1
|
Lu P, Zhang F, Yang L, He Y, Kong X, Guo K, Xie Y, Xie H, Xie B, Jiang Y, Peng J. Bromodomain-containing protein 4 knockdown promotes neuronal ferroptosis in a mouse model of subarachnoid hemorrhage. Neural Regen Res 2026; 21:715-729. [PMID: 39104173 DOI: 10.4103/nrr.nrr-d-24-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/15/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00041/figure1/v/2025-05-05T160104Z/r/image-tiff Neuronal cell death is a common outcome of multiple pathophysiological processes and a key factor in neurological dysfunction after subarachnoid hemorrhage. Neuronal ferroptosis in particular plays an important role in early brain injury. Bromodomain-containing protein 4, a member of the bromo and extraterminal domain family of proteins, participated in multiple cell death pathways, but the mechanisms by which it regulates ferroptosis remain unclear. The primary aim of this study was to investigate how bromodomain-containing protein 4 affects neuronal ferroptosis following subarachnoid hemorrhage in vivo and in vitro . Our findings revealed that endogenous bromodomain-containing protein 4 co-localized with neurons, and its expression was decreased 48 hours after subarachnoid hemorrhage of the cerebral cortex in vivo . In addition, ferroptosis-related pathways were activated in vivo and in vitro after subarachnoid hemorrhage. Targeted inhibition of bromodomain-containing protein 4 in neurons increased lipid peroxidation and intracellular ferrous iron accumulation via ferritinophagy and ultimately led to neuronal ferroptosis. Using cleavage under targets and tagmentation analysis, we found that bromodomain-containing protein 4 enrichment in the Raf-1 promoter region decreased following oxyhemoglobin stimulation in vitro . Furthermore, treating bromodomain-containing protein 4-knockdown HT-22 cell lines with GW5074, a Raf-1 inhibitor, exacerbated neuronal ferroptosis by suppressing the Raf-1/ERK1/2 signaling pathway. Moreover, targeted inhibition of neuronal bromodomain-containing protein 4 exacerbated early and long-term neurological function deficits after subarachnoid hemorrhage. Our findings suggest that bromodomain-containing protein 4 may have neuroprotective effects after subarachnoid hemorrhage, and that inhibiting ferroptosis could help treat subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Peng Lu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Institute of Brain Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuke Xie
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Institute of Brain Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Institute of Brain Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Institute of Brain Science, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 PMCID: PMC12057793 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
- The Second People’s Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
5
|
Liang SM, Shen J, Ma RT, Du ND, Wang R, Wu ZM, Shan M, Liang SR, Hu WR, Wang W, Sheng WW, Huang DF, Chen XH. Ferritinophagy-derived iron causes protein nitration and mitochondrial dysfunction in acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2025; 500:117376. [PMID: 40339610 DOI: 10.1016/j.taap.2025.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Acetaminophen (APAP), also known as paracetamol, is a widely used analgesic and antipyretic drug. While the drug is effective and safe at recommended doses, excessive intake can lead to acute liver injury (ALI) due to the formation of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione (GSH). Despite regulatory efforts, APAP-related liver injury remains a significant health concern. However, the cellular pathways that contribute to APAP-induced hepatotoxicity-particularly those involving iron metabolism-remain incompletely understood. To address this gap, we investigated whether ferritinophagy-the autophagic degradation of ferritin heavy chain (FTH) mediated by nuclear receptor coactivator 4 (NCOA4)-contributes to APAP-induced ALI. We administered APAP to C57BL/6 J mice and AML-12 hepatocyte cells and monitored markers of ferritinophagy, iron release, and hepatic injury. In parallel, we assessed the protective effect of the iron chelator deferoxamine (DFO) to validate the pathogenic role of free iron in vivo. First, in vivo studies revealed that APAP treatment significantly upregulated NCOA4 and FTH mRNA expression at 6 h post-exposure, coupled with increased LC3II protein and decreased p62, NCOA4, and FTH protein levels-hallmarks of active ferritinophagy. Importantly, pretreatment of mice with DFO markedly attenuated serum ALT elevation and histopathological liver damage, indicating that iron released via ferritinophagy critically mediates APAP-induced hepatotoxicity. To corroborate these findings at the cellular level, we measured free iron and ferritinophagy-related proteins in AML-12 cells following APAP exposure. We observed a progressive increase in free iron, with FTH protein level peaking at 2 h and subsequently declining by 6 and 12 h. Concurrently, LC3II protein level rose while NCOA4 protein decreased at 6 h, confirming activation of ferritinophagy in vitro. Although canonical ferroptosis is driven by iron-catalyzed lipid peroxidation (LPO), our APAP model did not exhibit key ferroptotic signatures. In vivo, malondialdehyde (MDA) level and Ptgs2 mRNA did not increase significantly, nor did GPX4 protein level decrease after APAP administration. Similarly, AML-12 cells failed to show a significant rise in C11-BODIPY oxidation after APAP treatment. Thus, APAP-induced ferritinophagy doesn't result in significant LPO. Instead of LPO, APAP exposure led to pronounced protein nitration and mitochondrial dysfunction. Specifically, the protein level of nitrotyrosine (NT) increased significantly at 6 h in vivo, while AML-12 cells exhibited elevated mitochondrial reactive oxygen species (MtROS) alongside reduced mitochondrial membrane potential (MMP) and ATP level. Collectively, these data suggest that ferritinophagy-derived iron triggers protein nitration and mitochondrial impairment, culminating in cell death. Given NCOA4's central role in ferritinophagy, we next evaluated whether its knock-down could mitigate APAP-induced mitochondrial dysfunction. NCOA4 siRNA in AML-12 cells restored ATP level, enhanced MMP, and reduced Fe2+ accumulation and MtROS generation after APAP treatment. Overall, our findings illuminate ferritinophagy-derived iron as a critical driver of APAP hepatotoxicity and nominate NCOA4 inhibition as a promising therapeutic strategy against APAP-induced ALI.
Collapse
Affiliation(s)
- Shi-Min Liang
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China
| | - Jie Shen
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China; Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Rui-Ting Ma
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China; Henan University, Zhengzhou 450000, Henan Province, China
| | - Nan-Di Du
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Rui Wang
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Zuo-Min Wu
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Min Shan
- Department of Neurology, Luohe Central Hospital, Luohe 462000, Henan Province, China
| | - Shi-Rong Liang
- Nanyang Institute of Technology, Nanyang 473000, Henan Province, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe 462000, Henan, China
| | - Wei-Wei Sheng
- Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China
| | - De-Feng Huang
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China.
| | - Xiao-Hua Chen
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China.
| |
Collapse
|
6
|
Jiang J, Hu S, Hu K, Xiao L, Lin J, Chen Y, Zhang D, Ou Y, Zhang J, Yuan L, Wang W, Yu P. Novel impact of metal ion-induced cell death on diabetic cardiomyopathy pathogenesis and therapy. Apoptosis 2025; 30:1152-1181. [PMID: 40042744 DOI: 10.1007/s10495-025-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 06/16/2025]
Abstract
Diabetes mellitus is a common chronic metabolic disease, with its prevalence escalating annually. Diabetic cardiomyopathy is a leading cause of mortality among diabetic patients, characterized by intricate metabolic disturbances and myocardial cell demise. Various forms of cellular death pathways including apoptosis, pyroptosis, autophagic cell death, necroptosis, ferroptosis, and entosis have been identified in diabetic cardiomyopathy. Inhibiting myocardial cell death pathways has shown promise in mitigating diabetic cardiomyopathy progression. However, there are still gaps in understanding the role of metal ions in diabetic cardiomyopathy pathogenesis. Recent research endeavors have found that iron, copper, zinc, calcium, manganese and other metal elements related to cell death play an intricate and critical role in the pathogenesis and progression of diabetic cardiomyopathy. Notably, many animal studies have shown that the development and progression of diabetic cardiomyopathy can be alleviated by inhibiting the cell death process induced by these metal ions. Therefore, we review the molecular mechanisms underlying the death of various metal ions and the potential pathophysiological roles they play in diabetic cardiomyopathy. In addition, the value of these metal ions in the treatment of diabetic cardiomyopathy is also described.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shengnan Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999007, Hong Kong
| | - Yangliu Ou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Linhui Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan University, Haikou, 570311, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Zhang Y, Li F, Cheng Y, Zhu J, Li Y, Zhao H, Song J, Yin J, Yang B, Kuang H. A novel way of regression of pregnant corpus luteum during parturition in mice: The ferroptosis associated with NCOA4-mediated ferritinophagy. Biochem Pharmacol 2025; 236:116910. [PMID: 40174644 DOI: 10.1016/j.bcp.2025.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Numerous studies have shown that inappropriate regression of corpus luteum would lead to adverse pregnancy outcomes during gestation. However, the detailed mechanisms and types of programmed cell death involved in the regression of pregnant corpus luteum are largely unknown. Here, we investigated whether ferroptosis and ferritinophagy were involved in luteal regression during parturition in mice and related mechanisms. The results showed that ferroptosis and ferritinophagy were both involved in luteal regression during mice peri-parturition in vivo. Erastin (ferroptosis agonist) treatment significantly accelerated luteal regression and induced premature labor in pregnant mice. PGF2α treatment induced the ferroptosis and ferritinophagy of luteal cells in vitro. Nevertheless, inhibition or promotion of ferroptosis significantly altered the states of PGF2α-induced luteal cell viability and ferroptosis. Furthermore, inhibition of autophagy (3-methyladenine co-treatment) alleviated PGF2α-induced ferritinophagy and ferroptosis of luteal cells, and knockdown of NCOA4 reduced the degradation of FTH1 and the level of ferroptosis of luteal cells induced by PGF2α. In summary, our current data demonstrated that the ferroptosis associated with NCOA4-mediated ferritinophagy was a novel way of luteal regression during peri-parturition in mice. Targeting ferroptosis in the corpus luteum may be a therapeutic strategy for preventing luteal insufficiency in the future.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Fei Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Hongru Zhao
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiahao Song
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Jiting Yin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Jiangxi 330006, PR China.
