1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Paul S, Kaya M, Johnsson O, Grauers Wiktorin H, Törnell A, Arabpour M, Hellstrand K, Martner A. Targeting murine metastatic cancers with cholera toxin A1-adjuvanted peptide vaccines. Hum Vaccin Immunother 2025; 21:2455240. [PMID: 39848921 PMCID: PMC11760229 DOI: 10.1080/21645515.2025.2455240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells. Cholera toxin-based adjuvants have shown efficacy in vaccines for infectious diseases, but their role in cancer vaccine therapies remains to be elucidated. Here, we explored the potential of cholera toxin A1 (CTA1)-based adjuvants to boost anti-tumor T cell responses and protect against metastasis. We report that an adjuvant where CTA1 was fused to a dimer from Staphylococcus aureus protein A (DD) enhanced immune responses against the tumor-associated antigens TRP2 and Twist1 in mice, providing protection against B16F1 melanoma and 4T1 breast cancer metastasis, respectively. Both mucosal (intranasal) and systemic (intraperitoneal) vaccine administration provided effective protection against intravenously injected tumor cells, with intranasal administration leading to superior induction of CD4+ T cells at metastatic sites. When comparing antigens admixed with CTA1-DD to those fused with a CTA1-based adjuvant, the fusion construct elicited the strongest immunogenicity. Nevertheless, by administrating a 20-fold higher antigen dose also the admix formulation provided efficient protection against metastasis.
Collapse
MESH Headings
- Animals
- Cholera Toxin/administration & dosage
- Cholera Toxin/immunology
- Cholera Toxin/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Female
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Metastasis/prevention & control
- Adjuvants, Vaccine/administration & dosage
- Melanoma, Experimental
- CD4-Positive T-Lymphocytes/immunology
- Administration, Intranasal
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Disease Models, Animal
- Protein Subunit Vaccines
Collapse
Affiliation(s)
- Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivia Johnsson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Immunology, Genetics and Pathology, Science of Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Törnell
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad Arabpour
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Yang X, Liu S, Liu Y, Wang Y, Cui D, Lan T, Zhu D, Su Z, Hao E, Qin L, Guo H. Total flavonoids of litchi seed inhibit breast cancer metastasis by regulating the PI3K/AKT/mTOR and MAPKs signaling pathways. PHARMACEUTICAL BIOLOGY 2025; 63:229-249. [PMID: 40231974 PMCID: PMC12001861 DOI: 10.1080/13880209.2025.2488135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
CONTEXT Total flavonoids from Litchi chinensis Sonn. (Sapindaceae) seeds (TFLS) effectively attenuate stem cell-like properties in breast cancer cells. However, their pharmacological effects and mechanisms in suppressing breast cancer metastasis remain unclear. OBJECTIVE This study aimed to elucidate the inhibitory effects and underlying mechanisms of TFLS on breast cancer metastasis. MATERIALS AND METHODS The antiproliferative, migratory, and invasive activities of breast cancer cells following TFLS treatment were evaluated using CCK-8, wound-healing, and transwell assays. The epithelial-mesenchymal transition (EMT) biomarkers were evaluated via Western blot analysis. The anti-metastatic effects of TFLS were further validated in vivo using zebrafish and mouse models. Network pharmacology methodology was utilized to predict potential targets and signaling pathways, which were subsequently corroborated by Western blot. Potential active compounds were identified through molecular docking, and the chemical constituents of TFLS were analyzed and characterized using UPLC-QTOF/MS. RESULTS TFLS suppressed the proliferation of MDA-MB-231 and MDA-MB-468 cells, with IC50 values of 44.47 μg/mL and 37.35 μg/mL at 72 h, respectively. It effectively suppressed breast cancer metastasis in vitro, demonstrated by a marked reduction in cellular motility and invasiveness, alongside the reversal of EMT. Consistent with pathway enrichment analysis, network pharmacology revealed that TFLS reduced the phosphorylation levels of PI3K, AKT, mTOR, JNK, ERK, and p38 in breast cancer cells. Molecular docking identified seven potential active ingredients, and UPLC-MS/MS confirmed the presence of key compounds, including procyanidin A2. DISCUSSION AND CONCLUSION TFLS effectively inhibits breast cancer cell proliferation, migration, and invasion in vitro by reversing the EMT phenotype, while suppressing metastasis in vivo. These effects are likely mediated via the attenuation of the PI3K/AKT/mTOR and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Shoushi Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanshuo Wang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dianxin Cui
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Taijin Lan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Lilan Qin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Yang C, Qin Z, Ma H, Liu H, Hou M, Wei J, Guo H, An X, Yang F, Yang A, Dang Y, Zhang F. Epithelial cells and fibroblasts are both activated via TGF-β1 and GSK-3β pathways differentially in the comorbidity of pulmonary fibrosis with lung adenocarcinoma. Life Sci 2025; 374:123696. [PMID: 40349653 DOI: 10.1016/j.lfs.2025.123696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/06/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS Pulmonary fibrosis (PF) is always exacerbated by the comorbidity of lung adenocarcinoma (LUAD), and patients frequently died from the complications of PF instead of lung cancer. Although many studies have unveiled the mechanisms underlying PF exacerbation due to lung cancer resection and radiotherapy, the influence of lung cancer itself on PF remains enigmatic. MATERIALS AND METHODS We cocultivated mouse pulmonary cells with mouse LUAD cells to explore the influence of LUAD on the pathogenesis and progression of PF. Additionally, a comorbidity model of PF with LUAD was established in mice via intratracheal injection of bleomycin (BLM) followed by in situ transplantation of LUAD cells. Furthermore, immunofluorescence, immunohistochemistry, and molecular analyses were employed to elucidate the mechanisms underlying the exacerbation of PF by the comorbidity of LUAD. KEY FINDINGS We found that PF was significantly exacerbated by LUAD. In the microenvironment of LUAD, the epithelial-mesenchymal transition (EMT) was predominantly activated in lung epithelial cells, while the transformation of lung fibroblasts into myofibroblasts was markedly induced. The TGF-β and GSK-3β pathways were differentially activated in lung epithelial cells and fibroblasts. Furthermore, clinical samples confirmed the involvement of these pathways in the process of PF exacerbation induced by LUAD in patients' lung lesions of PF with LUAD. SIGNIFICANCE This study initially reveals that LUAD exacerbates PF by modulating epithelial cells and fibroblasts through TGF-β and GSK-3β pathways differentially. Practically, targeting the pathways of TGF-β and GSK-3β may promise a potential strategy for the prophylaxis of PF exacerbation in patients with LUAD.
Collapse
Affiliation(s)
- Chenguang Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; School of Medicine, Tarim University, Alar 843300, Xinjiang, China
| | - Zijian Qin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; Lanzhou University First Affiliated Hospital, Lanzhou 730000, Gansu, China
| | - Hu Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huanqin Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Mengdan Hou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jing Wei
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hongyan Guo
- Gansu Second Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Xiang An
- Lanzhou University First Affiliated Hospital, Lanzhou 730000, Gansu, China
| | - Feng Yang
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Aijun Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yamei Dang
- Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Fangfang Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
6
|
Liu Y, Zhai Y, Zhang Y, Song L, Zhang H, Cao J, Zhao S, Wu Y, Liang R, Zhu R, Wang W, Sun Y. High metastatic tumor-derived CXCL16 mediates liver colonization metastasis by inducing Kupffer cell polarization via the PI3K/AKT/FOXO3a pathway. Neoplasia 2025; 65:101174. [PMID: 40347803 DOI: 10.1016/j.neo.2025.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Liver metastases represent a late-stage manifestation of numerous cancers, often associated with poor patient prognosis. Kupffer cells (KCs), resident liver macrophages, play a critical role in liver metastasis (LM). However, the mechanisms by which the polarization of KCs facilitate colorectal cancer (CRC) liver metastases remain elusive. Here, we established a CRC liver metastasis mouse model and employed a co-culture system, found that KCs were recruited and polarized to M2 phenotype. We isolated and purified highly metastatic cell lines to reveal potential changes in CRC cells during metastasis. Through bulk RNA sequencing, we identified and validated CXCL16 as a positive mediator in liver-metastatic CT26-LM cells that induced an M2-like KC phenotype. Knock down of CXCL16 reduced the M2 polarization of KCs and inhibited the formation of liver metastasis lesions. Next, this polarization process was shown to be achieved through the PI3K/AKT/FOXO3a pathway. Further investigation revealed FOXO3a transcriptionally activates CD206(MRC1) in this process. Pharmacological inhibition of the CXCL16-PI3K-FOXO3a axis to disrupt the polarization of KCs attenuated CRC liver metastasis in vivo. Our findings collectively indicate that targeting the CXCL16/PI3K/AKT/FOXO3a pathway in KCs may represent a promising therapeutic strategy for preventing CRC liver metastasis.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yunpeng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liming Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hanyue Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
