1
|
Luo D, Liu Y, Lu Z, Huang L. Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Mol Med 2025; 31:52. [PMID: 39923010 PMCID: PMC11806620 DOI: 10.1186/s10020-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/10/2025] [Indexed: 02/10/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide, and its treatment has been a focus of medical research. Herein we systematically review the current status of and advancements in targeted therapy and immunotherapy for GC, which have emerged as important treatment strategies in recent years with great potential, and summarize the efficacy and safety of such treatments. Targeted therapies against key targets in GC, including epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR), have shown remarkable therapeutic efficacies by inhibiting tumor progression and/or blood supply. In particular, markable breakthroughs have been made in HER2-targeting drugs for HER2-positive GC patients. To address intrinsic and acquired resistances to HER2-targeting drugs, novel therapeutic agents including bispecific antibodies and antibody-drug conjugates (ADC) targeting HER2 have been developed. Immunotherapy enhances the recognition and elimination of cancer cells by activating body anticancer immune system. Programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) antibodies are the most commonly used immunotherapeutic agents and have been used with some success in GC treatment. Innovative immunotherapy modalities, including adoptive immune cell therapy, tumor vaccines, and non-specific immunomodulators therapy, and oncolytic viruses have shown promise in early-stage clinical trials for GC. Clinical trials have supported that targeted therapy and immunotherapy can significantly improve the survival and quality of life of GC patients. However, the effects of such therapies need to be further improved and more personalized, with advancement in researches on tumor immune microenvironment. Further studies remain needed to address the issues of drug resistance and adverse events pertaining to such therapies for GC. The combined application of such therapies and individualized treatment strategies should be further explored with novel drugs developed, to provide more effective treatments for GC patients.
Collapse
Affiliation(s)
- Dong Luo
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Center of Structural Heart Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, 200444, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Korpan M, Puhr HC, Berger JM, Friedrich A, Prager GW, Preusser M, Ilhan-Mutlu A. Current Landscape of Molecular Biomarkers in Gastroesophageal Tumors and Potential Strategies for Co-Expression Patterns. Cancers (Basel) 2025; 17:340. [PMID: 39941712 PMCID: PMC11816248 DOI: 10.3390/cancers17030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The treatment of metastasized gastroesophageal adenocarcinoma largely depends on molecular profiling based on immunohistochemical procedures. Therefore, the examination of HER2, PD-L1, and dMMR/MSI is recommended by the majority of clinical practice guidelines, as positive expression leads to different treatment approaches. Data from large phase-III trials and consequent approvals in various countries enable physicians to offer their patients several therapy options including immunotherapy, targeted therapy, or both combined with chemotherapy. The introduction of novel therapeutic targets such as CLDN18.2 leads to a more complex decision-making process as a significant number of patients show positive results for the co-expression of other biomarkers besides CLDN18.2. The aim of this review is to summarize the current biomarker landscape of patients with metastatic gastroesophageal tumors, its direct clinical impact on daily decision-making, and to evaluate current findings on biomarker co-expression. Furthermore, possible treatment strategies with multiple biomarker expression are discussed.
Collapse
Affiliation(s)
- Martin Korpan
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Hannah Christina Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Julia M. Berger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alexander Friedrich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerald W. Prager
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Aysegül Ilhan-Mutlu
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
3
|
Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F. Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review. World J Gastrointest Oncol 2024; 16:3397-3409. [PMID: 39171189 PMCID: PMC11334049 DOI: 10.4251/wjgo.v16.i8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play important roles in the occurrence, development, and treatment of gastric cancer (GC). This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms. As one of the most common malignant tumors worldwide, GC has a complex pathogenesis and limited therapeutic options. Therefore, a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods. The HGF/c-Met signaling pathway plays an important role in the proliferation, migration, and invasion of GC cells and has become a new therapeutic target. This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway, providing new ideas and directions for the treatment of GC.