| |
Collapse
|
8
|
Liu W, Fu D, Di C, Sun J, Liu P. Autophagy is involved in Salmonella Typhimurium-induced ferroptosis in macrophages. Vet Microbiol 2025; 305:110538. [PMID: 40311251 DOI: 10.1016/j.vetmic.2025.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
Salmonella is one of the most common zoonotic pathogens, posing a significant threat to both animal and human health. Our previous study demonstrated that autophagy plays a crucial role in restricting the intracellular growth of Salmonella. This study aims to investigate the effect of autophagy in Salmonella Typhimurium (S. Typhimurium)-induced ferroptosis. First, we found that S. Typhimurium induced lipid peroxidation by increasing intracellular Fe2 + levels, promoting lipid oxidation, and inhibiting the antioxidant pathway. S. Typhimurium-induced lipid peroxidation led to ferroptosis in macrophages. Further results revealed that S. Typhimurium triggered ferritin degradation by NCOA4-mediated ferritinophagy. Additionally, S. Typhimurium-induced chaperone-mediated autophagy (CMA) degraded GPX4 through TAK1-HSC70 signaling pathway. Notably, GPX4 is involved in intracellular S. Typhimurium release. Overall, autophagy was essential for S. Typhimurium induced-ferroptosis, TAK1 not only facilitated autophagy to eliminate intracellular bacteria but also promoted bacterial release.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Daobin Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Chuanyuan Di
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| |
Collapse
|
9
|
Luo C, Liang H, Ji M, Ye C, Lin Y, Guo Y, Zhang Z, Shu Y, Jin X, Lu S, Lu W, Dang Y, Zhang H, Li B, Zhou G, Zhang Z, Chang L. Autophagy induced by mechanical stress sensitizes cells to ferroptosis by NCOA4-FTH1 axis. Autophagy 2025; 21:1263-1282. [PMID: 39988734 DOI: 10.1080/15548627.2025.2469129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death implicated in various diseases, including cancers, with its progression influenced by iron-dependent peroxidation of phospholipids and dysregulation of the redox system. Whereas the extracellular matrix of tumors provides mechanical cues influencing tumor initiation and progression, its impact on ferroptosis and its mechanisms remains largely unexplored. In this study, we reveal that heightened mechanical tension sensitizes cells to ferroptosis, whereas decreased mechanics confers resistance. Mechanistically, reduced mechanical tension reduces intracellular free iron levels by enhancing FTH1 protein expression. Additionally, low mechanics significantly diminishes NCOA4, pivotal in mediating FTH1 phase separation-induced ferritinophagy. Targeting NCOA4 effectively rescues ferroptosis susceptibility under low mechanical tension through modulation of FTH1 phase separation-driven autophagy. In conclusion, our findings demonstrate that mechanics regulates iron metabolism via NCOA4-FTH1 phase separation-mediated autophagy, thereby influencing ferroptosis sensitivity and offering promising therapeutic avenues for future exploration.Abbreviations: ACO1: aconitase 1; ATG5: autophagy related 5; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FER-1: ferrostatin-1; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GPX4: glutathione peroxidase 4; IR: ionizing radiation; IREB2: iron responsive element binding protein 2; NCOA4: nuclear receptor coactivator 4; NFE2L2: NFE2 like bZIP transcription factor 2; NOPP: norepinephrine; PBS: phosphate-buffered saline; PI: propidium iodide; RSL3: (1S,3 R)-RSL3; TCGA: The Cancer Genome Atlas; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Chenyu Luo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Haisheng Liang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yiping Lin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yuhan Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Zhisen Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Yinyin Shu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Shuangshuang Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Wanling Lu
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Yazheng Dang
- Department of Hematology and Oncology, 986 Hospital of People's Liberation Army Air Force, Xian, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
| | - Zengli Zhang
- Department of Nutrition and Food Hygiene, Soochow University of Public Health, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhang Z, Yang J, Zhou Q, Zhong S, Liu J, Zhang X, Chang X, Wang H. The cGAS-STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity. J Environ Sci (China) 2025; 152:71-86. [PMID: 39617588 DOI: 10.1016/j.jes.2024.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024]
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS-STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS-STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Hu C, Gao S, Li X, Yang K, Cheng Y, Guo W, Wu H, Cheng X, Zhao W, Kong Y, Hu H, Wang S. Crosstalk of autophagy and ferroptosis in cardiovascular diseases: from pathophysiology to novel therapy. Redox Biol 2025; 84:103705. [PMID: 40450834 PMCID: PMC12164230 DOI: 10.1016/j.redox.2025.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/19/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) are characterized by high morbidity and mortality rates, imposing substantial epidemiological and economic burdens worldwide. Among the multifaceted mechanisms implicated in CVDs, autophagy and ferroptosis, two intimately linked cellular processes, emerge as pivotal pathophysiological contributors. Autophagy, as an evolutionary conserved process that mediates the degradation and recycling of intracellular components, including proteins and organelles, exerts critical regulatory effects on iron metabolism and lipid homeostasis through various specialized forms, including ferritinophagy and lipophagy. Conversely, ferroptosis, an iron dependent form of cell death, involves oxidative stress and the accumulation of lipid peroxides, often triggered by iron overload and the dysfunction of glutathione peroxidase 4 (GPX4). The intricate crosstalk between these two processes, particularly ferritinophagy-mediated iron regulation influencing ferroptosis, plays a crucial role in diverse CVDs contexts. Key regulatory molecules, such as Beclin-1 and nuclear factor E2-related factor 2 (Nrf2), function as central hubs, orchestrating the intricate interplay between autophagy and ferroptosis. Through a comprehensive examination of these mechanisms across various CVDs pathologies, we summarize the latest findings and outline potential therapeutic strategies targeting the crosstalk between autophagy and ferroptosis. As the inaugural review focusing on autophagy-ferroptosis interactions in CVDs, this work significantly enriches our understanding of the pathophysiology of CVDs and identifies novel therapeutic targets with potential for precision medicine interventions in managing CVDs.
Collapse
Affiliation(s)
- Changhao Hu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Siying Gao
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Xinyi Li
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Kaiqing Yang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Ye Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Wei Guo
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Huijun Wu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Xueqin Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Weiwen Zhao
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Yuxuan Kong
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China
| | - Haoyuan Hu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China.
| | - Songyun Wang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, China.
| |
Collapse
|
12
|
Liu S, Su Y, Han B, Yin L, Li H, Wang Y, Zhou K, Li P, Wei Y. Activation of Rab7-mediated lipophagy is required for triptolide to induce ferroptosis in hepatic cells. Food Chem Toxicol 2025; 203:115568. [PMID: 40403952 DOI: 10.1016/j.fct.2025.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The aim of this study was to investigate the regulation of triptolide on Rab7-mediated lipophagy to elucidate the potential association between lipophagy and ferroptosis in triptolide-induced hepatotoxicity. Human normal liver HL7702 cells and C57BL/6J mice were treated with triptolide to establish in vitro and in vivo models. The results revealed that triptolide caused a severe hepatic cell damage in vitro and in vivo. Concurrently, triptolide induced the remarkable activation of Rab7-mediated lipophagy, as evidenced by the decreased levels of lipid droplets and p62, the increased Rab7, microtubule-associated protein light chain 3Ⅱ (LC3Ⅱ) and phosphorylated adenosine monophosphate-activated protein kinase (AMPK) levels, as well as the increased colocalization of LC3 and Rab7 proteins. Moreover, triptolide obviously increased the levels of ferroptotic markers, including MDA, iron, prostaglandin endoperoxide synthase 2, and induced GSH and GPX4 exhaustion and oxidative stress in hepatic cells. Importantly, the inhibition of lipophagy mitigated ferroptosis and alleviated the hepatic cell damage induced by triptolide. our results demonstrated that triptolide-activated lipophagy with Rab7 serves as a pivotal factor in triggering ferroptosis and exacerbating hepatoxicity. The manipulation of lipophagy is thus a potential therapeutic strategy for ameliorating triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shan Liu
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yuerui Su
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Bo Han
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Liang Yin
- Yangquan Municipal Center for Disease Control and Prevention, Yangquan, China
| | - Huifang Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yingli Wang
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Kun Zhou
- Shanxi Institute of Energy, Taiyuan, China
| | - Pengcheng Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yanming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China; Yangquan Municipal Center for Disease Control and Prevention, Yangquan, China.
| |
Collapse
|
13
|
Gong R, Wan X, Jiang S, Guan Y, Li Y, Jiang T, Chen Z, Zhong C, He L, Xiang Z, Yang J, Xu B, Yang J, Cheng Y. GPX4-AUTAC induces ferroptosis in breast cancer by promoting the selective autophagic degradation of GPX4 mediated by TRAF6-p62. Cell Death Differ 2025:10.1038/s41418-025-01528-1. [PMID: 40394165 DOI: 10.1038/s41418-025-01528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
Emerging evidence indicates that activation of ferroptosis by inhibition of glutathione peroxidase 4 (GPX4) may be exploited as a therapeutic strategy to suppress tumor growth and progression. However, application of GPX4 inhibitors in cancer treatment is hampered by their poor selectivity, which results in unfavorable toxicity. Herein, we identified GPX4 as a candidate for the autophagy pathway. We showed that GPX4 is ubiquitinated by TNF receptor-associated factor 6 (TRAF6), which promotes its recognition by p62 and leads to its selective autophagic degradation. Utilizing targeted protein degradation (TPD) approach, we developed a GPX4-targeted AUTAC and demonstrated that GPX4-AUTAC promoted the ubiquitination of GPX4, and enhanced the binding with GPX4 and p62, leading to the selective autophagy-dependent degradation of GPX4. Furthermore, GPX4-AUTAC treatment strongly induced ferroptosis and exhibited potent anti-cancer activity against breast cancer in vitro, in vivo, and patient-derived organoids (PDOs). Combination treatment of GPX4-AUTAC with sulfasalazine, a ferroptotic inducer, or chemotherapy drugs showed a synergistic anti-cancer effect against breast cancer. These results uncover a new targeted degradation strategy for GPX4 by inducing selective autophagy and provide a rationale for the use of GPX4-AUTAC as a novel therapeutic approach to treatment of breast cancer.
Collapse
Affiliation(s)
- Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Xiaoya Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Shilong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yidi Guan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yizhi Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changxin Zhong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Linhao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junya Yang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Biao Xu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jinming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.
- FuRong Laboratory, Changsha, China.