7
|
Wu H, Sun W, Zeng Z, Ding Q, Shi Y, Zhu W. Baihe Gujin decoction attenuates idiopathic pulmonary fibrosis via regulating proline metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119934. [PMID: 40354839 DOI: 10.1016/j.jep.2025.119934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease. Baihe Gujin decoction (BHGJ), a traditional Chinese medicine consisting of ten medicine food homology herbs, has shown therapeutic effects in various lung diseases; however, its efficacy in ameliorating IPF and the underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to evaluate the effects of BHGJ on IPF and investigate its potential mechanisms. MATERIALS AND METHODS We established a bleomycin (BLM)-induced IPF model and performed proteomic analysis. The therapeutic effects of BHGJ on IPF were assessed by measuring lung index, hydroxyproline (HYP) content, lung function parameters, and histopathological changes. Mechanistic insights were further explored using Western blot and RT-qPCR analyses. RESULTS Our results demonstrated that BHGJ significantly alleviated BLM-induced IPF, improved lung function, reduced histopathological damage, and decreased collagen deposition. BHGF reduced apoptosis and inhibited EMT in TGF-β-induced A549 cells. Proteomic analysis revealed that its effects were associated with the modulation of the proline metabolism pathway. CONCLUSIONS BHGJ effectively attenuated IPF progression via regulating proline metabolism, providing a potential therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyuan Zeng
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, 518172, China
| | - Qi Ding
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, 518172, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, 518172, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Wenxiang Zhu
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, Leupold JH, Kundu GC. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025. Mol Cancer 2025; 24:167. [PMID: 40483504 PMCID: PMC12144846 DOI: 10.1186/s12943-025-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 06/11/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Nitin S Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Wen J, Cao X, Zhou B, Yang F, Wang X, Li Y, Zhao X, Mei J, Zhu W, Sun L, Huang F, Wang M. GC-MSCs transcriptionally upregulate SALL4 in gastric cancer through miR-4669/TIMP3/β-catenin signaling. Cell Signal 2025; 130:111668. [PMID: 39965736 DOI: 10.1016/j.cellsig.2025.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/07/2024] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUNDS Gastric cancer-associated mesenchymal stem cells (GC-MSCs) as integral components of the tumor microenvironment potentiate gastric cancer growth and metastasis. SALL4 is aberrantly upregulated in gastric cancer and pivotal for malignant progression. Whether GC-MSCs is responsible for SALL4 upregulation and the underlying mechanisms remains elusive. METHODS Cancer growth and metastasis capacities were assessed by cell colony formation assay, transwell assay, and epithelial-mesenchymal transition protein detection in vitro as well as subcutaneous xenograft and peritoneal metastasis models in vivo. SALL4 was measured by qPCR, western blot and immunohistochemistry staining. Gain- and loss-functional analysis were performed for miRNA and target gene. β-catenin signaling was assessed by immunofluorescence staining and Top/FopFlash luciferase assay. Transcriptional regulation was conducted using chemicals, luciferase reporter and ChIP assay. Clinical tissues and TCGA-STAD database were included for expression profile, correlation and clinical relevance analysis. RESULTS GC-MSCs promoted gastric cancer growth and metastasis along with elevation of SALL4 and miR-4669 in cancer cells and tissues. Overexpression of miR-4669 mimicked GC-MSC effects, while miR-4669 knockdown eliminated their oncogenic roles. TIMP3 was identified as a target of miR-4669 and mediated its functions. TIMP3 overexpression counteracted GC-MSC-induced cancer progression and SALL4 expression. GC-MSCs activated SALL4 transcription through the miR-4669/TIMP3/β-catenin pathway. The regulatory axis was aberrantly expressed in gastric cancer tissues, correlated with each other in certain cancer tissues and associated with lymph node metastasis. CONCLUSIONS GC-MSCs transcriptionally upregulate SALL4 to facilitate gastric cancer cell growth and metastasis via miR-4669/TIMP3/β-catenin pathway, highlighting the crucial role of GC-MSCs in the aberrant upregulation of SALL4.
Collapse
Affiliation(s)
- Jing Wen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226321, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province 222000, China
| | - Fang Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan 215300, China
| | - Feng Huang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan 215300, China; Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
10
|
Wang H, Liu R, Yu Y, Xue H, Shen R, Zhang Y, Ding J. Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns. Biomaterials 2025; 317:123013. [PMID: 39733514 DOI: 10.1016/j.biomaterials.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way. Cell elongation was modulated via microwell aspect ratios (ARs), and nuclear deformation was generated through a micropillar array in the microwell. Human non-small cell lung cancer cells (A549) were cultured on the quasi-three dimensional micropatterned surfaces, and transforming growth factor-β1 (TGF-β1) was added to induce EMT. We found that chimeric micropatterns upregulated EMT with an increase of cellular AR and nuclear indentation under given TGF-β1. The subsequent assessment of the contractility and oriented assembly of microfilaments elucidated the key role of mechanotransduction in cell elongation and EMT, as proved by myosin inhibition, while it was obstructed by micropillars in the chimeric micropattern. Hence, the micropillar array possessed a nonmonotonic influence, enhancing the EMT of cells with AR of 1, but hindering the EMT with an impact more significant on microwells with large ARs due to the impeded cytoskeleton assembly. This fundamental research has illustrated the complex of cellular and subcellular geometries on cell behaviors including phenotype transition in cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongrui Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanshuang Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
11
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2025; 82:388-403. [PMID: 39633605 PMCID: PMC12137693 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics ProgramUniversity of MichiganAnn ArborMichiganUSA
| | - Nicole C. Rodgers
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Allen P. Liu
- Applied Physics ProgramUniversity of MichiganAnn ArborMichiganUSA
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of BiophysicsUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Zhao X, Zhu G, Xue M, He H. Identification and regulation of EMT cells in vivo by laser stimulation. APL Bioeng 2025; 9:026119. [PMID: 40438388 PMCID: PMC12119126 DOI: 10.1063/5.0268350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Cells undergoing epithelial-to-mesenchymal transition (EMT) exhibit significant plasticity, making them more tumorigenic, invasive, and stem-like. PLCG2 has been identified as being linked to EMT. Specifically, the PLCG2-high subpopulation of tumor cells shows strong correlations with metastasis. However, it remains unclear whether PLCG2 serves as a direct driver of EMT. In this study, we employ an in vivo photostimulation method using tightly focused femtosecond-laser scanning to activate intracellular Ca2+ signaling and induce PLCG2 upregulation. By constructing a subcutaneous tumor model with prostate cancer PC3 cells and single-cell RNA sequencing, we identify distinct cell populations, including cancer stem cells, epithelial tumor cells, proliferating cells, and EMT cells. Upon photostimulation, EMT cells are notably expanded among the primary tumor cells, while epithelial tumor cells decrease in number. During the tumor progression, treatment with a specific PLCG2 inhibitor effectively suppresses the growth of the primary tumor but has no significant impact on metastatic cells. These findings offer valuable insights into the role of PLCG2 in regulating EMT and tumor development.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Meng Xue
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| |
Collapse
|
13
|
Hu Y, Xu W, Chen L. Post-translational modifications and the reprogramming of tumor metabolism. Discov Oncol 2025; 16:929. [PMID: 40418495 DOI: 10.1007/s12672-025-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic reprogramming occurs alongside tumor development. As cancers advance from precancerous lesions to locally invasive tumors and then to metastatic tumors, metabolic patterns exhibit distinct changes, including mutations in metabolic enzymes and modifications in the activity of metabolic regulatory proteins. Alterations in metabolic patterns can influence tumor evolution, either establishing or alleviating metabolic burdens and facilitating cancer growth. To fully understand how metabolic reprogramming helps tumors grow and find the metabolic activities that are most useful for treating tumors, we need to have a deeper understanding of how metabolic patterns are controlled as tumors grow. Post-translational modifications (PTMs), a critical mechanism in the regulation of protein function, can influence protein activity, stability, and interactions in several ways. In tumor cells, PTMs-mediated metabolic reprogramming is a crucial mechanism for adapting to the challenging microenvironment and sustaining fast growth. This article will deeply explore the intricate regulatory mechanism of PTMs on metabolic reprogramming and its role in tumor progression, with the expectation of providing new theoretical basis and potential targets for tumor treatment.
Collapse
Affiliation(s)
- Yuqing Hu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| | - Lin Chen
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China.
