1
|
Kushner BH, Modak S, Mauguen A, Basu EM, Kramer K, Roberts SS, Cheung IY, Cheung NKV. A Phase II Trial of Naxitamab plus Stepped-up Dosing of GM-CSF for Patients with High-Risk Neuroblastoma in First Complete Remission. Clin Cancer Res 2025; 31:1877-1884. [PMID: 40067131 DOI: 10.1158/1078-0432.ccr-24-3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Naxitamab is a humanized form of the murine anti-GD2 mAb 3F8. In an international trial, naxitamab + GM-CSF was effective against chemoresistant high-risk neuroblastoma (HR-NB), leading to approval by the FDA. We now report results with patients in first complete remission (CR). PATIENTS AND METHODS The primary objective of this phase II protocol 16-1643 (Clinicaltrials.gov NCT03033303) was to assess event-free survival of patients with HR-NB in first CR treated with naxitamab + GM-CSF plus isotretinoin. HR-NB was defined as MYCN-amplified disease (any age) or metastatic disease at age >18 months. Cycles of immunotherapy were administered monthly up to five cycles and comprised (i) subcutaneously administered priming doses of GM-CSF 250 μg/m2/day on days -4 to -0 (Wednesday-Sunday), followed by a step-up to 500 μg/m2/day on days +1 to +5 (Monday-Friday) and (ii) naxitamab infused intravenously (30-90") on days +1, +3, and +5 (Monday-Wednesday-Friday, i.e., three doses/cycle). The dosage of naxitamab was 3 mg/kg/infusion (9 mg/kg/cycle, i.e., ∼270 mg/m2/cycle). The dosage of isotretinoin was 160 mg/m2/day started after cycle 2, ×14 days/course, and ×6 courses. RESULTS Fifty-nine patients with HR-NB (53 stage 4, 6 stage 3) were enrolled from February 2017 to July 2020. At 36 months, event-free/overall survival rates were 73%/93%, but 50 of 59 patients received after protocol treatment (vaccine and/or difluoromethylornithine). Six of 18 relapses were isolated in the central nervous system. Longer time from diagnosis to enrollment was a significantly adverse prognostic factor (P = 0.04). Twenty-one of 59 patients took no isotretinoin. Treatment was tolerable allowing outpatient administration. CONCLUSIONS Naxitamab + GM-CSF is a good option to consolidate first CR of patients with HR-NB, including those who did not undergo autologous stem-cell transplantation. Efforts to prevent central nervous system relapse are warranted.
Collapse
Affiliation(s)
- Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Balla J, Siddi C, Scherma M, Fadda P, Dedoni S. Antibody conjugates in neuroblastoma: a step forward in precision medicine. Front Oncol 2025; 15:1548524. [PMID: 40129921 PMCID: PMC11931395 DOI: 10.3389/fonc.2025.1548524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer that often manifests in a high-risk form and is characterized by frequent relapses and resistance to conventional therapies. This underscores the urgent need for more effective and targeted treatment strategies. One promising avenue has been the identification of unique or overexpressed surface antigens on neoplastic cells, which has facilitated the development of antibody conjugates and related technologies. These include antibody-drug conjugates (ADCs) and immunotoxins (ITs), which deliver cytotoxic agents directly to tumor cells, as well as antibody-fluorophore conjugates (AFCs), which bind to surface antigens with high specificity to target malignant tumors. Additionally, radioimmunotherapy (RIT) allows the precise delivery of radioactive isotopes linked to a monoclonal antibody directly to the tumor cells. ADCs, ITs, and RIT represent a novel class of anti-cancer agents offering precision therapy with reduced systemic toxicity, enabling longer and potentially more effective treatment regimens. Meanwhile, AFCs are valuable tools in diagnostics, aiding in detecting and characterizing malignant tissues. Despite advancements in antibody conjugates for NB, significant challenges persist, including optimizing payload delivery, mitigating off-target effects, and addressing tumor heterogeneity. Future research should also prioritize refining and integrating these technologies into multimodal treatment protocols to improve outcomes for pediatric NB patients.
Collapse
Affiliation(s)
- Jihane Balla
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Cicone F, Gnesin S, Santo G, Stokke C, Bartolomei M, Cascini GL, Minniti G, Paganelli G, Verger A, Cremonesi M. Do we need dosimetry for the optimization of theranostics in CNS tumors? Neuro Oncol 2024; 26:S242-S258. [PMID: 39351795 PMCID: PMC11631076 DOI: 10.1093/neuonc/noae200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Radiopharmaceutical theranostic treatments have grown exponentially worldwide, and internal dosimetry has attracted attention and resources. Despite some similarities with chemotherapy, radiopharmaceutical treatments are essentially radiotherapy treatments, as the release of radiation into tissues is the determinant of the observed clinical effects. Therefore, absorbed dose calculations are key to explaining dose-effect correlations and individualizing radiopharmaceutical treatments. The present article introduces the basic principles of internal dosimetry and provides an overview of available loco-regional and systemic radiopharmaceutical treatments for central nervous system (CNS) tumors. The specific characteristics of dosimetry as applied to these treatments are highlighted, along with their limitations and most relevant results. Dosimetry is performed with higher precision and better reproducibility than in the past, and dosimetric data should be systematically collected, as treatment planning and verification may help exploit the full potential of theranostic of CNS tumors.
Collapse
Affiliation(s)
- Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia Santo
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Caroline Stokke
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Diagnostic Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Minniti
- IRCCS Neuromed, Pozzilli (IS), Italy
- Radiation Oncology Unit, Department of Radiological Sciences, Oncology and Anatomical Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Paganelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”Meldola, Italy
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, IADI, INSERM, UMR 1254, Université de Lorraine, Nancy, France
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
5
|
Purkayastha S, Shalu H, Gutman D, Holodny A, Modak S, Basu E, Kushner B, Kramer K, Haque S, Stember JN. Evolutionary Strategies AI Addresses Multiple Technical Challenges in Deep Learning Deployment: Proof-of-Principle Demonstration for Neuroblastoma Brain Metastasis Detection. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2920-2930. [PMID: 38886289 PMCID: PMC11612045 DOI: 10.1007/s10278-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the technology across various institutions and practices. A recent innovation, deep neuroevolution (DNE), has been introduced to tackle the overfitting issue by training on small data sets and producing accurate predictions. However, the generalizability of DNE has yet to be proven. This paper strives to overcome this barrier by demonstrating that DNE can achieve satisfactory results in diverse external validation sets. The main innovation of the work is thus showing that DNE can generalize to varied outside data. Our example use case is predicting brain metastasis from neuroblastoma, emphasizing the importance of AI with limited data sets. Despite image collection and labeling advancements, rare diseases will always constrain data availability. We optimized a convolutional neural network (CNN) with DNE to demonstrate generalizability. We trained the CNN with 60 MRI images and tested it on a separate diverse collection of images from over 50 institutions. For comparison, we also trained with the more traditional stochastic gradient descent (SGD) method, with the two variants of (1) training from scratch and (2) transfer learning. Our results show that DNE demonstrates excellent generalizability with 97% accuracy on the heterogeneous testing set, while neither form of SGD could reach 60% accuracy. DNE's ability to generalize from small training sets to external and diverse testing sets suggests that it or similar approaches may play an integral role in improving the clinical performance of AI.
Collapse
Affiliation(s)
- Subhanik Purkayastha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hrithwik Shalu
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India, 600036
| | - David Gutman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ellen Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brian Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph N Stember
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Rice SL, Muñoz FG, Benjamin J, Alnablsi MW, Pillai A, Osborne JR, Beets-Tan R. Transcatheter pseudo-vascular isolation for localization and concentration of a large molecule theranostic probe into a transgenic OncoPIG kidney tumor. Nucl Med Biol 2024; 136-137:108939. [PMID: 39003976 DOI: 10.1016/j.nucmedbio.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Great strides have been made identifying molecular and genetic changes expressed by various tumor types. These molecular and genetic changes are used as pharmacologic targets for precision treatment using large molecule (LM) proteins with high specificity. Theranostics exploits these LM biomolecules via radiochemistry, creating sensitive diagnostic and therapeutic agents. Intravenous (i.v.) LM drugs have an extended biopharmaceutical half-life thus resulting in an insufficient therapeutic index, permitting only palliative brachytherapy due to unacceptably high rates of systemic nontarget radiation doses to normal tissue. We employ tumor arteriole embolization isolating a tumor from the systemic circulation, and local intra-arterial (i.a.) infusion to improve uptake of a LM drug within a porcine renal tumor (RT). METHODS In an oncopig RT we assess the in vivo biodistribution of 99mTc-labeled macroaggregated albumin (MAA) a surrogate for a LM theranostics agent in the RT, kidney, liver, spleen, muscle, blood, and urine. Control animals underwent i.v. infusion and experimental group undergoing arteriography with pseudovascular isolation (PVI) followed by direct i.a. injection. RESULTS Injected dose per gram (%ID/g) of the LM at 1 min was 86.75 ± 3.76 and remained elevated up to 120 min (89.35 ± 5.77) with i.a. PVI, this increase was statistically significant (SS) compared to i.v. (13.38 ± 1.56 and 12.02 ± 1.05; p = 0.0003 p = 0.0006 at 1 and 120 min respectively). The circulating distribution of LM in the blood was less with i.a. vs i.v. infusion (2.28 ± 0.31 vs 25.17 ± 1.84 for i.v. p = 0.033 at 1 min). Other organs displayed a trend towards less exposure to radiation for i.a. with PVI compared to i.v. which was not SS. CONCLUSION PVI followed by i.a. infusion of a LM drug has the potential to significantly increase the first pass uptake within a tumor. This minimally invasive technique can be translated into clinical practice, potentially rendering monoclonal antibody based radioimmunotherapy a viable treatment for renal tumors.
