1
|
Knouse KA. Breaking the rules of cell biology: Lessons from the liver's exceptional regenerative capacity. Mol Biol Cell 2025; 36:pe5. [PMID: 40408597 DOI: 10.1091/mbc.e24-06-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025] Open
Abstract
The inability of most human organs to regenerate themselves after injury underlies the lifelong morbidity of numerous diseases. As we continue to seek solutions for these intractable conditions, the liver emerges as an inspiring and informative exception. The liver is the only solid organ that can completely regenerate itself. At the core of this extraordinary feat of organ physiology lie two equally exceptional features of cell biology. First, liver regeneration is driven not by stem cells, but rather by the proliferation of the liver's differentiated cells. Second, many of these liver cells are polyploid, yet still able to execute proper cell division. Understanding how liver cells maintain proliferative capacity as differentiated cells and how they execute mitosis faithfully in a polyploid state could offer powerful insights toward engineering regenerative capacity in other organs. The liver thus offers not only proof that mammalian organ regeneration is possible, but also a blueprint for achieving this long-standing goal of regenerative medicine.
Collapse
Affiliation(s)
- Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2025; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Urano T, Yokota E, Iwai M, Yukawa T, Naomoto Y, Takigawa N, Fujiwara H, Akiyama T, Haisa M, Fukazawa T, Yamatsuji T. Establishment and characterization of novel patient-derived esophageal tumoroids with long-term cultivability. Hum Cell 2025; 38:72. [PMID: 40108093 DOI: 10.1007/s13577-025-01206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Esophageal cancer is an aggressive and fatal disease classified into two distinct histologic types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). To develop novel therapeutic strategies, it is important to establish preclinical models of esophageal carcinoma. In this study, we successfully established three types of human esophageal cancer organoids (tumoroids) from surgical specimens for long-term culture. Two of the tumoroids were derived from ESCC and one from EAC, which arose from Barrett's esophagus. Whole-exome sequencing revealed that the tumoroids inherited genetic mutations from the parental tumors and patient-derived tumor xenografts closely mimicked the pathology of the original esophageal cancers. In addition to whole-exome analysis, copy number and immunohistochemical analyses demonstrated HER2 expression and amplification as well as HER3 expression and mutation in esophageal tumoroids derived from adenocarcinoma in Barrett's esophagus. HER2-targeting antibody-drug conjugates (ADCs), trastuzumab deruxtecan (T-DXd), and patritumab deruxtecan (P-DXd) effectively suppressed the viability of the tumoroids. Therefore, the establishment of esophageal tumoroids with long-term cultivability makes it possible to obtain reproducible basic data, including drug sensitivity studies, which are important for the development of personalized therapies and treatment strategies.
Collapse
Affiliation(s)
- Takashi Urano
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, 700-8505, Japan
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Hideyo Fujiwara
- Department of Pathology, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Takashi Akiyama
- Department of Pathology, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Minoru Haisa
- Kawasaki Medical School General Medical Center, Okayama, 700-8505, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan.
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, 700-8505, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| |
Collapse
|
4
|
Zheng X, Sun Z, Wang S, Liu Q, Zhu B, Ren Z, Fan D, Zhang C, Fu X, Jin Y, Luo J, Wang J, Ren B. SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop. Mol Cell Biochem 2025:10.1007/s11010-025-05242-x. [PMID: 40056339 DOI: 10.1007/s11010-025-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Zedong Sun
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Shi Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Surgery, Wu Han Wu Chang Hospital, Wuhan, 430063, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Biqing Zhu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Zhijian Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Dingwei Fan
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Chunping Zhang
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Xinyin Fu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Yan Jin
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| |
Collapse
|
5
|
Blackmer JE, Jezuit EA, Chakraborty A, Montague RA, Peterson NG, Outlaw W, Fox DT. Synaptic vesicle glycoprotein 2 enables viable aneuploidy following centrosome amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639165. [PMID: 40027712 PMCID: PMC11870451 DOI: 10.1101/2025.02.19.639165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Amplified centrosome number causes genomic instability, most severely through division into more than two aneuploid daughter cells (multipolar mitosis). Several mechanisms that suppress multipolar division have been uncovered, yet mechanisms that favor viable multipolar division are poorly understood. To uncover factors that promote viability in cells with frequent centrosome amplification and multipolar division, we conducted an unbiased Drosophila genetic screen. In 642 mutagenized lines, we exploited the ability of intestinal papillar cells to form and function despite multipolar divisions. Our top hit is an unnamed gene, CG3168 . We name this gene synaptic vesicle glycoprotein 2 , reflecting homology to human Synaptic Vesicle Glycoprotein 2 (SV2) proteins. GFP-tagged SV2 localizes to the plasma membrane. In cells with amplified centrosomes, SV2 positions membrane-adjacent centrosomes, which prevents severe errors in chromosome alignment and segregation. Our results uncover membrane-based multipolar division regulation and reveal a novel vulnerability in cells with common cancer properties.