| |
Collapse
|
14
|
Wang X, Lu Y, Liu R, Huang L, Xu K, Xiong H, Nan D, Shou Y, Sheng H, Zhang H, Wang X, Chen X. LZTS2 methylation as a potential diagnostic and prognostic marker in LIHC and STAD: Evidence from bioinformatics and in vitro analyses. Sci Rep 2025; 15:17873. [PMID: 40404727 PMCID: PMC12098705 DOI: 10.1038/s41598-025-03153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
The rising mortality rate from cancer, driven by the absence of reliable biomarkers, highlights the pressing need for advanced diagnostic and prognostic strategies. This study investigates LZTS2's role as a pan-cancer biomarker, emphasizing its predictive value for immunotherapy and therapeutic targeting. Unlike existing biomarkers such as AFP in hepatocellular carcinoma or HER2 in gastric cancer, which exhibit tissue-specific utility, LZTS2 demonstrates unique cross-cancer applicability, as evidenced by its consistent dysregulation in both liver hepatocellular carcinoma (LIHC) and stomach adenocarcinoma (STAD) alongside emerging associations with other malignancies. Leveraging advanced bioinformatics tools and databases including UALCAN, KM-plotter, and The Cancer Genome Atlas (TCGA), alongside experimental validation in LIHC and STAD cell lines, we analyze LZTS2 expression patterns and their clinical relevance. Notably, LZTS2's dual role-acting as a tumor suppressor in some cancers while promoting oncogenesis in others-distinguishes it from conventional single-function markers, offering novel insights into its regulatory versatility. Our findings reveal that LZTS2 mutations and expression levels are closely associated with cancer progression and patient survival, solidifying its potential as a prognostic biomarker. Notably, LZTS2 expression correlates with various clinicopathological parameters, underscoring its significance in cancer biology. Pathway analysis highlights LZTS2's involvement in critical biological processes, providing actionable insights for therapeutic interventions. Quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative methylation-specific PCR (qMSP) experimental validations confirm these results, further establishing LZTS2's utility as a multi-dimensional biomarker that integrates genetic, epigenetic, and immunological features-a capability rarely observed in existing markers. This comprehensive analysis positions LZTS2 as a pivotal player in cancer progression, opening promising avenues for enhanced clinical management.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luanluan Huang
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Keke Xu
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hao Xiong
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Nan
- Graduate Department, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yiyi Shou
- Graduate Department, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hailong Sheng
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaoyan Chen
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Perez-Moreno E, Ortega-Hernández V, Zavala VA, Gamboa J, Fernández W, Carvallo P. Suppression of breast cancer metastatic behavior by microRNAs targeting EMT transcription factors. A relevant participation of miR-196a-5p and miR-22-3p in ZEB1 expression. Breast Cancer Res Treat 2025:10.1007/s10549-025-07723-5. [PMID: 40382762 DOI: 10.1007/s10549-025-07723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT. METHODS Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels. RESULTS MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis. CONCLUSION microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Victoria Ortega-Hernández
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina A Zavala
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Gamboa
- Unidad de Patología Mamaria, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Wanda Fernández
- Unidad de Anatomía Patológica, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Pilar Carvallo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Pagano CA, Masini MA, Sabbatini M, Gribaudo G, Manfredi M, Caprì FG, Bonetto V, Magnelli V, Donadelli M, Corino R, Belay MH, Robotti E, Marengo E. Simulated Microgravity-Induced Alterations in PDAC Cells: A Potential Role for Trichostatin A in Restoring Cellular Phenotype. Int J Mol Sci 2025; 26:4758. [PMID: 40429900 PMCID: PMC12112487 DOI: 10.3390/ijms26104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic malignancies. Despite the remarkable improvement concerning treatment, late detection and resistance to clinically used chemotherapeutic agents remain major challenges. Trichostatin A (TSA), a histone deacetylase inhibitor, has been recognized as an effective therapeutic agent against PDAC by inhibiting proliferation, inducing apoptosis, and sensitizing PDAC cells to chemotherapeutic agents such as gemcitabine. Microgravity has become a useful tool in cancer research due to its effects on various cellular processes. This paper presents a deep molecular and proteomic analysis investigating cell growth, the modulation of cytokeratins, and proteins related to apoptosis, cellular metabolism, and protein synthesis after TSA treatment in simulated microgravity (SMG)-exposed PaCa44 3D cells. Our analysis concerns the effects of TSA treatment on cell proliferation: the impairment of the cell cycle with the downregulation of proteins involved in Cdc42 signaling and G1/G2- and G2/M-phase transitions. Thus, we observed modification of survival pathways and proteins related to autophagy and apoptosis. We also observed changes in proteins involved in the regulation of transcription and the repair of damaged DNA. TSA treatment promotes the downregulation of some markers involved in the maintenance of the potency of stem cells, while it upregulates proteins involved in the induction and modulation of the differentiation process. Our data suggest that TSA treatment restores the cell phenotype prior to simulated microgravity exposure, and exerts an intriguing activity on PDAC cells by reducing proliferation and inducing cell death via multiple pathways.
Collapse
Affiliation(s)
- Corinna Anais Pagano
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Maria Angela Masini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Giorgia Gribaudo
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Marcello Manfredi
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, 28100 Novara, Italy;
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Flavia Giusy Caprì
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Valentina Bonetto
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Valeria Magnelli
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences (DNBM), University of Verona, 37134 Verona, Italy;
| | - Roberto Corino
- Centro Italiano di Diagnostica Medica Ultrasonica (CIDIMU), 10128 Turin, Italy;
| | - Masho Hilawie Belay
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Elisa Robotti
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| | - Emilio Marengo
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (C.A.P.); (M.A.M.); (G.G.); (F.G.C.); (V.B.); (V.M.); (M.H.B.); (E.R.); (E.M.)
| |
Collapse
|
17
|
Lorenzi T, Painter KJ, Villa C. Phenotype structuring in collective cell migration: a tutorial of mathematical models and methods. J Math Biol 2025; 90:61. [PMID: 40377698 PMCID: PMC12084280 DOI: 10.1007/s00285-025-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 05/18/2025]
Abstract
Populations are heterogeneous, deviating in numerous ways. Phenotypic diversity refers to the range of traits or characteristics across a population, where for cells this could be the levels of signalling, movement and growth activity, etc. Clearly, the phenotypic distribution - and how this changes over time and space - could be a major determinant of population-level dynamics. For instance, across a cancerous population, variations in movement, growth, and ability to evade death may determine its growth trajectory and response to therapy. In this review, we discuss how classical partial differential equation (PDE) approaches for modelling cellular systems and collective cell migration can be extended to include phenotypic structuring. The resulting non-local models - which we refer to as phenotype-structured partial differential equations (PS-PDEs) - form a sophisticated class of models with rich dynamics. We set the scene through a brief history of structured population modelling, and then review the extension of several classic movement models - including the Fisher-KPP and Keller-Segel equations - into a PS-PDE form. We proceed with a tutorial-style section on derivation, analysis, and simulation techniques. First, we show a method to formally derive these models from underlying agent-based models. Second, we recount travelling waves in PDE models of spatial spread dynamics and concentration phenomena in non-local PDE models of evolutionary dynamics, and combine the two to deduce phenotypic structuring across travelling waves in PS-PDE models. Third, we discuss numerical methods to simulate PS-PDEs, illustrating with a simple scheme based on the method of lines and noting the finer points of consideration. We conclude with a discussion of future modelling and mathematical challenges.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Viale Pier Andrea Mattioli, 39, 10125, Torino, Italy.
| | - Chiara Villa
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR 7598, 75005, Paris, France
- Université Paris-Saclay, Inria, Centre Inria de Saclay, 91120, Palaiseau, France
| |
Collapse
|
18
|
Chen Y, Zhang J, Feng X, Ma Q, Sun C. Single-cell RNA-seq uncovers lineage-specific regulatory alterations of fibroblasts and endothelial cells in ligamentum flavum hypertrophy. Front Immunol 2025; 16:1569296. [PMID: 40443657 PMCID: PMC12119296 DOI: 10.3389/fimmu.2025.1569296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Background Lumbar spinal stenosis (LSS) represents a major global healthcare burden resulting in back pain and disorders of the limbs among the elderly population. The hypertrophy of ligamentum flavum (HLF), marked by fibrosis and inflammation, significantly contributes to LSS. Fibroblasts and endothelial cells are two important cells in the pathological process of ligamentum flavum (LF) fibrosis and inflammation. These two cells exhibit heterogeneity in various fibrotic diseases, yet their heterogeneity in LF fibrosis remains poorly defined. Methods Using single-cell RNA-seq, we examined the alterations of fibroblasts, endothelial cells, and key genes in the hypertrophic LF, aiming to establish a comprehensive single-cell atlas of LF to identify high-priority targets for pharmaceutical treatment of LSS. Results Here, we find there are five distinct subpopulations of LF fibroblasts: secretory-papillary, secretory-reticular, mesenchymal, pro-inflammatory, and unknown. Importantly, in HLF, the proportion of mesenchymal fibroblast subpopulations increases significantly compared to normal LF (NLF), reflecting their close association with the pathogenesis of HLF. Furthermore, critical target genes that might be involved in HLF and fibrosis, such as MGP, ASPN, OGN, LUM, and CTSK, are identified. In addition, we also investigate the heterogeneity of endothelial cells and highlight the critical role of AECs subpopulation in LF fibrosis. Conclusion This study will contribute to our understanding of the pathogenesis of HLF and offer possible targets for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Nofal Z, Malakhov P, Pustovalova M, Sakr N, Leonov S. Recurring cycles of deprivation of serum and migration in confined spaces augments ganglioside SSEA-4 expression, boosting clonogenicity and cisplatin resistance in TNBC cell line. Sci Rep 2025; 15:16738. [PMID: 40369257 PMCID: PMC12078623 DOI: 10.1038/s41598-025-99828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
The remarkable biophysical properties of metastatic migrating cells, such as their exceptional motility and deformability, enable them to migrate through physical confinements created by neighboring cells or extracellular matrix. This study explores the adaptive responses of breast cancer (BC) cell sublines derived from the highly aggressive, metastatic triple-negative MDA-MB-231 and the non-metastatic MCF7 human BC cell lines, after undergoing three rounds of confined migration (CM) stress. Our findings demonstrate that CM elicits common and cell-type specific adaptive responses in BC cell sublines. In particular, both cell sublines exhibit a similar enhancement of clonogenicity and nanoparticle (NP) uptake activity, indicating tumorigenic potential. We have, for the first time, shown that stimulation with CM induces a hybrid epithelial-to-mesenchymal transition (EMT) phenotype of MDA-MB-231 cells. This transition is characterized by a significant rise in the expression of stage-specific embryonic antigen-4 (SSEA4), alongside a substantial decline in the population of CD133+ cells and a marked reduction in Ki67 expression in the MDA-MB-231-derived subline following Cis-Platin treatment. These changes are likely associated with heightened resistance of this subline to cisplatin. In contrast, CM induces far fewer such alterations in the MCF7-derived counterpart with a notable increase of CD133+ population, which seems to be insufficient to change cell susceptibility to cisplatin exposure. This study contributes to our understanding of the adaptive mechanisms underlying metastasis and drug resistance in breast cancer, emphasizing the need for personalized approaches in cancer treatment that consider the heterogeneous responses of different cancer subtypes to environmental stresses.
Collapse
Affiliation(s)
- Zain Nofal
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Philipp Malakhov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Margarita Pustovalova
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701
| | - Nawar Sakr
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia, 125315
| | - Sergey Leonov
- Institute of Future Biophysics, Moscow Institute of Physics and Technology, MIPT, Phystech, Dolgoprudny, Russia, 141701.
