu RO, McQuade J, Najjar YG, Pietrobon V, Ruella M, Shen R, Soldati L, Spencer C, Betof Warner A, Warren S, Ziv E, Marincola FM. Advances in the understanding and therapeutic manipulation of cancer immune responsiveness: a Society for Immunotherapy of Cancer (SITC) review. J Immunother Cancer 2025; 13:e008876. [PMID: 39824527 PMCID: PMC11749597 DOI: 10.1136/jitc-2024-008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies. Recent advancements as well as novel approaches to address the limitations of current treatments are discussed here, with a specific focus on ICI and ACT.
Collapse
Affiliation(s)
| | - Ryan Augustin
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Tullia C Bruno
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Winson S Ho
- University of California San Francisco, San Francisco, California, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rongze O Lu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Jennifer McQuade
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Marco Ruella
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhine Shen
- Kite Pharma Inc, Santa Monica, California, USA
| | | | - Christine Spencer
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Elad Ziv
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
8
|
Xie D, Lu G, Mai G, Guo Q, Xu G. Tissue-resident memory T cells in diseases and therapeutic strategies. MedComm (Beijing) 2025; 6:e70053. [PMID: 39802636 PMCID: PMC11725047 DOI: 10.1002/mco2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, TRM cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues. Recent advances have revealed their important roles in chronic inflammation, autoimmunity, and cancer, illuminating both their protective and their pathogenic potential. This review synthesizes current knowledge on TRM cells' molecular signatures, maintenance pathways, and functional dynamics across different tissues. We also explore the interactions of TRM cells with other immune cells, such as B cells, macrophages, and dendritic cells, highlighting the complex network that underpins the efficacy of TRM cells in immune surveillance and response. Understanding the nuanced regulation of TRM cells is essential for developing targeted therapeutic strategies, including vaccines and immunotherapies, to enhance their protective roles while mitigating adverse effects. Insights into TRM cells' biology hold promise for innovative treatments for infectious diseases, cancer, and autoimmune conditions.
Collapse
Affiliation(s)
- Daoyuan Xie
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Guanting Lu
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Gang Mai
- Laboratory of Translational Medicine ResearchDeyang People's Hospital of Chengdu University of Traditional Chinese MedicineDeyangChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaAcademy of Chinese Medical SciencesBeijingChina
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research UnitThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
9
|
Jin R, Du F, Han X, Guo J, Song W, Xia Y, Yue X, Yang D, Tong J, Zhang Q, Liu Y. Prognostic Value of Insulin Growth Factor-Like Receptor 1 (IGFLR1) in Stage II and III Colorectal Cancer and Its Association with Immune Cell Infiltration. Appl Biochem Biotechnol 2025; 197:427-442. [PMID: 39141178 PMCID: PMC11748461 DOI: 10.1007/s12010-024-05006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
IGFLR1 is a novel biomarker, and some evidences suggested that is involved in the immune microenvironment of CRC. Here, we explored the expression of IGFLR1 and its association with the prognosis as well as immune cell infiltration in CRC, with the aim to provide a basis for further studies on IGFLR1. Immunohistochemical staining for IGFLR1, TIM-3, FOXP3, CD4, CD8, and PD-1 was performed in eligible tissues to analyze the expression of IGFLR1 and its association with prognosis and immune cell infiltration. Then, we screened colon cancer samples from TCGA and grouped patients according to IGFLR1-related genes. We also evaluated the co-expression and immune-related pathways of IGFLR1 to identify the potential mechanism of it in CRC. When P < 0.05, the results were considered statistically significant. IGFLR1 and IGFLR1-related genes were associated with the prognosis and immune cell infiltration (P < 0.05). In stage II and III CRC tissue and normal tissue, we found (1) IGFLR1 was expressed in both the cell membrane and cytoplasm and which was differentially expressed between cancer tissue and normal tissue. IGFLR1 expression was associated with the expression of FOXP3, CD8, and gender but was not associated with microsatellite instability. (2) IGFLR1 was an independent prognostic factor and patients with high IGFLR1 had a better prognosis. (3) A model including IGFLR1, FOXP3, PD-1, and CD4 showed good prognostic stratification ability. (4) There was a significant interaction between IGFLR1 and GATA3, and IGFLR1 had a significant co-expression with related factors in the INFR pathway. IGFLR1 has emerged as a new molecule related to disease prognosis and immune cell infiltration in CRC patients and showed a good ability to predict the prognosis of patients.
Collapse
Affiliation(s)
- Ran Jin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinhao Han
- Department of Biostatistics, Public Health School of Harbin Medical University, Harbin, China
| | - Junnan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjie Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yixiu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Yue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Yang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qiuju Zhang
- Health Management Centre, Harbin Medical University Cancer Hospital, Harbin, China.
- Department of Biostatistics, Public Health School of Harbin Medical University, Harbin, China.
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
10
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
11
|
Esen F, Cikman DI, Engin A, Turna A, Batur S, Oz B, Turna HZ, Deniz G, Aktas Cetin E. Functional and phenotypic changes in natural killer cells expressing immune checkpoint receptors PD-1, CTLA-4, LAG-3, and TIGIT in non-small cell lung cancer: the comparative analysis of tumor microenvironment, peripheral venous blood, and tumor-draining veins. Immunol Res 2024; 73:18. [PMID: 39695033 DOI: 10.1007/s12026-024-09573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Natural killer (NK) cells are a cytotoxic subset of innate lymphoid cells and have key roles in antitumoral immunity. This study evaluates the roles of immune checkpoint receptors on NK cell phenotype and functions both before and after circulation through tumor tissue. Twenty non-small cell lung cancer patients undergoing surgery and 21 healthy controls were included. Lymphocytes were isolated from peripheral venous blood, tumor-draining venous blood, and tumor tissue. Immune checkpoint receptor (ICR) expressions, intracellular cytokines, and cytotoxic capacity of NK cell subsets were analyzed by flow cytometry. Circulatory levels of sPD-1, sCTLA-4, sLAG-3, and sTIGIT were determined by ELISA. PD-1, CTLA-4, and LAG-3 expressions of both cytotoxic (CD56neg/dimCD16bright) and cytokine-producing (CD56bright/dimCD16neg) NK cells increased in tumor tissue compared to both peripheral and tumor-draining veins. NK cells expressing PD-1, CTLA-4, or LAG-3 had significantly lower IFN- γ and TNF- α and increased IL-10 expressions in tumor tissue compared to peripheral venous blood. The cytotoxic activity (perforin and granzyme A expressions) of NK cells from tumor tissue was significantly reduced compared to peripheral blood. Soluble ICRs decreased in peripheral blood and tumor-draining vein of the patients compared to peripheral blood of healthy individuals. However, NK cell phenotype and functions were similar in peripheral blood and tumor-draining vein. NSCLC tumor microenvironment impacts ICR expressions in NK cells, and ICR-expressing NK cells have impaired inflammatory cytokine secretion and cytotoxic activities with a regulatory phenotype. However, tumor-draining venous blood did not reflect the immune status of the tumor tissue.
Collapse
Affiliation(s)
- Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Duygu Ilke Cikman
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Oncology, Gävle Hospital, Gävle, Sweden
| | - Ayse Engin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Akif Turna
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sebnem Batur
- Department of Thoracic Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hande Zeynep Turna
- Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
12
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
13
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
14
|
Zhong Z, Cheng S, Liu Y. CKAP2 Regulated by TFDP1 Promotes Metastasis and Proliferation of Colorectal Cancer through Affecting the Tumor Microenvironment. J Microbiol Biotechnol 2024; 34:2211-2222. [PMID: 39403723 PMCID: PMC11637825 DOI: 10.4014/jmb.2407.07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024]
Abstract
The current pathological and physiological evaluation system for colorectal cancer (CRC) is limited; thus, effective biological targets to diagnose and treat this disease are urgently needed. In this study, we used qRT-PCR for detecting mRNA levels of genes. The levels of protein were identified by western blot, immunohistochemistry, and immunofluorescence assays. In addition, functional experiments were used to evaluate the role of cytoskeleton associated protein (CKAP) 2 in CRC cells and human umbilical vein endothelial cells (HUVECs). Bioinformatics analysis was employed to predict the binding relationship of CKAP2 and TFDP1, which was confirmed through dual luciferase reporter assay and immunoprecipitation assay. Furthermore, we injected human colorectal carcinoma HCT116 cells into mice flanks, and we injected Luciferase-labeled HCT116 cells into mice tail vein. HE staining was used to detect tumor nodules. As a result, high CKAP2 expression was found in CRC cells and tissues. CKAP2 silencing reduced CRC cell migration, invasion, proliferation, and epithelial-mesenchymal transition. Moreover, CKAP2 expression was positively associated with M2 macrophage levels. CKAP2 promoted protein expression of CD86, CD206, IL-1β, and CCL17. Moreover, CKAP2 promoted the proliferation of HUVECs and angiogenesis via affecting the tumor microenvironment (TME). We also found that CKAP2 could interact with TFDP1. The inhibitory impacts of TFDP1 downregulation on CRC cell' proliferation, migration, and invasion were reversed via CKAP2 overexpression. In vivo silencing of CKAP2 repressed tumor growth and metastasis. Overall, CKAP2 was positively regulated by TFDP1, which promoted tumorigenesis and metastasis in CRC.