Collapse
Affiliation(s)
- Samuel L Rice
- Netherlands Cancer Institute-Antoni van Leeuwenhoekziekenhuis, Department of Radiology, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands; UT Southwestern Medical Center, Department of Radiology, Interventional Radiology Section, 5959 Harry Hines Blvd., Dallas, TX 75390-9061, Professional Office Building I (HP6.600) Mail Code 8834, United States of America.
| | - Fernando Gómez Muñoz
- Netherlands Cancer Institute-Antoni van Leeuwenhoekziekenhuis, Department of Radiology, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Jamaal Benjamin
- UT Southwestern Medical Center, Department of Radiology, Interventional Radiology Section, 5959 Harry Hines Blvd., Dallas, TX 75390-9061, Professional Office Building I (HP6.600) Mail Code 8834, United States of America
| | - Mhd Wisam Alnablsi
- UT Southwestern Medical Center, Department of Radiology, Interventional Radiology Section, 5959 Harry Hines Blvd., Dallas, TX 75390-9061, Professional Office Building I (HP6.600) Mail Code 8834, United States of America
| | - Anil Pillai
- UT Southwestern Medical Center, Department of Radiology, Interventional Radiology Section, 5959 Harry Hines Blvd., Dallas, TX 75390-9061, Professional Office Building I (HP6.600) Mail Code 8834, United States of America
| | - Joseph R Osborne
- New York-Presbyterian Weill Cornell Medical Center, Department of Radiology, 1305 York Avenue 3rd Floor, New York, NY 10021, United States of America
| | - Regina Beets-Tan
- Netherlands Cancer Institute-Antoni van Leeuwenhoekziekenhuis, Department of Radiology, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
7
|
Epperly R, Gottschalk S, DeRenzo C. CAR T cells redirected to B7-H3 for pediatric solid tumors: Current status and future perspectives. EJC PAEDIATRIC ONCOLOGY 2024; 3:100160. [PMID: 38957786 PMCID: PMC11218663 DOI: 10.1016/j.ejcped.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Despite intensive therapies, pediatric patients with relapsed or refractory solid tumors have poor outcomes and need novel treatments. Immune therapies offer an alternative to conventional treatment options but require the identification of differentially expressed antigens to direct antitumor activity to sites of disease. B7-H3 (CD276) is an immune regulatory protein that is expressed in a range of malignancies and has limited expression in normal tissues. B7-H3 is highly expressed in pediatric solid tumors including osteosarcoma, rhabdomyosarcoma, Ewing sarcoma, Wilms tumor, neuroblastoma, and many rare tumors. In this article we review B7-H3-targeted chimeric antigen receptor (B7-H3-CAR) T cell therapies for pediatric solid tumors, reporting preclinical development strategies and outlining the landscape of active pediatric clinical trials. We identify challenges to the success of CAR T cell therapy for solid tumors including localizing to and penetrating solid tumor sites, evading the hostile tumor microenvironment, supporting T cell expansion and persistence, and avoiding intrinsic tumor resistance. We highlight strategies to overcome these challenges and enhance the effect of B7-H3-CAR T cells, including advanced CAR T cell design and incorporation of combination therapies.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Li L, Nian S, Liu Q, Zhang B, Jimu W, Li C, Huang Z, Hu Q, Huang Y, Yuan Q. Fully human anti-B7-H3 recombinant antibodies inhibited tumor growth by increasing T cell infiltration. Int Immunopharmacol 2024; 132:111926. [PMID: 38552297 DOI: 10.1016/j.intimp.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.
Collapse
Affiliation(s)
- Lin Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Siji Nian
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Qin Liu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Bo Zhang
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Wulemo Jimu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Chengwen Li
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Zhanwen Huang
- Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China
| | - Qiaosen Hu
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China
| | - Yuanshuai Huang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- The School of Basic Medical Sciences, Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan province 646000, China; Institute of nuclear medicine, Southwest Medical University, Department of Blood transfusion, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, China.
| |
Collapse
|
9
|
Cao JW, Lake J, Impastato R, Chow L, Perez L, Chubb L, Kurihara J, Verneris MR, Dow S. Targeting osteosarcoma with canine B7-H3 CAR T cells and impact of CXCR2 Co-expression on functional activity. Cancer Immunol Immunother 2024; 73:77. [PMID: 38554158 PMCID: PMC10981605 DOI: 10.1007/s00262-024-03642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 04/01/2024]
Abstract
The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.
Collapse
Affiliation(s)
- Jennifer W Cao
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Jessica Lake
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renata Impastato
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luisanny Perez
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laura Chubb
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael R Verneris
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
10
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
11
|
Morgan J, Manickavel S, Sorace A, Hartman Y, Eli A, Massicano A, Gonzalez ML, Warram JM, Walsh E. Utility of Targeted Positron Emission Tomography Imaging to Predict Schwannoma Growth in a Murine Tumor Model. Laryngoscope 2024; 134:1372-1380. [PMID: 37578272 DOI: 10.1002/lary.30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE To identify if targeted positron emission tomography (PET) imaging with radiolabeled antibodies can predict tumor growth rate and ultimate tumor size in a murine flank schwannoma model. STUDY DESIGN Animal research study. METHODS Rat schwannoma cells were cultured and implanted into 40 athymic nude mice. Once tumors reached 5 mm in diameter, 30 mice were injected with zirconium-89 labeled antibodies (HER2/Neu, vascular endothelial growth factor receptor 2 (VEGFR2), or IgG isotype). PET/CT was performed, and standardized uptake values (SUV) were recorded. Tumors were serially measured until mice were sacrificed per IACUC protocol. Statistical analysis was performed to measure correlations between SUV values, tumor size, and growth. RESULTS Mean tumor sizes in mm3 on Day 0 were 144 ± 162 for anti-HER2/Neu, 212 ± 247 for anti-VEGFR2, and 172 ± 204 for IgG isotype groups respectively. Mean growth rates in mm3 /day were 531 ± 250 for HER2, 584 ± 188 for VEGFR2, and 416 ± 163 for the IgG isotype group. For both initial tumor size and growth rates, there was no significant difference between groups. There were significant correlations between maximum tumor volume and both the SUV max in the HER2 group (p = 0.0218, R2 = 0.5020), and we observed significant correlations between growth rate, and SUV values (p = 0.0156, R2 = 0.5394). Respectively, in the anti-VEGFR2 group, there were no significant correlations. CONCLUSION In a murine schwannoma model, immunotargeted PET imaging with anti-HER2/Neu antibodies predicted tumor growth rate and final tumor size. Laryngoscope, 134:1372-1380, 2024.