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia, 142290.
| |
Collapse
|
20
|
Fu H, Itoh Y, Sawaguchi T, Otake S, Omata C, Saitoh M, Miyazawa K. Identification of a Distal Enhancer That Regulates TGF-β-Induced SNAI1 Expression. Cancer Sci 2025. [PMID: 40364580 DOI: 10.1111/cas.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Snail is a zinc finger transcription factor encoded by the SNAI1 gene and triggers a cellular process termed epithelial-mesenchymal transition (EMT) upon its increased expression and/or functional activation. Snail expression and activity are regulated by various extracellular stimuli, including cytokines and environmental factors. Transforming growth factor-β (TGF-β) is a Snail inducer that functions via Smad3-mediated transcriptional activation. In the present study, we identified a distal enhancer that modulates TGF-β-induced SNAI1 expression. ChIP-seq and Hi-C analyses showed that the enhancer is located 46 kb downstream of the SNAI1 gene; in TGF-β-stimulated cells, it associates with Smad3 and interacts with the SNAI1 proximal promoter. Inhibiting the activity of the enhancer using CRISPRi attenuated TGF-β-induced SNAI1 expression, stress fiber formation, and cell motility enhancement, suggesting that the enhancer mediates TGF-β-induced EMT. The enhancer contains a Smad-binding CAGA motif and an activator protein-1 (AP-1) binding motif that function in transcriptional activation. Ras-responsive element binding protein 1 (RREB1), a transcription factor required for TGF-β-induced Snail expression, regulated the basal activity of the enhancer but not its inducibility by TGF-β. In contrast to the enhancer, the association of Smad3 with the proximal promoter was not evident. These findings suggest that the proximal promoter and the distal enhancer respond to distinct signaling cues, integrate them, and cooperatively function to drive SNAI1 expression.
Collapse
Affiliation(s)
- Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tomoe Sawaguchi
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Research Training Program for Undergraduates, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shigeo Otake
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Chiho Omata
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
21
|
Chen Z, Shi H, Hu W, Yang J, Xing Y, Lv X, Wu C, Ding C, Zhao J. DRP2 promotes EMT and serves as a potential therapeutic target for LUAD treatment. Sci Rep 2025; 15:16590. [PMID: 40360616 PMCID: PMC12075839 DOI: 10.1038/s41598-025-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
LUAD, a prevalent lung cancer with high mortality, has seen increased focus on molecular targeted therapies due to patient heterogeneity. Among these prospects, dystrophin-associated protein 2 (DRP2), a critical component of the dystrophin complex, underpins membrane-associated structures vital for intercellular interactions in vertebrates. Aberrations in DRP2 function have been linked to the occurrence and development of multiple diseases, prompting an inquiry into its potential link with LUAD progression. To delve into the potential roles of DRP2 in LUAD, we initiated a comprehensive investigation. First, we analyzed DRP2 expression patterns in LUAD using bioinformatics tools. This was subsequently validated through immunohistochemical staining, quantitative PCR, and Western blot analyses. Furthermore, we assessed the functional implications of DRP2 in LUAD cells, both in vitro and in vivo, utilizing assays such as cell cycle analysis, CCK-8 proliferation assay, Colony formation assay EdU incorporation, Transwell migration test, scratch wound healing assay, flow cytometry, and mouse models for tumor xenograft and metastasis. Results showed a strong correlation between high DRP2 expression in LUAD and poorer survival. Notably, DRP2 knockdown accelerated LUAD progression via the EMT pathway. These findings highlight DRP2's crucial role in LUAD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhimeng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Shi
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxuan Xing
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenzhuo Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
22
|
Erdmann É, Agolli S, Fix S, Cottard F, Keyser C, Zvenigorosky V, Gonzalez A, Haili Z, Kieffer B, Céraline J. Human-specific genomic evolution of a regulatory network enables fine-tuning of N-cadherin gene expression. Cell Mol Life Sci 2025; 82:196. [PMID: 40343501 PMCID: PMC12064536 DOI: 10.1007/s00018-025-05725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Androgen receptor (AR), a member of the nuclear receptor superfamily controls prostate epithelial cell plasticity by repressing a panel of genes involved in epithelial-mesenchymal transition (EMT), including the human CDH2 gene encoding N-cadherin. At the opposite, pathological AR variants such as AR-V7 associated with prostate tumor progression upregulate those EMT genes. Here, focusing on the human CDH2 gene, we show that this duality between AR and AR-V7 relies on a potential human accelerated region present in the intron 1. This fastest-evolving region of the human genome is actually a variable number tandem repeat (VNTR) comprising 24 repetitions of a DNA sequence that englobes binding sites for steroid hormone receptors, recombination signal binding protein for immunoglobulin kappa j region (RBPJ) an effector of the Notch pathway, and zinc finger e-box binding homeobox 1 (ZEB1). Genomic DNA sequencing, multiple sequence alignment, data mining, as well as protein-DNA interaction and gene expression analyses indicate that this VNTR constitutes a potential transcriptional hub for different transcription factors to control human CDH2 expression. Also, our data suggest that prostate tumor cells may unlock an up to now unknown molecular mechanism associated with a fine-tuned control of human CDH2 gene expression.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Savera Agolli
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Simon Fix
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Félicie Cottard
- CNRS UMR 7242, ESBS, Université de Strasbourg, Illkirch, 67404, France
| | | | | | - Angéla Gonzalez
- Strasbourg Institute of Legal Medicine, Strasbourg, 67085, France
| | - Zakary Haili
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Bruno Kieffer
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Jocelyn Céraline
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, Strasbourg, 67085, France.
- CNRS UMR 7104, INSERM U1258, IGBMC, 1, rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
23
|
Skovborg G, Svejsø FH, Müller C, Jensen BN, Jensen JG, Majidi SE, Matthiesen CL, Chen M. Replication of patient specific circulating tumor cells on a microfibrous filter for drug screening. NANOSCALE 2025; 17:11592-11604. [PMID: 40242908 DOI: 10.1039/d4nr05294c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Personalized medicine in cancer treatment has the potential to enhance therapeutic efficacy while simultaneously reducing adverse effects. Molecular characterization of circulating tumor cells (CTCs) offers invaluable insight into metastatic tumor heterogeneity, making them a perfect candidate for metastatic cancer drug screening. However, they are extremely rare. This study presents the development of melt-electrowritten membrane filters designed for the capture, culture, and drug testing of CTCs. By varying the collector speeds, filters with optimized pore sizes and polymer densities were produced, enabling selective capture of CTCs while minimizing co-capture of white blood cells. Biocompatibility tests showed that the filter supported the proliferation of multiple cancer cell lines. The filter successfully captured and cultured colorectal cancer patient-derived CTC44 and CTC45 cells, which formed 3D clusters observable over several weeks. Drug testing with chemotherapeutic agents 5-fluorouracil/oxaliplatin (FOX) and 5-fluorouracil/irinotecan (FIRI) revealed that CTCs in 3D clusters on the filters exhibited significantly higher drug resistance compared to 2D monolayers. These findings demonstrate the potential of the filter as a versatile platform for studying CTC biology and for screening anticancer drugs, providing a more physiologically relevant environment than traditional 2D cultures.
Collapse
Affiliation(s)
- Grith Skovborg
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Frederik Høbjerg Svejsø
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Christoph Müller
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | | | - Jesper Godrim Jensen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | - Sara Egsgaard Majidi
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| | | | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, DK-8000, Denmark.
| |
Collapse
|
24
|
Rahman MS, Qi G, Li Q, Liu X, Bai J, Chen M, Atala A, Sun XS. Three-Dimensional Trilineage Differentiation Conditions for Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2025; 12:503. [PMID: 40428122 PMCID: PMC12108907 DOI: 10.3390/bioengineering12050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential for regenerative medicine. However, optimizing their differentiation into specific lineages within three-dimensional (3D) scaffold-based culture systems that mimic in vivo environments remains challenging. This study examined the trilineage differentiation of hiPSCs under various 3D conditions using synthetic peptide hydrogel matrices with and without embryoid body (EB) medium induction. hiPSC 3D colonies (spheroids), naturally formed from single cells or small clusters in 3D culture, were used for differentiation into the three germ lineages. Differentiated spheroids exhibited distinct morphological characteristics and significantly increased expression of key lineage-specific markers-FOXA2 (endoderm), Brachyury (mesoderm), and PAX6 (ectoderm)-compared to undifferentiated controls. Marker expression varied depending on the 3D culture conditions. Differentiation efficiency improved significantly, increasing from 16% to 71% for endoderm, 61% to 80% for mesoderm, and 35% to 48% for ectoderm, by selecting the appropriate 3D matrix and applying EB induction. Comprehensive data analysis from RT-qPCR, immunocytochemistry staining, and flow cytometry confirmed that the Synthegel Spheroid (SGS) is a viable 3D matrix for evaluating all three germ lineages using a commercial trilineage differentiation kit. While EB induction is essential for endodermal differentiation, it is not required for mesodermal and ectodermal lineages. These findings are valuable not only for screening initial differentiation potential at the lineage level but also for optimizing 3D differentiation protocols for deriving somatic cells from hiPSCs.
Collapse
Affiliation(s)
- Md Sharifur Rahman
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Guangyan Qi
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Quan Li
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
| | - Xuming Liu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (X.L.); (M.C.)
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA;
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (X.L.); (M.C.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Xiuzhi Susan Sun
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| |
Collapse
|
25
|
Li Y, Peng S, Xu J, Liu W, Luo Q. Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ 2025; 13:e19328. [PMID: 40352270 PMCID: PMC12065456 DOI: 10.7717/peerj.19328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Integrins, a family of transmembrane cell adhesion receptors, mediate intercellular and cell-extracellular matrix crosstalk via outside-in and inside-out signaling pathways. Integrins, categorized into 24 distinct combinations of α and β subunits, exhibit tissue-specific expression and perform unique or overlapping roles in physiological and pathophysiological processes. These roles encompass embryonic angiogenesis, tissue repair, and the modulation of tumor cell angiogenesis, progression, invasion, and metastasis. Notably, integrins are significant contributors to tumor development, offering valuable insights into the potential of integrin-targeted diagnostics and therapeutics. Currently, there are various preclinical and clinical trials aiming to harness integrin antagonists that are safe, efficacious, and exhibit low toxicity. Owing to the functional redundancy across integrin types and the complexity of the mechanisms of integrin-mediated multiple key processes associated with tumor biology, challenges exist that impede advancements in integrin-targeted therapy. Nevertheless, innovative strategies focused on integrin modulation represent significant breakthroughs for improving patient care and promoting comprehensive insights into the underlying mechanisms of tumor biology. This review elucidates the impact of integrins on three distinct cell types in multiple key processes associated with tumor biology and explores the emerging integrin-targeted therapeutic approaches for the treatment of tumors, which will provide ideas for optimal therapeutic approaches in the future.