Collapse
Affiliation(s)
- Zhiqiang Zhong
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Yang Liu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
15
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
16
|
Saastad SA, Skjervold AH, Ytterhus B, Engstrøm MJ, Bofin AM. PD-L1 protein expression in breast cancer. J Clin Pathol 2024; 77:730-736. [PMID: 37553245 DOI: 10.1136/jcp-2023-208942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
AIMS The immune checkpoint marker, Programmed cell death-ligand 1 (PD-L1), is expressed by both cancer epithelial cells and tumour-infiltrating immune cells (TICs) thus constituting a potential target for immunotherapy. This is of particular interest in triple negative breast cancer. In this study, we assessed the prognostic value of PD-L1 expression in tumour epithelial cells and TICs in a series of patients with breast cancer with long-term follow-up, and associations between PD-L1 expression and histopathological type and grade, proliferation and molecular subtype. METHODS Using immunohistochemistry for PD-L1 in tissue microarrays, we assessed PD-L1 expression in 821 tumours. Expression of PD-L1 was assessed separately in the epithelial and stromal compartments and classified as <1%, ≥1% to <10% or ≥10% positive staining cells. We correlated PD-L1 expression in tumour epithelial cells and TICs with tumour characteristics using Pearson's χ2 test, and prognosis by cumulative incidence of death from breast cancer and Cox regression analyses. RESULTS We found membranous staining in ≥1% of tumour epithelial cells in 53/821 cases (6.5%). Of these, 21 (2.6%) were ≥10%. Among TICs, staining (≥1%) was seen in 144/821 cases (17.6%). Of these, 62 were ≥10% (7.6%). PD-L1 was associated with high histopathological grade and proliferation, and the medullary and metaplastic patterns. In TICs, PD-L1 ≥1% found in 22/34 (34.4%) human epidermal growth factor receptor 2 type and 29/58 (50%) basal phenotype. An independent association between PD-L1 expression and prognosis was not observed. CONCLUSIONS PD-L1 is expressed more frequently in TICs than tumour epithelial cells. Expression in TICs is associated with aggressive tumour characteristics and non-luminal tumours but not with prognosis.
Collapse
Affiliation(s)
- Sigurd A Saastad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anette H Skjervold
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Monica Jernberg Engstrøm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sugrery, St. Olav's Hospital Trondheim University Hospital, Trondheim, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Qin G, Liao X, Zhang B, Su Y, Yang H, Xie Y, Zhang R, Kong X, Liao S, Chen C, Mo Y, Dai J, Tang H, Duan Y, Jiang W. An individualized immune prognostic signature in nasopharyngeal carcinoma. Oral Oncol 2024; 157:106985. [PMID: 39126750 DOI: 10.1016/j.oraloncology.2024.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Immune-related characteristics can serve as reliable prognostic biomarkers in various cancers. Herein, we aimed to construct an individualized immune prognostic signature in nasopharyngeal carcinoma (NPC). METHODS This study retrospectively included 455 NPC samples and 39 normal healthy nasopharyngeal tissue specimens. Samples from Gene Expression Omnibus (GEO) were obtained as discovery cohort to screen candidate prognostic immune-related gene pairs based on relative expression ordering of the genes. Quantitative real-time reverse transcription-PCR was used to detect the selected genes to construct an immune-related gene pair signature in training cohort, which comprised 118 clinical samples, and was then validated in validation cohort 1, comprising 92 clinical samples, and validation cohort 2, comprising 88 samples from GEO. RESULTS We identified 26 immune-related gene pairs as prognostic candidates in discovery cohort. A prognostic immune signature comprising 11 immune gene pairs was constructed in training cohort. In validation cohort 1, the immune signature could significantly distinguish patients with high or low risk in terms of progression-free survival (PFS) (hazard ratio [HR] 2.66, 95 % confidence interval (CI) 1.17-6.02, P=0.015) and could serve as an independent prognostic factor for PFS in multivariate analysis (HR 2.66, 95 % CI 1.17-6.02, P=0.019). Similar results were obtained using validation cohort 2, in which PFS was significantly worse in high risk group than in low risk group (HR 3.02, 95 % CI 1.12-8.18, P=0.022). CONCLUSIONS The constructed immune signature showed promise for estimating prognosis in NPC. It has potential for translation into clinical practice after prospective validation.
Collapse
Affiliation(s)
- Guanjie Qin
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Xiaofei Liao
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Bin Zhang
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou 543002, China
| | - Yixin Su
- Department of Radiation Oncology, Lingshan People's Hospital, Zhongxiu Road, Lingshan 535400, China
| | - Huiyun Yang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Yuan Xie
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou 543002, China
| | - Rongjun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Xiangyun Kong
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Shufang Liao
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Cancan Chen
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Yunyan Mo
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Jinxuan Dai
- Department of Oncology, Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin 541199, China
| | - Huaying Tang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Yuting Duan
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China
| | - Wei Jiang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin 541001, China; Key Laboratory of Oncology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541001, China.
| |
Collapse
|
18
|
Gardani CFF, Diz FM, Dondé LB, Rockenbach L, Laufer S, Morrone FB. The potential role of purinergic signaling in cancer therapy: perspectives on anti-CD73 strategies for prostate cancer. Front Immunol 2024; 15:1455469. [PMID: 39355246 PMCID: PMC11442216 DOI: 10.3389/fimmu.2024.1455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/03/2024] Open
Abstract
Purines and pyrimidines are signaling molecules in the tumor microenvironment that affect cancer immunity. The purinergic signaling pathways have been shown to play an important role in the development and progression of cancer. CD39 and CD73 are ectonucleotidases responsible for breaking down ATP or ADP into adenosine, which regulates immunosuppression in various types of cancer. These enzymes have been studied as a potential therapeutic target in immunotherapy, and recent research suggests a correlation between ectonucleotidases and clinical outcomes in cancer.Prostate cancer is the most diagnosed cancer in men, after non-melanoma skin tumors, and is the second leading cause of death in men in the world. Despite having long survival periods, patients often receive excessive or insufficient treatment. Within this complex landscape, the adenosine/CD73 pathway plays a crucial role. Therefore, this review aims to highlight new findings on the potential role of purinergic signaling in cancer treatment and emphasizes the importance of anti-CD73 as a pharmacological strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Carla Fernanda Furtado Gardani
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Mendonça Diz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Pré-Clínica, Instituto do Cerebro do Rio Grande do Sul (InsCer), Pontíficia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa Brandalise Dondé
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liliana Rockenbach
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Fernanda Bueno Morrone
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
20
|
Tang CW, Yang JH, Qin JW, Wu HJ, Cui HP, Ge LY, Liu AQ. Regulation of the PD-1/PD-L1 Axis and NK Cell Dysfunction by Exosomal miR-552-5p in Gastric Cancer. Dig Dis Sci 2024; 69:3276-3289. [PMID: 39020183 PMCID: PMC11415408 DOI: 10.1007/s10620-024-08536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE NK cells play a vital role in tumor immune resistance. Various factors affect NK cell activity. While NK cell dysfunction has been observed in numerous malignancies, the underlying mechanisms in gastric cancer remain unclear. METHOD Flow cytometry was used to identify the phenotypic distribution and expression of activated receptors on NK cells. ELISA was used to determine the expression of cytokines. We examined the expression of NK cell-related genes and explored their association with survival and prognosis. Additionally, we conducted PCR detection of miR-552-5p expression levels in plasma exosomes of patients and investigated its correlation with phenotypic distribution and activated receptors. We used flow cytometry and ELISA to verify the role of miR-552-5p in NK cell dysfunction. Furthermore, we investigated the potential role of PD-1/PD-L1 in regulating NK cell dysfunction in patients' cells. RESULTS We observed a significant decrease in the percentage of NKG2D and NKp30 and IFN-γ and TNF-α in patients than in healthy volunteers. Patients with low levels of CD56, CD16, NKG2D, and NKP46 exhibited poorer survival prognoses. Moreover, increased expression levels of plasma exosomal miR-552-5p in patients were negatively associated with NK cell phenotypic distribution and activated receptor expression. MiR-552-5p downregulated the secretion of perforin, granzyme, and IFN-γ as well as the expression of NKp30, NKp46, and NKG2D. Additionally, it suppressed the cytotoxicity of NK cells. The inhibitory effect of miR-552-5p, on NK cell function was reversed when anti-PD-L1 antibodies were used. CONCLUSION Exosomal miR-552-5p targets the PD-1/PD-L1 axis, leading to impaired NK cell function.