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, China.
| |
Collapse
|
14
|
Li B, Hai E, Song Y, Zhang J. Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation. Vet Sci 2025; 12:490. [PMID: 40431583 PMCID: PMC12115632 DOI: 10.3390/vetsci12050490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Ferroptosis is implicated in cryodamage to sheep sperm, potentially due to glutathione peroxidase 4 (GPX4) degradation during freezing; however, the pathway underlying GPX4 degradation remains unclear. In this study, a comparison of cryoprotective effects between the autophagy inhibitor chloroquine (CQ) and the ubiquitination inhibitor MG132 revealed that 5 μM CQ treatment significantly enhanced the motility (p < 0.01) and sperm plasma membrane integrity rate (p < 0.01) of frozen-thawed sperm; no protective effects were observed in any MG132 treatment group. Mechanistic analysis indicated that CQ treatment substantially restored GPX4 protein expression (p < 0.01), and concurrently reduced lipid peroxidation (p < 0.01) and free iron ion accumulation (p < 0.01), in frozen-thawed sperm. These findings suggest that GPX4 degradation during cryopreservation occurs via the autophagy pathway. This study established a ferroptosis-GPX4-autophagy axis during sheep sperm cryopreservation and identified autophagy-mediated GPX4 loss as a potential target for enhancing sperm cryoprotection.
Collapse
Affiliation(s)
| | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (B.L.); (E.H.); (Y.S.)
| |
Collapse
|
15
|
Baldassarre G, L de la Serna I, Vallette FM. Death-ision: the link between cellular resilience and cancer resistance to treatments. Mol Cancer 2025; 24:144. [PMID: 40375296 PMCID: PMC12080166 DOI: 10.1186/s12943-025-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
One of the key challenges in defeating advanced tumors is the ability of cancer cells to evade the selective pressure imposed by chemotherapy, targeted therapies, immunotherapy and cellular therapies. Both genetic and epigenetic alterations contribute to the development of resistance, allowing cancer cells to survive initially effective treatments. In this narration, we explore how genetic and epigenetic regulatory mechanisms influence the state of tumor cells and their responsiveness to different therapeutic strategies. We further propose that an altered balance between cell growth and cell death is a fundamental driver of drug resistance. Cell death programs exist in various forms, shaped by cell type, triggering factors, and microenvironmental conditions. These processes are governed by temporal and spatial constraints and appear to be more heterogeneous than previously understood. To capture the intricate interplay between death-inducing signals and survival mechanisms, we introduce the concept of Death-ision. This framework highlights the dynamic nature of cell death regulation, determining whether specific cancer cell clones evade or succumb to therapy. Building on this understanding offers promising strategies to counteract resistant clones and enhance therapeutic efficacy. For instance, combining DNMT inhibitors with immune checkpoint blockade may counteract YAP1-driven resistance or the use of transcriptional CDK inhibitors could prevent or overcome chemotherapy resistance. Death-ision aims to provide a deeper understanding of the diversity and evolution of cell death programs, not only at diagnosis but also throughout disease progression and treatment adaptation.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, 33081, Italy.
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - François M Vallette
- Centre de Recherche en Cancérologie et Immunologie Intégrées Nantes Angers (CRCI2 NA), INSERM UMR1307/CNRS UMR 6075/Nantes Université/Univ. Angers. Nantes, 44007, Nantes, France.
- Institut de Cancérologie de L'Ouest (ICO), 44085, Saint-Herblain, France.
| |
Collapse
|
16
|
Wang H, Feng X, He H, Li L, Wen Y, Liu X, He B, Hua S, Sun S. Crosstalk between autophagy and other forms of programmed cell death. Eur J Pharmacol 2025; 995:177414. [PMID: 39986593 DOI: 10.1016/j.ejphar.2025.177414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cell death occurs continuously throughout individual development. By removing damaged or senescent cells, cell death not only facilitates morphogenesis during the developmental process, but also contributes to maintaining homeostasis after birth. In addition, cell death reduces the spread of pathogens by eliminating infected cells. Cell death is categorized into two main forms: necrosis and programmed cell death. Programmed cell death encompasses several types, including autophagy, pyroptosis, apoptosis, necroptosis, ferroptosis, and PANoptosis. Autophagy, a mechanism of cell death that maintains cellular equilibrium via the breakdown and reutilization of proteins and organelles, is implicated in regulating almost all forms of cell death in pathological contexts. Notably, necroptosis, ferroptosis, and PANoptosis are directly classified as autophagy-mediated cell death. Therefore, regulating autophagy presents a therapeutic approach for treating diseases such as inflammation and tumors that arise from abnormalities in other forms of programmed cell death. This review focuses on the crosstalk between autophagy and other programmed cell death modalities, providing new perspectives for clinical interventions in inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Huaiyuan Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, class 3, 2022 Grade, Kunming Medical University, Kunming, China
| | - Xiran Feng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, Kunming Medical University-Shanghai Jiaotong University Joint Program, 2022 Grade, Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lingyu Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Bifeng He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
17
|
Lu S, Wang P, Hu J, Zhang Z. Tetrandrine Improves Severe Acute Pancreatitis by Inhibiting NCOA4 Glycosylation-Mediated Binding to FTH1 and Inducing Autophagy-Dependent Ferroptosis. FASEB J 2025; 39:e70592. [PMID: 40326888 DOI: 10.1096/fj.202500404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Severe acute pancreatitis (SAP) is an acute abdominal disease with extremely high mortality; autophagy-dependent ferroptosis plays a crucial role in acute pancreatitis. However, the specific underlying mechanism remains unclear. To investigate the role of nuclear receptor coactivator 4 (NCOA4) in SAP and the mechanism by which tetrandrine influences it. Experimental SAP models were established using L-arginine (L-Arg) induction to observe changes in NCOA4 expression. Knockout and overexpression experiments of NCOA4 were conducted to assess the impact on SAP. Additionally, in vitro cell experiments were performed to verify these findings. Furthermore, the impact of N-glycosylation of NCOA4 on its function, particularly its binding ability with ferritin heavy chain 1 (FTH1), was studied. Finally, the effects of tetrandrine on N-glycosylation of NCOA4, the binding between NCOA4 and FTH1, and the progression of SAP were analyzed. NCOA4 expression was significantly upregulated in SAP. Knockout of NCOA4 improved the phenotype of SAP, whereas its overexpression exacerbated SAP. This was also confirmed in vitro. N-glycosylation of NCOA4 is crucial for its binding with FTH1, which in turn affects ferroptosis. Tetrandrine targets the N-glycosylation of NCOA4, weakening the interaction between NCOA4 and FTH1, thereby inhibiting the progression of SAP. This study demonstrates that tetrandrine targets the N-glycosylation of NCOA4, inhibiting autophagy-dependent ferroptosis mediated by its binding to FTH1 and thus ameliorates SAP. This finding provides us with a novel therapeutic approach for SAP and offers a new perspective on understanding the mechanism of action of tetrandrine in SAP.
Collapse
Affiliation(s)
- Sen Lu
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pin Wang
- Endocrinology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junting Hu
- Neurosurgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Wang B, Liu ZH, Li JJ, Xu JX, Guo YM, Zhang JX, Chu T, Feng ZF, Jiang QY, Wu DD. Role of ferroptosis in breast cancer: Molecular mechanisms and therapeutic interventions. Cell Signal 2025; 134:111869. [PMID: 40379233 DOI: 10.1016/j.cellsig.2025.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Ferroptosis, an iron-dependent cell death pathway distinct from apoptosis, is crucial in breast cancer (BC) research, especially for overcoming resistance in triple-negative breast cancer (TNBC). Unlike traditional apoptosis, ferroptosis involves the glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis, iron-driven oxidative reactions, and phospholipid peroxidation. TNBC, characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), is particularly prone to ferroptosis due to acyl-coenzyme A synthetase (ACSL) 4-related lipid changes and solute carrier family 7 member 11 (SLC7A11)-mediated cystine transport. Recent advancements in biomarkers and therapeutic strategies targeting ferroptosis hold significant promise for the diagnosis and prognosis of TNBC. Notable innovations encompass the development of small-molecule compounds and various methodologies designed to enhance ferroptosis. Combination therapies have demonstrated improved antitumor efficacy by counteracting chemotherapy resistance and inducing immunogenic cell death. Nonetheless, challenges persist in optimizing drug delivery mechanisms and minimizing off-target effects. This review underscores the progress in ferroptosis research and proposes precision oncology strategies that exploit metabolic flexibility in BC, intending to transform TNBC treatment and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Bo Wang
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jun-Jie Li
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Xing Xu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Mei Guo
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jing-Xue Zhang
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
19
|
Lu P, Bai X, Guo L, Tuoheti K, Zhan S, Liu T. M1 macrophage inhibits ferroptosis in Pseudomonas aeruginosa-induced kidney epithelial cell injury through the iNOS/ NO pathway without thiol. Front Cell Dev Biol 2025; 13:1597160. [PMID: 40438143 PMCID: PMC12116577 DOI: 10.3389/fcell.2025.1597160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Instruction Pseudomonas aeruginosa (PA) is one of the common pathogens of urinary tract infection. It can lead to urosepsis and renal damage. However, the mechanism by which P. aeruginosa affects epithelial cells is not clear. Methods HK2 cells were treated with extracted PA supernatant (PA.sup). Different pathway inhibitors were added, and similar treatments were applied to HK2 cells co-cultured with macrophages. Cell viability, ferroptosis-related markers, and lipid peroxidation levels were measured. Results We found that PA induced lipid peroxidation using its specially secreted 15-lipoxygenase (ploxA), thereby triggering ferroptosis in epithelial cells. And PA can also damage the GPx4/GSH defense system of epithelial cells. This effect is not through the proteasome pathway but through activating lysosomal chaperone-mediated autophagy (CMA) to reduce the host's GPx4 expression. Then macrophages inhibited lipid peroxidation and protected cells lacking GPx4/GSH through iNOS/NO•. Discussion We demonstrated that NO• produced by macrophages can remotely prevent PA-induced ferroptosis of renal epithelial cells. When iNOS, which is responsible for NO• production, is pharmacologically inhibited, the antiferroptotic effect of NO• is reduced. In conclusion, our study reveals an intercellular mechanism for inhibiting ferroptosis, which may provide a new strategy for the host to combat P. aeruginosa -induced ferroptosis.
Collapse
Affiliation(s)
- Peixiang Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kuerban Tuoheti
- Department of Urology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shanzhi Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Wang T, Liu X, Feng X, Zhang Z, Lv R, Feng W, Zhou Y, Liao X, Tang H, Xu M. GPX4 degradation contributes to heat stress-induced liver injury via chaperone-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119988. [PMID: 40368268 DOI: 10.1016/j.bbamcr.2025.119988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/19/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.