Collapse
Affiliation(s)
- Yifan Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shantong Peng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiatong Xu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjie Liu
- The First Clinical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Luo
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Zhu H, Liu X, Zhang J, Zhao G, Wang J, Zhang H, Liu Y, Guo H, Yang J, Wang Z, Lu TJ, Xu F, Lin M. Cadherin dynamics and cortical tension in remodeling cell-cell adhesion during EMT. Biophys J 2025:S0006-3495(25)00280-2. [PMID: 40329531 DOI: 10.1016/j.bpj.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a key process in cancer metastasis and fibrosis, disrupts cellular adhesion by replacing epithelial E-cadherin with mesenchymal N-cadherin. While, how the shift from E-cadherin to N-cadherin impacts molecular-scale adhesion mechanics and cluster dynamics-and how these changes weaken adhesion under varying mechanical and environmental conditions-remains poorly understood, limiting our ability to target EMT-driven pathological adhesion dynamics. Here, we developed a unified lattice-clutch model to investigate cadherin clustering, cortical tension, and adhesion strength during EMT. Using atomic force microscopy experiments, we measured the mechanical properties of single cadherin trans-bonds and cadherin-mediated cell-cell and cell-matrix adhesions across varying conditions. Our results demonstrate that N-cadherin trans-bonds are mechanically weaker than E-cadherin trans-bonds, leading to reduced adhesion strength during EMT. Computational modeling and experimental validation further revealed that EMT impairs cadherin clustering and cortical tension regulation, which collectively weaken both cell-cell and cell-matrix adhesions, particularly on stiff substrates. These findings highlight how EMT disrupts adhesion strength at multiple scales-from individual cadherin bonds to collective cluster dynamics. Our study elucidates how EMT-driven changes in cadherin type weaken adhesion strength and mechanotransduction, providing insights into cellular adhesion mechanics and potential therapeutic strategies for targeting EMT-associated diseases such as cancer metastasis and tissue remodeling.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaoxi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jiayu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Guoqing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Out-patient Department, School of Stomatology, The Fourth Military Medical University Xi'an, Shaanxi, China
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jin Yang
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, P.R. China; Department of Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
27
|
Li Z, Zhang T, Yang X, Peng Y. Role of noncoding RNA and protein interaction in pancreatic cancer. Chin Med J (Engl) 2025; 138:1019-1036. [PMID: 40205638 PMCID: PMC12068769 DOI: 10.1097/cm9.0000000000003587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Indexed: 04/11/2025] Open
Abstract
ABSTRACT Noncoding RNAs (ncRNAs) are a class of RNA molecules with little or no protein-coding potential. Emerging evidence indicates that ncRNAs are frequently dysregulated and play pivotal roles in the pathogenesis of pancreatic cancer. Their aberrant expression can arise from chromosomal abnormalities, dysregulated transcriptional control, and epigenetic modifications. ncRNAs function as protein scaffolds or molecular decoys to modulate interactions between proteins and other biomolecules, thereby regulating gene expression and contributing to pancreatic cancer progression. In this review, we summarize the mechanisms underlying ncRNA dysregulation in pancreatic cancer, emphasize the biological significance of ncRNA-protein interactions, and highlight their clinical relevance. A deeper understanding of ncRNA-protein interactions is essential to elucidate molecular mechanisms and advance translational research in pancreatic cancer.
Collapse
Affiliation(s)
- Zhang Li
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Zhang
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojuan Yang
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
Zhao Z, Liu W, Luo B. The Oncogenic role of Lysyl Oxidase-Like 1 (LOXL1): Insights into cancer progression and therapeutic potential. Gene 2025; 947:149312. [PMID: 39952484 DOI: 10.1016/j.gene.2025.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Lysyl oxidase-like-1 (LOXL1) is a copper-dependent amine oxidase that maintains the structural integrity of the extracellular matrix (ECM) by catalyzing the cross-linking of collagen and elastin. However, aberrations in LOXL1 expression can contribute to diseases like glaucoma, tissue fibrosis, and cancer. LOXL1 has been found to be overexpressed in various malignancies, playing a pivotal role in tumor growth and metastasis. Although some studies suggest tumor-suppressive attributes of LOXL1, its role in tumorigenesis remains controversial. Research on LOXL1 has been primarily focused on pseudoexfoliation syndrome/glaucoma, with limited reviews on its impact on cancer. This review aims to explore LOXL1 comprehensively, including its structure, biological effects, and regulatory processes. Emphasis is placed on understanding the relationship between LOXL1 and tumorigenesis, specifically how LOXL1 influences tumor microenvironment remodeling, tumorigenesis, and metastasis. The review also discusses potential therapeutic strategies targeting LOXL1 for anti-fibrosis and anti-tumor interventions.
Collapse
Affiliation(s)
- Zixiu Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
29
|
Saito J, Onishi N, Yamasaki J, Koike N, Hata Y, Kimura K, Otsuki Y, Nobusue H, Sampetrean O, Shimizu T, Okazaki S, Sugihara E, Saya H. Benzaldehyde suppresses epithelial-mesenchymal plasticity and overcomes treatment resistance in cancer by targeting the interaction of 14-3-3ζ with H3S28ph. Br J Cancer 2025:10.1038/s41416-025-03006-4. [PMID: 40316727 DOI: 10.1038/s41416-025-03006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Benzaldehyde (BA) is an aromatic aldehyde found in fruits that has been studied as a potential anticancer agent on the basis of its ability to inhibit transformation in mouse embryo cells and to suppress metastasis in mice. METHODS We investigated the cytotoxic effects of BA on cancer cells, and probed its effects on intracellular signaling pathways. The anticancer effects of BA in vivo were studied by using a mouse orthotopic transplantation model of pancreatic cancer. RESULTS BA inhibited the growth of osimertinib- or radiation-resistant cancer cells as well as the interaction between 14-3-3ζ and its client proteins. The interaction of 14-3-3ζ with the Ser28-phosphorylated form of histone H3 (H3S28ph) was implicated in treatment resistance and the transcriptional regulation of genes related to epithelial-mesenchymal transition and stemness, including E2F2, SRSF1, and ID1. Treatment of mice with a BA derivative inhibited pancreatic tumor growth and lung metastasis, as well as suppressed a state of epithelial-mesenchymal plasticity (EMP) of tumor cells. CONCLUSION The interaction between 14-3-3ζ and H3S28ph plays a key role in EMP and treatment resistance in cancer. The ability of BA to inhibit this and other interactions of 14-3-3ζ offers the potential to overcome treatment resistance and to suppress metastasis.
Collapse
Affiliation(s)
- Jun Saito
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
- Ichijokai Hospital, Ichikawa, Chiba, 272-0836, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostics Oncology, Clinical Research Institute for Clinical Pharmacology and Therapy, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Juntaro Yamasaki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoyoshi Koike
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yukie Hata
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyomi Kimura
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
- Department of Breast Oncology Juntendo University School of Medicine, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuji Otsuki
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nobusue
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Oltea Sampetrean
- Keio University Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Shinjuku, Tokyo, 160-8582, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, Hoshi University, Shinagawa, Tokyo, 142-0063, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-0062, Japan
| | - Eiji Sugihara
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
30
|
Sussman JH, Cure HW, Yuan S, Ito K, Asangani IA, Garcia BA, Stanger BZ, Katsuda T. In vivo CRISPR screening reveals epigenetic regulators of hepatobiliary plasticity. Genes Dev 2025; 39:603-616. [PMID: 40169232 PMCID: PMC12047657 DOI: 10.1101/gad.352420.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Following prolonged liver injury, a small fraction of hepatocytes undergoes reprogramming to become cholangiocytes or biliary epithelial cells (BECs). This physiological process involves chromatin and transcriptional remodeling, but the epigenetic mediators are largely unknown. Here, we exploited a lineage-traced model of liver injury to investigate the role of histone post-translational modification in biliary reprogramming. Using mass spectrometry, we defined the repertoire of histone marks that are globally altered in quantity during reprogramming. Next, applying an in vivo CRISPR screening approach, we identified seven histone-modifying enzymes that alter the efficiency of hepatobiliary reprogramming. Among these, the histone methyltransferase and demethylase Nsd1 and Kdm2a were found to have reciprocal effects on H3K36 methylation that regulated the early and late stages of reprogramming, respectively. Although loss of Nsd1 and Kdm2a affected reprogramming efficiency, cells ultimately acquired the same transcriptomic states. These findings reveal that multiple chromatin regulators exert dynamic and complementary activities to achieve robust cell fate switching, serving as a model for the cell identity changes that occur in various forms of physiological metaplasia or reprogramming.