Collapse
Affiliation(s)
- Chun-Wei Tang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jin-Hua Yang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jing-Wen Qin
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Hui-Jie Wu
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Hao-Peng Cui
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Ai-Qun Liu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| |
Collapse
|
21
|
Zou S, Zhang L, Jiang C, Li F, Yang Y, Deng X, Zhang J, Chen H, Jiang L, Cheng X, Deng L, Lin L, Shen B, Wen C, Zhan Q. Driver mutation subtypes involve with differentiated immunophenotypes influencing pancreatic cancer outcomes. Cancer Lett 2024; 599:217134. [PMID: 39094824 DOI: 10.1016/j.canlet.2024.217134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Despite many studies focusing on the prognostic biomarkers in pancreatic adenocarcinomas (PAADs), there is ill-informed about the relationships between their genomic features and immune characteristics. Herein, we deeply investigated the involvement of major driver mutation subtypes with immunophenotypes impacting PAAD outcomes. Based on public data analyses of RNA expression-based immune subtypes in PAAD, in contrast to KRAS G12D & TP53 co-mutant patients with poor outcomes, the best immune subtype C3 (inflammatory) characterized by high Th1/Th2 ratio was relatively enriched in KRASnon-G12DTP53wt patients with better survival, whereas the inferior subtype C2 (IFN-γ dominant) with low Th1/Th2 ratio was more common in the former than in the latter. Moreover, contrary to the highly immunosuppressive microenvironment (high Treg, high ratio of Treg to tumor-specific CD4+ T cell) in KRASG12DTP53mut patients, KRASG12VTP53wt individuals exhibited an inflamed context profiled by multiplex immunohistochemistry. It could be responsible for their outstanding survival advantage over others in postsurgical PAAD patients receiving adjuvant chemotherapy as shown by our cohort. Together, KRASG12VTP53wt may be a promising biomarker for prognostic evaluation and screening certain candidates with PAAD to get desirable survival benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lei Zhang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueyan Cheng
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lisha Deng
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
22
|
Jackson CM, Pant A, Dinalankara W, Choi J, Jain A, Nitta R, Yazigi E, Saleh L, Zhao L, Nirschl TR, Kochel CM, Hwa-Lin Bergsneider B, Routkevitch D, Patel K, Cho KB, Tzeng S, Neshat SY, Kim YH, Smith BJ, Ramello MC, Sotillo E, Wang X, Green JJ, Bettegowda C, Li G, Brem H, Mackall CL, Pardoll DM, Drake CG, Marchionni L, Lim M. The cytokine Meteorin-like inhibits anti-tumor CD8 + T cell responses by disrupting mitochondrial function. Immunity 2024; 57:1864-1877.e9. [PMID: 39111315 PMCID: PMC11324406 DOI: 10.1016/j.immuni.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ayush Pant
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wikum Dinalankara
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Saleh
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Stephany Tzeng
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Y Neshat
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Cecilia Ramello
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jordan J Green
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal L Mackall
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
23
|
Cai S, Yang G, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial cell interplay networks of regulatory T cells predict recurrence in patients with operable non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:189. [PMID: 39093404 PMCID: PMC11297009 DOI: 10.1007/s00262-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The interplay between regulatory T cells (Tregs) and neighboring cells, which is pivotal for anti-tumor immunity and closely linked to patient prognosis, remains to be fully elucidated. METHODS Tissue microarrays of 261 operable NSCLC patients were stained by multiplex immunofluorescence (mIF) assay, and the interaction between Tregs and neighboring cells in the tumor microenvironment (TME) was evaluated. Employing various machine learning algorithms, we developed a spatial immune signature to predict the prognosis of NSCLC patients. Additionally, we explored the interplay between programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interactions and their relationship with Tregs. RESULTS Survival analysis indicated that the interplay between Tregs and neighboring cells in the invasive margin (IM) and tumor center was associated with recurrence in NSCLC patients. We integrated the intersection of the three algorithms to identify four crucial spatial immune features [P(CD8+Treg to CK) in IM, P(CD8+Treg to CD4) in IM, N(CD4+Treg to CK) in IM, N(CD4+Tcon to CK) in IM] and employed these characteristics to establish SIS, an independent prognosticator of recurrence in NSCLC patients [HR = 2.34, 95% CI (1.53, 3.58), P < 0.001]. Furthermore, analysis of cell interactions demonstrated that a higher number of Tregs contributed to higher PD-L1+ cells surrounded by PD-1+ cells (P < 0.001) with shorter distances (P = 0.004). CONCLUSION We dissected the cell interplay network within the TME, uncovering the spatial architecture and intricate interactions between Tregs and neighboring cells, along with their impact on the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
24
|
Yang C, Zhao L, Lin Y, Wang S, Ye Y, Shen Z. Improving the efficiency of immune checkpoint inhibitors for metastatic pMMR/MSS colorectal cancer: Options and strategies. Crit Rev Oncol Hematol 2024; 200:104204. [PMID: 37984588 DOI: 10.1016/j.critrevonc.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment and been extensively used for patients with metastastic colorectal cancer (mCRC), especially those harboring deficient mismatch repair/ microsatellite instability (dMMR/MSI). However, the majority of mCRC are classified as proficient mismatch repair/microsatellite stability(pMMR/MSS) type characterized by a cold immune microenvironment, rendering them generally unresponsive to ICIs. How to improve the efficacy of ICIs for these patients is an important issue to be solved. On the one hand, it is urgent to discover the predictive biomarkers and clinical characteristics associated with effectiveness and expand the subset of pMMR/MSS mCRC patients who benefit from ICIs. Additionally, combined strategies are being explored to modulate the immune microenvironment of pMMR/MSS CRC and facilitate the conversion of cold tumors into hot tumors. In this review, we have focused on the recent advancements in the predictive biomarkers and combination therapeutic strategies with ICIs for pMMR/MSS mCRC.