Collapse
Affiliation(s)
- Ting Wang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Liu
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyu Feng
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenyu Zhang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ruiyi Lv
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhong Feng
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yukun Zhou
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueyu Liao
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoming Tang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ming Xu
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
22
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
23
|
Zhou LP, Kang L, Zhang ZG, Jia CY, Zhao CH, Zhang XL, Zhang HQ, Zhang RJ, Shen CL. RBX1 mitigates ferroptosis by inhibiting NCOA4-mediated ferritinophagy and contributes to the attenuation of intervertebral disc degeneration. J Transl Med 2025; 23:514. [PMID: 40335979 PMCID: PMC12060535 DOI: 10.1186/s12967-025-06412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/23/2025] [Indexed: 05/09/2025] Open
Abstract
Loss of nucleus pulposus (NP) cells is as one of the primary factors initiating intervertebral disc (IVD) degeneration (IVDD); however, the intrinsic physiological mechanisms of endogenous NP-derived stem cell (NPSC)-based therapy in IVDD remain poorly understood. Disturbed iron homeostasis is commonly observed in degenerative diseases, and an acidic microenvironment has been considered a crucial factor in IVDD. The molecular mechanism of ferroptosis in acidic microenvironments during IVDD has not been reported. Herein, we intended to investigate whether acidic conditions can induce ferroptosis in NPSCs and explore the mechanism of IVDD progression through NCOA4-mediated ferritinophagy, which is a type of selective autophagy mediating ferroptosis. The role of ring-box 1 (RBX1) in NCOA4-mediated ferritinophagy in NPSC ferroptosis and IVDD pathogenesis was also explored. First, clinical epidemiology research revealed that a reduction in serum ferritin level was an independent risk factor for IVDD. We then demonstrated that ferroptosis progressively increased in human NP tissues as IVDD advanced and the acidic conditions induced ferroptosis-associated decline in cell viability, reactive oxygen species accumulation, and extracellular matrix degradation in human NPSCs. In an acidic microenvironment, ferroptosis is promoted due to enhanced NCOA4-mediated ferritinophagy in NPSCs. A mechanistic study demonstrated that RBX1-mediated ubiquitination modulated NCOA4 expression and the inhibition of RBX1 promoted ferroptosis through NCOA4-mediated ferritinophagy in the human NPSCs. Our in vivo study further illustrated that RBX1 overexpression ameliorated ferroptotic effects on IVDD progression by suppressing NCOA4-mediated ferritinophagy. Results demonstrated the modulating role of RBX1 in NCOA4-mediated ferritinophagy and NPSC ferroptosis, providing valuable insights into the potential application of endogenous stem cell-based IVD self-repair and self-regeneration for IVDD treatment.
Collapse
Affiliation(s)
- Lu-Ping Zhou
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhi-Gang Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Chen-Hao Zhao
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xian-Liang Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Hua-Qing Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ren-Jie Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Anhui Province Research Center for the Clinical Application of Digital Medical Technology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
24
|
Liu H, Xiao Y, Dai C, Chen K, Xu X, Cai J, Hu X, Guo J. Research Advances of the Autophagy-Regulated Radiosensitivity. Cell Prolif 2025:e70056. [PMID: 40325491 DOI: 10.1111/cpr.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Autophagy is an evolutionarily conserved process of cell self-catabolism that provides a minimum level of energy for cellular homeostasis during metabolic stress. In radiotherapy (RT), it has been explicitly explained that autophagy plays a dual role in tumour control by tuning cellular radiosensitivity. However, the underlying molecular mechanism remains a conundrum. Therefore, it is of utmost importance to gain insight into the molecular mechanisms elaborating the autophagy-mediated radiosensitivity and craft refined RT strategies for different tumours. Distinguishing it from previous reviews in the field, here we discuss the mechanisms of autophagy, especially its pro-survival and growth-suppressing mechanisms via regulation of radiosensitivity. We further outline some frontier RT adjuvant therapies targeting autophagy, in an endeavour to shed some light on the autophagy-mediated pathways to harness radiosensitivity.
Collapse
Affiliation(s)
- Hanyue Liu
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Yanlan Xiao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuhao Dai
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Keyu Chen
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Xinyi Xu
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025; 32:793-801. [PMID: 39794451 PMCID: PMC12089313 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
26
|
Fan C, Luo Z, Zheng Q, Xu Y, Xu Y, Chen J, Meng Y, Jiang H, Liu K, Xi Y. Cytoglobin augments ferroptosis through autophagic degradation of ferritin in colorectal cancer cells. Mol Cell Biochem 2025; 480:2881-2892. [PMID: 39503803 PMCID: PMC12048458 DOI: 10.1007/s11010-024-05148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chengjiang Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ziyang Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qingfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - You Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Haizhong Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315001, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Guo S, Zhang Q, Ge H, Wang H. Baicalin plays a protective role by regulating ferroptosis in multiple diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4837-4849. [PMID: 39661143 DOI: 10.1007/s00210-024-03704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Ferroptosis is a new kind of cell death discovered in recent years, usually accompanied by a large number of lipid peroxidation and iron accumulation in the process of cell death. Ferroptosis has been proven to play an important role in various diseases, including ischemic reperfusion injury, cancer, and neurodegeneration. Therefore, the regulation of ferroptosis will have a vital impact on the occurrence and development of diseases. Baicalin is a flavonoid compound extracted and isolated from the dried roots of Scutellaria baicalensis Georgi, a plant in the family Lamiaceae. It has various biological activities such as antioxidant, anti-proliferative, anti-inflammatory, anti-thrombotic, and regulates apoptosis and ferroptosis. Recently, increasing evidence indicates that baicalin regulation of ferroptosis is involved in multiple diseases. However, the relevant mechanisms are not yet fully understood. Here, we summarized the role of baicalin regulation of ferroptosis in different kinds of diseases, and conducted an in-depth analysis of the relevant mechanisms, hoping to provide the theoretical references for future related researches.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Hangwei Ge
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
28
|
Suchiita A, Gupta N, Nandi K, Goswami B. Navigating the crossroads of cell death interplay and intersections among ferroptosis, apoptosis and autophagy. Drug Metab Pers Ther 2025:dmdi-2024-0073. [PMID: 40278507 DOI: 10.1515/dmpt-2024-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
The review article, "Navigating the Crossroads of Cell Death: Interplay and Intersections Among Ferroptosis, Apoptosis, and Autophagy," delves into the complex interactions between these three key cell death pathways. Understanding how ferroptosis, apoptosis, and autophagy intersect is crucial for maintaining cellular homeostasis. Each pathway represents a unique mechanism of cell death, and recent research highlights their intricate interconnections and mutual influences. Exploring these relationships is vital for comprehending how cells make fate decisions and how these processes are implicated in various diseases. The review's significance lies in elucidating the molecular details of cell death and providing insight into how cells balance survival and death. The interplay among ferroptosis, apoptosis, and autophagy has important implications for developing therapeutic interventions, particularly in diseases where cell death regulation is disrupted. By examining the molecular crosstalk between these pathways, researchers can identify new drug targets and devise strategies to modulate cell fate effectively. This review aims to enhance our understanding of cell biology by offering a detailed perspective on the dynamic and interconnected nature of these cell death mechanisms.
Collapse
Affiliation(s)
| | - Navya Gupta
- 28862 Maulana Azad Medical College , New Delhi, India
| | - Kajal Nandi
- 28862 Maulana Azad Medical College , New Delhi, India
| | | |
Collapse
|
29
|
Tian X, Liu F, Zhao J, Liu Q, Wang H, Liu Y, Zhang J, Zhang Y, Yang Y, Shi S, Jiang S. Mechanism and molecular targets of Euphorbia fischeriana Steud root extract in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119707. [PMID: 40147679 DOI: 10.1016/j.jep.2025.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia fischeriana Steud. (E. fischeriana) root is a well-known traditional Chinese medicine used in the treatment of skin ulceration, lymph node tuberculosis and tumors. However, its antitumor activity against HCC and the underlying molecular mechanisms remain to be further elucidated. AIM OF THE STUDY The study aimed to investigate the anti-hepatocarcinogenic effects of E. fischeriana root, specifically its impact on NCOA4-mediated ferritinophagy, and to elucidate the related molecular mechanisms in HCC. METHODS LC-MS was used to analyze the comprehensive chemical composition of E. fischeriana root extract. Through network pharmacology, transcriptomics, molecular docking, and molecular dynamics simulations, we investigated the potential mechanisms underlying the effects of E. fischeriana root extract on HCC. Finally, in vitro and in vivo experiments were performed to validate these mechanisms. RESULTS Through mass spectrometry analysis and drug-likeness screening, 93 active compounds were identified. Based on network pharmacology and transcriptomic analyses, we hypothesized that the PI3K/AKT pathway and its downstream signaling involving autophagy and ferroptosis are crucial pathways affected by E. fischeriana root extract. In vitro experiments demonstrated that E. fischeriana root extract inhibits proliferation, promotes apoptosis, triggers ferritinophagy and induces ferroptosis in HCC cells. In vivo studies further validated significant anti-HCC effects of E. fischeriana root extract. CONCLUSIONS Based on these findings, we propose that E. fischeriana root extract exerts its anti-HCC effects by targeting the PI3K/AKT pathway to regulate NCOA4-mediated ferritinophagy, thereby inducing ferroptosis. These results highlight E. fischeriana root extract as a promising therapeutic candidate for HCC.
Collapse
MESH Headings
- Euphorbia/chemistry
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Plant Roots/chemistry
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Humans
- Animals
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Plant Extracts/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/therapeutic use
- Mice
- Male
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Molecular Docking Simulation
- Mice, Nude
- Mice, Inbred BALB C
- Signal Transduction/drug effects
- Apoptosis/drug effects
- Xenograft Model Antitumor Assays
- Hep G2 Cells
- Autophagy/drug effects
Collapse
Affiliation(s)
- Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Haochen Wang
- Department of Interventional Radiology, Jining First People's Hospital, Jining, 272000, China
| | - Yanmei Liu
- Department of Pathology, Jining Public Health Medical Center, Jining, 272000, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Yulin Yang
- Department of Pathology, Jining Public Health Medical Center, Jining, 272000, China.
| | - Shulong Shi
- Department of Endocrinology, Jining First People's Hospital, Jining, 272000, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China.
| |
Collapse
|
30
|
Wu Y, Yin L, Wang Z, Yuan S, Ma D, Wen C, Tian H, Xiao B, Ma C, Song L. Hydroxysafflor yellow A inhibits neuronal ferroptosis and ferritinophagy in ischemic stroke. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167867. [PMID: 40280202 DOI: 10.1016/j.bbadis.2025.167867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Ischemic stroke is a significant cause of disability and mortality on a global scale, with neuronal dysfunction playing a critical role in its pathogenesis. Conventional treatment approaches for ischemic stroke involve surgical interventions and thrombolytic therapy, yet these methods frequently result in ischemia/reperfusion (I/R) injury. Recent studies have underscored the implication of diverse programmed cell death mechanisms, including ferroptosis, in the progression of ischemic stroke. Ferroptosis, a newly recognized form of cell death reliant on iron, is intricately linked to various neurological conditions. Despite the existing body of research on ferritinophagy and neuronal ferroptosis in the context of cerebral ischemia-reperfusion injury, there is a lack of understanding regarding the mechanisms involved in neuronal ferroptosis. This study seeks to explore the relationship between neuronal autophagy and neuronal ferroptosis using in vivo and in vitro models of cerebral ischemia/reperfusion. The findings of our study reveal a significant upregulation of the ferritinophagy-associated protein NCOA4 following cerebral ischemia/reperfusion, concomitant with the initiation of ferroptosis in neuronal cells. This observation offers compelling support for a direct association between neuronal ferritinophagy and ferroptosis. Hydroxysafflor Yellow A (HSYA), a traditional Chinese herb, shows promise in reducing brain ischemia/reperfusion injury, but its exact protective mechanism is still unknown. Our study reveals a new way HSYA protects the brain by preventing neuronal ferroptosis after a stroke, a mechanism not previously reported.
