1
|
Zhou S, Jiang D, Liu Y, Wang Q, Hu M, Dai K, Chen L, Zhang T, Cai C, Wang J. The role of Sine Oculis Homeobox Homolog 2 in colon Cancer: Insights into prognosis, immune regulation, and therapeutic implications. Biochem Biophys Res Commun 2025; 772:152038. [PMID: 40414014 DOI: 10.1016/j.bbrc.2025.152038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/19/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Colon cancer (CC) remains a significant global health burden, and the search for novel prognostic biomarkers and therapeutic targets is crucial. This study comprehensively analyzed the role of SIX2 (Sine Oculis Homeobox Homolog 2) in CC. Utilizing data from TCGA, GTEx, and CCLE databases, differential expression of SIX2 was observed in multiple cancers, with significant upregulation in many tumors compared to normal tissues. In CC, SIX2's differential expression was notable. Cox regression analysis revealed its prognostic significance, with overexpression associated with poor survival outcomes. SIX2 was strongly associated with gene alterations and correlated with key signaling pathways like WNT and TGF-β. In the tumor microenvironment, SIX2 was related to immune cell infiltration and immune-related molecules. Notably, in CC, it was associated with immunosuppressive cells and checkpoint molecules. Additionally, ABT737 was found to sensitize tumor immunotherapy in the context of SIX2. Animal experiments demonstrated that ABT737 effectively restricted the growth of CC in mice, and its combination with antiPD-1 immunotherapy was more effective. It could reduce the infiltration of CD163+ tumor-associated macrophages but without significantly increasing the infiltration of CD8+ T cells. Our findings suggest that SIX2 is a potential key player in CC, offering insights into future research and the development of targeted therapies.
Collapse
Affiliation(s)
- Shicheng Zhou
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Dan Jiang
- Department of Surgery, Wucheng District People's Hospital, Jinhua, Zhejiang, 321000, China
| | - Yu Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Wang
- Department of Endocrinology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Manyi Hu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Kangfu Dai
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Lin Chen
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
| | - Tianming Zhang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Cheng Cai
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China.
| | - Jianping Wang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China.
| |
Collapse
|
2
|
Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16:97163. [PMID: 39867730 PMCID: PMC11528897 DOI: 10.5306/wjco.v16.i1.97163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
3
|
Xu P, Al-Anesi MMA, Huang M, Wu S, Ge Y, Chai H, Li P, Hu Q. Copy number variation of metallothionein 1 (MT1) associates with MT1X isoform expression and the overall survival of hepatocellular carcinoma patients in Guangxi. GENE REPORTS 2024; 34:101889. [DOI: 10.1016/j.genrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Xiong K, Wang Z, Hounye AH, Peng L, Zhang J, Qi M. Development and validation of ferroptosis-related lncRNA signature and immune-related gene signature for predicting the prognosis of cutaneous melanoma patients. Apoptosis 2023; 28:840-859. [PMID: 36964478 DOI: 10.1007/s10495-023-01831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
Ferroptosis, a form of cell death caused by iron-dependent peroxidation of lipids, plays an important role in cancer. Recent studies have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of ferroptosis in tumor cells and are also closely related to tumor immunity. Immune cell infiltration in the tumor microenvironment affects the prognosis and clinical outcome of immunotherapy in melanoma patients, and immune cell classification may be able to accurately predict the prognosis of melanoma patients. However, the prognostic value of ferroptosis-related lncRNAs (FRLs) in melanoma has not been thoroughly explored, and it is difficult to define the immune characteristics of melanoma. We used The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) database, and the FerrDb database to identify FRLs. FRLs with prognostic value were evaluated in an experimental cohort utilizing univariate, LASSO (least absolute shrinkage and selection operator) and multivariate Cox regression, followed by in vitro assays evaluating the expression levels and the biological functions of three candidate FRLs. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were used to assess the validity of the risk model, and the drug sensitivity of FRLs was examined by drug sensitivity analysis. The differentially expressed genes between the high- and low-risk groups in the risk model were enriched in the immune pathway, and we further found immune gene signatures (IRGs) that could predict the prognosis of melanoma patients through a series of methods including single-sample Gene Set Enrichment Analysis (ssGSEA). Finally, two GEO cohorts were used to validate the predictive accuracy and reliability of these two signature models. Our findings suggest that FRLs and IRGs have the potential to predict the prognosis of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | | | - Li Peng
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China.
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China.