Collapse
Affiliation(s)
- Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, PR China.
| |
Collapse
|
25
|
Wang Y, Chen R, Guo Z, Wei W, Wang T, Ouyang R, Yuan X, Xing Y, Wang F, Wu S, Hou H. Immunological profiling for short-term predictive analysis in PD-1/PD-L1 therapy for lung cancer. BMC Cancer 2024; 24:851. [PMID: 39026211 PMCID: PMC11256628 DOI: 10.1186/s12885-024-12628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors, such as anti-programmed cell death-1 (PD-1) and PD-1 ligand-1 (PD-L1) antibodies, have achieved breakthrough results in improving long-term survival rates in lung cancer. Although high levels of PD-L1 expression and tumor mutational burden have emerged as pivotal biomarkers, not all patients derive lasting benefits, and resistance to immune checkpoint blockade remains a prevalent issue. Comprehending the immunological intricacies of lung cancer is crucial for uncovering the mechanisms that govern responses and resistance to immunomodulatory treatments. This study aimed to explore the potential of peripheral immune markers in predicting treatment efficiency among lung cancer patients undergoing PD-1/PD-L1 checkpoint inhibitors. METHODS This study enrolled 71 lung cancer patients undergoing PD-1/PD-L1 inhibitor therapy and 20 healthy controls. Immune cell subsets (CD4 + T cells, CD8 + T cells, B cells, NK cells, and NKT cells), phenotypic analysis of T cells and B cells, and PMA/Ionomycin-stimulated lymphocyte function assay were conducted. RESULTS Lung cancer patients exhibited significant alterations in immune cell subsets, notably an increased percentage of Treg cells. Post-treatment, there were substantial increases in absolute numbers of CD3 + T cells, CD8 + T cells, and NKT cells, along with heightened HLA-DR expression on CD3 + T and CD8 + T cells. Comparison between complete remission and non-complete remission (NCR) groups showed higher Treg cell percentages and HLA-DR + CD4 + T cells in the NCR group. CONCLUSION The study findings suggest potential predictive roles for immune cell subsets and phenotypes, particularly Treg cells, HLA-DR + CD4 + T cells, and naïve CD4 + T cells, in evaluating short-term PD-1/PD-L1 therapy efficacy for lung cancer patients. These insights offer valuable prospects for personalized treatment strategies and underscore the importance of immune profiling in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Rujia Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Zhenzhou Guo
- Department of Laboratory Medicine, Xinfeng County People's Hospital, Ganzhou, China
| | - Wei Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Renren Ouyang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Xu Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Yutong Xing
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China.
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China.
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 1095, 430030, 430030, China.
| |
Collapse
|
26
|
Shen R, Huang Y, Kong D, Ma W, Liu J, Zhang H, Cheng S, Feng L. Spatial distribution pattern of immune cells is associated with patient prognosis in colorectal cancer. J Transl Med 2024; 22:606. [PMID: 38951801 PMCID: PMC11218284 DOI: 10.1186/s12967-024-05418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The spatial context of tumor-infiltrating immune cells (TIICs) is important in predicting colorectal cancer (CRC) patients' clinical outcomes. However, the prognostic value of the TIIC spatial distribution is unknown. Thus, we aimed to investigate the association between TIICs in situ and patient prognosis in a large CRC sample. METHODS We implemented multiplex immunohistochemistry staining technology in 190 CRC samples to quantify 14 TIIC subgroups in situ. To delineate the spatial relationship of TIICs to tumor cells, tissue slides were segmented into tumor cell and microenvironment compartments based on image recognition technology, and the distance between immune and tumor cells was calculated by implementing the computational pipeline phenoptr. RESULTS MPO+ neutrophils and CD68+IDO1+ tumor-associated macrophages (TAMs) were enriched in the epithelial compartment, and myeloid lineage cells were located nearest to tumor cells. Except for CD68+CD163+ TAMs, other cells were all positively associated with favorable prognosis. The prognostic predictive power of TIICs was highly related to their distance to tumor cells. Unsupervised clustering analysis divided colorectal cancer into three subtypes with distinct prognostic outcomes, and correlation analysis revealed the synergy among B cells, CD68+IDO1+TAMs, and T lineage cells in producing an effective immune response. CONCLUSIONS Our study suggests that the integration of spatial localization with TIIC abundance is important for comprehensive prognostic assessment.
Collapse
Affiliation(s)
- Rongfang Shen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Ying Huang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deyang Kong
- Department of Colorectal Surgery, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Wenhui Ma
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haizeng Zhang
- Department of Colorectal Surgery, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
27
|
Li X, Eastham J, Giltnane JM, Zou W, Zijlstra A, Tabatsky E, Banchereau R, Chang CW, Nabet BY, Patil NS, Molinero L, Chui S, Harryman M, Lau S, Rangell L, Waumans Y, Kockx M, Orlova D, Koeppen H. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J Pathol 2024; 263:190-202. [PMID: 38525811 DOI: 10.1002/path.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. We developed approaches to categorize solid tumors into 'desert', 'excluded', and 'inflamed' types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on 'manual' observation is predictive for clinical benefit from anti-programmed death ligand 1 therapy in two large cohorts of patients with non-small cell lung cancer or triple-negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Li
- Genentech, South San Francisco, CA, USA
| | | | | | - Wei Zou
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Shari Lau
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ming R, Wu H, Liu H, Zhan F, Qiu X, Ji M. Causal effects and metabolites mediators between immune cell and risk of breast cancer: a Mendelian randomization study. Front Genet 2024; 15:1380249. [PMID: 38826800 PMCID: PMC11140059 DOI: 10.3389/fgene.2024.1380249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction: The incidence and mortality of female breast cancer remain high, and the immune microenvironment of breast cancer has undergone significant alterations. However, the impact of blood immune cell levels on the risk of breast cancer is not fully understood. Therefor this study aims to investigate the causal relationship between blood immune cell levels and the risk of breast cancer. Methods: A Mendelian randomization (MR) analysis was employed to assess the causal relationship between immune cells and the risk of breast cancer, as along with their potential mediating factors. Genetic statistics of metabolites breast cancer and immune cells were obtained from the GWAS Catalog, while the genome-wide association study (GWAS) statistics of breast cancer were extracted from the UK biobank. Two-sample MR analysis were performed using inverse-variance weighted (IVW) to ascertain the causal association between immune cells and the risk of breast cancer. Furthermore, 1,400 metabolites were analyzed for their mediating role between immune cells and the risk of breast cancer. Results: MR analysis through IVW method revealed that genetically predicted CD24+ CD27+ B cells were associated with a decreased risk of breast cancer (OR = 0.9978, 95% CI: 0.996-0.999, p = 0.001), while IgD- CD38+ B cells were linked to an increased risk of breast cancer (OR = 1.002, 95% CI: 1.001-1.004, p = 0.005). Additional CD14+ CD16+ monocytes were associated with an increased risk of breast cancer (OR = 1.000, 95% CI: 1.000-1.001, p = 0.005). Mediation analysis revealed a positive causal relationship between IgD- CD38+ B cells and Glycerate levels, with the latter also exhibiting a positive causal relationship with the risk of breast cancer (p < 0.05). Conversely, IgD- CD38+ B cells displayed a negative causal relationship with Succinoyltaurine levels, and the latter also demonstrated a negative causal relationship with the risk of breast cancer (p < 0.05). Conclusion: This MR study provides novel genetic evidence supporting a causal relationship between IgD- CD38+ B cells and the risk of BC. Moreover, it is identified that IgD- CD38+ B cells contribute to an increased risk of BC through both positive and negative mediation effects involving Glycerate and Succinoyltaurine.
Collapse
Affiliation(s)
- Ruijie Ming
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Huan Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
29
|
Liang W, Yang X, Li X, Wang P, Zhu Z, Liu S, Xu D, Zhi X, Xue J. Investigating gene signatures associated with immunity in colon adenocarcinoma to predict the immunotherapy effectiveness using NFM and WGCNA algorithms. Aging (Albany NY) 2024; 16:7596-7621. [PMID: 38742936 PMCID: PMC11131999 DOI: 10.18632/aging.205763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes (IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes (DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant theoretical and clinical implications. These findings are anticipated to offer substantial support for both the treatment and prognosis management of COAD patients.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xiangyu Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong 400010, Chongqing, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| | - Peng Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Zhenpeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, Shenzhen 518132, Guangdong, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
30
|
Mei J, Cai Y, Xu R, Li Q, Chu J, Luo Z, Sun Y, Shi Y, Xu J, Li D, Liang S, Jiang Y, Liu J, Qian Z, Zhou J, Wan M, Yang Y, Zhu Y, Zhang Y, Yin Y. Conserved immuno-collagenic subtypes predict response to immune checkpoint blockade. Cancer Commun (Lond) 2024; 44:554-575. [PMID: 38507505 PMCID: PMC11110954 DOI: 10.1002/cac2.12538] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized the treatment of various cancer types. Despite significant preclinical advancements in understanding mechanisms, identifying the molecular basis and predictive biomarkers for clinical ICB responses remains challenging. Recent evidence, both preclinical and clinical, underscores the pivotal role of the extracellular matrix (ECM) in modulating immune cell infiltration and behaviors. This study aimed to create an innovative classifier that leverages ECM characteristics to enhance the effectiveness of ICB therapy. METHODS We analyzed transcriptomic collagen activity and immune signatures in 649 patients with cancer undergoing ICB therapy. This analysis led to the identification of three distinct immuno-collagenic subtypes predictive of ICB responses. We validated these subtypes using the transcriptome data from 9,363 cancer patients from The Cancer Genome Atlas (TCGA) dataset and 1,084 in-house samples. Additionally, novel therapeutic targets were identified based on these established immuno-collagenic subtypes. RESULTS Our categorization divided tumors into three subtypes: "soft & hot" (low collagen activity and high immune infiltration), "armored & cold" (high collagen activity and low immune infiltration), and "quiescent" (low collagen activity and immune infiltration). Notably, "soft & hot" tumors exhibited the most robust response to ICB therapy across various cancer types. Mechanistically, inhibiting collagen augmented the response to ICB in preclinical models. Furthermore, these subtypes demonstrated associations with immune activity and prognostic predictive potential across multiple cancer types. Additionally, an unbiased approach identified B7 homolog 3 (B7-H3), an available drug target, as strongly expressed in "armored & cold" tumors, relating with poor prognosis. CONCLUSION This study introduces histopathology-based universal immuno-collagenic subtypes capable of predicting ICB responses across diverse cancer types. These findings offer insights that could contribute to tailoring personalized immunotherapeutic strategies for patients with cancer.