Collapse
|
6
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
7
|
Caruso JA, Chen-Tanyolac C, Tlsty TD. A hybrid epithelial-mesenchymal transition program enables basal epithelial cells to bypass stress-induced stasis and contributes to a metaplastic breast cancer progenitor state. Breast Cancer Res 2024; 26:184. [PMID: 39696672 DOI: 10.1186/s13058-024-01920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare and aggressive subtype marked by the differentiation of neoplastic epithelium into squamous and mesenchymal elements. METHODS Using a serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. RESULTS We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibition of the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, characterized by the stabilization of hybrid EMT states associated with greater proliferative capacity, rather than progressing to a complete mesenchymal state characterized by irreversible growth arrest. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the stability of the hybrid EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and complete EMT, variants exhibited a higher oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and also enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. CONCLUSIONS This study reveals how an epigenetic program governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring hybrid EMT states with enhanced tumorigenic potential.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Chira Chen-Tanyolac
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Williams MJ, Oliphant MUJ, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Norton K, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon DA, Shah SP, Brugge JS, Aparicio S. Luminal breast epithelial cells of BRCA1 or BRCA2 mutation carriers and noncarriers harbor common breast cancer copy number alterations. Nat Genet 2024; 56:2753-2762. [PMID: 39567747 PMCID: PMC11631757 DOI: 10.1038/s41588-024-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The prevalence and nature of somatic copy number alterations (CNAs) in breast epithelium and their role in tumor initiation and evolution remain poorly understood. Using single-cell DNA sequencing (49,238 cells) of epithelium from BRCA1 and BRCA2 carriers or wild-type individuals, we identified recurrent CNAs (for example, 1q-gain and 7q, 10q, 16q and 22q-loss) that are present in a rare population of cells across almost all samples (n = 28). In BRCA1/BRCA2 carriers, these occur before loss of heterozygosity (LOH) of wild-type alleles. These CNAs, common in malignant tumors, are enriched in luminal cells but absent in basal myoepithelial cells. Allele-specific analysis of prevalent CNAs reveals that they arose by independent mutational events, consistent with convergent evolution. BRCA1/BRCA2 carriers contained a small percentage of cells with extreme aneuploidy, featuring loss of TP53, BRCA1/BRCA2 LOH and multiple breast cancer-associated CNAs. Our findings suggest that CNAs arising in normal luminal breast epithelium are precursors to clonally expanded tumor genomes.
Collapse
Affiliation(s)
- Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael U J Oliphant
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Vinci Au
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Liu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Baril
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Van Vliet
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacky Ch Yiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren O'Connor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Walter L Goh
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - Alicia Pollaci
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diljot Grewal
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Klarisa Norton
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA
| | - McKenna Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Vikas Prabhakar
- Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Shailesh Agarwal
- Department of Surgery, Brigham and Women's Hospital (BWH), Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Deborah A Dillon
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Caruso JA, Tlsty TD. An adaptive Epithelial-Mesenchymal Transition Program Enables Basal Epithelial Cells to Bypass Stress-Induced Stasis and Contributes to Metaplastic Breast Cancer Progenitor State. RESEARCH SQUARE 2024:rs.3.rs-4980285. [PMID: 39399685 PMCID: PMC11469408 DOI: 10.21203/rs.3.rs-4980285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare subtype characterized by squamous and mesenchymal differentiation. Methods Using the conventional serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. Results We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibiting the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, which diverted cells away from a complete mesenchymal state characterized by irreversible growth arrest, and instead limited variants to epithelial and intermediate EMT states associated with greater proliferative capacity and stemness. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the constrained EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and EMT activation, variants exhibited increased oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. Conclusions This study reveals how adaptive EMT reprogramming governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring intermediate states with enhanced tumorigenic potential.
Collapse
|
10
|
Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D, Mercat B, Rodriguez-Garcia R, Alayan Z, Abdouni A, de Neidhardt G, Costes V, Anjubault M, Bouvrais H, Héligon C, Pécréaux J. Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. PLoS Comput Biol 2024; 20:e1012330. [PMID: 39236069 PMCID: PMC11376571 DOI: 10.1371/journal.pcbi.1012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.
Collapse
Affiliation(s)
- Yann Le Cunff
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Xavier Pinson
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Nina Soler
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Danielle Fairbrass
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Benjamin Mercat
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Zahraa Alayan
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ahmed Abdouni
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Gary de Neidhardt
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Valentin Costes
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Mélodie Anjubault
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Christophe Héligon
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| |
Collapse
|
11
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Jeon S, Jeong P, Kang H, Kim MJ, Yun JH, Lim KS, Song B, Kim S, Cho S, Sim B. NEK2 plays an essential role in porcine embryonic development by maintaining mitotic division and DNA damage response via the Wnt/β-catenin signalling pathway. Cell Prolif 2024; 57:e13626. [PMID: 38426218 PMCID: PMC11294417 DOI: 10.1111/cpr.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