Collapse
Affiliation(s)
- Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hector W Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Liu Y, Huang Y, Yang Z, Lyu L, Li Y. Photodynamic therapy could serve as a promising approach to prevent posterior capsular opacification. Photochem Photobiol Sci 2025; 24:681-691. [PMID: 40332735 DOI: 10.1007/s43630-025-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Posterior capsular opacification (PCO) causes the vision that has been restored after cataract surgery to become blurred again. YAG laser treatment for PCO not only incurs additional costs but also poses risks of complications, including glaucoma and retinal disorders. Effective prevention and management of PCO remain an area requiring active research. Photodynamic therapy (PDT) utilizes a photosensitizer (PS) to transform oxygen into reactive oxygen species (ROS) under specific wavelengths of light, thereby inducing apoptosis. Given its minimal invasiveness and high specificity, PDT has been extensively applied in the treatment of conditions characterized by abnormal cell proliferation, such as tumors. Considering the pathogenesis of PCO, PDT has demonstrated promising clinical application potential in ophthalmic disease treatment. This review examines the impact of photodynamic therapy on the biological behavior of lens epithelial cells (LECs) and its efficacy in treating PCO. It also discusses the advantages and disadvantages of different photosensitizers and their clinical application potential.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yihan Huang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Zhihui Yang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Section 3, Zhongshan Road, Luzhou, 319646000, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Yue Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China.
| |
Collapse
|
32
|
Hilai K, Grubich D, Akrawi M, Zhu H, Zaghloul R, Shi C, Do M, Zhu D, Zhang J. Mechanical Evolution of Metastatic Cancer Cells in 3D Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403242. [PMID: 40116569 PMCID: PMC12051740 DOI: 10.1002/smll.202403242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/01/2025] [Indexed: 03/23/2025]
Abstract
Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells' behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.
Collapse
Affiliation(s)
- Karlin Hilai
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
| | - Daniil Grubich
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
| | - Marcus Akrawi
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
- Department of Physics and AstronomyWayne State UniversityDetroitMI48201USA
| | - Hui Zhu
- Department of Computer ScienceWayne State UniversityDetroitMI48202USA
| | - Razanne Zaghloul
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
| | - Chenjun Shi
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
- Department of Biomedical EngineeringInstitute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48823USA
| | - Man Do
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
| | - Dongxiao Zhu
- Department of Computer ScienceWayne State UniversityDetroitMI48202USA
| | - Jitao Zhang
- Department of Biomedical EngineeringWayne State UniversityDetroitMI48202USA
- Department of Biomedical EngineeringInstitute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48823USA
| |
Collapse
|
33
|
Kayacik N, Kurter H, Sever T, Basbinar Y, Calibasi-Kocal G. Picropodophyllin, an IGF‑1 receptor inhibitor, enhances oxaliplatin efficacy in chemoresistant colorectal cancer HCT116 cells by reducing metastatic potential. Oncol Lett 2025; 29:220. [PMID: 40103601 PMCID: PMC11916648 DOI: 10.3892/ol.2025.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) axis drives cellular growth, survival and chemoresistance in colorectal cancer (CRC) by promoting proliferative signaling, anti-apoptotic effects and epithelial-mesenchymal transition (EMT). Targeting the IGF-1R pathway is therefore a promising strategy, not only for overcoming drug resistance, but also for reducing migration and metastatic behavior related to EMT. The present study aimed to evaluate the potential of picropodophyllin (PPP), a selective IGF-1R inhibitor, to enhance the effects of oxaliplatin (OX) in HCT116 and OX-resistant HCT116-R cells. Cell viability was evaluated using a resazurin-based assay following 48-h combination treatment with OX at its IC50 concentrations (HCT116 cells, 53 µM and HCT116-R cells, 324 µM) and PPP (1 µM). Migration was assessed using wound healing assays, with images captured and analyzed at 0 and 48 h. Additionally, immunofluorescence staining was performed to assess E-cadherin and vimentin expression, evaluating epithelial and mesenchymal characteristics. In HCT116-R cells, the combination of OX (53 µM) and PPP significantly reduced cell viability by 0.65-fold compared with OX alone (P=0.0286). Wound healing assays demonstrated that combining PPP with OX (53 and 324 µM) significantly decreased migration, with 0.34-fold and 0.22-fold reductions, respectively (P<0.05). Immunofluorescence staining revealed that this combination also significantly increased E-cadherin expression, by 1.37- and 1.63-fold, respectively (P<0.05), indicating the role of PPP in enhancing epithelial characteristics and reducing EMT-related drug resistance. These findings highlight the potential for combining PPP with OX to enhance the cytotoxic and anti-metastatic effects of OX in chemo-resistant CRC cells, thus offering a promising strategy for overcoming drug resistance and improving patient outcomes in CRC treatment.
Collapse
Affiliation(s)
- Nurcin Kayacik
- Department of Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Hasan Kurter
- Department of Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Tolga Sever
- Department of Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| |
Collapse
|
34
|
Saadh MJ, Ghnim ZS, Mahdi MS, Mandaliya V, Ballal S, Bareja L, Chaudhary K, Sharma R, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. The emerging role of kinesin superfamily proteins in Wnt/β-catenin signaling: Implications for cancer. Pathol Res Pract 2025; 269:155904. [PMID: 40073645 DOI: 10.1016/j.prp.2025.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Cellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling. KIFs, a group of motor proteins, have attracted attention for their dual roles in intracellular transport: facilitating the cellular entry of Wnt ligands and contributing to the assembly of the β-catenin destruction complex. The study explores the interactions between KIFs and the Wnt/β-catenin pathway, identifying specific KIFs that interact with key components of the signaling cascade and examining their roles in cancer progression. Furthermore, it evaluates therapeutic strategies targeting KIFs to suppress aberrant Wnt activity in cancer and investigates how KIF-mediated transport spatially and temporally regulates Wnt signaling. The insights provided could guide future research into the role of KIFs in cancer biology and their involvement in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
35
|
Zhu Y, Jiang S, Tang R, Chen H, Jia G, Zhou X, Miao J. KMT2A facilitates the epithelial-to-mesenchymal transition and the progression of ovarian cancer. Mol Cell Biochem 2025; 480:3001-3017. [PMID: 39589456 DOI: 10.1007/s11010-024-05167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays critical roles in cancer progression and metastasis. Thus, the exploration of the molecular mechanism regulating EMT would provide potential opportunities for the therapy of metastatic ovarian cancer (OC). Herein, we investigated the putative role of KMT2A in modulating EMT and metastasis in OC. The expression of KMT2A in OC was detected by Western blot and immunohistochemistry and its relationship with clinicopathological factors was analyzed. The effect of KMT2A on the biological behavior of OC cells was examined. Moreover, the expressions of EMT-associated proteins were detected in vivo and vitro by Western blot, immunofluorescence, and immunohistochemistry. KMT2A was highly expressed in OC cell lines and tissues and was positively correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, and metastasis. KMT2A overexpression was correlated with poor prognosis. Suppression of KMT2A inhibited OC cells proliferation, migration, and invasion and induced their apoptosis in vitro and vivo. In contrast, the ectopic expression of KMT2A had the opposite effects. Furthermore, KMT2A knockdown inhibited TGF-β-induced EMT in OC and reduced the phosphorylation levels of Smad2. Taken together, these observations demonstrate that KMT2A could promote the malignant behavior of OC by activating TGF-β/Smad signaling pathway and may be a potential prognostic biomarker and therapeutic target for OC.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Shenyuan Jiang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ranran Tang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Haiyan Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Genmei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Xue Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Juan Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
36
|
Hu X, Xie S, Yang Z, Zhao X, Gong L, Yang P, Yang L, Wang S, Bao G, He X. Aggressive characteristics of tumor deposits in colorectal cancer highlight the need for staging refinement in patients with 0-3 metastatic lymph nodes. Int J Cancer 2025; 156:1826-1839. [PMID: 39834167 DOI: 10.1002/ijc.35306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
Accurate staging is essential for the optimal management of patients with colorectal cancer (CRC). The role of tumor deposits (TDs) in CRC staging has been contentious due to a lack of comprehensive understanding of their clinical and biological traits. In this retrospective study, we analyzed large data from 5718 CRC patients diagnosed between 2011 and 2022, ensuring rigorous data collection and long-term follow-up. Patients with positive TDs displayed aggressive clinical features. The risk factors for TDs varied among patients with different backgrounds of lymph node (LN) involvement, and the numbers of TDs and metastatic LNs showed a significantly positive correlation. TDs significantly impacted CRC prognosis, resulting in unfavorable outcomes irrespective of LN status. To delve into the biological characteristics of TDs, we performed transcriptome sequencing, immunohistochemistry, and Kaplan-Meier analyses on tissue samples from the additional CRC cohort and The Cancer Genome Atlas datasets. TDs exhibited aggressive biological phenotypes that were distinct from primary tumors and metastatic LNs, characterized by elevated signatures of epithelial-mesenchymal transition, angiogenesis, and immune suppression. Cox proportional hazards analysis was then applied to reassess the appropriate role of TDs within the TNM staging system, revealing that the prognostic weightiness of TDs in CRC corresponded to N2a rather than N1 in patients with 0-3 LN metastases. Overall, our comprehensive analysis showed that TDs, with their aggressive clinical and biological characteristics, could optimize the staging of CRC, highlighting the need to refine their role within the TNM staging system.