Collapse
Affiliation(s)
- Jie Mei
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yun Cai
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Rui Xu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Qing Li
- Departments of OncologyXuzhou Central HospitalThe Xuzhou School of Clinical Medicine of Nanjing Medical UniversityXuzhouJiangsuP. R. China
| | - Jiahui Chu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zhiwen Luo
- Department of Sports MedicineHuashan Hospital Affiliated to Fudan UniversityShanghaiP. R. China
| | - Yaying Sun
- Department of Sports MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yuxin Shi
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Junying Xu
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Di Li
- Shanghai Outdo Biotech Co., Ltd., National Engineering Center for BiochipShanghaiP. R. China
| | - Shuai Liang
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Ying Jiang
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Jiayu Liu
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Zhiwen Qian
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Jiaofeng Zhou
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Mengyun Wan
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yunlong Yang
- Department of Cellular and Genetic MedicineSchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Yichao Zhu
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yan Zhang
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Yongmei Yin
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
31
|
Hijazi A, Galon J. Principles of risk assessment in colon cancer: immunity is key. Oncoimmunology 2024; 13:2347441. [PMID: 38694625 PMCID: PMC11062361 DOI: 10.1080/2162402x.2024.2347441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
In clinical practice, the administration of adjuvant chemotherapy (ACT) following tumor surgical resection raises a critical dilemma for stage II colon cancer (CC) patients. The prognostic features used to identify high-risk CC patients rely on the pathological assessment of tumor cells. Currently, these factors are considered for stratifying patients who may benefit from ACT at early CC stages. However, the extent to which these factors predict clinical outcomes (i.e. recurrence, survival) remains highly controversial, also uncertainty persists regarding patients' response to treatment, necessitating further investigation. Therefore, an imperious need is to explore novel biomarkers that can reliably stratify patients at risk, to optimize adjuvant treatment decisions. Recently, we evaluated the prognostic and predictive value of Immunoscore (IS), an immune digital-pathology assay, in stage II CC patients. IS emerged as the sole significant parameter for predicting disease-free survival (DFS) in high-risk patients. Moreover, IS effectively stratified patients who would benefit most from ACT based on their risk of recurrence, thus predicting their outcomes. Notably, our findings revealed that digital IS outperformed the visual quantitative assessment of the immune response conducted by expert pathologists. The latest edition of the WHO classification for digestive tumor has introduced the evaluation of the immune response, as assessed by IS, as desirable and essential diagnostic criterion. This supports the revision of current cancer guidelines and strongly recommends the implementation of IS into clinical practice as a patient stratification tool, to guide CC treatment decisions. This approach may provide appropriate personalized therapeutic decisions that could critically impact early-stage CC patient care.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
32
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
33
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Cai M, Zhao K, Wu L, Huang Y, Zhao M, Hu Q, Chen Q, Yao S, Li Z, Fan X, Liu Z. Artificial intelligence-based analysis of tumor-infiltrating lymphocyte spatial distribution for colorectal cancer prognosis. Chin Med J (Engl) 2024; 137:421-430. [PMID: 38238158 PMCID: PMC10876244 DOI: 10.1097/cm9.0000000000002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) technology represented by deep learning has made remarkable achievements in digital pathology, enhancing the accuracy and reliability of diagnosis and prognosis evaluation. The spatial distribution of CD3 + and CD8 + T cells within the tumor microenvironment has been demonstrated to have a significant impact on the prognosis of colorectal cancer (CRC). This study aimed to investigate CD3 CT (CD3 + T cells density in the core of the tumor [CT]) prognostic ability in patients with CRC by using AI technology. METHODS The study involved the enrollment of 492 patients from two distinct medical centers, with 358 patients assigned to the training cohort and an additional 134 patients allocated to the validation cohort. To facilitate tissue segmentation and T-cells quantification in whole-slide images (WSIs), a fully automated workflow based on deep learning was devised. Upon the completion of tissue segmentation and subsequent cell segmentation, a comprehensive analysis was conducted. RESULTS The evaluation of various positive T cell densities revealed comparable discriminatory ability between CD3 CT and CD3-CD8 (the combination of CD3 + and CD8 + T cells density within the CT and invasive margin) in predicting mortality (C-index in training cohort: 0.65 vs. 0.64; validation cohort: 0.69 vs. 0.69). The CD3 CT was confirmed as an independent prognostic factor, with high CD3 CT density associated with increased overall survival (OS) in the training cohort (hazard ratio [HR] = 0.22, 95% confidence interval [CI]: 0.12-0.38, P <0.001) and validation cohort (HR = 0.21, 95% CI: 0.05-0.92, P = 0.037). CONCLUSIONS We quantify the spatial distribution of CD3 + and CD8 + T cells within tissue regions in WSIs using AI technology. The CD3 CT confirmed as a stage-independent predictor for OS in CRC patients. Moreover, CD3 CT shows promise in simplifying the CD3-CD8 system and facilitating its practical application in clinical settings.