NIMA-related kinase 2 (NEK2) is a serine/threonine protein kinase that regulates mitosis and plays pivotal roles in cell cycle regulation and DNA damage repair. However, its function in porcine embryonic development is unknown. In this study, we used an NEK2-specific inhibitor, JH295 (JH), to investigate the role of NEK2 in embryonic development and the underlying regulatory mechanisms. Inhibition of NEK2 after parthenogenesis activation or in vitro fertilization significantly reduced the rates of cleavage and blastocyst formation, the numbers of trophectoderm and total cells and the cellular survival rate compared with the control condition. NEK2 inhibition delayed cell cycle progression at all stages from interphase to cytokinesis during the first mitotic division; it caused abnormal nuclear morphology in two- and four-cell stage embryos. Additionally, NEK2 inhibition significantly increased DNA damage and apoptosis, and it altered the expression levels of DNA damage repair- and apoptosis-related genes. Intriguingly, NEK2 inhibition downregulated the expression of β-catenin and its downstream target genes. To validate the relationship between Wnt/β-catenin signalling and NEK2 during porcine embryonic development, we cultured porcine embryos in JH-treated medium with or without CHIR99021, a Wnt activator. CHIR99021 co-treatment strongly restored the developmental parameters reduced by NEK2 inhibition to control levels. Our findings suggest that NEK2 plays an essential role in porcine embryonic development by regulating DNA damage repair and normal mitotic division via the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Se‐Been Jeon
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Pil‐Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Hyo‐Gu Kang
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life ScienceChungnam National UniversityDaejeonRepublic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Ji Hyeon Yun
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal BioScience, School of Animal Life ConvergenceHankyong National UniversityAnsungRepublic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Bong‐Seok Song
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Functional GenomicsUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Seong‐Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Bo‐Woong Sim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| |
Collapse
|
13
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
14
|
Iwai M, Yokota E, Ishida Y, Yukawa T, Naomoto Y, Monobe Y, Haisa M, Takigawa N, Fukazawa T, Yamatsuji T. Establishment and characterization of novel high mucus-producing lung tumoroids derived from a patient with pulmonary solid adenocarcinoma. Hum Cell 2024; 37:1194-1204. [PMID: 38632190 PMCID: PMC11194211 DOI: 10.1007/s13577-024-01060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Among mucus-producing lung cancers, invasive mucinous adenocarcinoma of the lung is a rare and unique subtype of pulmonary adenocarcinoma. Notably, mucus production may also be observed in the five subtypes of adenocarcinoma grouped under the higher-level diagnosis of Invasive Non-mucinous Adenocarcinomas (NMA). Overlapping pathologic features in mucus-producing tumors can cause diagnostic confusion with significant clinical consequences. In this study, we established lung tumoroids, PDT-LUAD#99, from a patient with NMA and mucus production. The tumoroids were derived from the malignant pleural effusion of a patient with lung cancer and have been successfully developed for long-term culture (> 11 months). Karyotyping by fluorescence in situ hybridization using an alpha-satellite probe showed that tumoroids harbored aneuploid karyotypes. Subcutaneous inoculation of PDT-LUAD#99 lung tumoroids into immunodeficient mice resulted in tumor formation, suggesting that the tumoroids were derived from cancer. Xenografts from PDT-LUAD#99 lung tumoroids reproduced the solid adenocarcinoma with mucin production that was observed in the patient's metastatic lymph nodes. Immunoblot analysis showed MUC5AC secretion into the culture supernatant of PDT-LUAD#99 lung tumoroids, which in contradistinction was barely detected in the culture supernatants of NCI-A549 and NCI-H2122 pulmonary adenocarcinoma cells known for their mucin-producing abilities. Here, we established a novel high-mucus-producing lung tumoroids from a solid adenocarcinoma. This preclinical model may be useful for elucidating the pathogenesis of mucus-producing lung cancer.
Collapse
Affiliation(s)
- Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yuta Ishida
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | | | - Minoru Haisa
- Kawasaki Medical School General Medical Center, Okayama, Japan
- Department of Medical Care Work, Kawasaki College of Health Professions, Okayama, Japan
- Kawasaki Geriatric Medical Center, Okayama, Japan
| | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan.
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
15
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
16
|
Haake SM, Rios BL, Pozzi A, Zent R. Integrating integrins with the hallmarks of cancer. Matrix Biol 2024; 130:20-35. [PMID: 38677444 DOI: 10.1016/j.matbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Epithelial cells adhere to a specialized extracellular matrix called the basement membrane which allows them to polarize and form epithelial tissues. The extracellular matrix provides essential physical scaffolding and biochemical and biophysical cues required for tissue morphogenesis, differentiation, function, and homeostasis. Epithelial cell adhesion to the extracellular matrix (i.e., basement membrane) plays a critical role in organizing epithelial tissues, separating the epithelial cells from the stroma. Epithelial cell detachment from the basement membrane classically results in death, though detachment or invasion through the basement membrane represents a critical step in carcinogenesis. Epithelial cells bind to the extracellular matrix via specialized matrix receptors, including integrins. Integrins are transmembrane receptors that form a mechanical linkage between the extracellular matrix and the intracellular cytoskeleton and are required for anchorage-dependent cellular functions such as proliferation, migration, and invasion. The role of integrins in the development, growth, and dissemination of multiple types of carcinomas has been investigated by numerous methodologies, which has led to great complexity. To organize this vast array of information, we have utilized the "Hallmarks of Cancer" from Hanahan and Weinberg as a convenient framework to discuss the role of integrins in the pathogenesis of cancers. This review explores this biology and how its complexity has impacted the development of integrin-targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- Scott M Haake
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA.
| | - Brenda L Rios
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Ambra Pozzi
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roy Zent
- Department of Veterans Affairs, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Cancer Biology Program, Vanderbilt University, Nashville, TN, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Sato N, Rosa VS, Makhlouf A, Kretzmer H, Sampath Kumar A, Grosswendt S, Mattei AL, Courbot O, Wolf S, Boulanger J, Langevin F, Wiacek M, Karpinski D, Elosegui-Artola A, Meissner A, Zernicka-Goetz M, Shahbazi MN. Basal delamination during mouse gastrulation primes pluripotent cells for differentiation. Dev Cell 2024; 59:1252-1268.e13. [PMID: 38579720 PMCID: PMC7616279 DOI: 10.1016/j.devcel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.