Collapse
Affiliation(s)
- Wu-Jie Wei
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Ya-Li Hong
- Department of Cardiovascular, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Yi Deng
- Intensive Care Unit, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Guan-Liang Wang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Fang Pan
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| |
Collapse
|
4
|
Ratti M, Orlandi E, Toscani I, Vecchia S, Anselmi E, Hahne JC, Ghidini M, Citterio C. Emerging Therapeutic Targets and Future Directions in Advanced Gastric Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:2692. [PMID: 39123420 PMCID: PMC11311890 DOI: 10.3390/cancers16152692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic gastric cancer (GC) still represents a critical clinical challenge, with limited treatment options and a poor prognosis. Most patients are diagnosed at advanced stages, limiting the chances of surgery and cure. The identification of molecular targets and the possibility of combining immune checkpoint inhibitors with chemotherapy have recently reshaped the therapeutic landscape of metastatic gastric cancer. The new classification of gastric cancer, mainly based on immunologic and molecular criteria such as programmed cell death 1 (PD-1), microsatellite instability (MSI), and human epidermal growth factor receptor 2 (HER2), has made it possible to identify and differentiate patients who may benefit from immunotherapy, targeted therapy, or chemotherapy alone. All relevant and available molecular and immunological targets in clinical practice for the systemic treatment of this disease are presented. Particular attention is given to possible future approaches, including circulating tumor DNA (ctDNA) for therapeutic monitoring, new targeting agents against molecular pathways such as fibroblast growth factor receptor (FGFR) and MET, chimeric antigen receptor (CAR)-T cells, and cancer vaccines. This review aims to provide a comprehensive understanding of current targets in advanced gastric cancer and to offer valuable insights into future directions of research and clinical practice in this challenging disease.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Stefano Vecchia
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, London SM2 5NG, UK;
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy; (E.O.); (I.T.); (S.V.); (E.A.); (C.C.)
| |
Collapse
|
5
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
6
|
Wang G, Huang Y, Zhou L, Yang H, Lin H, Zhou S, Tan Z, Qian J. Immunotherapy and targeted therapy as first-line treatment for advanced gastric cancer. Crit Rev Oncol Hematol 2024; 198:104197. [PMID: 37951282 DOI: 10.1016/j.critrevonc.2023.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023] Open
Abstract
For patients diagnosed with advanced gastric or gastroesophageal cancer that is not amenable to surgical intervention, the standard of care for first-line treatment consists of fluoropyrimidine and platinum-based chemotherapy. The incorporation of novel agents into these standard first-line regimens could potentially improve patient prognosis; options for such augmentations include both immune-based and targeted therapy combinations. To provide a comparative analysis of these different first-line combination treatments, a network meta-analysis was conducted. Outcome measures comprised overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and grade 3-4 treatment-related adverse events (TRAEs). Data were drawn from 22 randomized controlled trials, encompassing 10,787 patients and 17 distinct treatment regimens. Our findings suggest that FGFR2b-targeted therapy, specifically when used in combination with chemotherapy (bemarituzumab_chemo), exhibited the greatest efficacy. This was followed by immunotherapy-based combination regimens (CPS ≥5, Sintilimab_chemo). Further, targeted combination therapy featuring CLAUDIN 18.2 (zolbetuximab_chemo) appeared beneficial based on individual patient characteristics. In the case of HER2-positive patients, the trastuzumab_chemo regimen is recommended, as most existing studies have excluded this subpopulation. These results have significant implications for both clinical decision-making and patient care in the realm of advanced gastric or gastroesophageal cancer treatment.
Collapse
Affiliation(s)
- Guocheng Wang
- Department of Gastrointestinal Surgery, The 966 Hospital of the Joint Logistic Support Force of the People's Liberation Army, Dandong, China
| | - Yan Huang
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Zhou
- Department of Gastrointestinal Surgery, The 966 Hospital of the Joint Logistic Support Force of the People's Liberation Army, Dandong, China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Huang Lin
- Department of Gastrointestinal Surgery, Suzhou Jiulong Hospital, Suzhou, China
| | - Shengfang Zhou
- Department of Gastrointestinal Surgery, Shandong First Medical University Affiliated Digestive Disease Hospital, Jining, China
| | - Zhengang Tan
- Department of Gastrointestinal Surgery, The 966 Hospital of the Joint Logistic Support Force of the People's Liberation Army, Dandong, China.
