1
|
Takai M, Mori S, Honoki K, Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-mediated signaling in cancer cell biology. J Bioenerg Biomembr 2024; 56:475-482. [PMID: 38886303 DOI: 10.1007/s10863-024-10028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Lysophosphatidic acid (LPA) is a simple lipid which is endogenously synthesized from lysophosphatidylcholine (LPC) by autotaxin (ATX). LPA mediates a variety of cellular responses through the binding of G protein-coupled LPA receptors (LPA1 to LPA6). It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancy. Genetic alterations and epigenetic changes of LPA receptors have been detected in some cancer cells as well as LPA per se. Moreover, LPA receptors contribute to the promotion of tumor progression, including cell proliferation, invasion, metastasis, tumorigenicity, and angiogenesis. In recent studies, the activation of LPA receptor-mediated signaling regulates chemoresistance and radiosensitivity in cancer cells. This review provides an updated overview on the roles of LPA receptor-mediated signaling in the regulation of cancer cell functions and its potential utility as a molecular target for novel therapies in clinical cancer approaches.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4- 1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Oncology & Reconstructive Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Nara, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4- 1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan.
| |
Collapse
|
2
|
Hwang SH, Kim HG, Lee M. Paradoxical downregulation of LPAR3 exerts tumor-promoting activity through autophagy induction in Ras-transformed cells. BMC Cancer 2022; 22:969. [PMID: 36088312 PMCID: PMC9463806 DOI: 10.1186/s12885-022-10053-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lysophosphatidic acid receptor 3 (LPAR3) is coupled to Gαi/o and Gα11/q signaling. Previously, we reported that LPAR3 is highly methylated in carcinogen-induced transformed cells. Here, we demonstrate that LPAR3 exhibits malignant transforming activities, despite being downregulated in transformed cells. Methods The LPAR3 knockout (KO) in NIH 3 T3 and Bhas 42 cells was established using the CRISPR/Cas9 system. Both RT-PCR and DNA sequencing were performed to confirm the KO of LPAR3. The cellular effects of LPAR3 KO were further examined by WST-1 assay, immunoblotting analysis, transwell migration assay, colony formation assay, wound scratch assday, in vitro cell transformation assay, and autophagy assay. Results In v-H-ras-transformed cells (Ras-NIH 3 T3) with LPAR3 downregulation, ectopic expression of LPAR3 significantly enhanced the migration. In particular, LPAR3 knockout (KO) in Bhas 42 (v-Ha-ras transfected Balb/c 3 T3) and NIH 3 T3 cells caused a decrease in cell survival, transformed foci, and colony formation. LPAR3 KO led to the robust accumulation of LC3-II and autophagosomes and inhibition of autophagic flux by disrupting autophagosome fusion with lysosome. Conversely, autolysosome maturation proceeded normally in Ras-NIH 3 T3 cells upon LPAR3 downregulation. Basal phosphorylation of MEK and ERK markedly increased in Ras-NIH 3 T3 cells, whereas being significantly lower in LPAR3 KO cells, suggesting that increased MEK signaling is involved in autophagosome–lysosome fusion in Ras-NIH 3 T3 cells. Conclusions Paradoxical downregulation of LPAR3 exerts cooperative tumor-promoting activity with MEK activation through autophagy induction in Ras-transformed cells. Our findings have implications for the development of cancer chemotherapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10053-0.
Collapse
|
3
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
4
|
Hong W, Ying H, Lin F, Ding R, Wang W, Zhang M. lncRNA LINC00460 Silencing Represses EMT in Colon Cancer through Downregulation of ANXA2 via Upregulating miR-433-3p. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:1209-1218. [PMID: 32069703 PMCID: PMC7019044 DOI: 10.1016/j.omtn.2019.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Colon cancer (CC), one of the major causes of tumor-associated death, is often presented with a heterogenic pool of cells with unique differentiation patterns. This study explored the functions that LINC00460 displayed in CC by regulating microRNA-433-3p (miR-433-3p) and Annexin A2 (ANXA2). LINC00460 expression was either silenced or overexpressed in HCT-116 and LOVO cells to explore the functional roles of LINC00460 in CC. The relationship between miR-433-3p and LINC00460/ANXA2 was analyzed using dual-luciferase reporter assay, RNA-pull down, and RNA immunoprecipitation (RIP) assays. Cell proliferation, metastasis, invasion, and apoptosis were examined in vitro, and tumorigenicity was evaluated in vivo following LINC00460 silencing. Additionally, the regulatory mechanisms were investigated using LINC00460 and ANXA2 gain- or loss-of-function experiments. We found that LINC00460 was expressed highly in CC. Downregulation of LINC00460 inhibited cell invasion and proliferation in vitro and restrained tumor growth in vivo. Moreover, LINC00460 was able to specifically bind to miR-433-3p to increase the expression of ANXA2. Furthermore, LINC00460 downregulated the E-cadherin expression and upregulated the vimentin and N-cadherin expression by upregulating ANXA2, therefore inducing epithelial-mesenchymal transition. These findings suggested that LINC00460 might function as an oncogenic long non-coding RNA (lncRNA) in CC development and could be explored as a potential biomarker and therapeutic target for CC.