Collapse
Affiliation(s)
- Yige Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Lijun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Zeqian Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shuwen Yuan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Dong Ma
- Dept. of Neurosurgery/The Key Laboratory of prevention and treatment of neurological disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Chunli Wen
- Shanxi provincial people's Hospital, Taiyuan 030001, China
| | - Hao Tian
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China.
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
31
|
Xu XW, Zhou XW, Zhang L, Wang Q, Wang XX, Jin YM, Li LL, Jin MF, Wu HY, Ding X, Ni H. Complexin 2 contributes to the protective effect of NAD + on neuronal survival following neonatal hypoxia-ischemia. Acta Pharmacol Sin 2025:10.1038/s41401-025-01555-1. [PMID: 40247039 DOI: 10.1038/s41401-025-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a key coenzyme involved in cell metabolism associated with aging, cancer, neurodegenerative diseases and metabolic disorders. We recently showed that NAD+ therapy significantly improved neurobehavioral outcomes in neonatal mice after hypoxia-ischemia (HI), and bioinformatics analysis revealed that the expression of complexin 2 (CPLX2) in the injured cerebral cortex was significantly decreased 24 h after HI injury but could be reversed by NAD+ intervention. In this study we explored the role of CPLX2 in the survival and function of neonatal hypoxic-ischemic cortical neurons. HI models were established by permanent ligation of the left common carotid artery in mice. CPLX2-knockdown lentiviral vector was injected intraventricularly on postnatal day 1 (P1); CPLX2 knockout mice were also used. NAD+ (5 mg·kg-1·d-1, i.p.) was administered before HI surgery, thereafter once a day until sampling. We showed that NAD+ administration significantly ameliorated the morphological damages and neurobehavioral defects, and elevated the seizure thresholds in HI mice. All the beneficial effects of NAD+ were abolished by CPLX2 knockdown or knockout. In HT22 neuronal cells subjected to OGD/R, pretreated with NAD+ (100 μM) for 12 h significantly increased the cell viability, decreased the LDH levels, and inhibited the ferroptosis evidenced by the changes in redox-related parameters including concentrations of Fe2+, GSH, MDA, H2O2 as well as the expression of GPX4 and SLC7A11. CPLX2 knockdown in HT22 neuronal cells blocked the protective effects of NAD+ as in HI mice, whereas CPLX2 overexpression enhanced the inhibitory effects of NAD+ on ferroptosis in HT22 neuronal cells.
Collapse
Affiliation(s)
- Xiao-Wen Xu
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xiu-Wen Zhou
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li Zhang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Qing Wang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xin-Xin Wang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yi-Ming Jin
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Li Li
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei-Fang Jin
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hai-Ying Wu
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Hong Ni
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
32
|
Du Y, Wu H, Zhan S, Zhang R, Zhang G, Bu N. Calcium/Calmodulin-Dependent Protein Kinase II β Regulates Autophagy Dependent Ferroptosis of Neurons after Cerebral Ischemic Injury by Activating the AREG/JUN/ELAVL1 Pathway. Neurochem Res 2025; 50:140. [PMID: 40220216 DOI: 10.1007/s11064-025-04392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Ferroptosis is an iron-dependent regulatory cell death characterized by lipid peroxidation. The molecular mechanism of calcium/calmodulin-dependent protein kinase II β (CAMK2B) affecting cerebral ischemic injury through autophagy-dependent ferroptosis is still unclear. Here, we aimed to study the regulatory effect of CAMK2B on autophagy-dependent ferroptosis and its effect on cerebral ischemic injury. We found that CAMK2B was significantly upregulated in oxygen and glucose deprivation/recovery (OGD/R)-induced PC12 cells and primary hippocampal neurons. CAMK2B knockdown inhibited OGD/R-induced autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. In addition, CAMK2B was co-localized with amphiregulin (AREG) in PC12 cells, and overexpression of AREG reversed the effect of CAMK2B knockdown on OGD/R-induced autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. Further molecular mechanism studies showed that AREG enhanced the transcriptional activation of embryonic lethal abnormal vision-like 1 (ELAVL1) through Jun Proto-Oncogene (c-Jun), thereby inducing autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. Moreover, CAMK2B was significantly upregulated in the ipsilateral penumbra neurons of cerebral ischemia-reperfusion (I/R) mice, and the level of autophagy-dependent ferroptosis was increased in the brain tissue of I/R mice. Knockdown of CAMK2B alleviated neuronal damage by inhibiting autophagy-dependent ferroptosis in the brain tissue of model mice. This study suggests that CAMK2B plays a key role in regulating neuronal autophagy-dependent ferroptosis, and CAMK2B may be a potential target for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yun Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China.
| | - Haiqin Wu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| |
Collapse
|
33
|
Zhang X, Zhou Y, Li H, Chen M, Peng F, Li N. Integration of Transcriptomic and Single-Cell Data to Uncover Senescence- and Ferroptosis-Associated Biomarkers in Sepsis. Biomedicines 2025; 13:942. [PMID: 40299574 PMCID: PMC12025025 DOI: 10.3390/biomedicines13040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Background: Sepsis is a life-threatening condition characterized by organ dysfunction due to an imbalanced immune response to infection, with high mortality. Ferroptosis, an iron-dependent cell death process, and cellular senescence, which exacerbates inflammation, have recently been implicated in sepsis pathophysiology. Methods: Weighted gene co-expression network analysis (WGCNA) was used to identify ferroptosis- and senescence-related gene modules in sepsis. Differentially expressed genes (DEGs) were analyzed using public datasets (GSE57065, GSE65682, and GSE26378). Receiver operating characteristic (ROC) analysis was performed to evaluate their diagnostic potential, while single-cell RNA sequencing (scRNA-seq) was used to assess their immune-cell-specific expression. Molecular docking was conducted to predict drug interactions with key proteins. Results: Five key genes (CD82, MAPK14, NEDD4, TXN, and WIPI1) were significantly upregulated in sepsis patients and highly correlated with immune cell infiltration. MAPK14 and TXN exhibited strong diagnostic potential (AUC = 0.983, 0.978). Molecular docking suggested potential therapeutic interactions with diclofenac, flurbiprofen, and N-acetyl-L-cysteine. Conclusions: This study highlights ferroptosis and senescence as critical mechanisms in sepsis and identifies promising biomarkers for diagnosis and targeted therapy. Future studies should focus on clinical validation and precision medicine applications.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiran Zhou
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hang Li
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07743 Jena, Germany
| | - Mengru Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Li
- Department of Blood Transfusion, Clinical Transfusion Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
34
|
Wen B, Chang W, Yang L, Lv D, Wang L, Wang L, Xu Y, Hu J, Ding K, Xue Q, Qi X, Yang B, Wang J. The long noncoding RNA APR attenuates PPRV infection-induced accumulation of intracellular iron to inhibit membrane lipid peroxidation and viral replication. mBio 2025; 16:e0012725. [PMID: 40126010 PMCID: PMC11980570 DOI: 10.1128/mbio.00127-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that has long been a significant threat to small ruminant productivity worldwide. Iron metabolism is vital to the host and the pathogen. However, the mechanism underlying host-PPRV interactions from the perspective of iron metabolism and iron-mediated membrane lipid peroxidation has not been reported thus far. In this study, we identified a novel host long-noncoding RNA (lncRNA), APR, that impairs PPRV infectivity by sponging miR-3955-5p, a negative microRNA (miRNA) that directly targets the gene encoding the ferritin-heavy chain 1 (FTH1) protein. Importantly, we demonstrated that PPRV infection causes aberrant cellular iron accumulation by increasing transferrin receptor (TFRC) expression and that iron accumulation induces reticulophagy and ferroptosis, which benefits PPRV replication. Moreover, PPRV infection enhanced the localization of cellular iron on the endoplasmic reticulum (ER) and caused ER membrane damage by promoting excess lipid peroxidation to induce reticulophagy. Interestingly, APR decreased PPRV infection-induced accumulation of intracellular Fe2+ via miR-3955-5p/FTH1 axis and ultimately inhibited reticulophagy and ferroptosis. Additionally, our results indicate that interferon regulatory factor 1 promotes APR transcription by positively regulating APR promoter activity after PPRV infection. Taken together, our findings revealed a new pattern of PPRV-host interactions, involving noncoding RNA regulation, iron metabolism, and iron-related membrane lipid peroxidation, which is critical for understanding the host defense against PPRV infection and the pathogenesis of PPRV.IMPORTANCEMany viruses have been demonstrated to engage in iron metabolism to facilitate their replication and pathogenesis. However, the mechanism by which PPRV interacts with host cells from the perspective of iron metabolism, or iron-mediated membrane lipid peroxidation, has not yet been reported. Our data provide the first direct evidence that PPRV infection induces aberrant iron accumulation to promote viral replication and reveal a novel host lncRNA, APR, as a regulator of iron accumulation by promoting FTH1 protein expression. In this study, PPRV infection increased cellular iron accumulation by increasing TFRC expression, and more importantly, iron overload increased viral infectivity as well as promoted ER membrane lipid peroxidation by enhancing the localization of cellular iron on the ER and ultimately induced ferroptosis and reticulophagy. Furthermore, a host factor, the lncRNA APR, was found to decrease cellular iron accumulation by sponging miR-3955-5p, which directly targets the gene encoding the FTH1 protein, thereby attenuating PPRV infection-induced ferroptosis and reticulophagy and inhibiting PPRV infection. Taken together, the results of the present study provide new insight into our understanding of host-PPRV interaction and pathogenesis from the perspective of iron metabolism and reveal potential targets for therapeutics against PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
- China Institute of Veterinary Drug Control, Beijing, Beijing, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke Ding
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, Beijing, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Wu C, Xu Z, Wang Q, Guo H, He X, Lin Y, Li L, Feng L, Li Q, Tang C. Investigation of Ferroptosis Mechanisms in Ischemic Stroke Treated with Electroacupuncture: Focusing on the NCOA4-FTH1 Signaling Pathway. Neurochem Res 2025; 50:137. [PMID: 40189641 DOI: 10.1007/s11064-025-04390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Ischemic stroke remains a primary cause of mortality and morbidity, with ferroptosis emerging as a critical mechanism underlying neuronal damage post-ischemic injury. This study aims to elucidate the mechanisms of ferroptosis in ischemic stroke and assess the therapeutic potential of electroacupuncture, with emphasis on the NCOA4-FTH1 signaling pathway. After establishing a mouse model of middle cerebral artery occlusion (MCAO), we employed a combination of behavioral assessments and molecular techniques, including transmission electron microscopy, immunofluorescence, and Western blotting, to investigate the impact of electroacupuncture on ferroptosis markers. In addition, we constructed in vivo models of NCOA4 gene silencing and overexpression using adeno-associated virus (AAV) to verify whether electroacupuncture modulates the mechanism of ischemic stroke ferroptosis via the NCOA4-FTH1 signaling pathway. Our findings indicated that electroacupuncture could significantly downregulate NCOA4 expression while upregulating FTH1 and GPX4 levels in affected brain regions of MCAO mice. This resulted in reduced MDA levels, decreased iron ion concentration, a smaller brain infarct area, and improved motor function (p < 0.05). After constructing in vivo models of AAV-mediated NCOA4 gene silencing and overexpression, we demonstrated that electroacupuncture could attenuate iron deposition and inhibit ferroptosis in neurons by suppressing NCOA4 and upregulating FTH1, thereby ameliorating neurological deficits in the ischemic stroke model. These results suggest that electroacupuncture modulates ferroptosis through the NCOA4-FTH1 pathway, offering a novel therapeutic approach for neuroprotection following ischemic stroke.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, P. R. China.