Collapse
Affiliation(s)
- Jake Morgan
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sudhir Manickavel
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anna Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yolanda Hartman
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abbigael Eli
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adriana Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manuel Lora Gonzalez
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erika Walsh
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
13
|
Meenakshi S, Maharana KC, Nama L, Vadla UK, Dhingra S, Ravichandiran V, Murti K, Kumar N. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy. Curr Neuropharmacol 2024; 22:1248-1270. [PMID: 37605389 PMCID: PMC10964098 DOI: 10.2174/1570159x21666230809110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 08/23/2023] Open
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Udaya Kumar Vadla
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Velayutham Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| |
Collapse
|
14
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Wang Y, Ji N, Zhang Y, Chu J, Pan C, Zhang P, Ma W, Zhang X, Xi JJ, Chen M, Zhang Y, Zhang L, Sun T. B7H3-targeting chimeric antigen receptor modification enhances antitumor effect of Vγ9Vδ2 T cells in glioblastoma. J Transl Med 2023; 21:672. [PMID: 37770968 PMCID: PMC10537973 DOI: 10.1186/s12967-023-04514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. This study investigates the therapeutic potential of human Vγ9Vδ2 T cells in GBM treatment. The sensitivity of different glioma specimens to Vγ9Vδ2 T cell-mediated cytotoxicity is assessed using a patient-derived tumor cell clusters (PTCs) model. METHODS The study evaluates the anti-tumor effect of Vγ9Vδ2 T cells in 26 glioma cases through the PTCs model. Protein expression of BTN2A1 and BTN3A1, along with gene expression related to lipid metabolism and glioma inflammatory response pathways, is analyzed in matched tumor tissue samples. Additionally, the study explores two strategies to re-sensitize tumors in the weak anti-tumor effect (WAT) group: utilizing a BTN3A1 agonistic antibody or employing bisphosphonates to inhibit farnesyl diphosphate synthase (FPPS). Furthermore, the study investigates the efficacy of genetically engineered Vγ9Vδ2 T cells expressing Car-B7H3 in targeting diverse GBM specimens. RESULTS The results demonstrate that Vγ9Vδ2 T cells display a stronger anti-tumor effect (SAT) in six glioma cases, while showing a weaker effect (WAT) in twenty cases. The SAT group exhibits elevated protein expression of BTN2A1 and BTN3A1, accompanied by differential gene expression related to lipid metabolism and glioma inflammatory response pathways. Importantly, the study reveals that the WAT group GBM can enhance Vγ9Vδ2 T cell-mediated killing sensitivity by incorporating either a BTN3A1 agonistic antibody or bisphosphonates. Both approaches support TCR-BTN mediated tumor recognition, which is distinct from the conventional MHC-peptide recognition by αβ T cells. Furthermore, the study explores an alternative strategy by genetically engineering Vγ9Vδ2 T cells with Car-B7H3, and both non-engineered and Car-B7H3 Vγ9Vδ2 T cells demonstrate promising efficacy in vivo, underscoring the versatile potential of Vγ9Vδ2 T cells for GBM treatment. CONCLUSIONS Vγ9Vδ2 T cells demonstrate a robust anti-tumor effect in some glioma cases, while weaker in others. Elevated BTN2A1 and BTN3A1 expression correlates with improved response. WAT group tumors can be sensitized using a BTN3A1 agonistic antibody or bisphosphonates. Genetically engineered Vγ9Vδ2 T cells, i.e., Car-B7H3, show promising efficacy. These results together highlight the versatility of Vγ9Vδ2 T cells for GBM treatment.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Nan Ji
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, First Affiliated Hospital, Jiangsu Provincial Key Laboratory of Stem Cell and Biomedical Materials, Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mingze Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Liwei Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Tao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
16
|
Flaadt T, Ebinger M, Schreiber M, Ladenstein RL, Simon T, Lode HN, Hero B, Schuhmann MU, Schäfer J, Paulsen F, Timmermann B, Eggert A, Lang P. Multimodal Therapy with Consolidating Haploidentical Stem Cell Transplantation and Dinutuximab Beta for Patients with High-Risk Neuroblastoma and Central Nervous System Relapse. J Clin Med 2023; 12:6196. [PMID: 37834840 PMCID: PMC10573405 DOI: 10.3390/jcm12196196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Despite highly intensive multimodality treatment regimens, the prognosis of patients with high-risk neuroblastoma (HRNB) and central nervous system (CNS) relapse remains poor. We retrospectively reviewed data from 13 patients with HRNB and CNS relapse who received multimodal therapy with consolidating haploidentical stem cell transplantation (haplo-SCT) followed by dinutuximab beta ± subcutaneous interleukin-2 (scIL-2). Following individual relapse treatment, patients aged 1-21 years underwent haplo-SCT with T/B-cell-depleted grafts followed by dinutuximab beta 20 mg/m2/day × 5 days for 5-6 cycles. If a response was demonstrated after cycle 5 or 6, patients received up to nine treatment cycles. After haplo-SCT, eight patients had a complete response, four had a partial response, and one had a stable disease. All 13 patients received ≥3 cycles of immunotherapy. At the end of the follow-up, 9/13 patients (66.7%) demonstrated complete response. As of July 2023, all nine patients remain disease-free, with a median follow-up time of 5.1 years since relapse. Estimated 5-year event-free and overall survival rates were 55.5% and 65.27%, respectively. Dinutuximab beta ± scIL-2 following haplo-SCT is a promising treatment option with a generally well-tolerated safety profile for patients with HRNB and CNS relapse.
Collapse
Affiliation(s)
- Tim Flaadt
- Department of Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (M.E.); (M.S.); (P.L.)
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (M.E.); (M.S.); (P.L.)
| | - Malin Schreiber
- Department of Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (M.E.); (M.S.); (P.L.)
| | - Ruth L. Ladenstein
- Department of Pediatrics, St Anna Children’s Hospital, Medical University, 1090 Vienna, Austria;
- Studies and Statistics of Integrated Research and Projects, Children’s Cancer Research Institute, 1090 Vienna, Austria
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Hospital, University of Cologne, 50937 Köln, Germany; (T.S.); (B.H.)
| | - Holger N. Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University Hospital, University of Cologne, 50937 Köln, Germany; (T.S.); (B.H.)
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, 72076 Tuebingen, Germany;
| | - Jürgen Schäfer
- Department for Diagnostic and Interventional Radiology, University Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitaetsmedizin Berlin, 13353 Berlin, Germany;
| | - Peter Lang
- Department of Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (M.E.); (M.S.); (P.L.)
| |
Collapse
|
17
|
Yamada A, Kinoshita M, Kamimura S, Jinnouchi T, Azuma M, Yamashita S, Yokogami K, Takeshima H, Moritake H. Novel Strategy Involving High-Dose Chemotherapy with Stem Cell Rescue Followed by Intrathecal Topotecan Maintenance Therapy without Whole-Brain Irradiation for Atypical Teratoid/Rhabdoid Tumors. Pediatr Hematol Oncol 2023; 40:629-642. [PMID: 37519026 DOI: 10.1080/08880018.2023.2220734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a rare aggressive central nervous system tumor that typically affects children under three years old and has poor survival with a high risk for neurologic deficits. The primary purpose of this study was to successfully treat the disease and delay or avoid whole-brain radiotherapy for children with AT/RT. A retrospective analysis was performed for six children diagnosed with AT/RT and treated with multimodal treatment at a single institute between 2014 and 2020. Furthermore, germline SMARCB1 aberrations and MGMT methylation status of the tumors were analyzed. One patient who did not receive a modified IRS-III regimen replaced with ifosphamide, carboplatin, and etoposide (ICE) in induction chemotherapy was excluded from this analysis. Five patients who received ICE therapy were under three years old. After a surgical approach, they received intensive chemotherapy and high-dose chemotherapy with autologous peripheral blood stem cell transplantation (HDCT/autoPBSCT) followed by intrathecal topotecan maintenance therapy. Three patients underwent single HDCT/autoPBSCT, and the other two received sequential treatment. Two patients with germline SMARCB1 aberrations and metastases died of progressive AT/RT or therapy-related malignancy, while 3 with localized tumors without germline SMARCB1 aberrations remained alive. One survivor received local radiotherapy only, while the other two did not undergo radiotherapy. All three surviving patients were able to avoid whole-brain radiotherapy. Our results suggest that AT/RT patients with localized tumors without germline SMARCB1 aberrations can be rescued with multimodal therapy, including induction therapy containing ICE followed by HDCT/autoPBSCT and intrathecal topotecan maintenance therapy without radiotherapy. Further large-scale studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Jinnouchi
- Division of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Minako Azuma
- Division of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamashita
- Division of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kiyotaka Yokogami
- Division of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- Division of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
18
|
Guo X, Chang M, Wang Y, Xing B, Ma W. B7-H3 in Brain Malignancies: Immunology and Immunotherapy. Int J Biol Sci 2023; 19:3762-3780. [PMID: 37564196 PMCID: PMC10411461 DOI: 10.7150/ijbs.85813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