Collapse
Affiliation(s)
- Weiwen Hong
- Department of Anus & Intestine Surgery, Taizhou First People's Hospital, Taizhou 318020, P.R. China
| | - Hongan Ying
- General Department, Taizhou First People's Hospital, Taizhou 318020, P.R. China
| | - Feng Lin
- Department of General Surgery, Taizhou First People's Hospital, Taizhou 318020, P.R. China
| | - Ruliang Ding
- Department of Anus & Intestine Surgery, Taizhou First People's Hospital, Taizhou 318020, P.R. China
| | - Weiya Wang
- Department of Anus & Intestine Surgery, Taizhou First People's Hospital, Taizhou 318020, P.R. China
| | - Meng Zhang
- Department of General Surgery, Taizhou First People's Hospital, Taizhou 318020, P.R. China.
| |
Collapse
|
5
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
6
|
Tsutsumi T, Inoue M, Okamoto Y, Ishihara A, Tokumura A. Daily Intake of High-Fat Diet with Lysophosphatidic Acid-Rich Soybean Phospholipids Augments Colon Tumorigenesis in Kyoto Apc Delta Rats. Dig Dis Sci 2017; 62:669-677. [PMID: 28050783 DOI: 10.1007/s10620-016-4434-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND Oral administration of lysophosphatidic acid (LPA) was shown to attenuate gastric ulceration in rats and mice but aggravate intestinal tumorigenesis in mice. AIMS The present study examined whether dietary LPA induces or prevents development of colorectal tumor in rats. METHODS Kyoto Apc Delta rats fed high-fat diet with or without an LPA-rich soybean phospholipid mixture (LSP, 0.1 or 1%) were treated with azoxymethane and dextran sodium sulfate to induce colorectal tumorigenesis. Rats were killed 15 weeks after azoxymethane treatment, and size, total number, location, and severity of colorectal tumors were assessed. Expression of mRNA of LPA receptors in rat colon tissue was assayed. RESULTS Rats fed the diet supplemented with 1% LSP had a higher number of tumors 2-4 mm long compared than those with or without 0.1% LSP. The mean distance of tumors >4 mm long from the anus was significantly higher than those of tumors <2 and 2-4 mm long in rats fed 1% LSP-supplemented diet. Supplementation of the diet with 0.1% LSP decreased mRNA expression of LPA5 in colon tumors of rats. CONCLUSIONS Dietary supplementation of LPA-rich phospholipids dose-dependently augmented colorectal tumorigenesis. Decreased expression of LPA5 in colon tumors may be relevant to augmented tumorigenesis.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshinomachi, Nobeoka, Japan.
| | - Manami Inoue
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, 1-78-1 Shomachi, Tokushima, Japan
| | - Yoko Okamoto
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, 1-78-1 Shomachi, Tokushima, Japan
| | - Akira Ishihara
- Department of Anatomic Pathology, Prefectural Nobeoka Hospital, 2-1-10 Shinkoji, Nobeoka, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, 1-78-1 Shomachi, Tokushima, Japan
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi Asaminami-ku, Hiroshima, Japan
| |
Collapse
|
7
|
Takahashi K, Fukushima K, Onishi Y, Inui K, Node Y, Fukushima N, Honoki K, Tsujiuchi T. Lysophosphatidic acid (LPA) signaling via LPA 4 and LPA 6 negatively regulates cell motile activities of colon cancer cells. Biochem Biophys Res Commun 2016; 483:652-657. [PMID: 27993681 DOI: 10.1016/j.bbrc.2016.12.088] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Lysophosphatidic acid (LPA) is an extracellular biological lipid and interacts with six subtypes of G protein-coupled LPA receptors (LPA1 to LPA6). LPA receptors exhibit a variety of cellular functions, depending on types of cancer cells. In this study, to assess the roles of LPA4 and LPA6 in cell growth and motile activities of colon cancer cells, LPA4 and LPA6 knockdown cells were established from DLD1 and HCT116 cells. LPA treatment increased the cell growth activities of LPA4 and LPA6 knockdown cells, compared with control cells. The cell motile activities of LPA4 and LPA6 knockdown cells were significantly higher than those of control cells. To evaluate the effects of LPA4 and LPA6 on cell motile activity induced by anticancer drug, long-term fluorouracil (5-FU) treated (DLD-5FU) cells were generated. The expression levels of LPAR1, LPAR4 and LPAR6 genes were significantly increased in DLD-5FU cells. DLD-5FU cells showed the high cell motile activity, compared with DLD1 cells. The increased cell motile activity was markedly stimulated by LPA4 and LPA6 knockdown. In contrast, the cell motile activity enhanced by 5-FU treatment was suppressed by LPA1 knockdown. These results suggest that LPA signaling via LPA4 and LPA6 negatively regulates the cell motile activities of DLD1 and HCT116 cells as well as long-term 5-FU treated cells.