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
7
|
Kim JS, Kim MY, Hong S. Characterization of MET Alterations in 37 Gastroesophageal Cancer Cell Lines for MET-Targeted Therapy. Int J Mol Sci 2024; 25:5975. [PMID: 38892160 PMCID: PMC11173193 DOI: 10.3390/ijms25115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Capmatinib and savolitinib, selective MET inhibitors, are widely used to treat various MET-positive cancers. In this study, we aimed to determine the effects of these inhibitors on MET-amplified gastric cancer (GC) cells. Methods: After screening 37 GC cell lines, the following cell lines were found to be MET-positive with copy number variation >10: SNU-620, ESO51, MKN-45, SNU-5, and OE33 cell lines. Next, we assessed the cytotoxic response of these cell lines to capmatinib or savolitinib alone using cell counting kit-8 and clonogenic cell survival assays. Western blotting was performed to assess the effects of capmatinib and savolitinib on the MET signaling pathway. Xenograft studies were performed to evaluate the in vivo therapeutic efficacy of savolitinib in MKN-45 cells. Savolitinib and capmatinib exerted anti-proliferative effects on MET-amplified GC cell lines in a dose-dependent manner. Savolitinib inhibited the phosphorylation of MET and downstream signaling pathways, such as the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways, in MET-amplified GC cells. Additionally, savolitinib significantly decreased the number of colonies formed on the soft agar and exerted dose-dependent anti-tumor effects in an MKN-45 GC cell xenograft model. Furthermore, a combination of trastuzumab and capmatinib exhibited enhanced inhibition of AKT and ERK activation in human epidermal growth factor receptor-2 (HER2)- and MET-positive OE33 cells. Targeting MET with savolitinib and capmatinib efficiently suppressed the growth of MET-amplified GC cells. Moreover, these MET inhibitors exerted synergistic effects with trastuzumab on HER2- and MET-amplified GC cells.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Sungyoul Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
8
|
Sohn SH, Sul HJ, Kim BJ, Zang DY. Comparison of Tepotinib, Paclitaxel, or Ramucirumab Efficacy According to the Copy Number or Phosphorylation Status of the MET Gene: Doublet Treatment versus Single Agent Treatment. Int J Mol Sci 2024; 25:1769. [PMID: 38339049 PMCID: PMC10855451 DOI: 10.3390/ijms25031769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Although conventional combination chemotherapies for advanced gastric cancer (GC) increase survival, such therapies are associated with major adverse effects; more effective and less toxic treatments are required. Combinations of different anti-cancer drugs, for example, paclitaxel plus ramucirumab, have recently been used as second-line treatments for advanced GC. This study evaluated how copy number variations of the MET gene, MET mutations, and MET gene and protein expression levels in human GC cells modulate the susceptibility of such cells to single-agent (tepotinib, ramucirumab, or paclitaxel) and doublet (tepotinib-plus-paclitaxel or ramucirumab-plus-paclitaxel treatment regimens. Compared with ramucirumab-plus-paclitaxel, tepotinib-plus-paclitaxel better inhibited the growth of GC cells with MET exon 14 skipping mutations and those lacking MET amplification but containing phosphorylated MET; such inhibition was dose-dependent and associated with cell death. Tepotinib-plus-paclitaxel and ramucirumab-plus-paclitaxel similarly inhibited the growth of GC cells lacking MET amplification or MET phosphorylation, again in a dose-dependent manner, but without induction of cell death. However, tepotinib alone or tepotinib-plus-ramucirumab was more effective against c-MET-positive GC cells (>30 copy number variations) than was ramucirumab or paclitaxel alone or ramucirumab-plus-paclitaxel. These in vitro findings suggest that compared with ramucirumab-plus-paclitaxel, tepotinib-plus-paclitaxel better inhibits the growth of c-MET-positive GC cells, cells lacking MET amplification but containing phosphorylated MET, and cells containing MET mutations. Clinical studies are required to confirm the therapeutic effects of these regimens.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si 14066, Republic of Korea; (S.-H.S.); (H.J.S.)