Collapse
Affiliation(s)
- Xi'e Hu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Shuang Xie
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
- Department of General Surgery, 988 Hospital, Joint Logistics Support Force, Zhengzhou, Henan, China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Xin Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Li Gong
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Lin Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Shoujia Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Xianli He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| |
Collapse
|
37
|
Barthez M, Chen D. UPR mt controls the mesenchymal-to-epithelial transition. Nat Metab 2025; 7:871-872. [PMID: 40205157 DOI: 10.1038/s42255-025-01260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Affiliation(s)
- Marine Barthez
- Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Danica Chen
- Program in Metabolic Biology, Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.
| |
Collapse
|
38
|
Li X, Wu Y, Xie B, Xu M, Xie T, Yue W, Lin M, Lin Y, Chen Y. SPP1 Promotes NSCLC Brain Metastasis Via Sequestration of Ubiquitin Ligase RNF114 to Facilitate P85α Ubiquitination. Mol Carcinog 2025; 64:829-841. [PMID: 39918025 DOI: 10.1002/mc.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 04/12/2025]
Abstract
Brain metastasis (BM) is a significant factor contributing to the poor prognosis of patients with non-small cell lung cancer (NSCLC). Secreted phosphoprotein 1 (SPP1) is implicated in the progression and metastasis of several cancers. The role of SPP1 in NSCLC remains unclear, especially in NSCLC BM. This study aimed to identify genes associated with NSCLC BM and to investigate the involvement of SPP1 in NSCLC BM. Integrated genomic analysis was utilized to identify candidate genes in NSCLC. The expression levels of SPP1 were evaluated in NSCLC tissues and cell lines. In vitro and in vivo experiments were conducted to assess the effect of SPP1 on NSCLC cell behavior and BM. The potential mechanisms of SPP1 were demonstrated by CO-IP and liquid chromatography-mass spectrometry (LC-MS). The underlying mechanism involving the PI3K/AKT/mTOR pathway was explored. The results showed that SPP1 expression was upregulated in NSCLC tissues and cell lines. Depletion of SPP1 using shRNA inhibited cell proliferation, migration, and invasion in vitro and suppressed BM in vivo. Mechanistically, SPP1 facilitates the ubiquitination of P85α by interacting with the ubiquitin ligase RNF114, thus playing a role in regulating NSCLC BM through the PI3K/AKT/mTOR signaling pathway. Moreover, immunohistochemistry staining confirmed higher expression of SPP1 in NSCLC tissues with BM compared to those without BM. In summary, elevated SPP1 expression was associated with poor clinical outcomes in NSCLC patients. This study highlights the role of SPP1 as a regulator of cell metastasis and suggests its potential as a novel therapeutic target for BM in NSCLC.
Collapse
Affiliation(s)
- Xiaoqin Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Yun Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Tianjian Xie
- Xiapu County Hospital of Fujian Province, Ningde, China
| | - Wenxiang Yue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ming Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yusheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| |
Collapse
|
39
|
Höpfl S, Özverin M, Nowack H, Tamas R, Clark AG, Radde N, Olayioye MA. Integrated mathematical and experimental modeling uncovers enhanced EMT plasticity upon loss of the DLC1 tumor suppressor. PLoS Comput Biol 2025; 21:e1013076. [PMID: 40354489 PMCID: PMC12121911 DOI: 10.1371/journal.pcbi.1013076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 05/29/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an essential role in embryonic development, wound healing, and tumor progression. Partial EMT states have been linked to metastatic dissemination and drug resistance. Several interconnected feedback loops at the RNA and protein levels control the transition between different cellular states. Using a combination of mathematical modeling and experimental analyses in the TGFβ-responsive breast epithelial MCF10A cell model, we identify a central role for the tumor suppressor protein Deleted in Liver Cancer 1 (DLC1) during EMT. By extending a previous model of EMT comprising key transcription factors and microRNAs, our work shows that DLC1 acts as a positive regulator of TGFβ-driven EMT, mainly by promoting SNAIL1 expression. Our model predictions indicate that DLC1 loss impairs EMT progression. Experimental analyses confirm this prediction and reveal the acquisition of a partial EMT phenotype in DLC1-depleted cells. Furthermore, our model results indicate a possible EMT reversion to partial or epithelial states upon DLC1 loss in MCF10A cells induced toward mesenchymal phenotypes. The increased EMT plasticity of cells lacking DLC1 may explain its importance as a tumor suppressor.
Collapse
Affiliation(s)
- Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Merih Özverin
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Helena Nowack
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Raluca Tamas
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Andrew G. Clark
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Stuttgart, Germany
| | - Nicole Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
40
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
41
|
Carstens JL, Lovisa S. Epithelial-to-mesenchymal transition drives cancer genomic instability. J Exp Clin Cancer Res 2025; 44:135. [PMID: 40301945 PMCID: PMC12042499 DOI: 10.1186/s13046-025-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is a form of embryonic cell plasticity reactivated in adult cells during injury and cancer. A recent study by Perelli et al. demonstrates that EMT confers an evolutionary advantage to tumors by inducing chromosomal instability, structural genomic rearrangements and chromothripsis, thus favoring the emergence of high-fitness malignant clones.
Collapse
Affiliation(s)
- Julienne L Carstens
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy.
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
42
|
Zhou Y, Cao P, Zhu Q. The regulatory role of m6A in cancer metastasis. Front Cell Dev Biol 2025; 13:1539678. [PMID: 40356596 PMCID: PMC12066624 DOI: 10.3389/fcell.2025.1539678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Metastasis remains a primary cause of cancer-related mortality, with its intricate mechanisms continuing to be uncovered through advancing research. Among the various regulatory processes involved, RNA modification has emerged as a critical epitranscriptomic mechanism influencing cancer metastasis. N6-methyladenosine (m6A), recognized as one of the most prevalent and functionally significant RNA modifications, plays a central role in the regulation of RNA metabolism. In this review, we explore the multifaceted role of m6A in the different stages of cancer metastasis, including epithelial-mesenchymal transition, invasion, migration, and colonization. In addition to summarizing the current state of our understanding, we offer insights into how m6A modifications modulate key oncogenic pathways, highlighting the implications of recent discoveries for therapeutic interventions. Furthermore, we critically assess the limitations of previous studies and propose areas for future research, including the potential for targeting m6A as a novel approach in anti-metastatic therapies. Our analysis provides a comprehensive understanding of the regulatory landscape of m6A in metastasis, offering directions for continued exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Cao
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Oishi K, Matsumoto K, Hashimoto S, Uchida F, Hara R, Nishimuta M, Matsumoto T, Iwatake M, Tomoshige K, Doi R, Machino R, Obata T, Nagayasu T. Spheroid morphology of lung cancer cell lines correlates with oncological profiles. Discov Oncol 2025; 16:627. [PMID: 40293538 PMCID: PMC12037941 DOI: 10.1007/s12672-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
We assessed the correlation between Multicellular tumor spheroids (MCTS) morphology and the oncological profile of lung cancer cells. MCTS were generated in five lung cancer cell lines and classified into Type-A MCTS, which showed strong aggregation, and Type-B MCTS, which showed weak aggregation. Drug resistance was higher in Type-A MCTS, and invasive ability was higher in Type-B MCTS. The oncologic profile of lung cancer cell lines correlated with MCTS morphology. MCTS morphology could thus be used in basic oncology research and as a clinical prognostic tool.Registry and the Registration No. of the study/trial Not Applicable.
Collapse
Affiliation(s)
- Kaido Oishi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan.
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan.
| | - Shintaro Hashimoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Fumitake Uchida
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryosuke Hara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Masato Nishimuta
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takamune Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
44
|
Cabral LGDS, Martins IM, Paulo EPDA, Pomini KT, Poyet JL, Maria DA. Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review. Biomolecules 2025; 15:621. [PMID: 40427514 PMCID: PMC12109257 DOI: 10.3390/biom15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) plays a crucial role in the development, progression, and metastasis of oral squamous cell carcinoma (OSCC). The TME comprises various cellular and acellular components, including immune cells, stromal cells, cytokines, extracellular matrix, and the oral microbiome, all of which dynamically interact with tumor cells to influence their behavior. Immunosuppression is a key feature of the OSCC TME, with regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) contributing to an environment that allows tumor cells to evade immune surveillance and supports angiogenesis. The oral microbiome also plays a pivotal role in OSCC pathogenesis, as dysbiosis, or imbalances in the microbiota, can lead to chronic inflammation, which promotes carcinogenesis through the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Pathogens like Porphyromonas gingivalis and Fusobacterium nucleatum have, hence, been implicated in OSCC-driven tumor progression, as they induce inflammation, activate oncogenic pathways, and modulate immune responses. In this review, we discuss how the interplay between immunosuppression and microbiome-driven inflammation creates a tumor-promoting environment in OSCC, leading to treatment resistance and poor patient outcomes, and explore the potential therapeutic implication of a better understanding of OSCC etiology and molecular changes.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Isabela Mancini Martins
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Ellen Paim de Abreu Paulo
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil;
| | - Jean-Luc Poyet
- INSERM UMRS1342—CNRS EMR8000, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| |
Collapse
|
45
|
Deng B, Su P, Cheng L, Zhang J, Zhang X, Yu T, Bao G, Yan T, Yin Y, Shen L, Wang D, Hong L, Miao X, Yang W, Wang C, Xie J, Wang R. Iterative Optimization Yields Stapled Peptides with Superior Pharmacokinetics and Potency for Renal Fibrosis Treatment. J Med Chem 2025; 68:8516-8529. [PMID: 40199779 DOI: 10.1021/acs.jmedchem.5c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Renal fibrosis, resulting from myofibroblast-mediated excessive extracellular matrix (ECM) deposition, lacks effective treatments. Novel peptide DR3penA developed by our group showed therapeutic potential for fibrotic diseases; however, its application was hindered by poor stability and bioavailability. To address this unmet need, we implemented stepwise optimization of DR3penA. The conformationally restricted analogs designed via structural predictions enhanced both activity and stability. Through structure-activity relationship analysis and cleavage site mapping, introducing unnatural amino acids improved stability. Fatty acid modifications conferred fibroblast-selective cytotoxicity and improved pharmacokinetics. After several rounds of progressive modification, peptide 27 exhibited remarkable stability, with a 5.68-fold extended half-life compared to DR3penA. Following profibrotic stimuli, peptide 27 effectively inhibited myofibroblast activation, epithelial-mesenchymal transition, and ECM synthesis. It also attenuated renal fibrosis in a unilateral ureteral obstruction model. Our study leverages multiple modifications that integrate cell and animal models to identify peptide 27 as a promising candidate for renal fibrosis therapy.