- Department of Geriatrics, Shenzhen People's Hospital(The Second Clinical Medical College, Jinan UniversityThe First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Fang ZX, Li CL, Wu Z, Hou YY, Wu HT, Liu J. Comprehensive analysis of the potential role and prognostic value of sine oculis homeobox homolog family in colorectal cancer. World J Gastrointest Oncol 2022; 14:2138-2156. [PMID: 36438701 PMCID: PMC9694273 DOI: 10.4251/wjgo.v14.i11.2138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Several genes, important for development, are reduced or silenced in adulthood, and their abnormal expression has been related to the occurrence and development of malignant tumors. Human sine oculis homeobox homolog (SIX) proteins belong to the homeobox family and play important roles in the development of different organs. Importantly, SIXs are predicted to have chromatin-binding and DNA-binding transcription factor activity with reported roles in cancers. However, a comprehensive analysis of SIXs in colorectal cancers (CRCs) has not been performed. AIM To explore the expression pattern of six SIX proteins in CRCs and their relationship with the clinicopathological parameters of CRC patients as well as investigate the potential utilization of SIXs as novel prognostic indicators in CRCs. METHODS The expression level of SIXs in normal tissues of different organs and related cancerous tissues was analyzed in the Human Protein Atlas. Kaplan-Meier Plotter and GEPIA2 were used to analyze the prognostic values of SIXs. To analyze the potential signaling pathways with SIX family involvement, LinkedOmics was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of SIX4-related genes. Subsequently, immunohistochemical experiments were performed on CRC tissues and adjacent normal tissues, and we examined the SIX4 expression level in 87 pairs of patients with tissue microarray. The relationship between SIX4 and clinicopathological parameters in CRC patients was tested using the χ 2 test and Fisher's exact probability to verify the results of the database analysis. RESULTS The RNA levels of SIX1-4 and SIX6 were relatively low in normal human tissues, while SIX5 was highly expressed at both the RNA and protein levels. However, the protein level of SIX4 was found to be elevated in various malignancies. In CRC tissues, SIX1, SIX2 and SIX4 were elevated in cancer tissues compared with adjacent normal tissue. Among all SIXs, a high level of SIX4 was found to be associated with poor overall and disease-free survival in patients with CRC. For different clinicopathological parameters, increased SIX4 expression was positively correlated with advanced CRC. The top 50 SIX4-related genes were involved with oxidative phosphorylation and the respiratory chain signaling pathways. CONCLUSION The current results provided a comprehensive analysis of the expression and prognostic values of SIX family members in CRC. Among different SIXs, SIX4 plays an oncogenic role in CRC to promote the development of malignancy. In CRC, SIX4 mRNA and protein expression is higher than that in normal tissues and associated with shorter CRC patient survival, suggesting that SIX4 may be a potential therapeutic target for treatment of CRC patients.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Chun-Lan Li
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
6
|
Xie CF, Feng KL, Wang JN, Luo R, Fang CK, Zhang Y, Shen CP, Zhong C. Jianpi Huayu decoction inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing exosomal miR-23a-3p/Smad signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115360. [PMID: 35568116 DOI: 10.1016/j.jep.2022.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huayu decoction (JHD) is a traditional Chinese medicinal preparation used to treat a variety of malignant tumors including HCC, although the underlying mechanism remains unknown. Exosomes in the tumor microenvironment mediate intercellular signaling among cancer cells, but precise contributions to hepatocellular carcinoma (HCC) progression are still elusive. AIM OF THE STUDY In this work, the main objective was to examine the mechanisms underlying anti-tumor effects of JHD and the potential contributions of exosomal signaling. MATERIALS AND METHODS LC-MS/MS was used for quality control of JDH preparation, while nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blotting were used for verification of exosomes. In vitro assays included CCK8, wound healing assay, transwell invasion assay, qRT-PCR and western blotting were performed to investigate the effects of JHD on HCC cells and the molecular mechanism. Furthermore, the effects of JHD on subcutaneous tumor model of nude mice were also determined. RESULTS JHD inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cultured HCC cells. Further, exosomes isolated from EMT-induced HCC cells promoted the migration, invasion and EMT of other cultured HCC cells, while exosomes isolated from EMT-induced HCC cells after JHD treatment had little effect. In addition, JHD reduced the expression of exosomal miR-23a-3p in cultured HCC cells. miR-23a-3p was significantly up-regulated in tumor compared with that in adjacent non-cancerous tissues of patients with HCC. HCC patients with high miR-23a-3p expression had poor overall survival after hepatectomy. Meanwhile, miR-23a-3p