The immune checkpoint B7-H3 (CD276), a member of the B7 family with immunoregulatory properties, has been identified recently as a novel target for immunotherapy for refractory blood cancers and solid malignant tumors. While research on B7-H3 in brain malignancies is limited, there is growing interest in exploring its therapeutic potential in this context. B7-H3 plays a crucial role in regulating the functions of immune cells, cancer-associated fibroblasts, and endothelial cells within the tumor microenvironment, contributing to the creation of a pro-tumorigenic milieu. This microenvironment promotes uncontrolled cancer cell proliferation, enhanced metabolism, increased cancer stemness, and resistance to standard treatments. Blocking B7-H3 and terminating its immunosuppressive function is expected to improve anti-tumor immune responses and, in turn, ameliorate the progression of tumors. Results from preclinical or observative studies and early-phase trials targeting B7-H3 have revealed promising anti-tumor efficacy and acceptable toxicity in glioblastoma (GBM), diffuse intrinsic pontine glioma (DIPG), medulloblastoma, neuroblastoma, craniopharyngioma, atypical teratoid/rhabdoid tumor, and brain metastases. Ongoing clinical trials are now investigating the use of CAR-T cell therapy and antibody-drug conjugate therapy, either alone or in combination with standard treatments or other therapeutic approaches, targeting B7-H3 in refractory or recurrent GBMs, DIPGs, neuroblastomas, medulloblastomas, ependymomas, and metastatic brain tumors. These trials hold promise for providing effective treatment options for these challenging intracranial malignancies in both adult and pediatric populations.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengqi Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
19
|
Feng L, Li S, Wang C, Yang J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin Nucl Med 2023; 53:517-529. [PMID: 36682980 DOI: 10.1053/j.semnuclmed.2022.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and arises from anywhere along the sympathetic nervous system. It is a highly heterogeneous disease with a wide range of prognosis, from spontaneous regression or maturing to highly aggressive. About half of pediatric neuroblastoma patients develop the metastatic disease at diagnosis, which carries a poor prognosis. Nuclear medicine plays a pivotal role in the diagnosis, staging, response assessment, and long-term follow-up of neuroblastoma. And it has also played a prominent role in the treatment of neuroblastoma. Because the structure of metaiodobenzylguanidine (MIBG) is similar to that of norepinephrine, 90% of neuroblastomas are MIBG-avid. 123I-MIBG whole-body scintigraphy is the standard nuclear imaging technique for neuroblastoma, usually in combination with SPECT/CT. However, approximately 10% of neuroblastomas are MIBG nonavid. PET imaging has many technical advantages over SPECT imaging, such as higher spatial and temporal resolution, higher sensitivity, superior quantitative capability, and whole-body tomographic imaging. In recent years, various tracers have been used for imaging neuroblastoma with PET. The importance of patient-specific targeted radionuclide therapy for neuroblastoma therapy has also increased. 131I-MIBG therapy is part of the front-line treatment for children with high-risk neuroblastoma. And peptide receptor radionuclide therapy with radionuclide-labeled somatostatin analogues has been successfully used in the therapy of neuroblastoma. Moreover, radioimmunoimaging has important applications in the diagnosis of neuroblastoma, and radioimmunotherapy may provide a novel treatment modality against neuroblastoma. This review discusses the use of current and novel radiopharmaceuticals in nuclear medicine imaging and therapy of neuroblastoma.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
21
|
Pandit-Taskar N, Grkovski M, Zanzonico PB, Pentlow KS, Modak S, Kramer K, Humm JL. Radioimmunoscintigraphy and Pretreatment Dosimetry of 131I-Omburtamab for Planning Treatment of Leptomeningeal Disease. J Nucl Med 2023; 64:946-950. [PMID: 36759197 PMCID: PMC10241015 DOI: 10.2967/jnumed.122.265131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Radiolabeled antibody treatment with 131I-omburtamab, administered intraventricularly into the cerebrospinal fluid (CSF) space, can deliver therapeutic absorbed doses to sites of leptomeningeal disease. Assessment of distribution and radiation dosimetry is a key element in optimizing such treatments. Using a theranostic approach, we performed pretreatment 131I-omburtamab imaging and dosimetric analysis in patients before therapy. Methods: Whole-body planar images were acquired 3 ± 1, 23 ± 2, and 47 ± 2 h after intracranioventricular administration of 75 ± 5 MBq of 131I-omburtamab via an Ommaya reservoir. Multiple blood samples were also obtained for kinetic analysis. Separate regions of interest (ROIs) were manually drawn to include the lateral ventricles, entire spinal canal CSF space, and over the whole body. Count data in the ROIs were corrected for background and physical decay, converted to activity, and subsequently fitted to an exponential clearance function. The radiation absorbed dose was estimated to the CSF, separately to the spinal column and ventricles, and to the whole body and blood. Biodistribution of the injected radiolabeled antibody was assessed for all patients. Results: Ninety-five patients were included in the analysis. Biodistribution showed prompt localization in the ventricles and spinal CSF space with low systemic distribution, noted primarily as hepatic, renal, and bladder activity after the first day. Using ROI analysis, the effective half-lives were 13 ± 11 h (range, 5-75 h) for CSF in the spinal column, 8 ± 3 h (range, 3-17 h) for ventricles, and 41 ± 11 (range, 23-81 h) for the whole body. Mean absorbed doses were 0.63 ± 0.38 cGy/MBq (range, 0.24-2.25 cGy/MBq) for CSF in the spinal column, 1.03 ± 0.69 cGy/MBq (range, 0.27-5.15 cGy/MBq) for the ventricular CSF, and 0.45 ± 0.32 mGy/MBq (range, 0.05-1.43 mGy/MBq) for the whole body. Conclusion: Pretherapeutic imaging with 131I-omburtamab allows assessment of biodistribution and dosimetry before the administration of therapeutic activity. Absorbed doses to the CSF compartments and whole body derived from the widely applicable serial 131I-omburtamab planar images had acceptable agreement with previously reported data determined from serial 124I-omburtamab PET scans.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Keith S Pentlow
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| |
Collapse
|
22
|
Li S, Zhang M, Wang M, Wang H, Wu H, Mao L, Zhang M, Li H, Zheng J, Ma P, Wang G. B7-H3 specific CAR-T cells exhibit potent activity against prostate cancer. Cell Death Discov 2023; 9:147. [PMID: 37149721 PMCID: PMC10164129 DOI: 10.1038/s41420-023-01453-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
B7-H3 is an attractive target for immunotherapy because of its high expression across multiple solid tumors, including prostate cancer, and restricted expression in normal tissues. Among various types of tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematological tumors. However, the potency of CAR-T cell therapy in solid tumors is still limited. Here, we examined the expression of B7-H3 in prostate cancer tissues and cells and developed a second-generation CAR that specifically targets B7-H3 and CD28 as costimulatory receptor to explore its tumoricidal potential against prostate cancer in vitro and in vivo. The high expression of B7-H3 was detected on both the surface of PC3, DU145 and LNCaP cells and prostate cancer tissues. B7-H3 CAR-T cells efficiently controlled the growth of prostate cancer in an antigen-dependent manner in vitro and in vivo. Moreover, tumor cells could induce the proliferation of CAR-T cells and the release of high levels of cytokines of IFN-γ and TNF-α in vitro. Results demonstrated that B7-H3 is a potential target for prostate cancer therapy that supports the clinical development of B7-H3 specific CAR-T cells for prostate cancer.
Collapse
Affiliation(s)
- Shibao Li
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miaomiao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiting Wang
- Department of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Wu
- Department of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lijun Mao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Zhang
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
23
|
Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM, Milickovic M, Vukadin M, Mijovic T, Savic D. Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules 2023; 28:molecules28083356. [PMID: 37110590 PMCID: PMC10145344 DOI: 10.3390/molecules28083356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Recent scientific data recognize the B7-H3 checkpoint molecule as a potential target for immunotherapy of pediatric solid tumors (PSTs). B7-H3 is highly expressed in extracranial PSTs such as neuroblastoma, rhabdomyosarcoma, nephroblastoma, osteosarcoma, and Ewing sarcoma, whereas its expression is absent or very low in normal tissues and organs. The influence of B7-H3 on the biological behavior of malignant solid neoplasms of childhood is expressed through different molecular mechanisms, including stimulation of immune evasion and tumor invasion, and cell-cycle disruption. It has been shown that B7-H3 knockdown decreased tumor cell proliferation and migration, suppressed tumor growth, and enhanced anti-tumor immune response in some pediatric solid cancers. Antibody-drug conjugates targeting B7-H3 exhibited profound anti-tumor effects against preclinical models of pediatric solid malignancies. Moreover, B7-H3-targeting chimeric antigen receptor (CAR)-T cells demonstrated significant in vivo activity against different xenograft models of neuroblastoma, Ewing sarcoma, and osteosarcoma. Finally, clinical studies demonstrated the potent anti-tumor activity of B7-H3-targeting antibody-radioimmunoconjugates in metastatic neuroblastoma. This review summarizes the established data from various PST-related studies, including in vitro, in vivo, and clinical research, and explains all the benefits and potential obstacles of targeting B7-H3 by novel immunotherapeutic agents designed to treat malignant extracranial solid tumors of childhood.