Collapse
Affiliation(s)
- Ming Cai
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong 510080, China
| | - Ke Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Lin Wu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan 650118, China
| | - Yanqi Huang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong 510080, China
| | - Minning Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qingru Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qicong Chen
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zhenhui Li
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan 650118, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong 510080, China
| |
Collapse
|
35
|
Aventaggiato M, Valentini F, Caissutti D, Relucenti M, Tafani M, Misasi R, Zicari A, Di Martino S, Virtuoso S, Neri A, Mardente S. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024; 12:256. [PMID: 38397858 PMCID: PMC10887315 DOI: 10.3390/biomedicines12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the discovery of graphene, there has been a wide range of the literature dealing with its versatile structure and easy binding of biomolecules as well as its large loading capacity. In the emerging field of immunotherapy, graphene and its derivatives have potential uses as drug delivery platforms directly into tumour sites or as adjuvants in cancer vaccines, as they are internalized by monocytes which in turn may activate adaptive anti-tumoral immune responses. In this study, we expose cells of the innate immune system and a human acute monocytic leukemia cell line (THP-1) to low doses of small-sized GO nanosheets functionalized with bovine serum albumin (BSA) and fluorescein isothiocyanate (FITC), to study their acute response after internalization. We show by flow cytometry, uptake in cells of GO-BSA-FITC reaches 80% and cell viability and ROS production are both unaffected by exposure to nanoparticles. On the contrary, GO-BSA nanosheets seem to have an inhibitory effect on ROS production, probably due to their antioxidant properties. We also provided results on chemotaxis of macrophages derived from peripheral blood monocytes treated with GO-BSA. In conclusion, we showed the size of nanosheets, the concentration used and the degree of functionalization were important factors for biocompatibility of GO in immune cells. Its low cytotoxicity and high adaptability to the cells of the innate immune system make it a good candidate for deployment in immunotherapy, in particular for delivering protein antigens to monocytes which activate adaptive immunity.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Di Martino
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Virtuoso
- Higher Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Neri
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Montpellier, 1, 00133 Rome, Italy;
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| |
Collapse
|
36
|
Liu L, Long M, Su S, Wang L, Liu J. Clinical impact of heterogeneously distributed tumor-infiltrating lymphocytes on the prognosis of colorectal cancer. PeerJ 2024; 12:e16747. [PMID: 38223758 PMCID: PMC10785792 DOI: 10.7717/peerj.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) exist in various malignancies, and have been viewed as a promising biomarker to predict the efficacy and outcome of treatment. However, the marked inter- and intra-tumor heterogeneity of TILs has resulted in some confusion regarding their impact on the prognosis of colorectal cancer (CRC). Methods In this study, 78 CRC patients were enrolled and the CD3+ and CD8+ TILs densities at the tumor center (TC), the invasive margin (IM) and the tumor stroma (TS) were assessed by immunohistochemical staining. Their associations with clinicopathological features and progression free survival (PFS) were analyzed to evaluate the predictive and prognostic values of TILs. Results TILs were mainly distributed along the invasive margin. High density of TILs in tumor center and invasive margin was associated with smaller tumor size (CD3+TILsIM), reduced tumor invasion (CD3+TILsIM), absence of lymph node metastasis (CD3+TILsIM and CD8+TILsTC), earlier stage (CD3+TILsIM and CD8+TILsIM), and lower tumor grade (CD3+TILsIM and CD8+TILsTC). However, stromal TILs were not associated with any clinicopathological features. Kaplan-Meier survival analysis revealed that high densities of TILs always correlated with prolonged patient survival. The pathological N stage, CD3+ TILsIM and CD8+ TILsTC were found to be independent prognostic indicators. Additionally, early-stage CRC patients who developed recurrence after surgery, showed a higher CD3+/CD8+ TILs ratio in invasive margin. In the present study, it was clarified that CD3+ and CD8+ TILs were heterogeneously distributed in tumor tissues of CRC. The increase in intratumoral and peritumoral TILs had been shown to be strongly predictive of improved clinical outcome. More importantly, the immune signatures enabled to stratify early-stage CRC patients with high risk of recurrence, highlighting the prognostic power of TILs.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | | | - Shengyuan Su
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | - Lijun Wang
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | - Jintao Liu
- Shenzhen Baoan Traditional Chinese Medicine Hospital Group, Shenzhen, China
| |
Collapse
|
37
|
Nakamura T, Asanuma K, Hagi T, Sudo A. C‑reactive protein and related predictors in soft tissue sarcoma (Review). Mol Clin Oncol 2024; 20:6. [PMID: 38125741 PMCID: PMC10729310 DOI: 10.3892/mco.2023.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
C-reactive protein (CRP) is a useful predictor of poor survival in patients with several types of cancer because inflammation is strongly associated with cancer progression. The production of CRP in hepatocytes appears to be primarily induced at the transcriptional level following the elevation of circulating interleukin-6 (IL-6), which is produced by various cell types, including cancer cells and cancer-associated fibroblasts. Serum CRP levels are associated with serum IL-6 levels in patients with soft tissue sarcoma (STS). Additionally, patients with elevated CRP levels had worse oncological outcomes than those with normal CRP levels. It has been attempted to combine CRP levels with other inflammatory or immune markers, and the utility of this has been demonstrated. Therefore, a novel treatment strategy should be developed for patients with STS with elevated CRP levels. The present review aimed to clarify the role of CRP levels and related tools in predicting clinical outcomes in patients with STS.
Collapse
Affiliation(s)
- Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
38
|
Derbal Y. Adaptive Cancer Therapy in the Age of Generative Artificial Intelligence. Cancer Control 2024; 31:10732748241264704. [PMID: 38897721 PMCID: PMC11189021 DOI: 10.1177/10732748241264704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic resistance is a major challenge facing the design of effective cancer treatments. Adaptive cancer therapy is in principle the most viable approach to manage cancer's adaptive dynamics through drug combinations with dose timing and modulation. However, there are numerous open issues facing the clinical success of adaptive therapy. Chief among these issues is the feasibility of real-time predictions of treatment response which represent a bedrock requirement of adaptive therapy. Generative artificial intelligence has the potential to learn prediction models of treatment response from clinical, molecular, and radiomics data about patients and their treatments. The article explores this potential through a proposed integration model of Generative Pre-Trained Transformers (GPTs) in a closed loop with adaptive treatments to predict the trajectories of disease progression. The conceptual model and the challenges facing its realization are discussed in the broader context of artificial intelligence integration in oncology.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
39
|
Wang S, Chen S, Li H, Ben S, Zhao T, Zheng R, Wang M, Gu D, Liu L. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS. J Biomed Res 2023; 38:37-50. [PMID: 38111199 PMCID: PMC10818172 DOI: 10.7555/jbr.37.20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/20/2023] Open
Abstract
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tingyu Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Lingxiang Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
40
|
Sidiropoulos DN, Ho WJ, Jaffee EM, Kagohara LT, Fertig EJ. Systems immunology spanning tumors, lymph nodes, and periphery. CELL REPORTS METHODS 2023; 3:100670. [PMID: 38086385 PMCID: PMC10753389 DOI: 10.1016/j.crmeth.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.
Collapse
Affiliation(s)
- Dimitrios N Sidiropoulos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA.
| | - Elana J Fertig
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Tian B, Pang Y, Gao Y, Meng Q, Xin L, Sun C, Tang X, Wang Y, Li Z, Lin H, Wang L. A pan-cancer analysis of the oncogenic role of Golgi transport 1B in human tumors. J Transl Int Med 2023; 11:433-448. [PMID: 38130634 PMCID: PMC10732491 DOI: 10.2478/jtim-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Owing to the aggressiveness and treatment-refractory nature of cancer, ideal candidates for early diagnosis and treatment are needed. Golgi transport 1B (GOLT1B) has been associated with cellular malignant behaviors and immune responses in colorectal and lung cancer, but a systematic pan-cancer analysis on GOLT1B has not been conducted. Methods The expression status and clinical association of GOLT1B in The Cancer Genome Atlas (TCGA) were analyzed. Genetic and methylation alterations in GOLT1B were explored. The relationship between GOLT1B and immune cell infiltration was also investigated. Genes related to GOLT1B expression were selected and analyzed. Results GOLT1B was highly expressed in most tumors, and there was a positive correlation between GOLT1B expression and clinical pathological parameters. High expression levels of GOLT1B have been associated with poor prognosis of most cancers. Copy number amplification was the primary type of GOLT1B genetic alterations, which was related to the prognosis of pan-cancer cases. There were different levels of GOLT1B promoter methylation across cancer types. The methylation level of the probe cg07371838 and cg25816357 was closely associated with prognosis in diverse cancers. There was also a positive correlation between GOLT1B genetic alterations and CD4+ T lymphocytes, especially the Th2 subset, as well as between GOLT1B expression and the estimated infiltration value of cancer-associated fibroblasts. Serine/threonine kinase receptor-associated protein (STRAP), integrator complex subunit 13 (INTS13), and ethanolamine kinase 1 (ETNK1) were the most relevant genes for GOLT1B expression, and their interactions with GOLT1B were involved in regulating the transforming growth factor (TGF)-β receptor signaling pathway and epithelial-mesenchymal transition (EMT). Conclusions This pan-cancer analysis provided a comprehensive understanding of the oncogenic role of GOLT1B, highlighting a potential mechanism whereby GOLT1B influences the tumor microenvironment, as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qianqian Meng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Xin Tang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda20852, MD, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
42
|
Lässig M, Mustonen V, Nourmohammad A. Steering and controlling evolution - from bioengineering to fighting pathogens. Nat Rev Genet 2023; 24:851-867. [PMID: 37400577 PMCID: PMC11137064 DOI: 10.1038/s41576-023-00623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Control interventions steer the evolution of molecules, viruses, microorganisms or other cells towards a desired outcome. Applications range from engineering biomolecules and synthetic organisms to drug, therapy and vaccine design against pathogens and cancer. In all these instances, a control system alters the eco-evolutionary trajectory of a target system, inducing new functions or suppressing escape evolution. Here, we synthesize the objectives, mechanisms and dynamics of eco-evolutionary control in different biological systems. We discuss how the control system learns and processes information about the target system by sensing or measuring, through adaptive evolution or computational prediction of future trajectories. This information flow distinguishes pre-emptive control strategies by humans from feedback control in biotic systems. We establish a cost-benefit calculus to gauge and optimize control protocols, highlighting the fundamental link between predictability of evolution and efficacy of pre-emptive control.