enhanced HCC cell proliferation, EMT, and expression of Smad signaling proteins. More importantly, overexpression of miR-23a-3p can reverse the inhibition of EMT and Smad signaling pathway caused by JHD treatment. In vivo assays, treatment with JHD also reduced the growth of HCC-derived tumors in nude mice, reduced the expression of miR-23a-3p in serum exosomes and the level of EMT in tumor cells. CONCLUSIONS the antitumor effects of JHD on HCC are mediated at least in part by inhibition of EMT due to downregulation of exosome-mediated intercellular miR-23a-3p transfer and subsequent blockade of Smad signaling. Disrupting this exosomal miR-23a-3p/Smad signaling pathway may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Feng Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of General Surgery, Liuzhou Traditional Chinese Medical Hospital, 545001, Liuzhou, China
| | - Kun-Liang Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ji-Nan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rui Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chong-Kai Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuang-Peng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Pu B, Yu X, Cao Y, Li Y, Tang L, Xia J. miR-381 Reverses Multidrug Resistance by Negative Regulation of the CTNNB1/ABCB1 Pathway in HepG2/Dox Cells, and the Diagnostic and Prognostic Values of CTNNB1/ ABCB1 Are Identified in Patients with LIHC. DNA Cell Biol 2021; 40:1584-1596. [PMID: 34931867 DOI: 10.1089/dna.2021.0689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is the biggest challenge in cancer therapy. In this study, we explored the molecular mechanism of MDR in human liver cancer and explored the related diagnostic and prognostic values of the targeted genes in patients with hepatocellular carcinoma. We constructed a multidrug-resistant liver cancer cell line, HepG2/Dox, using the parental subline HepG2. The (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to test the viability of the liver cancer cells. Western blotting was performed to test the expression of ABCB1, β-catenin, and β-actin. Luciferase assays were performed to confirm the relationship between miR-381 and its target genes. The diagnostic and prognostic values of target genes were analyzed using publicly available data from The Cancer Genome Atlas. The Mann-Whitney U test and logistic regression were performed to evaluate the association between ABCB1 or CTNNB1 expression and clinical features in patients with liver hepatocellular carcinoma (LIHC). Finally, Kaplan-Meier and Cox regression analyses were performed to test the effect of ABCB1 or CTNNB1 expression on the overall survival of patients with LIHC. ABCB1 expression was upregulated in HepG2/Dox cells. ABCB1 was found to be a direct target of hsa-miR-381 and was negatively regulated by has-miR-381. Moreover, hsa-miR-381 directly targeted the CTNNB1 3' UTR and decreased the luciferase activity of CTNNB1. Transfection with miR-183 partially reversed chemotherapeutic drug resistance by downregulating the expression of ABCB1 and CTNNB1 in HepG2/Dox cells. Spearman's analysis results showed that CTNNB1 and ABCB1 were positively correlated in patients with liver cancer, and increased CTNNB1 and ABCB1 expression occurred in patients with liver cancer. High expression of ABCB1 and CTNNB1 indicated poor prognosis in patients with liver cancer; however, neither ABCB1 nor CTNNB1 expression was an independent diagnostic factor in patients with LIHC. Overexpression of hsa-miR-381 partially reversed the MDR of HepG2 cells by directly targeting and negatively regulating the expression of CTTNB1 and ABCB1. Moreover, high expression of ABCB1 or CTNNB1 indicated poor prognosis in patients with liver cancer.
Collapse
Affiliation(s)
- Bangming Pu
- Hepatobiliary Surgery Department, and The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Meurer L, Ferdman L, Belcher B, Camarata T. The SIX Family of Transcription Factors: Common Themes Integrating Developmental and Cancer Biology. Front Cell Dev Biol 2021; 9:707854. [PMID: 34490256 PMCID: PMC8417317 DOI: 10.3389/fcell.2021.707854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The sine oculis (SIX) family of transcription factors are key regulators of developmental processes during embryogenesis. Members of this family control gene expression to promote self-renewal of progenitor cell populations and govern mechanisms of cell differentiation. When the function of SIX genes becomes disrupted, distinct congenital defects develops both in animal models and humans. In addition to the embryonic setting, members of the SIX family have been found to be critical regulators of tumorigenesis, promoting cell proliferation, epithelial-to-mesenchymal transition, and metastasis. Research in both the fields of developmental biology and cancer research have provided an extensive understanding of SIX family transcription factor functions. Here we review recent progress in elucidating the role of SIX family genes in congenital disease as well as in the promotion of cancer. Common themes arise when comparing SIX transcription factor function during embryonic and cancer development. We highlight the complementary nature of these two fields and how knowledge in one area can open new aspects of experimentation in the other.