Collapse
Affiliation(s)
- Nanami Sato
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helene Kretzmer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Stefanie Grosswendt
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin, Berlin, Germany
| | | | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Michal Wiacek
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | | | - Magdalena Zernicka-Goetz
- University of Cambridge, Cambridge CB2 3EL, UK; California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
18
|
Williams MJ, Oliphant MU, Au V, Liu C, Baril C, O'Flanagan C, Lai D, Beatty S, Van Vliet M, Yiu JC, O'Connor L, Goh WL, Pollaci A, Weiner AC, Grewal D, McPherson A, Moore M, Prabhakar V, Agarwal S, Garber JE, Dillon D, Shah SP, Brugge J, Aparicio S. Luminal breast epithelial cells from wildtype and BRCA mutation carriers harbor copy number alterations commonly associated with breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591587. [PMID: 38746396 PMCID: PMC11092623 DOI: 10.1101/2024.05.01.591587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
Collapse
|
19
|
Yokota E, Iwai M, Yukawa T, Naomoto Y, Haisa M, Monobe Y, Takigawa N, Fukazawa T, Yamatsuji T. Patient-derived tumoroid models of pulmonary large-cell neuroendocrine carcinoma: a promising tool for personalized medicine and developing novel therapeutic strategies. Cancer Lett 2024; 588:216816. [PMID: 38499265 DOI: 10.1016/j.canlet.2024.216816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Pulmonary large-cell neuroendocrine carcinoma (LCNEC), a disease with poor prognosis, is classified as pulmonary high-grade neuroendocrine carcinoma, along with small-cell lung cancer. However, given its infrequent occurrence, only a limited number of preclinical models have been established. Here, we established three LCNEC tumoroids for long-term culture. Whole-exome sequencing revealed that these tumoroids inherited genetic mutations from their parental tumors; two were classified as small-cell carcinoma (S-LCNEC) and one as non-small cell carcinoma (N-LCNEC). Xenografts from these tumoroids in immunodeficient mice mimicked the pathology of the parent LCNEC, and one reproduced the mixed-tissue types of combined LCNEC with a component of adenocarcinoma. Drug sensitivity tests using these LCNEC tumoroids enabled the evaluation of therapeutic agent efficacy. Based on translational research, we found that a CDK4/6 inhibitor might be effective for N-LCNEC and that Aurora A kinase inhibitors might be suitable for S-LCNEC or LCNEC with MYC amplification. These results highlight the value of preclinical tumoroid models in understanding the pathogenesis of rare cancers and developing treatments. LCNEC showed a high success rate in tumoroid establishment, indicating its potential application in personalized medicine.
Collapse
Affiliation(s)
- Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Minoru Haisa
- Kawasaki Medical School General Medical Center, Okayama, Japan; Department of Medical Care Work, Kawasaki College of Health Professions, Okayama, Japan; Kawasaki Geriatric Medical Center, Okayama, Japan
| | | | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan; Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan; General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
20
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
21
|
Hosawi MM, Cheng J, Fankhaenel M, Przewloka MR, Elias S. Interplay between the plasma membrane and cell-cell adhesion maintains epithelial identity for correct polarised cell divisions. J Cell Sci 2024; 137:jcs261701. [PMID: 37888135 PMCID: PMC10729819 DOI: 10.1242/jcs.261701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Polarised epithelial cell divisions represent a fundamental mechanism for tissue maintenance and morphogenesis. Morphological and mechanical changes in the plasma membrane influence the organisation and crosstalk of microtubules and actin at the cell cortex, thereby regulating the mitotic spindle machinery and chromosome segregation. Yet, the precise mechanisms linking plasma membrane remodelling to cell polarity and cortical cytoskeleton dynamics to ensure accurate execution of mitosis in mammalian epithelial cells remain poorly understood. Here, we manipulated the density of mammary epithelial cells in culture, which led to several mitotic defects. Perturbation of cell-cell adhesion formation impairs the dynamics of the plasma membrane, affecting the shape and size of mitotic cells and resulting in defects in mitotic progression and the generation of daughter cells with aberrant architecture. In these conditions, F- actin-astral microtubule crosstalk is impaired, leading to mitotic spindle misassembly and misorientation, which in turn contributes to chromosome mis-segregation. Mechanistically, we identify S100 Ca2+-binding protein A11 (S100A11) as a key membrane-associated regulator that forms a complex with E-cadherin (CDH1) and the leucine-glycine-asparagine repeat protein LGN (also known as GPSM2) to coordinate plasma membrane remodelling with E-cadherin-mediated cell adhesion and LGN-dependent mitotic spindle machinery. Thus, plasma membrane-mediated maintenance of mammalian epithelial cell identity is crucial for correct execution of polarised cell divisions, genome maintenance and safeguarding tissue integrity.