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si 14066, Republic of Korea; (S.-H.S.); (H.J.S.)
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea;
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si 14066, Republic of Korea; (S.-H.S.); (H.J.S.)
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si 14068, Republic of Korea;
| |
Collapse
|
9
|
Zhang Z, Yu Y, Xie T, Qi C, Zhang X, Shen L, Peng Z. Pulmonary lymphangitis carcinomatosis: A peculiar presentation clustering in MET-amplified gastric cancer. Cancer Med 2023; 12:19583-19594. [PMID: 37772487 PMCID: PMC10587944 DOI: 10.1002/cam4.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The clinicopathological features of MET-amplified gastric cancer (GC) and real-world data on the efficacy of MET-targeted therapies remain unknown. Pulmonary lymphangitis carcinomatosis (PLC) is a peculiar manifestation of GC, whose management has not been thoroughly described. METHODS This study analyzed patients diagnosed with MET-amplified GC or GC with PLC at any time point of the disease course from 2011 to 2021 in two centers. Clinicopathological features and survival outcomes of MET-amplified GC were analyzed. The clinical and molecular implications of GC with PLC were discussed. RESULTS Fifty-eight patients with MET-amplified GC and 20 patients with GC accompanied by PLC were finally enrolled for analysis (including 13 overlapped patients). GC with PLC was more common in female patients (p = 0.010), diagnosed at a younger age (p = 0.002), presented with a higher baseline ECOG PS (p = 0.016), and was more likely to develop lung metastasis (p < 0.001), and serous effusion (p = 0.026) than GC without PLC. Patients with primary MET-amplified GC had a worse prognosis than those with secondary MET-amplified GC (p = 0.005). The application of anti-MET therapy was associated with numerically prolonged survival, but the association was not statistically significant (p = 0.07). MET amplification was concentrated in patients with PLC, in which anti-MET therapies elicited a high response rate. CONCLUSIONS MET-targeted therapies are efficacious in real-world populations with MET-amplified GC. Patients with PLC have distinct clinical and molecular features and might benefit from MET-targeted therapies.
Collapse
Affiliation(s)
- Zhening Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yiyi Yu
- Fudan Zhongshan Cancer CenterZhongshan Hospital Fudan UniversityShanghaiChina
| | - Tong Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| |
Collapse
|
10
|
Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives. J Hematol Oncol 2023; 16:57. [PMID: 37245017 DOI: 10.1186/s13045-023-01451-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Most patients are diagnosed at advanced stages due to the subtle symptoms of earlier disease and the low rate of regular screening. Systemic therapies for GC, including chemotherapy, targeted therapy and immunotherapy, have evolved significantly in the past few years. For resectable GC, perioperative chemotherapy has become the standard treatment. Ongoing investigations are exploring the potential benefits of targeted therapy or immunotherapy in the perioperative or adjuvant setting. For metastatic disease, there have been notable advancements in immunotherapy and biomarker-directed therapies recently. Classification based on molecular biomarkers, such as programmed cell death ligand 1 (PD-L1), microsatellite instability (MSI), and human epidermal growth factor receptor 2 (HER2), provides an opportunity to differentiate patients who may benefit from immunotherapy or targeted therapy. Molecular diagnostic techniques have facilitated the characterization of GC genetic profiles and the identification of new potential molecular targets. This review systematically summarizes the main research progress in systemic treatment for GC, discusses current individualized strategies and presents future perspectives.
