1
|
Joshi V, Swati, Mishra A, Panda A, Sharma V. The role of circular RNAs in regulating cytokine signaling in cancer. FEBS Open Bio 2025. [PMID: 40356340 DOI: 10.1002/2211-5463.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/30/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulation of cytokine signaling is central to the development and progression of cancer. Cytokines are not only involved in promoting cancer development but also regulate anti-tumor immune responses. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules lacking free ends, which have emerged as critical regulators of cytokine signaling. Transcriptional and post-transcriptional regulation of cytokine signaling by circRNAs contributes to cancer pathogenesis. Here, we discuss the emerging role of circRNAs in modulating cytokine signaling pathways that regulate cancer development. In particular, we examine the role of circRNAs in TGF-β, IL-6, IL-10, TNF-α, VEGF, FGF, PDGF, and chemokine signaling in cancer.
Collapse
Affiliation(s)
- Vandana Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, India
| | | | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| |
Collapse
|
2
|
Cao Y, He Y, Liao L, Xu L. Circular RNAs perspective: exploring the direction of immunotherapy for colorectal cancer. Front Oncol 2025; 15:1554179. [PMID: 40291917 PMCID: PMC12021614 DOI: 10.3389/fonc.2025.1554179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Circular RNAs (circRNAs) are multifaceted molecules that play a pivotal role in regulating gene expression at both transcriptional and post-transcriptional levels. Their expression is highly tissue-specific and developmentally regulated, making them critical players in various physiological processes and diseases, particularly cancer. In colorectal cancer, circRNAs exhibit significantly dysregulated expression patterns and profoundly influence disease progression through diverse molecular mechanisms. Unraveling the complex roles of circRNAs in modulating colorectal cancer immunotherapy outcomes highlights their potential as both promising biomarkers and therapeutic targets. Moving forward, advancements in circRNA-based therapeutic strategies and delivery systems are poised to transform precision medicine, enabling early colorectal cancer diagnosis and improving patient prognosis.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
- The First Clinical Medical College of Guangdong Medical University, Zhanjiang, China
| | - Yuxing He
- Department of Medical Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| | - Lingshan Liao
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| | - Lixin Xu
- Neurosurgery Department, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| |
Collapse
|
3
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xu F, Chen M, Lin Y, Zhou S, Li J, Yu Y, Xu J, Wu W, Chen Y, Zhang H, Wei Y, Wang W. Functional Three-Dimensional Zeolitic Imidazolate Framework with an Ordered Macroporous Structure for the Isolation of Extracellular Vesicles. Anal Chem 2024; 96:17640-17648. [PMID: 39440634 DOI: 10.1021/acs.analchem.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
6
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
7
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
8
|
Qiu H, Yang B, Chen Y, Zhu Q, Wen F, Peng M, Wang G, Guo G, Chen B, Maarouf M, Fang M, Chen JL. Influenza A Virus-Induced circRNA circMerTK Negatively Regulates Innate Antiviral Responses. Microbiol Spectr 2023; 11:e0363722. [PMID: 36847523 PMCID: PMC10100971 DOI: 10.1128/spectrum.03637-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon β (IFN-β) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-β production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.
Collapse
Affiliation(s)
- Haori Qiu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qianwen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Faxin Wen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Peng
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqing Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|