Collapse
Affiliation(s)
- Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Marija Jeremic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Jeremic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Slavisa M Djuricic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Vukadin
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Djordje Savic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Tringale KR, Wolden SL, Karajannis M, Haque S, Pasquini L, Yildirim O, Rosenblum M, Benhamida JK, Cheung NK, Souweidane M, Basu EM, Pandit-Taskar N, Zanzonico PB, Humm JL, Kramer K. Outcomes of intraventricular 131-I-omburtamab and external beam radiotherapy in patients with recurrent medulloblastoma and ependymoma. J Neurooncol 2023; 162:69-78. [PMID: 36853490 PMCID: PMC10050019 DOI: 10.1007/s11060-022-04235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
PURPOSE Intraventricular compartmental radioimmunotherapy (cRIT) with 131-I-omburtamab is a potential therapy for recurrent primary brain tumors that can seed the thecal space. These patients often previously received external beam radiotherapy (EBRT) to a portion or full craniospinal axis (CSI) as part of upfront therapy. Little is known regarding outcomes after re-irradiation as part of multimodality therapy including cRIT. This study evaluates predictors of response, patterns of failure, and radiologic events after cRIT. METHODS Patients with recurrent medulloblastoma or ependymoma who received 131-I-omburtamab on a prospective clinical trial were included. Extent of disease at cRIT initiation (no evidence of disease [NED] vs measurable disease [MD]) was assessed as associated with progression-free (PFS) and overall survival (OS) by Kaplan-Meier analysis. RESULTS All 27 patients (20 medulloblastoma, 7 ependymoma) had EBRT preceding cRIT: most (22, 81%) included CSI (median dose 2340 cGy, boost to 5400 cGy). Twelve (44%) also received EBRT at relapse as bridging to cRIT. There were no cases of radionecrosis. At cRIT initiation, 11 (55%) medulloblastoma and 3 (43%) ependymoma patients were NED, associated with improved PFS (p = 0.002) and OS (p = 0.048) in medulloblastoma. Most relapses were multifocal. With medium follow-up of 3.0 years (95% confidence interval, 1.8-7.4), 6 patients remain alive with NED. CONCLUSION For patients with medulloblastoma, remission at time of cRIT was associated with significantly improved survival outcomes. Relapses are often multifocal, particularly in the setting of measurable disease at cRIT initiation. EBRT is a promising tool to achieve NED status at cRIT initiation, with no cases of radiation necrosis.
Collapse
Affiliation(s)
- Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthias Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pasquini
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neeta Pandit-Taskar
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
26
|
Chen Y, Zhao C, Li S, Wang J, Zhang H. Immune Microenvironment and Immunotherapies for Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15030602. [PMID: 36765560 PMCID: PMC9913210 DOI: 10.3390/cancers15030602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary glial glioma that occurs in all age groups but predominates in children and is the main cause of solid tumor-related childhood mortality. Due to its rapid progression, the inability to operate and insensitivity to most chemotherapies, there is a lack of effective treatment methods in clinical practice for DIPG patients. The prognosis of DIPG patients is extremely poor, with a median survival time of no more than 12 months. In recent years, there have been continuous breakthroughs for immunotherapies in various hematological tumors and malignant solid tumors with extremely poor prognoses, which provides new insights into tumors without effective treatment strategies. Meanwhile, with the gradual development of stereotactic biopsy techniques, it is gradually becoming easier and safer to obtain live DIPG tissue, and the understanding of the immune properties of DIPG has also increased. On this basis, a series of immunotherapy studies of DIPG are under way, some of which have shown encouraging results. Herein, we review the current understanding of the immune characteristics of DIPG and critically reveal the limitations of current immune research, as well as the opportunities and challenges for immunological therapies in DIPG, hoping to clarify the development of novel immunotherapies for DIPG treatment.
Collapse
|
27
|
Albertsson P, Bäck T, Bergmark K, Hallqvist A, Johansson M, Aneheim E, Lindegren S, Timperanza C, Smerud K, Palm S. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Front Med (Lausanne) 2023; 9:1076210. [PMID: 36687417 PMCID: PMC9859440 DOI: 10.3389/fmed.2022.1076210] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Astatine-211 (211At) has physical properties that make it one of the top candidates for use as a radiation source for alpha particle-based radionuclide therapy, also referred to as targeted alpha therapy (TAT). Here, we summarize the main results of the completed clinical trials, further describe ongoing trials, and discuss future prospects.
Collapse
Affiliation(s)
- Per Albertsson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Per Albertsson ✉
| | - Tom Bäck
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Bergmark
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Hallqvist
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Johansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Aneheim
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sture Lindegren
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Timperanza
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Knut Smerud
- Smerud Medical Research International AS, Oslo, Norway
| | - Stig Palm
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
29
|
Estevez-Ordonez D, Gary SE, Atchley TJ, Maleknia PD, George JA, Laskay NMB, Gross EG, Devulapalli RK, Johnston JM. Immunotherapy for Pediatric Brain and Spine Tumors: Current State and Future Directions. Pediatr Neurosurg 2022; 58:313-336. [PMID: 36549282 PMCID: PMC10233708 DOI: 10.1159/000528792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae. SUMMARY There is a substantial need for the development of new therapeutic approaches, and since the introduction of immunotherapy by immune checkpoint inhibitors, there has been an exponential increase in clinical trials to adopt these and other immunotherapy approaches in children with brain tumors. In this review, we summarize the current immunotherapy landscape for various pediatric brain tumor types including choroid plexus tumors, embryonal tumors (medulloblastoma, AT/RT, PNETs), ependymoma, germ cell tumors, gliomas, glioneuronal and neuronal tumors, and mesenchymal tumors. We discuss the latest clinical trials and noteworthy preclinical studies to treat these pediatric brain tumors using checkpoint inhibitors, cellular therapies (CAR-T, NK, T cell), oncolytic virotherapy, radioimmunotherapy, tumor vaccines, immunomodulators, and other targeted therapies. KEY MESSAGES The current landscape for immunotherapy in pediatric brain tumors is still emerging, but results in certain tumors have been promising. In the age of targeted therapy, genetic tumor profiling, and many ongoing clinical trials, immunotherapy will likely become an increasingly effective tool in the neuro-oncologist armamentarium.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA,
| | - Sam E Gary
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Pedram D Maleknia
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jordan A George
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rishi K Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Phase 1 study of intraventricular 131I-omburtamab targeting B7H3 (CD276)-expressing CNS malignancies. J Hematol Oncol 2022; 15:165. [PMID: 36371226 PMCID: PMC9655863 DOI: 10.1186/s13045-022-01383-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The prognosis for metastatic and recurrent tumors of the central nervous system (CNS) remains dismal, and the need for newer therapeutic targets and modalities is critical. The cell surface glycoprotein B7H3 is expressed on a range of solid tumors with a restricted expression on normal tissues. We hypothesized that compartmental radioimmunotherapy (cRIT) with the anti-B7H3 murine monoclonal antibody omburtamab injected intraventricularly could safely target CNS malignancies. PATIENTS AND METHODS We conducted a phase I trial of intraventricular 131I-omburtamab using a standard 3 + 3 design. Eligibility criteria included adequate cerebrospinal fluid (CSF) flow, no major organ toxicity, and for patients > dose level 6, availability of autologous stem cells. Patients initially received 74 MBq radioiodinated omburtamab to evaluate dosimetry and biodistribution followed by therapeutic 131I-omburtamab dose-escalated from 370 to 2960 MBq. Patients were monitored clinically and biochemically for toxicity graded using CTCAEv 3.0. Dosimetry was evaluated using serial CSF and blood sampling, and serial PET or gamma-camera scans. Patients could receive a second cycle in the absence of grade 3/4 non-hematologic toxicity or progressive disease. RESULTS Thirty-eight patients received 100 radioiodinated omburtamab injections. Diagnoses included metastatic neuroblastoma (n = 16) and other B7H3-expressing solid tumors (n = 22). Thirty-five patients received at least 1 cycle of treatment with both dosimetry and therapy doses. Acute toxicities included < grade 4 self-limited headache, vomiting or fever, and biochemical abnormalities. Grade 3/4 thrombocytopenia was the most common hematologic toxicity. Recommended phase 2 dose was 1850 MBq/injection. The median radiation dose to the CSF and blood by sampling was 1.01 and 0.04 mGy/MBq, respectively, showing a consistently high therapeutic advantage for CSF. Major organ exposure was well below maximum tolerated levels. In patients developing antidrug antibodies, blood clearance, and therefore therapeutic index, was significantly increased. In patients receiving cRIT for neuroblastoma, survival was markedly increased (median PFS 7.5 years) compared to historical data. CONCLUSIONS cRIT with 131I-omburtamab is safe, has favorable dosimetry and may have a therapeutic benefit as adjuvant therapy for B7-H3-expressing leptomeningeal metastases. TRIAL REGISTRATION clinicaltrials.gov NCT00089245, August 5, 2004.