Collapse
Affiliation(s)
- Manal M. Hosawi
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jiaoqi Cheng
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Marcin R. Przewloka
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
22
|
Lim MH, Shin S, Park K, Park J, Kim SW, Basurrah MA, Lee S, Kim DH. Deep Learning Model for Predicting Airway Organoid Differentiation. Tissue Eng Regen Med 2023; 20:1109-1117. [PMID: 37594633 PMCID: PMC10645934 DOI: 10.1007/s13770-023-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Organoids are self-organized three-dimensional culture systems and have the advantages of both in vitro and in vivo experiments. However, each organoid has a different degree of self-organization, and methods such as immunofluorescence staining are required for confirmation. Therefore, we established a system to select organoids with high tissue-specific similarity using deep learning without relying on staining by acquiring bright-field images in a non-destructive manner. METHODS We identified four biomarkers in RNA extracted from airway organoids. We also predicted biomarker expression by image-based analysis of organoids by convolution neural network, a deep learning method. RESULTS We predicted airway organoid-specific marker expression from bright-field images of organoids. Organoid differentiation was verified by immunofluorescence staining of the same organoid after predicting biomarker expression in bright-field images. CONCLUSION Our study demonstrates the potential of imaging and deep learning to distinguish organoids with high human tissue similarity in disease research and drug screening.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seungmin Shin
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Keonhyeok Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaejung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | | | - Seungchul Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 223, 5th Engineering Building 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
23
|
Marques JF, Kops GJPL. Permission to pass: on the role of p53 as a gatekeeper for aneuploidy. Chromosome Res 2023; 31:31. [PMID: 37864038 PMCID: PMC10589155 DOI: 10.1007/s10577-023-09741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Aneuploidy-the karyotype state in which the number of chromosomes deviates from a multiple of the haploid chromosome set-is common in cancer, where it is thought to facilitate tumor initiation and progression. However, it is poorly tolerated in healthy cells: during development and tissue homeostasis, aneuploid cells are efficiently cleared from the population. It is still largely unknown how cancer cells become, and adapt to being, aneuploid. P53, the gatekeeper of the genome, has been proposed to guard against aneuploidy. Aneuploidy in cancer genomes strongly correlates with mutations in TP53, and p53 is thought to prevent the propagation of aneuploid cells. Whether p53 also participates in preventing the mistakes in cell division that lead to aneuploidy is still under debate. In this review, we summarize the current understanding of the role of p53 in protecting cells from aneuploidy, and we explore the consequences of functional p53 loss for the propagation of aneuploidy in cancer.
Collapse
Affiliation(s)
- Joana F Marques
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands
| | - Geert J P L Kops
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands.
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands.
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Li X, Bloomfield M, Bridgeland A, Cimini D, Chen J. A fine balance among key biophysical factors is required for recovery of bipolar mitotic spindle from monopolar and multipolar abnormalities. Mol Biol Cell 2023; 34:ar90. [PMID: 37342878 PMCID: PMC10398891 DOI: 10.1091/mbc.e22-10-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
During mitosis, equal partitioning of chromosomes into two daughter cells requires assembly of a bipolar mitotic spindle. Because the spindle poles are each organized by a centrosome in animal cells, centrosome defects can lead to monopolar or multipolar spindles. However, the cell can effectively recover the bipolar spindle by separating the centrosomes in monopolar spindles and clustering them in multipolar spindles. To interrogate how a cell can separate and cluster centrosomes as needed to form a bipolar spindle, we developed a biophysical model, based on experimental data, which uses effective potential energies to describe key mechanical forces driving centrosome movements during spindle assembly. Our model identified general biophysical factors crucial for robust bipolarization of spindles that start as monopolar or multipolar. These factors include appropriate force fluctuation between centrosomes, balance between repulsive and attractive forces between centrosomes, exclusion of the centrosomes from the cell center, proper cell size and geometry, and a limited centrosome number. Consistently, we found experimentally that bipolar centrosome clustering is promoted as mitotic cell aspect ratio and volume decrease in tetraploid cancer cells. Our model provides mechanistic explanations for many more experimental phenomena and a useful theoretical framework for future studies of spindle assembly.
Collapse
Affiliation(s)
- Xiaochu Li
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- BIOTRANS Graduate Program, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Mathew Bloomfield
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Alexandra Bridgeland
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Systems Biology Program, College of Science, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Center for Soft Matter and Biological Physics, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
25
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
27
|
Hori K, Hori K, Kosasa T, Walker B, Ohta A, Ahn HJ, Huang TTF. Comparison of euploid blastocyst expansion with subgroups of single chromosome, multiple chromosome, and segmental aneuploids using an AI platform from donor egg embryos. J Assist Reprod Genet 2023; 40:1407-1416. [PMID: 37071320 PMCID: PMC10310614 DOI: 10.1007/s10815-023-02797-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
PURPOSE This retrospective observational study compares how different classes of blastocyst genotypes from egg donor cycles differentially blastulate and expand using a standard assay. METHODS Quantitative measurements of expansion utilized a customized neural network that segments all sequential time-lapse images during the first 10 h of expansion. RESULTS Analyses were performed using two developmental time perspectives using time-lapse imaging. The first was the time to blastocyst formation (tB), which broadly reflects variations in developmental rate. Euploidy peaked at 100-115 h from fertilization. In contrast, aneuploidy peaks flanked this interval bi-modally. These distributions limit ploidy discrimination based upon traditional standard grading features when assessed in real time. In contrast, from the second perspective of progressive blastocyst expansion that is normalized to each individual blastocyst's tB time, euploidy was significantly increased at expansion values > 20,000µ2 across all tB intervals studied. A Cartesian coordinate plot graphically summarizes information useful to rank order blastocysts within cohorts for transfer. Defined aneuploidy subgroups, distinguished by the number and complexity of chromosomes involved, also showed distributive differences from both euploids and from each other. A small subset of clinically significant trisomies did not show discriminating features separating them from other euploids. CONCLUSION A standard assay of blastocyst expansion normalized to each individual blastocyst's time of blastocyst formation more usefully discriminates euploidy from aneuploidy than real-time expansion comparisons using absolute developmental time from fertilization.
Collapse
Affiliation(s)
- Kristen Hori
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
| | - Kaitlin Hori
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
| | - Thomas Kosasa
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA
| | - Brienne Walker
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA
| | - Aaron Ohta
- Department of Electrical Engineering, University of Hawaii, Honolulu, HI, USA
| | - Hyeong J Ahn
- Department of Quantitative Health Science, University of Hawaii John A Burns School of Medicine, Honolulu, HI, USA
| | - Thomas T F Huang
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA.