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, Guangdong Province, P. R. China.
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine; Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, P. R. China.
| | - Zhirui Xu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510130, Guangdong Province, P. R. China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, P. R. China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, Guangdong Province, P. R. China
| | - Hongji Guo
- School of Medicine and Health, Shunde Polytechnic, Foshan, 528000, China
| | - Xin He
- Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong Province, P. R. China
| | - Yuexi Lin
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, P. R. China
| | - Luping Li
- Guangzhou City Construction College, Guangzhou, Guangdong Province, P. R. China
| | - Linling Feng
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, P. R. China
| | - Qingyou Li
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, P. R. China
| | - Chunzhi Tang
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, P. R. China
| |
Collapse
|
36
|
Li M, Wang Y, Li X, Xu J, Yan L, Tang S, Liu C, Shi M, Liu R, Zhao Y, Zhang Y, Yang L, Zhang Y, Wang G, Li Z, Guo Y, Feng Y, Liu P. Pharmacological targeting of the mitochondrial phosphatase PTPMT1 sensitizes hepatocellular carcinoma to ferroptosis. Cell Death Dis 2025; 16:257. [PMID: 40189563 PMCID: PMC11973169 DOI: 10.1038/s41419-025-07581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Protein tyrosine phosphatase mitochondrial 1 (PTPMT1), is a member of the protein tyrosine phosphatase superfamily localized on the mitochondrial inner membrane, and regulates the biosynthesis of cardiolipin. Given the important position of PTPMT1 in mitochondrial function and metabolism, pharmacological targeting of PTPMT1 is considered a promising manner in disease treatments. In this study, we mainly investigated the role of PTPMT1 in hepatocellular carcinoma (HCC) ferroptosis, a new type of cell death accompanied by significant iron accumulation and lipid peroxidation. Herein, the pharmacological inhibition of PTPMT1 was induced by alexidine dihydrochloride (AD, a dibiguanide compound). Human HCC cell lines with PTPMT1 knockout and PTPMT1 overexpression were established using CRISPR/Cas9 and lentiviral transduction methods, respectively. The position of PTPMT1 in regulating HCC ferroptosis was evaluated in vitro and in vivo. Our results indicated that pharmacological inhibition of PTPMT1, facilitated by AD treatment, heightens the susceptibility of HCC to cystine deprivation-ferroptosis, and AD treatment promoted the conversion from ferritin-bound Fe3+ to free Fe2+, which contributed to the labile iron pool in cytoplasm. Meanwhile, pharmacological inhibition of PTPMT1 also induced the formation of both swollen mitochondria and donut mitochondria, and enhanced the metabolism process form succinate to fumarate in mitochondrial tricarboxylic acid (TCA) cycle, which increased the sensitivity of HCC cells to cystine deprivation-induced ferroptosis. In total, our work reveals the close association of PTPMT1 with cysteine deprivation-induced ferroptosis, providing a novel insight into chemotherapy strategies against human HCC.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chenyue Liu
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongrong Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Yang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Zongfang Li
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Guo
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yetong Feng
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
37
|
Wei YY, Chen TT, Zhang DW, Zhang Y, Li F, Ding YC, Wang MY, Zhang L, Chen KG, Fei GH. Microplastics exacerbate ferroptosis via mitochondrial reactive oxygen species-mediated autophagy in chronic obstructive pulmonary disease. Autophagy 2025:1-27. [PMID: 40114310 DOI: 10.1080/15548627.2025.2481126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Microplastics (MPs) induce mitochondrial dysfunction and iron accumulation, contributing to mitochondrial macroautophagy/autophagy and ferroptosis, which has increased susceptibility to the exacerbation of chronic obstructive pulmonary disease (COPD); however, the underlying mechanism remains unclear. We demonstrated that MPs intensified inflammation in COPD by enhancing autophagy-dependent ferroptosis (ADF) in vitro and in vivo. In the lung tissues of patients with COPD, the concentrations of MPs, especially polystyrene microplastics (PS-MPs), were significantly higher than that of the control group, as detected by pyrolysis gas chromatography mass spectrometry (Py-GCMS), with increased iron accumulation. The exposure to PS-MPs, 2 μm in size, resulted in their being deposited in the lungs of COPD model mice detected by optical in vivo imaging, and observed in bronchial epithelial cells traced by GFP-labeled PS-MPs. There were mitochondrial impairments accompanied by mitochondrial reactive oxygen species (mito-ROS) overproduction and significantly increased levels of lysosome biogenesis and acidification in pDHBE cells with PS-MP stimulation, triggering occurrence of ferritinophagy and enhancing ADF in COPD, which triggered acute exacerbation of COPD (AECOPD). Reestablishing autophagy-dependent ferroptosis via mitochondria-specific ROS scavenging or ferroptosis inhibition alleviated excessive inflammation and ameliorated AECOPD induced by PS-MPs. Collectively, our data initially revealed that MPs exacerbate ferroptosis via mito-ROS-mediated autophagy in COPD, which sheds light on further hazard assessments of MPs on human respiratory health and potential therapeutic agents for patients with COPD.Abbreviations: ADF: autophagy-dependent ferroptosis; AECOPD: acute exacerbation of chronic obstructive pulmonary disease; Cchord: static compliance; COPD: chronic obstructive pulmonary disease; CQ: chloroquine; CS: cigarette smoke; DEGs: differentially expressed genes; Fer-1: ferrostatin-1; FEV 0.1: forced expiratory volume in first 100 ms; FVC: forced vital capacity; GSH: glutathione; HE: hematoxylin and eosin; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; MDA: malondialdehyde; Mito-ROS: mitochondrial reactive oxygen species; MMA: methyl methacrylate; MMF: maximal mid-expiratory flow curve; MMP: mitochondrial membrane potential; MOI: multiplicity of infection; MPs: microplastics; MV: minute volume; PA: polyamide; PBS: phosphate-buffered saline; PC: polycarbonate; pDHBE: primary human bronchial epithelial cell from COPD patients; PET: polyethylene terephthalate; PIF: peak inspiratory flow; PLA: polylactic acid; pNHBE: primary normal human bronchial epithelial cell; PS-MPs: polystyrene microplastics; PVA: polyvinyl acetate; PVC: polyvinyl chloride; Py-GCMS: pyrolysis gas chromatography mass spectrometry; SEM: scanning electron microscopy; Te: expiratory times; Ti: inspiratory times; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Yuan Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ting Ting Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Da Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ying Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Yi Chuan Ding
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ming Yu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ling Zhang
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ke Gong Chen
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Guang He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| |
Collapse
|
38
|
She W, Su J, Ma W, Ma G, Li J, Zhang H, Qiu C, Li X. Natural products protect against spinal cord injury by inhibiting ferroptosis: a literature review. Front Pharmacol 2025; 16:1557133. [PMID: 40248093 PMCID: PMC12003294 DOI: 10.3389/fphar.2025.1557133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic condition that frequently results in various neurological disabilities, including significant sensory, motor, and autonomic dysfunctions. Ferroptosis, a recently identified non-apoptotic form of cell death, is characterized by the accumulation of reactive oxygen species (ROS), intracellular iron overload, and lipid peroxidation, ultimately culminating in cell death. Recent studies have demonstrated that ferroptosis plays a critical role in the pathophysiology of SCI, contributing significantly to neural cell demise. Three key cellular enzymatic antioxidants such as glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and dihydroorotate dehydrogenase (DHODH), have been elucidated as crucial components in the defense against ferroptosis. Natural products, which are bioactive compounds mostly derived from plants, have garnered considerable attention for their potential therapeutic effects. Numerous studies have reported that several natural products can effectively mitigate neural cell death and alleviate SCI symptoms. This review summarizes fifteen natural products containing (-)-Epigallocatechin-3-gallate (EGCG), Proanthocyanidin, Carnosic acid, Astragaloside IV, Trehalose, 8-gingerol, Quercetin, Resveratrol, Albiflorin, Alpha-tocopherol, Celastrol, Hispolon, Dendrobium Nobile Polysaccharide, Silibinin, and Tetramethylpyrazine that have shown promise in treating SCI by inhibiting ferroptosis. Additionally, this review provides an overview of the mechanisms involved in these studies and proposes several perspectives to guide future research directions.