Collapse
|
31
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Lv C, Han S, Wu B, Liang Z, Li Y, Zhang Y, Lang Q, Zhong C, Fu L, Yu Y, Xu F, Tian Y. Novel immune scoring dynamic nomograms based on B7-H3, B7-H4, and HHLA2: Potential prediction in survival and immunotherapeutic efficacy for gallbladder cancer. Front Immunol 2022; 13:984172. [PMID: 36159808 PMCID: PMC9493478 DOI: 10.3389/fimmu.2022.984172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGallbladder cancer (GBC) is a mortal malignancy with limited therapeutic strategies. We aimed to develop novel immune scoring systems focusing on B7-H3, B7-H4, and HHLA2. We further investigated their potential clinical effects in predicting survival and immunotherapeutic efficacy for GBC.MethodsThis was a retrospective cohort study in a single center that explored the expression characteristics of B7-H3, B7-H4, and HHLA2. The immune scoring nomograms for prognostic were developed via logistic regression analyses. Their performance was evaluated using the Harrell concordance index (C-index) and decision curves analysis (DCA), and validated with calibration curves.ResultsB7-H3, B7-H4, and HHLA2 manifested with a relatively high rate of co-expression patterns in GBC tissues. They were associated with worse clinicopathological stage, suppression of immune microenvironment, and unfavorable prognosis in postoperative survival. B7 stratification established based on B7-H3, B7-H4, and HHLA2 was an independent prognostic predictor (p<0.05 in both groups). Moreover, immune stratification was also successfully constructed based on B7 stratification and the density of CD8+ TILs (all p<0.001). The prediction models were developed based on B7-/or immune stratification combined with the TNM/or Nevin staging system. These novel models have excellent discrimination ability in predicting survival and immunotherapeutic efficacy for GBC patients by DCA and clinical impact plots. Finally, dynamic nomograms were developed for the most promising clinical prediction models (B7-TNM model and Immune-TNM model) to facilitate prediction.ConclusionsImmune scoring systems focusing on B7-H3, B7-H4, and HHLA2 may effectively stratify the prognosis of GBC. Prognostic nomograms based on novel immune scoring systems may potentially predict survival and immunotherapeutic efficacy in GBC. Further valid verification is necessary.
Collapse
Affiliation(s)
- Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Liaoning, China
- *Correspondence: Yu Tian,
| |
Collapse
|
33
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
34
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
35
|
Anderson J, Majzner RG, Sondel PM. Immunotherapy of Neuroblastoma: Facts and Hopes. Clin Cancer Res 2022; 28:3196-3206. [PMID: 35435953 PMCID: PMC9344822 DOI: 10.1158/1078-0432.ccr-21-1356] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
While the adoption of multimodal therapy including surgery, radiation, and aggressive combination chemotherapy has improved outcomes for many children with high-risk neuroblastoma, we appear to have reached a plateau in what can be achieved with cytotoxic therapies alone. Most children with cancer, including high-risk neuroblastoma, do not benefit from treatment with immune checkpoint inhibitors (ICI) that have revolutionized the treatment of many highly immunogenic adult solid tumors. This likely reflects the low tumor mutation burden as well as the downregulated MHC-I that characterizes most high-risk neuroblastomas. For these reasons, neuroblastoma represents an immunotherapeutic challenge that may be a model for the creation of effective immunotherapy for other "cold" tumors in children and adults that do not respond to ICI. The identification of strong expression of the disialoganglioside GD2 on the surface of nearly all neuroblastoma cells provided a target for immune recognition by anti-GD2 mAbs that recruit Fc receptor-expressing innate immune cells that mediate cytotoxicity or phagocytosis. Adoption of anti-GD2 antibodies into both upfront and relapse treatment protocols has dramatically increased survival rates and altered the landscape for children with high-risk neuroblastoma. This review describes how these approaches have been expanded to additional combinations and forms of immunotherapy that have already demonstrated clear clinical benefit. We also describe the efforts to identify additional immune targets for neuroblastoma. Finally, we summarize newer approaches being pursued that may well help both innate and adaptive immune cells, endogenous or genetically engineered, to more effectively destroy neuroblastoma cells, to better induce complete remission and prevent recurrence.
Collapse
Affiliation(s)
- John Anderson
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
| | - Paul M. Sondel
- Departments of Pediatrics, Human Oncology and Genetics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
36
|
Kushner BH, Modak S, Kramer K, Basu EM, Iglesias-Cardenas F, Roberts SS, Cheung NKV. Immunotherapy with anti-G D2 monoclonal antibody in infants with high-risk neuroblastoma. Int J Cancer 2022; 152:259-266. [PMID: 35913764 DOI: 10.1002/ijc.34233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
Anti-GD2 monoclonal antibodies (mAb) improve the prognosis of high-risk neuroblastoma (HR-NB). Worldwide experience almost exclusively involves toddlers and older patients treated after multi-modality or 2nd -line therapies, i.e., many months post-diagnosis. In contrast, at our center, infants received anti-GD2 mAbs because this immunotherapy started during or immediately after induction chemotherapy. We now report on the feasibility, safety, and long-term survival in this vulnerable age group.Thirty-three HR-NB patients were <19 months old when started on 3F8 (murine mAb; n=21) or naxitamab (humanized-3F8; n=12), with 30-90" intravenous infusions. Patients received analgesics and antihistamines. Common toxicities (pain, urticaria, cough) were manageable, allowing outpatient treatment. Capillary leak, posterior reversible encephalopathy syndrome, and mAb-related long-term toxicities did not occur. Two 3F8 cycles were aborted due to bradycardia (a pre-existing condition) and asthmatic symptoms, respectively. One patient received ½ dose of day 1 naxitamab because of hypotension; full doses were subsequently administered. Post-mAb treatments included chemotherapy, radiotherapy, and anti-NB vaccine. Among 3F8 patients, 17/21 are in complete remission off all treatment at 5.6+-to-24.1+ (median 13.4+) years from diagnosis. Among naxitamab patients, 10/12 remain relapse-free post-mAb at 1.7+-to-4.3+ (median 3.1+) years from diagnosis. Toxicity was similar with short outpatient infusions and matched that observed with these and other anti-GD2 mAbs in older patients. These findings were reassuring given that naxitamab is dosed >2.5x higher (~270mg/m2 /cycle) than 3F8, dinutuximab, and dinutuximab beta (70-100mg/m2 /cycle). HR-NB in infants proved to be highly curable. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| | | | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY
| |
Collapse
|
37
|
Abstract
Neuroblastomas are tumours of sympathetic origin, with a heterogeneous clinical course ranging from localized or spontaneously regressing to widely metastatic disease. Neuroblastomas recapitulate many of the features of sympathoadrenal development, which have been directly targeted to improve the survival outcomes in patients with high-risk disease. Over the past few decades, improvements in the 5-year survival of patients with metastatic neuroblastomas, from <20% to >50%, have resulted from clinical trials incorporating high-dose chemotherapy with autologous stem cell transplantation, differentiating agents and immunotherapy with anti-GD2 monoclonal antibodies. The next generation of trials are designed to improve the initial response rates in patients with high-risk neuroblastomas via the addition of immunotherapies, targeted therapies (such as ALK inhibitors) and radiopharmaceuticals to standard induction regimens. Other trials are focused on testing precision medicine strategies for patients with relapsed and/or refractory disease, enhancing the antitumour immune response and improving the effectiveness of maintenance regimens, in order to prolong disease remission. In this Review, we describe advances in delineating the pathogenesis of neuroblastoma and in identifying the drivers of high-risk disease. We then discuss how this knowledge has informed improvements in risk stratification, risk-adapted therapy and the development of novel therapies.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - Katherine K Matthay
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
39
|
Grkovski M, Modak S, Zanzonico PB, Carrasquillo JA, Larson SM, Humm JL, Pandit-Taskar N. Biodistribution and Radiation Dosimetry of Intraperitoneally Administered 124I-Omburtamab in Patients with Desmoplastic Small Round Cell Tumors. J Nucl Med 2022; 63:1094-1100. [PMID: 34857661 PMCID: PMC9258578 DOI: 10.2967/jnumed.121.262793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to assess the pharmacokinetics, biodistribution, and radiation dosimetry of 124I-omburtamab administered intraperitoneally in patients with desmoplastic small round cell tumor. Methods: Eligible patients diagnosed with desmoplastic small round cell tumor with peritoneal involvement were enrolled in a phase I trial of intraperitoneal radioimmunotherapy with 131I-omburtamab. After thyroid blockade and before radioimmunotherapy, patients received approximately 74 MBq of 124I-omburtamab intraperitoneally. Five serial PET/CT scans were obtained up to 144 h after injection. Multiple blood samples were obtained up to 120 h after injection. Organ-absorbed doses were calculated with OLINDA/EXM. Results: Thirty-one patients were studied. Blood pharmacokinetics exhibited a biphasic pattern consisting of an initial rising phase with a median half-time (±SD) of 23 ± 15 h and a subsequent falling phase with a median half-time of 56 ± 34 h. Peritoneal distribution was heterogeneous and diffuse in most patients. Self-dose to the peritoneal cavity was 0.58 ± 0.19 mGy/MBq. Systemic distribution and activity in major organs were low. The median absorbed doses were 0.72 ± 0.23 mGy/MBq for liver, 0.48 ± 0.17 mGy/MBq for spleen, and 0.57 ± 0.12 mGy/MBq for kidneys. The mean effective dose was 0.31 ± 0.10 mSv/MBq. Whole-body and peritoneal cavity biologic half-times were 45 ± 9 and 24 ± 5 h, respectively. Conclusion: PET/CT imaging with intraperitoneally administered 124I-omburtamab enables assessment of intraperitoneal distribution and estimation of absorbed dose to peritoneal space and normal organs before therapy.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat B. Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge A. Carrasquillo
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Steven M. Larson
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - John L. Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and,Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
40
|
Wieczorek A, Stefanowicz J, Hennig M, Adamkiewicz-Drozynska E, Stypinska M, Dembowska-Baginska B, Gamrot Z, Woszczyk M, Geisler J, Szczepanski T, Skoczen S, Ussowicz M, Pogorzala M, Janczar S, Balwierz W. Isolated central nervous system relapses in patients with high-risk neuroblastoma -clinical presentation and prognosis: experience of the Polish Paediatric Solid Tumours Study Group. BMC Cancer 2022; 22:701. [PMID: 35752779 PMCID: PMC9233790 DOI: 10.1186/s12885-022-09776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Although isolated central nervous system (CNS) relapses are rare, they may become a serious clinical problem in intensively treated patients with high-risk neuroblastoma (NBL). The aim of this study is the presentation and assessment of the incidence and clinical course of isolated CNS relapses. Retrospective analysis involved 848 NBL patients treated from 2001 to 2019 at 8 centres of the Polish Paediatric Solid Tumours Study Group (PPSTSG). Group characteristics at diagnosis, treatment and patterns of relapse were analysed. Observation was completed in December 2020. We analysed 286 high risk patients, including 16 infants. Isolated CNS relapse, defined as the presence of a tumour in brain parenchyma or leptomeningeal involvement, was found in 13 patients (4.5%; 8.4% of all relapses), all of whom were stage 4 at diagnosis. Isolated CNS relapses seem to be more common in young patients with stage 4 MYCN amplified NBL, and in this group they may occur early during first line therapy. The only or the first symptom may be bleeding into the CNS, especially in younger children, even without a clear relapse picture on imaging, or the relapse may be clinically asymptomatic and found during routine screening. Although the incidence of isolated CNS relapses is not statistically significantly higher in patients after immunotherapy, their occurrence should be carefully monitored, especially in intensively treated infants, with potential disruption of the brain-blood barrier.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland.