Collapse
Affiliation(s)
- Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Armita Nourmohammad
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
43
|
Feng C, Li Y, Tai Y, Zhang W, Wang H, Lian S, Jin-Si-Han EEMBK, Liu Y, Li X, Chen Q, He M, Lu Z. A neutrophil extracellular traps-related classification predicts prognosis and response to immunotherapy in colon cancer. Sci Rep 2023; 13:19297. [PMID: 37935721 PMCID: PMC10630512 DOI: 10.1038/s41598-023-45558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been categorized as a form of inflammatory cell death mode of neutrophils (NETosis) involved in natural immunity and the regulation of adaptive immunity. More and more studies revealed the ability of NETs to reshape the tumor immune microenvironment (TIME) by limiting antitumor effector cells, which may impair the efficacy of immunotherapy. To explore whether NETs-related genes make vital impacts on Colon carcinoma (COAD), we have carried out a systematic analysis and showed several findings in the present work. First, we obtained the patient's data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset, aiming to detect two NETs-associated subtypes by consensus clustering. For the purpose of annotating the roles of NETs-related pathways, gene ontology enrichment analyses were adopted. Next, we constructed a 6 novel NETs-related genes score using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model. We found that the NETs risk score was notably upregulated in COAD patient samples, and its levels were notably correlated with tumor clinicopathological and immune traits. Then, according to NETs-associated molecular subtypes and the risk signature, this study compared immune cell infiltration calculated through the estimate, CIBERSORT, TIMER, ssGSEA algorithms, tumor immune dysfunction, as well as exclusion (TIDE). Furthermore, we confirm that MPO(myeloperoxidase) was significantly upregulated in COAD patient samples, and its levels were significantly linked to tumor malignancy and clinic outcome. Moreover, multiplex immunohistochemistry (mIHC) spatial analysis confirmed that MPO was closely related to Treg and PD-1 + Treg in spatial location which suggested MPO may paly an important role in TIME formation. Altogether, the obtained results indicated that a six NETs-related genes prognostic signature was conducive to estimating the prognosis and response of chemo-/immuno-therapy of COAD patients.
Collapse
Affiliation(s)
- Cheng Feng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - Yuan Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - Yi Tai
- Department of Musculoskeletal Oncology, Sun Yat-Senen University Cancer Center, Guangzhou, 510515, Guangdong, China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - Hao Wang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - Shaopu Lian
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - E-Er-Man-Bie-Ke Jin-Si-Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China
| | - Yuanyuan Liu
- Department of Radiation Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Xinghui Li
- Department of Cardiology General Hospital of Xinjiang Military Command, No. 359 Youhao North Road, Saybak District, Urumqi, 830001, Xinjiang, China
| | - Qifeng Chen
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, 510515, Guangdong, China.
| | - Meng He
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China.
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
44
|
da Silva Soares E, Rocha CC, Valente FL, Dos Anjos LRA, de Oliveira FLD, de Oliveira Loures C, Rocha PT, Castro VR, Sarandy TB, Borges APB. Platelet count and MCHC as independent prognostic markers for feline mammary carcinomas. Res Vet Sci 2023; 164:105024. [PMID: 37827061 DOI: 10.1016/j.rvsc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Mammary neoplasms are common in felines species and represent a significant disease for its unfavorable prognosis. Changes in the blood count and serum biochemical profile of these patients have potential as non-invasive prognostic markers prior to mastectomy, however, they are poorly described in literature. In this study univariate and multivariate analyses were performed using these factors to determine the effect of each parameter on the one-year survival time after the surgical procedure in these animals. The median overall survival (OS) and the disease-free survival (DFS) were 365 and 242 days, respectively. In univariate analysis, values within the reference range of monocyte, platelet and creatinine counts were identified as significant prognostic factors for OS and only creatinine was significant for DFS (P < 0.05). In the multivariate analysis, platelets and mean corpuscular hemoglobin concentration (MCHC) remained independent prognostic factors for OS. The results presented suggest that monocytes, platelets and creatinine may be important non-invasive pre-surgical prognostic markers, and that platelet count and MCHC are independent prognostic markers for feline mammary carcinomas (FMC). The correlation between such alterations is of important relevance for veterinary oncology, and prospective studies are needed to validate their clinical use and that platelet count and MCHC are independent prognostic markers for FMC. The results found in this study can also be studied in human medicine, regarding blood markers in human breast cancer (HBC).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pâmela Thalita Rocha
- Department of Veterinary, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
45
|
Tian Z, Yang Z, Jin M, Ding R, Wang Y, Chai Y, Wu J, Yang M, Zhao W. Identification of cytokine-predominant immunosuppressive class and prognostic risk signatures in glioma. J Cancer Res Clin Oncol 2023; 149:13185-13200. [PMID: 37479756 DOI: 10.1007/s00432-023-05173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE The advent of immune checkpoint blockade (ICB) therapies this year has changed the way glioblastoma (GBM) is treated. Meanwhile, some patients with strong PD-L1 expression remain immune checkpoint resistant. To better understand the molecular processes that influence the immune environment, there is an urgent need to characterize the immunosuppressive tumor microenvironment and identify biomarkers to predict patient survival outcomes. PATIENTS AND METHODS Our study analyzed RNA-sequencing data from 178 GBM samples. Their unique gene expression patterns in the tumor microenvironment were analyzed by an unsupervised clustering algorithm. Through these expression patterns, a panel of T-cell exhaustion signatures, immunosuppressive cells, and clinical features correlates with immunotherapy response. The presence or absence of immune status and prognostic signatures was then validated with the test dataset. RESULTS 38.2% of GBM patients showed increased expression of anti-inflammatory cytokines, significant enrichment of T cell exhaustion signals, higher proportion of immunosuppressive cells (macrophages and CD4 regulatory T cells) and nine inhibitory checkpoints (CTLA4, PDCD1, LAG3, BTLA, TIGIT, HAVCR2, IDO1, SIGLEC7, and VISTA). The immunodepleted class (IDC) was used to classify these immunocompromised individuals. Despite the high density of tumor-infiltrating lymphocytes shown by IDC, such patients have a poor prognosis. Although PD-L1 was highly expressed in IDC, it suggested that there might be ICB resistance. There are many IDC predictive signatures to discover. CONCLUSION PD-1 is strongly expressed in a novel immunosuppressive class of GBM, but this cluster may be resistant to ICB therapy. A comprehensive description of this drug-resistant tumor microenvironment could provide new insights into drug resistance mechanisms and improved immunotherapy techniques.
Collapse
Affiliation(s)
- Ziyue Tian
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhongyi Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Meng Jin
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
| | - Yuhan Wang
- School of Medical Informatics Engineering, Changchun University of Chinese Medicine, Changchun, 130118, Jilin, China
| | - Yuying Chai
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jinpu Wu
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Miao Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Weimin Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
46
|
Hu J. Network medicines ™. J Transl Med 2023; 21:772. [PMID: 37907923 PMCID: PMC10617116 DOI: 10.1186/s12967-023-04657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, USA.
| |
Collapse
|
47
|
Guo J, Sun D, Zhang J, Guo J, Wu Z, Chen Y, Xu Y, Zhou D, Cui Y, Mo Q, Li Y, Zhao T, You Q. The E3 ubiquitin ligase RBCK1: Implications in the tumor immune microenvironment and antiangiogenic therapy of glioma. Comput Struct Biotechnol J 2023; 21:5212-5227. [PMID: 37928949 PMCID: PMC10624590 DOI: 10.1016/j.csbj.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
E3 ubiquitin ligases (E3s) play a pivotal role in regulating the specificity of protein ubiquitination, and their significant functions as regulators of immune responses against tumors are attracting considerable interest. RBCK1-an RBR E3 ligase-is involved in immune regulation and tumor development. However, the potential effect of RBCK1 on glioma remains enigmatic. In the present study, we performed comprehensive analyses of multilevel data, which disclosed distribution characteristics of RBCK1 in pan-cancer, especially in glioma. Functional roles of RBCK1 were further confirmed using immunohistochemistry, cell biological assays, and xenograft experiments. Aberrant ascending of RBCK1 in multiple types of cancer was found to remodel the immunosuppressive microenvironment of glioma by regulating immunomodulators, cancer immunity cycles, and immune cell infiltration. Notably, the MES-like/RBCK1High cell population, a unique subset of cells in the microenvironment, suppressed T cell-mediated cell killing in glioma. Elevated expression levels of RBCK1 suggested a glioma subtype characterized by immunosuppression and hypo-responsiveness to immunotherapy but manifesting surprisingly increased responses to anti-angiogenic therapy. In conclusion, anti-RBCK1 target therapy might be beneficial for glioma treatment. Moreover, RBCK1 assisted in predicting molecular subtypes of glioma and response rates of patients to different clinical treatments, which could guide personalized therapy.