Collapse
Affiliation(s)
- Logan Meurer
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Leonard Ferdman
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Beau Belcher
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Troy Camarata
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
9
|
Yang B, Feng X, Liu H, Tong R, Wu J, Li C, Yu H, Chen Y, Cheng Q, Chen J, Cai X, Wu W, Lu Y, Hu J, Liang K, Lv Z, Wu J, Zheng S. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene 2020; 39:6529-6543. [PMID: 32917956 PMCID: PMC7561497 DOI: 10.1038/s41388-020-01450-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Exosomes play an important role in intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). However, cellular communication between heterogeneous HCC cells with different metastatic potentials and the resultant cancer progression are not fully understood in HCC. Here, HCC cells with high-metastatic capacity (97hm and Huhm) were constructed by continually exerting selective pressure on primary HCC cells (MHCC-97H and Huh7). Through performing exosomal miRNA sequencing in HCC cells with different metastatic potentials (MHCC-97H and 97hm), many significantly different miRNA candidates were found. Among these miRNAs, miR-92a-3p was the most abundant miRNA in the exosomes of highly metastatic HCC cells. Exosomal miR92a-3p was also found enriched in the plasma of HCC patient-derived xenograft mice (PDX) model with high-metastatic potential. Exosomal miR-92a-3p promotes epithelial-mesenchymal transition (EMT) in recipient cancer cells via targeting PTEN and regulating its downstream Akt/Snail signaling. Furthermore, through mRNA sequencing in HCC cells with different metastatic potentials and predicting potential transcription factors of miR92a-3p, upregulated transcript factors E2F1 and c-Myc were found in high-metastatic HCC cells promote the expression of cellular and exosomal miR-92a-3p in HCC by directly binding the promoter of its host gene, miR17HG. Clinical data showed that a high plasma exosomal miR92a-3p level was correlated with shortened overall survival and disease-free survival, indicating poor prognosis in HCC patients. In conclusion, hepatoma-derived exosomal miR92a-3p plays a critical role in the EMT progression and promoting metastasis by inhibiting PTEN and activating Akt/Snail signaling. Exosomal miR92a-3p is a potential predictive biomarker for HCC metastasis, and this may provoke the development of novel therapeutic and preventing strategies against metastasis of HCC.
Collapse
Affiliation(s)
- Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingbang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Changbiao Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hanxi Yu
- Department of gynecology and obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunhao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Qiyang Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, Zhejiang, China
| | - Xianlei Cai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuejie Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiating Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kejiong Liang
- Department of orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Ma K, Zhang C, Li W. TGF-β is associated with poor prognosis and promotes osteosarcoma progression via PI3K/Akt pathway activation. Cell Cycle 2020; 19:2327-2339. [PMID: 32804027 PMCID: PMC7513842 DOI: 10.1080/15384101.2020.1805552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multifunctional cytokine with important functions in cell proliferation and differentiation. TGF-β is highly expressed in several types of cancers and promotes tumor invasion and metastasis. However, the role of TGF-β in osteosarcoma progression is poorly understood. In the present study, we found that TGF-β is highly expressed in osteosarcoma cells and tissues, and is associated with high Ennecking stage (P = 0.033), metastasis, and recurrence. TGF-β-knockdown osteosarcoma cell lines were established using siRNA (si-TGF-β). Cells transfected with si-TGF-β exhibited significantly reduced proliferation, migration/invasion, and colony formation abilities, and increased levels of cell apoptosis. In addition, si-TGF-β treatment reduced spheroid size, the ratio of CD133-positive cells, and expression of SOX-2, Nanog, and Oct-3/4 in osteosarcoma cells. Mechanistically, PI3K/mTOR phosphorylation is inhibited by TGF-β knockdown. Pretreatment with 25 µM LY294002, a PI3K-specific inhibitor, further enhanced the si-TGF-β-induced suppression of osteosarcoma progression. Taken together, these results reveal a novel role for TGF-β in osteosarcoma progression and modulation of stemness-related traits and indicate that TGF-β may be of value as a therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Kun Ma
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| | - Chuan Zhang
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| | - Wuyin Li
- Luoyang Orthopaedic Hospital of Henan Province and Orthopaedic Hospital of Henan Province , Luoyang, Henan, P. R. China
| |
Collapse
|
11
|
Zeng K, Xie W, Huang J, Yang J, Deng K, Luo X. PAX3 silencing inhibits prostate cancer progression through the suppression of the TGF-β/Smad signaling axis. Cell Biol Int 2020; 44:2131-2139. [PMID: 32672875 DOI: 10.1002/cbin.11421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 01/20/2023]
Abstract
Multiple studies have confirmed the pro-oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor-β (TGF-β)/Smad signaling in PCa cells. The effects of si-PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF-β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF-β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.
Collapse
Affiliation(s)
- Ke Zeng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Wenxian Xie
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Jun Huang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Jian Yang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kefei Deng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Xiaohui Luo
- Department of Urology, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|