| | - Joanna Stefanowicz
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Hennig
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | - Marzena Stypinska
- Department of Oncology, The Children Memorial Health Institute in Warsaw, Warsaw, Poland
| | | | - Zuzanna Gamrot
- Unit of Paediatric Haematology and Oncology, City Hospital, Chorzow, Poland
| | - Mariola Woszczyk
- Unit of Paediatric Haematology and Oncology, City Hospital, Chorzow, Poland
| | - Julia Geisler
- Department of Paediatric Haematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Tomasz Szczepanski
- Department of Paediatric Haematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Szymon Skoczen
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland
| | - Marek Ussowicz
- Department and Clinic of Paediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Pogorzala
- Paediatric Haematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Szymon Janczar
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Lodz, Poland
| | - Walentyna Balwierz
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland
| |
Collapse
|
41
|
Li S, Poolen GC, van Vliet LC, Schipper JG, Broekhuizen R, Monnikhof M, Van Hecke W, Vermeulen JF, Bovenschen N. Pediatric medulloblastoma express immune checkpoint B7-H3. Clin Transl Oncol 2022; 24:1204-1208. [PMID: 34988920 PMCID: PMC9107433 DOI: 10.1007/s12094-021-02762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Medulloblastomas (MB) are highly malignant brain tumors that predominantly occur in young infants. Immunotherapy to boost the immune system is emerging as a novel promising approach, but is often hampered by inhibitory immune checkpoints. In the present study, we have studied immune checkpoint B7-H3 expression in a tissue cohort of human pediatric MB. METHODS Expression of B7-H3 was detected by immunohistochemistry and classified via B7-H3 staining intensity and percentage of B7-H3 positive tumor cells. Subsequently, B7-H3 protein expression was distinguished in MB molecular subtypes and correlated to immune cell infiltrates, patient characteristics, and survival. RESULTS B7-H3 protein expression was found in 23 out of 24 (96%) human pediatric MB cases and in 17 out of 24 (71%) MB cases > 25% of tumor cells had any level of B7-H3 expression. B7-H3 protein expression was more frequent on Group-4 MB as compared with other molecular subtypes (p = 0.02). Tumors with high B7-H3 expression showed less influx of γδT cells (p = 0.002) and CD3+ T cells (p = 0.041). CONCLUSION Immune checkpoint B7-H3 is differentially expressed by the large majority of pediatric MB. This further warrants the development of novel B7-H3-directed (immuno)therapeutic methods for children with incurable, metastatic, or chemo-resistant MB.
Collapse
Affiliation(s)
- S Li
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - G C Poolen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - L C van Vliet
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J G Schipper
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - M Monnikhof
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - W Van Hecke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Bovenschen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113545. [PMID: 35684481 PMCID: PMC9182385 DOI: 10.3390/molecules27113545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.
Collapse
|
43
|
Anti-GD2 Directed Immunotherapy for High-Risk and Metastatic Neuroblastoma. Biomolecules 2022; 12:biom12030358. [PMID: 35327550 PMCID: PMC8945428 DOI: 10.3390/biom12030358] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma is one of the few childhood cancers that carries a tumor-specific antigen in the form of a glycolipid antigen known as GD2. It has restricted expression in normal tissue, such as peripheral afferent nerves. Monoclonal antibodies targeting GD2 have been applied clinically to high-risk neuroblastoma with significant success. However, there are different anti-GD2 products and administration regimens. For example, anti-GD2 has been used in combination with chemotherapy during the induction phase or with retinoic acid during the maintenance stage. Regimens also vary in the choice of whether to add cytokines (i.e., IL-2, GMCSF, or both). Furthermore, the addition of an immune enhancer, such as β-glucan, or allogeneic natural killer cells also becomes a confounder in the interpretation. The question concerning which product or method of administration is superior remains to be determined. So far, most studies agree that adding anti-GD2 to the conventional treatment protocol can achieve better short- to intermediate-term event-free and overall survival, but the long-term efficacy remains to be verified. How to improve its efficacy is another challenge. Late relapse and central nervous system metastasis have emerged as new problems. The methods to overcome the mechanisms related to immune evasion or resistance to immunotherapy represent new challenges to be resolved. The newer anti-GD2 strategies, such as bispecific antibody linking of anti-GD2 with activated T cells or chimeric antigen receptor T cells, are currently under clinical trials, and they may become promising alternatives. The use of anti-GD2/GD3 tumor vaccine is a novel and potential approach to minimizing late relapse. How to induce GD2 expression from tumor cells using the epigenetic approach is a hot topic nowadays. We expect that anti-GD2 treatment can serve as a model for the use of monoclonal antibody immunotherapy against cancers in the future.
Collapse
|
44
|
Expression of Immunomodulatory Checkpoint Molecules in Drug-Resistant Neuroblastoma: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14030751. [PMID: 35159017 PMCID: PMC8833944 DOI: 10.3390/cancers14030751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Neuroblastoma is a common childhood cancer with poor prognosis. Prior studies suggest that inhibition of molecules called checkpoint proteins, which normally prevent one’s own immune system from attacking itself, has been successfully used for treatment of multiple advanced adult cancers but has yet to be fully explored in neuroblastoma. Cancer can hijack these pathways to prevent the immune system from recognizing and destroying cancer cells. We investigated checkpoint protein expression in pediatric neuroblastoma and its role in drug resistance. We created drug-resistant neuroblastoma cell lines and compared expression of checkpoint proteins between drug-resistant and parental cell lines. In total, 13 checkpoint proteins were expressed by all cell lines regardless of drug resistance. Although PD-L1 and checkpoint proteins do not necessarily impart drug resistance, they may be potential targets for drug therapy. Benchmarking checkpoint proteins provides the basis for future studies identifying targets for directed therapy and biomarkers for cancer detection or prognosis. Abstract Neuroblastoma is a common childhood cancer with poor prognosis when at its advanced stage. Checkpoint molecule inhibition is successful in treating multiple advanced adult cancers. We investigated PD-L1 and other checkpoint molecule expression to determine their roles in drug resistance and usefulness as targets for drug therapy. We developed three doxorubicin-resistant (DoxR) cell lines from parental cell lines. Matrigel in vitro invasion assays were used to compare invasiveness. Western blot assays were used to compare PD-L1 expression. Immuno-oncology checkpoint protein panels were used to compare concentrations of 17 checkpoint molecules both cellular and soluble. PD-L1 and 12 other checkpoint molecules were present in all cell lysates of each cell line without significantly different levels. Three were solubilized in the media of each cell line. PD-L1 is expressed in all DoxR and parental neuroblastoma cells and may be a potential target for drug therapy although its role in drug resistance remains unclear. Benchmarking checkpoint molecules provides the basis for future studies identifying targets for directed therapy and biomarkers for cancer detection or prognosis.