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA.
| |
Collapse
|
28
|
Hayes BH, Zhu PK, Wang M, Pfeifer CR, Xia Y, Phan S, Andrechak JC, Du J, Tobin MP, Anlas A, Dooling LJ, Vashisth M, Irianto J, Lampson MA, Discher DE. Confinement plus myosin-II suppression maximizes heritable loss of chromosomes, as revealed by live-cell ChReporters. J Cell Sci 2023; 136:jcs260753. [PMID: 37288769 PMCID: PMC10309578 DOI: 10.1242/jcs.260753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
The mechanical environment of a cell can have many effects, but whether it impacts the DNA sequence of a cell has remained unexamined. To investigate this, we developed a live-cell method to measure changes in chromosome numbers. We edited constitutive genes with GFP or RFP tags on single alleles and discovered that cells that lose Chromosome reporters (ChReporters) become non-fluorescent. We applied our new tools to confined mitosis and to inhibition of the putative tumor suppressor myosin-II. We quantified compression of mitotic chromatin in vivo and demonstrated that similar compression in vitro resulted in cell death, but also rare and heritable ChReptorter loss. Myosin-II suppression rescued lethal multipolar divisions and maximized ChReporter loss during three-dimensional (3D) compression and two-dimensional (2D) lateral confinement, but not in standard 2D culture. ChReporter loss was associated with chromosome mis-segregation, rather than just the number of divisions, and loss in vitro and in mice was selected against in subsequent 2D cultures. Inhibition of the spindle assembly checkpoint (SAC) caused ChReporter loss in 2D culture, as expected, but not during 3D compression, suggesting a SAC perturbation. Thus, ChReporters enable diverse studies of viable genetic changes, and show that confinement and myosin-II affect DNA sequence and mechano-evolution.
Collapse
Affiliation(s)
- Brandon H. Hayes
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Kuangzheng Zhu
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mai Wang
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R. Pfeifer
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuntao Xia
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Phan
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason C. Andrechak
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhong Du
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P. Tobin
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alisya Anlas
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence J. Dooling
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manasvita Vashisth
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome Irianto
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Mol. Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
D'Imprima E, Garcia Montero M, Gawrzak S, Ronchi P, Zagoriy I, Schwab Y, Jechlinger M, Mahamid J. Light and electron microscopy continuum-resolution imaging of 3D cell cultures. Dev Cell 2023; 58:616-632.e6. [PMID: 36990090 PMCID: PMC10114294 DOI: 10.1016/j.devcel.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Collapse
Affiliation(s)
- Edoardo D'Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marta Garcia Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sylwia Gawrzak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
30
|
Cohen PJR, Luquet E, Pletenka J, Leonard A, Warter E, Gurchenkov B, Carrere J, Rieu C, Hardouin J, Moncaubeig F, Lanero M, Quelennec E, Wurtz H, Jamet E, Demarco M, Banal C, Van Liedekerke P, Nassoy P, Feyeux M, Lefort N, Alessandri K. Engineering 3D micro-compartments for highly efficient and scale-independent expansion of human pluripotent stem cells in bioreactors. Biomaterials 2023; 295:122033. [PMID: 36764194 DOI: 10.1016/j.biomaterials.2023.122033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome the scale-up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need for large-scale culture in regenerative medicine. Despite constant improvements, current protocols that use microcarriers or generate cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies significantly improve viability and expansion rates while maintaining pluripotency compared to standard hPSC culture platforms such as 2D cultures, microcarriers, and aggregates. By further tuning capsule size and culture conditions, we scale up this method to industrial-scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 277-fold in 6.5 days. In brief, our findings indicate that our 3D culture system offers a suitable strategy both for basic stem cell biology experiments and for clinical applications.
Collapse
Affiliation(s)
- Philippe J R Cohen
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France; Treefrog Therapeutics, F-33600, Pessac, France.
| | | | | | | | | | | | | | | | | | | | | | - Eddy Quelennec
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France; Treefrog Therapeutics, F-33600, Pessac, France
| | | | | | | | - Celine Banal
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France
| | - Paul Van Liedekerke
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, F-75012, Paris, France
| | - Pierre Nassoy
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400, Talence, France; Institut D'Optique Graduate School & CNRS UMR 5298, F-33400, Talence, France
| | | | - Nathalie Lefort
- Université Paris Cité, Imagine Institute, IPSC Core Facility, INSERM UMR U1163, F-75015, Paris, France
| | | |
Collapse
|
31
|
Deng C, Ya A, Compton DA, Godek KM. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports 2023; 18:475-488. [PMID: 36638786 PMCID: PMC9968987 DOI: 10.1016/j.stemcr.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
During in vitro propagation, human pluripotent stem cells (hPSCs) frequently become aneuploid with incorrect chromosome numbers due to mitotic chromosome segregation errors. Yet, it is not understood why hPSCs exhibit a low mitotic fidelity. Here, we investigate the mechanisms responsible for mitotic errors in hPSCs and show that the primary cause is lagging chromosomes in anaphase with improper merotelic microtubule attachments. Accordingly, short-term treatment (<24 h) with small molecules that prolong mitotic duration or destabilize chromosome microtubule attachments reduces merotelic errors and lagging chromosome rates, although hPSCs adapt and lagging chromosome rates rebound upon long-term (>24 h) microtubule destabilization. Strikingly, we also demonstrate that mitotic error rates correlate with developmental potential decreasing or increasing upon loss or gain of pluripotency, respectively. Thus, a low mitotic fidelity is an inherent and conserved phenotype of hPSCs. Moreover, chromosome segregation fidelity depends on developmental state in normal human cells.