Collapse
Affiliation(s)
- Jing Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Junwei Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Zhenpeng Wu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yongzhen Chen
- Department of Biotherapy, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Desheng Zhou
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yachao Cui
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Qi Mo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
- Department of Biotherapy, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
48
|
Lonie JM, Brosda S, Bonazzi VF, Aoude LG, Patel K, Brown I, Sharma S, Lampe G, Addala V, Koufariotis LT, Wood S, Waddell N, Dolcetti R, Barbour AP. The oesophageal adenocarcinoma tumour immune microenvironment dictates outcomes with different modalities of neoadjuvant therapy - results from the AGITG DOCTOR trial and the cancer evolution biobank. Front Immunol 2023; 14:1220129. [PMID: 37965317 PMCID: PMC10642165 DOI: 10.3389/fimmu.2023.1220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
A plateau in treatment effect can be seen for the current 'one-size-fits-all' approach to oesophageal adenocarcinoma (OAC) management using neoadjuvant chemoradiotherapy (nCRT) or chemotherapy (nCT). In OAC, the tumour microenvironment (TME) is largely immunosuppressed, however a subgroup of patients with an immune-inflamed TME exist and show improved outcomes. We aimed to understand the overall immune-based mechanisms underlying treatment responses and patient outcomes in OAC, and in relation to neoadjuvant therapy modality. This study included 107 patients; 68 patients were enrolled in the Australian Gastro-Intestinal Trials Group sponsored DOCTOR Trial, and 38 patients were included from the Cancer Evolution Biobank. Matched pre-treatment and post-treatment tumour biopsies were used to perform multi-modality analysis of the OAC TME including NanoString mRNA expression analysis, multiplex and single colour immunohistochemistry (IHC), and peripheral blood mononuclear cell analysis of tumour-antigen specific T cell responses. Patients with the best clinicopathological outcomes and survival had an immune-inflamed TME enriched with anti-tumour immune cells and pathways. Those with the worst survival showed a myeloid T regulatory cell enriched TME, with decreased CD8+ cell infiltration and increased pro-tumour immune cells. Multiplex IHC analysis identified that high intra-tumoural infiltration of CD8+ cells, and low infiltration with CD163+ cells was associated with improved survival. High tumour core CD8+ T cell infiltration, and a low tumour margin infiltration of CD163+ cells was also associated with improved survival. nCRT showed improved survival compared with nCT for patients with low CD8+, or high CD163+ cell infiltration. Poly-functional T cell responses were seen with tumour-antigen specific T cells. Overall, our study supports the development of personalised therapeutic approaches based on the immune microenvironment in OAC. Patients with an immune-inflamed TME show favourable outcomes regardless of treatment modality. However, in those with an immunosuppressed TME with CD163+ cell infiltration, treatment with nCRT can improve outcomes. Our findings support previous studies into the TME of OAC and with more research, immune based biomarker selection of treatment modality may lead in improved outcomes in this deadly disease.
Collapse
Affiliation(s)
- James M. Lonie
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra Brosda
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa F. Bonazzi
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren G. Aoude
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kalpana Patel
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Brown
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- Department of Pathology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Sowmya Sharma
- Medlab Pathology, Sydney, NSW, Australia
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Guy Lampe
- Department of Anatomical Pathology, Central Laboratory Pathology Queensland, Brisbane, QLD, Australia
| | - Venkateswar Addala
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Scott Wood
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicola Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Translational and Clinical Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew P. Barbour
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Noviello TMR, Di Giacomo AM, Caruso FP, Covre A, Mortarini R, Scala G, Costa MC, Coral S, Fridman WH, Sautès-Fridman C, Brich S, Pruneri G, Simonetti E, Lofiego MF, Tufano R, Bedognetti D, Anichini A, Maio M, Ceccarelli M. Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial. Nat Commun 2023; 14:5914. [PMID: 37739939 PMCID: PMC10516894 DOI: 10.1038/s41467-023-40994-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients.
Collapse
Affiliation(s)
- Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
- NIBIT Foundation Onlus, Siena, Italy
| | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Dept. of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Maria Claudia Costa
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Wolf H Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Simonetti
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | - Rossella Tufano
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Davide Bedognetti
- Cancer Program, Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Dept. of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Maio
- University of Siena, Siena, Italy.
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy.
- NIBIT Foundation Onlus, Siena, Italy.
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
50
|
Mogenet A, Finetti P, Denicolai E, Greillier L, Boudou-Rouquette P, Goldwasser F, Lumet G, Ceccarelli M, Birnbaum D, Bedognetti D, Mamessier E, Barlesi F, Bertucci F, Tomasini P. Immunologic constant of rejection as a predictive biomarker of immune checkpoint inhibitors efficacy in non-small cell lung cancer. J Transl Med 2023; 21:637. [PMID: 37726776 PMCID: PMC10507965 DOI: 10.1186/s12967-023-04463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Anti-PD1/PDL1 immune checkpoint inhibitors (ICI) transformed the prognosis of patients with advanced non-small cell lung cancer (NSCLC). However, the response rate remains disappointing and toxicity may be life-threatening, making urgent identification of biomarkers predictive for efficacy. Immunologic Constant of Rejection signature (ICR) is a 20-gene expression signature of cytotoxic immune response with prognostic value in some solid cancers. Our objective was to assess its predictive value for benefit from anti-PD1/PDL1 in patients with advanced NSCLC. METHODS We retrospectively profiled 44 primary tumors derived from NSCLC patients treated with ICI as single-agent in at least the second-line metastatic setting. Transcriptomic analysis was performed using the nCounter® analysis system and the PanCancer Immune Profiling Panel. We then pooled our data with clinico-biological data from four public gene expression data sets, leading to a total of 162 NSCLC patients treated with single-agent anti-PD1/PDL1. ICR was applied to all samples and correlation was searched between ICR classes and the Durable Clinical Benefit (DCB), defined as stable disease or objective response according to RECIST 1.1 for a minimum of 6 months after the start of ICI. RESULTS The DCB rate was 29%; 22% of samples were classified as ICR1, 30% ICR2, 22% ICR3, and 26% ICR4. These classes were not associated with the clinico-pathological variables, but showed enrichment from ICR1 to ICR4 in quantitative/qualitative markers of immune response. ICR2-4 class was associated with a 5.65-fold DCB rate when compared with ICR1 class. In multivariate analysis, ICR classification remained associated with DCB, independently from PDL1 expression and other predictive immune signatures. By contrast, it was not associated with disease-free survival in 556 NSCLC TCGA patients untreated with ICI. CONCLUSION The 20-gene ICR signature was independently associated with benefit from anti-PD1/PDL1 ICI in patients with advanced NSCLC. Validation in larger retrospective and prospective series is warranted.
Collapse
Affiliation(s)
- Alice Mogenet
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Emilie Denicolai
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Laurent Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France-University of Paris Descartes, ARIANE, CARPEM, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France-University of Paris Descartes, ARIANE, CARPEM, Paris, France
| | - Gwenael Lumet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Davide Bedognetti
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Emilie Mamessier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| | - Fabrice Barlesi
- Paris-Saclay University and Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ, 232, Bd de Sainte-Marguerite, 13009, Marseille, France.
| | - Pascale Tomasini
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, CNRS UMR725, Laboratoire d'Oncologie Prédictive, Aix Marseille Univ, Marseille, France
| |
Collapse
|