Collapse
|
45
|
Sun F, Yu X, Ju R, Wang Z, Wang Y. Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int 2022; 22:50. [PMID: 35101032 PMCID: PMC8802437 DOI: 10.1186/s12935-022-02471-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022] Open
Abstract
Background Gastric cancer (GC) has a poor prognosis and limited therapeutic options. As a new promising cancer therapeutic approach, chimeric antigen receptor (CAR)-T cells represent a potential GC treatment. We investigated the antitumor activity of CAR-T cells target-B7H3 in GC. Methods In our study, expression of B7H3 was examined in GC tissues and explored the tumoricidal potential of B7H3-targeting CAR-T cells in GC. B7H3-directed CAR-T cells with a humanized antigen-recognizing domain was generated. The anti-tumor effects of this CAR-T cell were finally investigated in vitro and in vivo. Results Our results show that B7H3-directed CAR-T cells efficiently killed GC tumor cells. In addition, we found that B7H3 is correlated with tumor cell stemness, and anti-B7H3 CAR-T can simultaneously target stem cell-like GC cells to improve the treatment outcome. Conclusions Our study indicates that B7H3 is an attractive target for GC therapy, and B7H3 has high potential for clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02471-8.
Collapse
Affiliation(s)
- Fengqiang Sun
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Xiaomei Yu
- Department of Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Ruixue Ju
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Zhanzhao Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Yuhui Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China.
| |
Collapse
|
46
|
Oliveira MC, Correia JDG. Clinical application of radioiodinated antibodies: where are we? Clin Transl Imaging 2022. [DOI: 10.1007/s40336-021-00477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Espinosa-Cotton M, Cheung NKV. Immunotherapy and Radioimmunotherapy for Desmoplastic Small Round Cell Tumor. Front Oncol 2021; 11:772862. [PMID: 34869013 PMCID: PMC8641660 DOI: 10.3389/fonc.2021.772862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Desmoplastic small round cell tumor (DRSCT) is a highly aggressive primitive sarcoma that primarily affects adolescent and young adult males. The 5-year survival rate is 15-30% and few curative treatment options exist. Although there is no standard treatment for DSRCT, patients are most often treated with a combination of aggressive chemotherapy, radiation, and surgery. Targeted therapy inhibitors of PDGFA and IGF-1R, which are almost uniformly overexpressed in DSRCT, have largely failed in clinical trials. As in cancer in general, interest in immunotherapy to treat DSRCT has increased in recent years. To that end, several types of immunotherapy are now being tested clinically, including monoclonal antibodies, radionuclide-conjugated antibodies, chimeric antigen receptor T cells, checkpoint inhibitors, and bispecific antibodies (BsAbs). These types of therapies may be particularly useful in DSRCT, which is frequently characterized by widespread intraperitoneal implants, which are difficult to completely remove surgically and are the frequent cause of relapse. Successful treatment with immunotherapy or radioimmunotherapy following debulking surgery could eradiate these micrometasteses and prevent relapse. Although there has been limited success to date for immunotherapy in pediatric solid tumors, the significant improvements in survival seen in the treatment of other pediatric solid tumors, such as metastatic neuroblastoma and its CNS spread, suggest a potential of immunotherapy and specifically compartmental immunotherapy in DSRCT.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
48
|
Li Y, Cai Q, Shen X, Chen X, Guan Z. Overexpression of B7-H3 Is Associated With Poor Prognosis in Laryngeal Cancer. Front Oncol 2021; 11:759528. [PMID: 34938657 PMCID: PMC8685272 DOI: 10.3389/fonc.2021.759528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
The immune checkpoint molecule, B7-H3, which belongs to the B7 family, has been shown to be overexpressed in various cancers. Its role in tumors is not well defined, and many studies suggest that it is associated with poor clinical outcomes. The effect of B7-H3 on laryngeal cancer has not been reported. This study investigated the expression of B7-H3 in laryngeal squamous cell carcinoma (LSCC), and its relationship with clinicopathological factors and prognosis of LSCC patients. The gene expression quantification data and clinical data of LSCC retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were analyzed to determine the diagnostic and prognostic roles of B7-H3. Quantitative real-time polymerase chain reaction (qRT-PCR) was then performed to determine the gene expression level of B7-H3 between LSCC tissues and paired normal adjacent tissues. In addition, TCGA RNA-seq data was analyzed to evaluate the expression level of B7 family genes. Next, the protein expression of B7-H3 and CD8 in LSCC was determined using immunohistochemistry and immunofluorescence. qRT-PCR results showed that the expression level of B7-H3 mRNA was significantly higher in LSCC tissues than in adjacent normal tissues. Similar results were obtained from the TCGA analysis. The expression of B7-H3 was significantly associated with T stage, lymph node metastasis, and pathological tumor node metastasis (TNM) stage, and it was also an independent factor influencing the overall survival time (OS) of patients with LSCC. In addition, B7-H3 was negatively correlated with CD8+T cells. These results show that B7-H3 is upregulated in LSCC. Therefore, B7-H3 may serve as a biomarker of poor prognosis and a promising therapeutic target in LSCC.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ximing Shen
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoting Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Guan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhong Guan,
| |
Collapse
|
49
|
Liu C, Zhang G, Xiang K, Kim Y, Lavoie RR, Lucien F, Wen T. Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunol Immunother 2021; 71:1549-1567. [PMID: 34739560 DOI: 10.1007/s00262-021-03097-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Guangwei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kanghui Xiang
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ti Wen
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Rasic P, Jovanovic-Tucovic M, Jeremic M, Djuricic SM, Vasiljevic ZV, Milickovic M, Savic D. B7 homologue 3 as a prognostic biomarker and potential therapeutic target in gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:799-821. [PMID: 34457187 PMCID: PMC8371522 DOI: 10.4251/wjgo.v13.i8.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The most common digestive system (DS) cancers, including tumors of the gastrointestinal tract (GIT) such as colorectal cancer (CRC), gastric cancer (GC) and esophageal cancer (EC) as well as tumors of DS accessory organs such as pancreatic and liver cancer, are responsible for more than one-third of all cancer-related deaths worldwide, despite the progress that has been achieved in anticancer therapy. Due to these limitations in treatment strategies, oncological research has taken outstanding steps towards a better understanding of cancer cell biological complexity and heterogeneity. These studies led to new molecular target-driven therapeutic approaches. Different in vivo and in vitro studies have revealed significant expression of B7 homologue 3 (B7-H3) among the most common cancers of the GIT, including CRC, GC, and EC, whereas B7-H3 expression in normal healthy tissue of these organs was shown to be absent or minimal. This molecule is able to influence the biological behavior of GIT tumors through the various immunological and nonimmunological molecular mechanisms, and some of them are shown to be the result of B7-H3-related induction of signal transduction pathways, such as Janus kinase 2/signal transducer and activator of transcription 3, phosphatidylinositol 3-kinase/protein kinase B, extracellular signal-regulated kinase, and nuclear factor-κB. B7-H3 exerts an important role in progression, metastasis and resistance to anticancer therapy in these tumors. In addition, the results of many studies suggest that B7-H3 stimulates immune evasion in GIT tumors by suppressing antitumor immune response. Accordingly, it was observed that experimental depletion or inhibition of B7-H3 in gastrointestinal cancers improved antitumor immune response, impaired tumor progression, invasion, angiogenesis, and metastasis and decreased resistance to anticancer therapy. Finally, the high expression of B7-H3 in most common cancers of the GIT was shown to be associated with poor prognosis. In this review, we summarize the established data from different GIT cancer-related studies and suggest that the B7-H3 molecule could be a promising prognostic biomarker and therapeutic target for anticancer immunotherapy in these tumors.
Collapse
Affiliation(s)
- Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic“, Belgrade 11 000, Serbia
| | - Maja Jovanovic-Tucovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade 11 000, Serbia
| | - Marija Jeremic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade 11 000, Serbia
| | - Slavisa M Djuricic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic“, Belgrade 11 000, Serbia
- Faculty of Medicine, University of Banja Luka, Banja Luka 78 000, Bosnia and Herzegovina
| | - Zorica V Vasiljevic
- Department of Clinical Microbiology, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic“, Belgrade 11 000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic“, Belgrade 11 000, Serbia
- School of Medicine, University of Belgrade, Belgrade 11 000, Serbia
| | - Djordje Savic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic“, Belgrade 11 000, Serbia
- School of Medicine, University of Belgrade, Belgrade 11 000, Serbia
| |
Collapse
|