Collapse
Affiliation(s)
- Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
32
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
33
|
Keys HR, Knouse KA. Genome-scale CRISPR screening in a single mouse liver. CELL GENOMICS 2022; 2:100217. [PMID: 36643909 PMCID: PMC9835819 DOI: 10.1016/j.xgen.2022.100217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
A complete understanding of the genetic determinants underlying mammalian physiology and disease is limited by the capacity for high-throughput genetic dissection in the living organism. Genome-wide CRISPR screening is a powerful method for uncovering the genetic regulation of cellular processes, but the need to stably deliver single guide RNAs to millions of cells has largely restricted its implementation to ex vivo systems. There thus remains a need for accessible high-throughput functional genomics in vivo. Here, we establish genome-wide screening in the liver of a single mouse and use this approach to uncover regulation of hepatocyte fitness. We uncover pathways not identified in cell culture screens, underscoring the power of genetic dissection in the organism. The approach we developed is accessible, scalable, and adaptable to diverse phenotypes and applications. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling comprehensive investigation of physiology and disease.
Collapse
Affiliation(s)
- Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kristin A. Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
He J, Cui H, Shi X, Jin Q, Han X, Han T, Peng J, Guo S, Zhang L, Zhao Y, Zhou B, Chen L, Chen L, Arial Zeng Y, Wang H, Jin G, Gao D. Functional hepatobiliary organoids recapitulate liver development and reveal essential drivers of hepatobiliary cell fate determination. LIFE MEDICINE 2022; 1:345-358. [PMID: 39872746 PMCID: PMC11749142 DOI: 10.1093/lifemedi/lnac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 01/30/2025]
Abstract
During liver development, hepatocytes, and cholangiocytes are concurrently differentiated from common liver progenitor cells and are assembled into hepatobiliary architecture to perform proper hepatic function. However, the generation of functional hepatobiliary architecture from hepatocytes in vitro is still challenging, and the exact molecular drivers of hepatobiliary cell lineage determination is largely unknown. In this study, functional hepatobiliary organoids (HBOs) are generated from hepatocytes. These HBOs contain a bile duct network surrounded by mature hepatocytes and stably maintain hepatic characteristics and function in vitro and upon transplantation in vivo. Morphological transition and expression profile of hepatocyte-derived organoids recapitulate the process of liver development. Gene regulation landscape of hepatocyte-derived organoids reveal that Tead4 and Ddit3 promote the cell fate commitment of liver progenitors to functional cholangiocytes and hepatocytes, respectively. Liver cell fate determination is reversed by inhibiting Tead4 or increasing Ddit3 expression both in vitro and upon transplantation in vivo. Collectively, hepatocyte-derived HBOs reveal the essential transcription drivers of liver hepatobiliary cell lineage determination and represent powerful models for liver development and regeneration.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyue Cui
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qiqi Jin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200441, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200441, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Gupta VK, Chaudhuri O. Mechanical regulation of cell-cycle progression and division. Trends Cell Biol 2022; 32:773-785. [PMID: 35491306 PMCID: PMC9378598 DOI: 10.1016/j.tcb.2022.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Cell-cycle progression and division are fundamental biological processes in animal cells, and their biochemical regulation has been extensively studied. An emerging body of work has revealed how mechanical interactions of cells with their microenvironment in tissues, including with the extracellular matrix (ECM) and neighboring cells, also plays a crucial role in regulating cell-cycle progression and division. We review recent work on how cells interpret physical cues and alter their mechanics to promote cell-cycle progression and initiate cell division, and then on how dividing cells generate forces on their surrounding microenvironment to successfully divide. Finally, the article ends by discussing how force generation during division potentially contributes to larger tissue-scale processes involved in development and homeostasis.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA..
| |
Collapse
|
36
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
37
|
Geramoutsou C, Nikou S, Karavias D, Arbi M, Tavlas P, Tzelepi V, Lygerou Z, Maroulis I, Bravou V. Focal adhesion proteins in hepatocellular carcinoma: RSU1 a novel tumour suppressor with prognostic significance. Pathol Res Pract 2022; 235:153950. [DOI: 10.1016/j.prp.2022.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
38
|
Okamoto T, Natsume Y, Doi M, Nosato H, Iwaki T, Yamanaka H, Yamamoto M, Kawachi H, Noda T, Nagayama S, Sakanashi H, Yao R. Integration of human inspection and AI-based morphological typing of PDOs reveals inter-patient heterogeneity of colorectal cancer. Cancer Sci 2022; 113:2693-2703. [PMID: 35585758 PMCID: PMC9357621 DOI: 10.1111/cas.15396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogenous disease, and patients have differences in therapeutic response. However, the mechanisms underlying inter-patient heterogeneity in the response to chemotherapeutic agents remain to be elucidated, and molecular tumor characteristics are required to select patients for specific therapies. Patient-derived organoids (PDOs) established from CRCs recapitulate various biological characteristics of tumor tissues, including cellular heterogeneity and the response to chemotherapy. PDOs established from CRCs exhibit various morphologies, but there are no criteria for defining these morphologies, which hampers the analysis of their biological significance. Here, we developed an artificial intelligence (AI)-based classifier to categorize PDOs based on microscopic images according to their similarity in appearance and classified tubular adenocarcinoma-derived PDOs into six types. Transcriptome analysis identified differential expression of genes related to cell adhesion in some of the morphological types. Genes involved in ribosome biogenesis were also differentially expressed and were most highly expressed in morphological types exhibiting CRC stem cell properties. We identified an RNA polymerase I inhibitor, CX-5641, to be an upstream regulator of these type-specific gene sets. Notably, PDO types with increased expression of genes involved in ribosome biogenesis were resistant to CX-5461 treatment. Taken together, these results uncover the biological significance of the morphology of PDOs and provide novel indicators by which to categorize CRCs. Therefore, the AI-based classifier is a useful tool to support PDO-based cancer research.