Collapse
Affiliation(s)
- Wei She
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junxiao Su
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenji Ma
- Department of Orthopaedic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guohai Ma
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfu Li
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
39
|
Ye R, Mao YM, Fei YR, Shang Y, Zhang T, Zhang ZZ, Liu YL, Li JY, Chen SL, He YB. Targeting ferroptosis for the treatment of female reproductive system disorders. J Mol Med (Berl) 2025; 103:381-402. [PMID: 40100417 DOI: 10.1007/s00109-025-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, has emerged as a critical factor in female reproductive health and has been implicated in disorders such as polycystic ovary syndrome, premature ovarian insufficiency, endometriosis, and ovarian cancer. This review explores the intricate molecular mechanisms underlying ferroptosis, emphasizing its reliance on iron metabolism and oxidative stress, which disrupt key processes in reproductive tissues, including granulosa cell function, folliculogenesis, and embryo implantation. Increasing evidence linking ferroptosis to these conditions offers new therapeutic opportunities, with iron chelators, lipid peroxidation inhibitors, and antioxidants showing the potential to alleviate reproductive dysfunction by modulating ferroptotic pathways. In ovarian cancer, ferroptosis inducers combined with conventional cancer therapies, such as chemotherapy, provide promising strategies to overcome drug resistance. This review synthesizes current knowledge on ferroptosis and highlights its importance as a therapeutic target in reproductive health, emphasizing the need for further research to refine and expand treatment options, evaluate their applicability in clinical settings, and explore their role in fertility preservation. By advancing our understanding of ferroptosis regulation, these therapeutic approaches could lead to novel treatments for reproductive disorders and cancers, offering new hope for improving outcomes in women's health and cancer therapy.
Collapse
Affiliation(s)
- Rui Ye
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Zhejiang Province, China
| | - Yi-Ran Fei
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yue Shang
- Reproductive Center, Hainan Branch, Shanghai Children'S Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Ting Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhe-Zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Yong-Lin Liu
- Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jun-Yu Li
- Department of Pharmacy, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
40
|
Xu WX, Wen X, Fu YT, Yang J, Cui H, Fan RF. Nuclear receptor coactive 4-mediated ferritinophagy: a key role of heavy metals toxicity. Arch Toxicol 2025; 99:1257-1270. [PMID: 39928088 DOI: 10.1007/s00204-025-03963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Nuclear receptor coactive 4 (NCOA4) is a specific receptor for ferritinophagy, transporting ferritin to lysosomal degradation, releasing free iron, and excessive iron levels may lead to cellular redox imbalance, contributing to cell death, predominantly ferroptosis. NCOA4 is regulated by a variety of transcriptional, post-transcriptional, translational, and post-translational modifications. Targeted modulation of NCOA4-mediated ferritinophagy has been successfully used as a therapeutic strategy in several disease models. Recent evidences have elucidated that ferritinophagy and ferroptosis played a major role in heavy metals toxicity. In this review, we explored the regulatory mechanism of NCOA4 as the sole receptor for ferritinophagy from multiple perspectives based on previous studies. The significant role of ferritinophagy-mediated ferroptosis in heavy metals toxicity was discussed in detail, emphasizing the great potential of NCOA4 as a target for heavy metals toxicity.
Collapse
Affiliation(s)
- Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Xue Wen
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Yi-Tong Fu
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Jie Yang
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an, 271017, Shandong, China.
| |
Collapse
|
41
|
Han S, Zhao X, Yu C, Cui C, Zhang Y, Zhu Q, Qiu M, Yang C, Yin H. Nestin Regulates Autophagy-Dependent Ferroptosis Mediated Skeletal Muscle Atrophy by Ubiquitinating MAP 1LC3B. J Cachexia Sarcopenia Muscle 2025; 16:e13779. [PMID: 40183241 PMCID: PMC11969254 DOI: 10.1002/jcsm.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Programmed cell death plays a critical role in skeletal muscle atrophy. Ferroptosis, an iron-dependent form of programmed cell death driven by lipid peroxidation, has been implicated in various diseases, but its role in skeletal muscle atrophy remains unclear. METHODS Ferroptosis in skeletal muscle atrophy was investigated using two models: dexamethasone (Dex)-induced atrophy (n = 6 independent cell cultures per group) and simulated microgravity (n = 6 mice per group). Conditional Nestin knockout (KO) mice were generated using CRISPR/Cas9 (n = 6-8 mice per group), with wild-type (WT) controls (n = 6-8). Phenotypic analyses included histopathology (HE staining), functional assessments (muscle strength, weight analysis, treadmill), and dystrophy evaluation (dystrophin staining). Molecular analyses involved flow cytometry, ELISA, transmission electron microscopy, PI staining, and IP/MS to delineate Nestin-regulated ferroptosis pathways in skeletal muscle atrophy. RESULTS Ferroptosis was significantly activated in both atrophy models, with a 2.5-fold increase in lipid peroxidation (p < 0.01), a 2-fold accumulation of Fe2+ (p < 0.01) and a 50% reduction in Nestin expression (p < 0.001). Nestin KO mice exhibited exacerbated muscle atrophy, showing a 40% decrease in muscle weight (p < 0.01) and a 30% reduction in muscle strength (p < 0.05) compared to WT mice. Nestin overexpression mitigated Dex-induced ferroptosis, reducing lipid peroxidation by 40%, decreasing Fe2+ accumulation by 50% (p < 0.01), and improving muscle function by 30% (p < 0.05). Mechanistically, Nestin interacted with MAP 1LC3B (LC3B) to catalyse LC3B polyubiquitination at lysine-51, reducing LC3B availability for autophagy and inhibiting autophagy flux by 60% (p < 0.01), leading to a 50% reduction in ferroptosis (p < 0.001). CONCLUSIONS Our study identifies Nestin as a critical regulator of ferroptosis-autophagy crosstalk in skeletal muscle atrophy. Targeting Nestin-LC3B ubiquitination may offer novel therapeutic strategies for preventing muscle wasting in diseases such as cachexia and sarcopenia.
Collapse
Affiliation(s)
- Shunshun Han
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| | - Xiyu Zhao
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceSichuan Animal Science AcademyChengduChina
| | - Can Cui
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| | - Yao Zhang
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| | - Qing Zhu
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceSichuan Animal Science AcademyChengduChina
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceSichuan Animal Science AcademyChengduChina
| | - Huadong Yin
- College of Animal Science and TechnologyKey Laboratory of Livestock and Poultry Multi‐Omics, Ministry of Agriculture and Rural AffairsSichuan Agricultural UniversityChengduSichuanChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduSichuanChina
| |
Collapse
|
42
|
Li S, Nordick KV, Elsenousi AE, Bhattacharya R, Kirby RP, Hassan AM, Hochman-Mendez C, Rosengart TK, Liao KK, Mondal NK. Warm-ischemia and cold storage induced modulation of ferroptosis observed in human hearts donated after circulatory death and brain death. Am J Physiol Heart Circ Physiol 2025; 328:H923-H936. [PMID: 40062653 DOI: 10.1152/ajpheart.00806.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
We investigated ferroptosis, a type of programmed cell death mechanism, in human hearts donated after brain death (DBD) and those donated after circulatory death (DCD), focusing on warm ischemia time (WIT) and cold storage. A total of 24 hearts were procured, with six from the DBD group and 18 from the DCD group. The DCD group was divided into three subgroups, each containing six hearts, based on different WITs of 20, 40, and 60 min. All procured hearts were placed in cold storage for up to 6 h. Left ventricular biopsies were performed at 0, 2, 4, and 6 h. We measured ferroptosis regulators [glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and transferrin receptor], iron content (Fe2+ and Fe3+), and lipid peroxidation (malondialdehyde, MDA) in the cardiac tissue. Modulation of ferroptosis was observed in both DBD and DCD hearts. Warm ischemia injury increased myocardial vulnerability to ferroptotic cell death. For DBD hearts, up to 6 h of cold storage increases cardiac levels of MDA, iron content, and ACSL4, thereby increasing vulnerability to ferroptotic cell death. In contrast, for DCD hearts with a WIT of 40 min or more, warm ischemia injury was identified as the primary factor contributing to increased myocardial susceptibility to ferroptotic cell death. Ferroptosis may serve as a promising target to optimize cold preservation for DBD hearts. For DCD hearts, strategies to inhibit ferroptosis should focus on the early warm ischemia phase to assess donor heart quality and suitability for transplantation.NEW & NOTEWORTHY The first human heart research explored the effects of ischemia on the myocardial ferroptotic cell death mechanism. Prolonged cold storage increases the susceptibility of DBD hearts to ferroptotic cell death. In contrast, warm ischemic injury appears to be the main factor leading to the vulnerability of DCD heart ferroptosis. Targeting ferroptosis could be beneficial in optimizing cold preservation for DBD hearts. However, for DCD hearts, interventions should focus on the early phase of warm ischemia.
Collapse
Affiliation(s)
- Shiyi Li
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Katherine V Nordick
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Abdussalam E Elsenousi
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Rishav Bhattacharya
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Randall P Kirby
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Adel M Hassan
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Kenneth K Liao
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Nandan K Mondal
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| |
Collapse
|
43
|
Min L, Huo F, Zhu Z, Din L, Zhang L, Xu Y, Xing X, Zhang P, Wang Q. Mechanistic study of METTL3 inducing ferroptosis to promote cervical cancer progression through mediating m6A modification of COTE-1. Cell Signal 2025; 128:111649. [PMID: 39923928 DOI: 10.1016/j.cellsig.2025.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cervical Cancer (CC) is one of the leading causes of tumor-related deaths among women worldwide, and the mechanisms underlying the anti-ferroptosis of CC cells are still unclear. Methyltransferase like 3 (METTL3) is widely expressed various types of tissues and plays a crucial role in tumorigenesis in part by mediating cell death. However, its regulatory function in CC progression and especially the underlying mechanisms have not been fully elucidated. This study aims to explore the role of METTL3 in the ferroptosis of CC cells. Mechanistically, by MeRIP-seq, we identified COTE-1 as a target of METTL3 mediated m6A modification, and revealed that METTL3-mediated COTE-1 expression was dependent on the m6A reader-dependent manner. Functionally, in vitro and in vivo experiments that METTL3 promotes proliferation and metastasis of CC cells by regulating COTE-1 expression. In addition, the study verified the effect of the METTL3/COTE-1 axis on autophagy-dependent ferroptosis. In summary, METTL3 influences CC progression by mediating COTE-1 to influence autophagy-dependent ferroptosis, representing a potential therapeutic approach for treating CC.