Collapse
Affiliation(s)
- Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Ping Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Lu Cheng
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tingli Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yue Yin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Lei Shen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Dan Wang
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Liang Hong
- Guangdong Provincial Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Chenyu Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
46
|
Pagliari F, Tirinato L, Di Fabrizio E. Raman spectroscopies for cancer research and clinical applications: a focus on cancer stem cells. Stem Cells 2025; 43:sxae084. [PMID: 39949042 DOI: 10.1093/stmcls/sxae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
Over the last 2 decades, research has increasingly focused on cancer stem cells (CSCs), considered responsible for tumor formation, resistance to therapies, and relapse. The traditional "static" CSC model used to describe tumor heterogeneity has been challenged by the evidence of CSC dynamic nature and plasticity. A comprehensive understanding of the mechanisms underlying this plasticity, and the capacity to unambiguously identify cancer markers to precisely target CSCs are crucial aspects for advancing cancer research and introducing more effective treatment strategies. In this context, Raman spectroscopy (RS) and specific Raman schemes, including CARS, SRS, SERS, have emerged as innovative tools for molecular analyses both in vitro and in vivo. In fact, these techniques have demonstrated considerable potential in the field of cancer detection, as well as in intraoperative settings, thanks to their label-free nature and minimal invasiveness. However, the RS integration in pre-clinical and clinical applications, particularly in the CSC field, remains limited. This review provides a concise overview of the historical development of RS and its advantages. Then, after introducing the CSC features and the challenges in targeting them with traditional methods, we review and discuss the current literature about the application of RS for revealing and characterizing CSCs and their inherent plasticity, including a brief paragraph about the integration of artificial intelligence with RS. By providing the possibility to better characterize the cellular diversity in their microenvironment, RS could revolutionize current diagnostic and therapeutic approaches, enabling early identification of CSCs and facilitating the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- PolitoBIOMed Lab DISAT Department, Polytechnic University of Turin, 10129 Turin, Italy
| |
Collapse
|
47
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T, Zou D. Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl) 2025; 138:883-893. [PMID: 40012095 PMCID: PMC12037091 DOI: 10.1097/cm9.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), leading to a high incidence of surgical interventions and significant disability. Despite its clinical relevance, no targeted pharmacological therapies are currently available. This review aims to explore the underlying mechanisms driving intestinal fibrosis and address unresolved scientific questions, offering insights into potential future therapeutic strategies. We conducted a literature review using data from PubMed up to October 2024, focusing on studies related to IBD and fibrosis. Intestinal fibrosis results from a complex network involving stromal cells, immune cells, epithelial cells, and the gut microbiota. Chronic inflammation, driven by factors such as dysbiosis, epithelial injury, and immune activation, leads to the production of cytokines like interleukin (IL)-1β, IL-17, and transforming growth factor (TGF)-β. These mediators activate various stromal cell populations, including fibroblasts, pericytes, and smooth muscle cells. The activated stromal cells secrete excessive extracellular matrix components, thereby promoting fibrosis. Additionally, stromal cells influence the immune microenvironment through cytokine production. Future research would focus on elucidating the temporal and spatial relationships between immune cell-driven inflammation and stromal cell-mediated fibrosis. Additionally, investigations are needed to clarify the differentiation origins of excessive extracellular matrix-producing cells, particularly fibroblast activation protein (FAP) + fibroblasts, in the context of intestinal fibrosis. In conclusion, aberrant stromal cell activation, triggered by upstream immune signals, is a key mechanism underlying intestinal fibrosis. Further investigations into immune-stromal cell interactions and stromal cell activation are essential for the development of therapeutic strategies to prevent, alleviate, and potentially reverse fibrosis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danshu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
48
|
Zhang M, Li J, Meng X, Sun Q, Xue Z, Wang M, Du F, Zhang J. ITGA5 induces mesenchymal transformation to promote gliomas progression via PI3K/AKT/mTORC1 signaling pathway. Sci Rep 2025; 15:13539. [PMID: 40253517 PMCID: PMC12009355 DOI: 10.1038/s41598-025-98170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Glioma is a common malignant tumor of the central nervous system, characterized by high malignancy, strong invasiveness and high recurrence rate. Integrin α5 (ITGA5), a member of the integrin adhesion molecule family, has been reported to be associated with tumor progression and metastasis. In this study, we first identified the overexpression of ITGA5 in glioma through bioinformatics analysis. Kaplan-Meier analysis, Cox regression analysis, and nomogram modeling revealed that high ITGA5 expression was significantly associated with poor prognosis in glioma patients. The ssGSEA showed that the high expression of ITGA5 had a higher level of immune cell infiltration, especially aDCs, B cells, CD8 + T cells, Macrophages, T helper cells, etc. To validate the results of bioinformatics analysis, we used qRT-PCR and Western blot assay confirmed that ITGA5 expression was up-regulated in glioma tissues and increased with pathological grade. Immunohistochemistry showed that high expression of ITGA5 was positively correlated with WHO grade, Ki67 expression and P53 status (P < 0.05). Univariate and multivariate Cox regression analysis showed that ITGA5 expression was an independent prognostic marker in gliomas. Functionally, silencing of ITGA5 significantly inhibited the proliferation, invasion, and migration of glioma cells. The GSEA analysis indicated that ITGA5 was involved in mesenchymal transformation, PI3K/AKT/mTORC1 pathways. In vitro experiments further confirmed that ITGA5 positively regulates mesenchymal transformation and activates the PI3K/AKT/mTORC1 pathway. Moreover, treatment with PI3K activator 740Y-P was able to reverse the effects of ITGA5 silencing on glioma cells growth and mesenchymal transformation. Therefore, ITGA5 may be a potential therapeutic target for the individualized treatment of glioma patients.
Collapse
Affiliation(s)
- Moxuan Zhang
- Beijing Neurosurgery Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong Province, China
| | - Xianglong Meng
- Department of Neurosurgery, Beijing Daxing District People's Hospital, Beijing, 102699, China
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Zhengchun Xue
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
49
|
Liu L, He Y, Du H, Tang M, Wang T, Tan J, Zha L, Yang L, Ashrafizadeh M, Tian Y, Zhou H. Biological profile of breast cancer brain metastasis. Acta Neuropathol Commun 2025; 13:78. [PMID: 40253355 PMCID: PMC12008903 DOI: 10.1186/s40478-025-01983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/08/2025] [Indexed: 04/21/2025] Open
Abstract
Breast cancer is one of the leading causes of death worldwide. The aggressive behaviour of breast tumor results from their metastasis. Notably, the brain tissue is one of the common regions of metastasis, thereby reducing the overall survival of patients. Moreover, the metastatic tumors demonstrate poor response or resistance to therapies. In addition, breast cancer brain metastasis provides the poor prognosis of patients. Therefore, it is of importance to understand the mechanisms in breast cancer brain metastasis. Both cell lines and animal models have been developed for the evaluation of breast cancer brain metastasis. Moreover, different tumor microenvironment components and other factors such as lymphocytes and astrocytes can affect brain metastasis. The breast cancer cells can disrupt the blood-brain barrier (BBB) during their metastasis into brain, developing blood-tumor barrier to enhance carcinogenesis. The breast cancer brain metastasis can be increased by the dysregulation of chemokines, STAT3, Wnt, Notch and PI3K/Akt. On the other hand, the effective therapeutics have been developed for the brain metastasis such as introduction of nanoparticles. Moreover, the disruption of BBB by ultrasound can increase the entrance of bioactive compounds to the brain tissue. In order to improve specificity and selectivity, the nanoparticles for the delivery of therapeutics and crossing over BBB have been developed to suppress breast cancer brain metastasis.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Suining Central Hospital, Suning, 629000, China
| | - Yuan He
- Department of Oncology, Yunyang County People's Hospital, Chongqing, 404500, China
| | - Hongyu Du
- Department of General Medicine, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongging University of Technology, Chongqing, 400054, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Tingting Wang
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jieren Tan
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, PR China
| | - Lisha Zha
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, PR China
| | - Li Yang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL, 60532, USA.
- Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
| | - Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou, 510080, China.
| |
Collapse
|
50
|
Wang R, Hou Z, Gao X, Wu B, Hu H, Wu H. The role of MICAL2 in cancer progression: mechanisms, challenges, and therapeutic potential. Hum Cell 2025; 38:89. [PMID: 40240704 DOI: 10.1007/s13577-025-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Cancer is the greatest threat to public health worldwide and a major cause of human death. Compared with conventional chemotherapy, agents targeting key oncogenic drivers and signaling mechanisms are becoming an attractive treatment strategy. Molecule interacting with CasL 2 (MICAL2) is a flavin protein monooxygenase family protein that interacts with CasL2 and is involved in cytoskeletal redox regulation, axon-directed regulation, cell transport, and apoptosis. MICAL2 induces F-actin depolymerization through REDOX modification, thereby promoting the expression of epithelial-mesenchymal transition (EMT)-related proteins and inducing cancer cell invasion and proliferation. Mechanistically, MICAL2 induces EMT by regulating the serum response factor (SRF)/myocardin-related transcription factor A (MRTF-A) signaling pathway, and the semaphorin/plexin pathway and inducing reactive oxygen species (ROS) production. Recent studies have shown that MICAL2 is highly expressed in tumors, accelerates tumor progression, and is a novel tumor-promoting factor. This article summarizes recent research findings to review the biological functions of MICAL2, the potential mechanisms related to cancer progression, and discusses the challenges and prospects in this area, providing a new theoretical basis for clinical molecular targeted therapy for cancer.
Collapse
Affiliation(s)
- Ruiying Wang
- Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi, China
| | - Zhijuan Hou
- Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi, China
| | - Xiao Gao
- Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi, China
| | - Binyan Wu
- Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi, China
| | - Huizheng Hu
- Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi, China.
| | - Hongpei Wu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, China.
| |
Collapse
|