Collapse
Affiliation(s)
- Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hirokazu Nosato
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Toshiyuki Iwaki
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mayuko Yamamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Director's office, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Hidenori Sakanashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| |
Collapse
|
39
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
40
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|
42
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
43
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022; 8:174-189. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.
Collapse
|
45
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
46
|
Wu PV, Nusse R. 3D Culture of Primary Patient-Derived Hepatoblastoma Tumoroids. Methods Mol Biol 2022; 2544:259-267. [PMID: 36125725 DOI: 10.1007/978-1-0716-2557-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatoblastoma, the most common primary liver malignancy in children, remains poorly understood due in part to a relative lack of methods to expand tumor cells in culture and a paucity of robust experimental models. Here, we describe a method to obtain primary tumor cells from patients with hepatoblastoma and to propagate the cells in 3D culture as tumor organoids, or "tumoroids". We further detail methods to prepare the tumoroids for whole-mount and cross-sectional imaging as well as to perform lentiviral transduction.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
47
|
Del Valle LG, Montero MG, Jechlinger M. Modification of Single Cells Within Mouse Mammary Gland Derived Acini via Viral Transduction. Methods Mol Biol 2022; 2471:185-194. [PMID: 35175597 DOI: 10.1007/978-1-0716-2193-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growth of organoid cultures from primary donor tissue is able to recapitulate the original tissue morphology, heterogeneity, and characteristics. Close study of these cultures grants a deeper understanding of the chain of events occurring during disease progression and healthy tissue development. While patient derived organoids are particularly suited to assay for novel treatment options, organoids obtained from model organisms are perfectly suited to establish in-depth analysis technology, including longitudinal imaging approaches, as well as proof of principle studies that rely on a steady source of primary tissue. All these approaches profit from advancements in technology to manipulate cells within an organoid.Here we present an optimized protocol to generate, culture, and transduce 3D acini obtained from mouse primary mammary epithelial cells via viral vectors. Applying this method, a few cells within the preserved organoid can be marked, changed, and tracked within an unaltered neighboring environment of non-transduced cells to better understand processes like, for instance, tumor initiation.
Collapse
|
48
|
Wang N, Hao F, Shi Y, Wang J. The Controversial Role of Polyploidy in Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:5335-5344. [PMID: 34866913 PMCID: PMC8636953 DOI: 10.2147/ott.s340435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Polyploidy, a physiological phenomenon in which cells contain more than two sets of homologous chromosomes, commonly exists in plants, fish, and amphibians but is rare in mammals. In humans, polyploid cells are detected commonly in specific organs or tissues including the heart, marrow, and liver. As the largest solid organ in the body, the liver is responsible for a myriad of functions, most of which are closely related to polyploid hepatocytes. It has been confirmed that polyploid hepatocytes are related to liver regeneration, homeostasis, terminal differentiation, and aging. Polyploid hepatocytes accumulate during the aging process as well as in chronically injured livers. The relationship between polyploid hepatocytes and hepatocellular carcinoma, the endpoint of most chronic liver diseases, is not yet fully understood. Recently, accumulated evidence has revealed that polyploid involves in the process of tumorigenesis and development. The study of the correlation and relationship between polyploidy hepatocytes and the development of hepatocellular carcinoma can potentially promote the prevention, early diagnosis, and treatment of hepatocellular carcinoma. In this review, we conclude the potential mechanisms of polyploid hepatocytes formation, focusing on the specific biological significance of polyploid hepatocytes. In addition, we examine recent discoveries that have begun to clarify the relevance between polyploid hepatocytes and hepatocellular carcinoma and discuss recent excellent findings that reveal the role of polyploid hepatocytes as resisters of hepatocellular carcinoma or as promoters of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Piemonte KM, Anstine LJ, Keri RA. Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology 2021; 162:6381103. [PMID: 34606589 PMCID: PMC8557634 DOI: 10.1210/endocr/bqab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: Ruth A. Keri, PhD, Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
50
|
Liang R, Lin YH, Zhu H. Genetic and Cellular Contributions to Liver Regeneration. Cold Spring Harb Perspect Biol 2021; 14:a040832. [PMID: 34750173 PMCID: PMC9438780 DOI: 10.1101/cshperspect.a040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regenerative capabilities of the liver represent a paradigm for understanding tissue repair in solid organs. Regeneration after partial hepatectomy in rodent models is well understood, while regeneration in the context of clinically relevant chronic injuries is less studied. Given the growing incidence of fatty liver disease, cirrhosis, and liver cancer, interest in liver regeneration is increasing. Here, we will review the principles, genetics, and cell biology underlying liver regeneration, as well as new approaches being used to study heterogeneity in liver tissue maintenance and repair.
Collapse
Affiliation(s)
- Roger Liang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|