Collapse
Affiliation(s)
- Luyao Min
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Fuchun Huo
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhiman Zhu
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lina Din
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lin Zhang
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yuting Xu
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xuewei Xing
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peng Zhang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Qingling Wang
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
44
|
Yang X, Wu H, Liu D, Zhou G, Zhang D, Yang Q, Liu Y, Li Y. The link between ferroptosis and autophagy in myocardial ischemia/reperfusion injury: new directions for therapy. J Cardiovasc Transl Res 2025; 18:408-423. [PMID: 39885084 DOI: 10.1007/s12265-025-10590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Myocardial ischemia/reperfusion (I/R)-induced cell death, such as autophagy and ferroptosis, is a major contributor to cardiac injury. Regulating cell death may be key to mitigating myocardial ischemia/reperfusion injury (MI/RI). Autophagy is a crucial physiological process involving cellular self-digestion and compensation, responsible for degrading excess or malfunctioning long-lived proteins and organelles. During MI/RI, autophagy plays both "survival" and "death" roles. A growing body of research indicates that ferroptosis is a type of autophagy-dependent cell death. This article provides a comprehensive review of the functions of autophagy and ferroptosis in MI/RI, as well as the molecules mediating their interaction. Understanding the link between autophagy and ferroptosis may offer new therapeutic directions for MI/RI, bearing significant clinical implications.
Collapse
Affiliation(s)
- Xiaoting Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| | - Hui Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Di Liu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huang Shi, HuBei Province, China
| | - Gang Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yanfang Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| | - Yi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, HuBei Province, China
| |
Collapse
|
45
|
Zhuo B, Qin C, Deng S, Jiang H, Si S, Tao F, Cai F, Meng Z. The role of ACSL4 in stroke: mechanisms and potential therapeutic target. Mol Cell Biochem 2025; 480:2223-2246. [PMID: 39496916 PMCID: PMC11961533 DOI: 10.1007/s11010-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangkun Si
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Tao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fei Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
46
|
Liu K, Yu J, Huang X, Gao H, Wang J. WGCNA and ferroptosis genes in OSCC: unraveling prognostic biomarkers and therapeutic targets. Discov Oncol 2025; 16:379. [PMID: 40126728 PMCID: PMC11933588 DOI: 10.1007/s12672-025-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant type of oral cancer, with over 370,000 new cases and approximately 170,000 deaths annually worldwide. Despite therapeutic advancements, OSCC mortality rates have been increasing, underscoring the need for improved prognostic models and therapeutic targets. METHODS We integrated transcriptomic and clinical survival data from the TCGA-OSCC dataset to identify ferroptosis-related prognostic genes. Using weighted gene co-expression network analysis (WGCNA), we selected genes associated with OSCC prognosis and applied Lasso regression analysis to pinpoint key genes. A prognostic model was constructed and validated through survival analysis and receiver operating characteristic (ROC) curve analysis. RESULTS WGCNA identified modules significantly correlated with ferroptosis, yielding 321 genes associated with OSCC prognosis. Univariate Cox analysis identified 13 genes affecting OSCC prognosis. Lasso regression and multivariate Cox regression narrowed down the gene set to a final set of 7 genes, which were used to construct the risk model. The model stratified patients into high- and low-risk groups with significant survival differences (P < 0.001). The model's predictive accuracy was validated, with AUC values ranging from 0.565 to 0.733 for 1-, 3-, and 5-year survival predictions. Immune-related analysis revealed that low-risk patients exhibited higher immune cell infiltration and were more likely to benefit from immunotherapy. CONCLUSION Our study presents a novel prognostic model for OSCC patients based on ferroptosis-related genes, which not only predicts survival but also identifies potential therapeutic targets. The model's predictive accuracy and clinical relevance were validated, offering a new strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ke Liu
- Department of Stomatology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jiannan Yu
- Department of Pediatric Dental Prevention, The Afiliated Stomatological Hospial of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanxi Huang
- The Ninth Outpatient Department, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongyan Gao
- Department of Health Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Xu M, Trung TS, Zhu Z, Li S, Gong S, Cheng N, Zhou P, Wang S. ESR1-dependent suppression of LCN2 transcription reverses autophagy-linked ferroptosis and enhances sorafenib sensitivity in hepatocellular carcinoma. J Physiol Biochem 2025:10.1007/s13105-025-01073-y. [PMID: 40126852 DOI: 10.1007/s13105-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Sorafenib resistance is a significant hurdle in the treatment landscape of hepatocellular carcinoma (HCC). Lipocalin 2 (LCN2), a secretory glycoprotein that transports lipophilic molecules across cell membranes, is thought to affect the s therapeutic efficacy of sorafenib. Despite its importance, the detailed regulatory pathways involving LCN2 are still being deciphered. We probed the correlation between LCN2 expression and sorafenib resistance in HCC cells. Through the modulation of LCN2 levels, we investigated its role in cell proliferation, apoptosis, and its regulatory effects on autophagy-driven ferroptosis. With the aid of hTFtarget and JASPAR databases, ESR1 was pinpointed as a transcriptional inhibitor of LCN2. The impact of the ESR1-LCN2 axis on sorafenib resistance in HCC was then examined in vitro and validated in a xenograft tumor mouse model. In HCC cells, elevated LCN2 levels were found to be associated with resistance to sorafenib. Depletion of LCN2 resulted in attenuated HCC cell growth and elevated rates of apoptosis and ferroptosis. Overexpression of LCN2 had the opposite effect, promoting cell proliferation and suppressing cell death pathways, a response that could be overridden by autophagy agonists. ESR1 suppressed LCN2 transcription, which in turn activated autophagy-mediated ferroptosis, mitigating sorafenib tolerance in HCC and enhancing the therapeutic index. ESR1 targets LCN2 transcription to initiate autophagy-driven ferroptosis, thereby reducing sorafenib resistance in HCC cells.
Collapse
Affiliation(s)
- Mingfang Xu
- Department of Otolaryngology Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Tran Sy Trung
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Zhiyong Zhu
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shijia Li
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shicheng Gong
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Nuo Cheng
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Peng Zhou
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26 Chuyuan Avenue, Jingzhou District, Jingzhou, 434020, China.
| |
Collapse
|
48
|
Yao S, Quan Y. Research progress of ferroptosis pathway and its related molecular ubiquitination modification in liver cancer. Front Oncol 2025; 15:1502673. [PMID: 40190567 PMCID: PMC11968660 DOI: 10.3389/fonc.2025.1502673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
As a new type of programmed cell death, ferroptosis is characterized by iron metabolism disorder and reactive oxygen species (ROS) accumulation, and is involved in regulating the occurrence and development of cancer cells. Especially in the field of liver cancer treatment, ferroptosis shows great potential because it can induce tumor cell death. Ubiquitination is a process of protein post-translational modification, which can affect the stability of proteins and regulate the progress of ferroptosis. This article reviews the research progress of ubiquitination modification of molecules related to ferroptosis pathway in the regulation of liver cancer, providing a new strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Silin Yao
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First People’s Hospital of Zhaoqing, Guangdong Medical University, Zhaoqing, Guangdong, China
| |
Collapse
|
49
|
Li J, Jia YC, Zhang H, Wang Z, Ding Y, Cao F, Wang G, Li F. Nrf2 ameliorates defective autophagic processes and thereby inhibits ferroptosis in acute pancreatitis by suppressing Beclin1-Slc7a11 complex formation. Free Radic Biol Med 2025; 230:294-308. [PMID: 39947493 DOI: 10.1016/j.freeradbiomed.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
Ferroptosis is a mode of programmed cell death that plays an important role in an increasing number of diseases. Recently, ferroptosis was found to be involved in the pathology of acute pancreatitis (AP). We determined that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the ferroptosis process in AP. By inhibiting Nrf2 expression, the death of acinar cells in AP can be increased. Therefore, to help treat AP to a certain extent, we analyzed the effects of astaxanthin and found that it can activate Nrf2 and reduce the pathological process of AP. The activation of Nrf2 improves defective autophagy in AP and inhibits ferroptosis in acinar cells. Specifically, Nrf2 can promote the expression of Gpx4 and ferritin, and can inhibit the formation of Beclin-Slc7a11 complex by improving autophagy, thereby increasing the membrane expression of Slc7a11. Slc7a11/Gpx4 is an important anti-ferroptosis pathway; Slc7a11 can promote the synthesis of glutathione, while Gpx4 can utilize glutathione to exert antioxidative effects. Thus, we demonstrated that Nrf2 activation not only ameliorated defective autophagy at the time of AP but also promoted membrane expression of Slc7a11 to inhibit ferroptosis in acinar cells, thereby alleviating AP.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Yu-Chen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| | - Gang Wang
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Chen R, Wen L, Guo F, He J, Wong KH, Chen M. Glutathione-scavenging natural-derived ferroptotic nano-amplifiers strengthen tumor therapy through aggravating iron overload and lipid peroxidation. J Control Release 2025; 379:866-878. [PMID: 39842724 DOI: 10.1016/j.jconrel.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system. Briefly, a natural-derived amphiphilic polymer composing of chondroitin sulfate (CS), arachidonic acid (AA) and a redox-sensitive linker, cystamine (CYS) is constructed to self-assemble as a GSH-responsive nanodrug delivery system for loading bioactive ingredient Polyphyllin I (PPI) and ferric ion (Fe3+). This nanodrug (CSAA/Fe@PPI) can scavenge the aberrant intracellular GSH via CYS linker, accompanied with the degradation of CSAA/Fe@PPI and the release of PPI, AA and Fe3+. On one hand, the intracellular labile iron level is significantly elevated due to the exogenous delivery of Fe3+ and PPI-induced ferritinophagy. On the other hand, ROS burst and the supplement of AA initiate and propagate the lipid peroxidation chain reaction. Meanwhile, the depletion of intracellular GSH suppresses the GPX4 activity, further strengthening the lethal accumulation of LPO. Consequently, the ferroptotic antitumor efficacy is remarkably improved by systemically aggravating iron overload and lipid peroxidation. Therefore, our study presents an effective strategy to improve ferroptosis-based anti-cancer treatment through multiple intervention routes.
Collapse
Affiliation(s)
- Ruie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Liewei Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai 519088, China.
| | - Feng Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai 519088, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|