Collapse
Affiliation(s)
- Kaede Takahashi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Kaori Fukushima
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yuka Onishi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Karin Inui
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yusuke Node
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
8
|
Ryu JM, Han HJ. Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 2015; 33:819-32. [PMID: 25376707 DOI: 10.1002/stem.1882] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Bioactive molecules and stem cell-based regenerative engineering is emerging a promising approach for regenerating tissues. Autotaxin (ATX) is a key enzyme that regulates lysophosphatidic acid (LPA) levels in biological fluids, which exerts a wide range of cellular functions. However, the biological role of ATX in human umbilical cord blood-derived mesenchymal stem cells (hMSCs) migration remains to be fully elucidated. In this study, we observed that hMSCs, which were stimulated with LPA, accelerated wound healing, and LPA increased the migration of hMSCs into a wound site in a mouse skin wound healing model. In an experiment to investigate the effect of LPA on hMSC migration, ATX and LPA increased hMSC migration in a dose-dependent manner, and LPA receptor 1/3 siRNA transfections inhibited the ATX-induced cell migration. Furthermore, LPA increased Ca(2+) influx and PKC phosphorylation, which were blocked by Gαi and Gαq knockdown as well as by Ptx pretreatment. LPA increased GSK3β phosphorylation and β-catenin activation. LPA induced the cytosol to nuclear translocation of β-catenin, which was inhibited by PKC inhibitors. LPA stimulated the binding of β-catenin on the E-box located in the promoter of the CDH-1 gene and decreased CDH-1 promoter activity. In addition, the ATX and LPA-induced increase in hMSC migration was blocked by β-catenin siRNA transfection. LPA-induced PKC phosphorylation is also involved in Rac1 and CDC42 activation, and Rac1 and CDC42 knockdown abolished LPA-induced F-actin reorganization. In conclusion, ATX/LPA stimulates the migration of hMSCs through LPAR1/3-dependent E-cadherin reduction and cytoskeletal rearrangement via PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
9
|
LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. PLoS One 2015; 10:e0139094. [PMID: 26418031 PMCID: PMC4587977 DOI: 10.1371/journal.pone.0139094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell cycle control.
Collapse
|
10
|
Brusevold IJ, Tveteraas IH, Aasrum M, Ødegård J, Sandnes DL, Christoffersen T. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer 2014; 14:432. [PMID: 24928086 PMCID: PMC4065589 DOI: 10.1186/1471-2407-14-432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Oral squamous cell carcinoma is an aggressive neoplasm with serious morbidity and mortality, which typically spreads through local invasive growth. Lysophosphatidic acid (LPA) is involved in a number of biological processes, and may have a role in cancer cell migration and invasiveness. LPA is present in most tissues and can activate cells through six different LPA receptors (LPAR1-6). Although LPA is predominantly promigratory, some of the receptors may have antimigratory effects in certain cells. The signalling mechanisms of LPA are not fully understood, and in oral carcinoma cells the specific receptors and pathways involved in LPA-stimulated migration are unknown. Methods The oral carcinoma cell lines E10, SCC-9, and D2 were investigated. Cell migration was studied in a scratch wound assay, and invasion was demonstrated in organotypic three dimensional co-cultures. Protein and mRNA expression of LPA receptors was studied with Western blotting and qRT-PCR. Activation of signalling proteins was examined with Western blotting and isoelectric focusing, and signalling mechanisms were further explored using pharmacological agents and siRNA directed at specific receptors and pathways. Results LPA stimulated cell migration in the two oral carcinoma cell lines E10 and SCC-9, but was slightly inhibitory in D2. The receptor expression profile and the effects of specific pharmacological antagonist and agonists indicated that LPA-stimulated cell migration was mediated through LPAR3 in E10 and SCC-9. Furthermore, in both these cell lines, the stimulation by LPA was dependent on PKC activity. However, while LPA induced transactivation of EGFR and the stimulated migration was blocked by EGFR inhibitors in E10 cells, LPA did not induce EGFR transactivation in SCC-9 cells. In D2 cells, LPA induced EGFR transactivation, but this was associated with slowing of a very high inherent migration rate in these cells. Conclusion The results demonstrate LPA-stimulated migration in oral carcinoma cells through LPAR3, mediated further by PKC, which acts either in concert with or independently of EGFR transactivation.
Collapse
Affiliation(s)
- Ingvild J Brusevold
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, and Oslo University Hospital, Blindern, P,O, Box 1057, Oslo N-0316, Norway.
| | | | | | | | | | | |
Collapse
|
11
|
Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue. ASIAN PAC J TROP MED 2014; 7:293-6. [DOI: 10.1016/s1995-7645(14)60041-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 11/20/2022] Open
|
12
|
Tsujiuchi T, Hirane M, Dong Y, Fukushima N. Diverse effects of LPA receptors on cell motile activities of cancer cells. J Recept Signal Transduct Res 2014; 34:149-53. [DOI: 10.3109/10799893.2013.876042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Masuda K, Haruta S, Orino K, Kawaminami M, Kurusu S. Autotaxin as a novel, tissue-remodeling-related factor in regressing corpora lutea of cycling rats. FEBS J 2013; 280:6600-12. [DOI: 10.1111/febs.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Kanako Masuda
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Satoru Haruta
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology; School of Veterinary Medicine, Kitasato University; Towada Japan
| |
Collapse
|