Collapse
Affiliation(s)
- Wen-Long Guan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Ye He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
11
|
Van Herpe F, Van Cutsem E. The Role of cMET in Gastric Cancer—A Review of the Literature. Cancers (Basel) 2023; 15:cancers15071976. [PMID: 37046637 PMCID: PMC10093530 DOI: 10.3390/cancers15071976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Gastric cancer (GC) is an important cause of cancer worldwide with over one million new cases yearly. The vast majority of cases present in stage IV disease, and it still bears a poor prognosis. However, since 2010, progress has been made with the introduction of targeted therapies against HER2 and with checkpoint inhibitors (PDL1). More agents interfering with other targets (FGFR2B, CLDN18.2) are being investigated. cMET is a less frequent molecular target that has been studied for gastric cancer. It is a proto-oncogene that leads to activation of the MAPK pathway and the PI3K pathway, which is responsible for activating the MTOR pathway. The prevalence of cMET is strongly debated as different techniques are being used to detect MET-driven tumors. Because of the difference in diagnostic assays, selecting patients who benefit from cMET inhibitors is difficult. In this review, we discuss the pathway of cMET, its clinical significance and the different diagnostic assays that are currently used, such as immunohistochemy (IHC), fluorescence in situ hybridization (FISH), the H-score and next-generation sequencing (NGS). Next, we discuss all the current data on cMET inhibitors in gastric cancer. Since the data on cMET inhibitors are very heterogenous, it is difficult to provide a general consensus on the outcome, as inclusion criteria differ between trials. Diagnosing cMET-driven gastric tumors is difficult, and potentially the only accurate determination of cMET overexpression/amplification may be next-generation sequencing (NGS).
Collapse
|
12
|
Abstract
Predictive biomarkers are the mainstay of precision medicine. This review summarizes the advancements in tissue-based diagnostic biomarkers for gastric cancer, which is considered the leading cause of cancer-related deaths worldwide. A disease seen in the elderly, it is often diagnosed at an advanced stage, thereby limiting therapeutic options. In Western countries, neoadjuvant/perioperative (radio-)chemotherapy is administered, and adjuvant chemotherapy is administered in the East. The morpho-molecular classification of gastric cancer has opened novel avenues identifying Epstein-Barr-Virus (EBV)-positive, microsatellite instable, genomically stable and chromosomal instable gastric cancers. In chromosomal instable tumors, receptor tyrosine kinases (RKTs) (e.g., EGFR, FGFR2, HER2, and MET) are frequently overexpressed. Gastric cancers such as microsatellite instable and EBV-positive types often express immune checkpoint molecules, such as PD-L1 and VISTA. Genomically stable tumors show alterations in claudin 18.2. Next-generation sequencing is increasingly being used to search for druggable targets in advanced palliative settings. However, most tissue-based biomarkers of gastric cancer carry the risk of a sampling error due to intratumoral heterogeneity, and adequate tissue sampling is of paramount importance.
Collapse
Affiliation(s)
- C. Röcken
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, Haus U33, 24105 Kiel, Germany
| |
Collapse
|
13
|
Third- and Late Line Treatments of Metastatic Gastric Cancer: Still More to Be Done. Curr Oncol 2022; 29:6433-6444. [PMID: 36135075 PMCID: PMC9497544 DOI: 10.3390/curroncol29090506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, advances of anticancer and supportive therapies have determined a gradual improvement in survival rates and patients’ general conditions in metastatic gastric cancer (mGC), allowing them to receive further treatments. The choice of treatment is driven by performance status, age, stage of disease, number of metastatic sites and time from the first to third line of treatment. Targets such as microsatellite instability, PD-L1 expression, and HER2 overexpression or amplification may be addressed to personalise treatment and prolong survival. Despite a growing number of third line options that have provided clinicians with greater opportunities to customise treatments, up to date few agents have been demonstrated as effective after two standard lines for mGC; for these reasons, chemotherapy, immunotherapy, and targeted therapy were all widely investigated in both phase II and phase III studies. Overall, TAS-102, apatinib, regorafenib, nilotinib, trastuzumab, and pembrolizumab were demonstrated to be valid options in the third line scenario for mGC patient refractory to at least two lines of therapy. A multimodal approach based on chemotherapy, immunotherapy, targeted agents, a personalised nutritional programme as well as the research of new predictive biomarkers may pave the way to new strategies to identify the best treatment for each patient.
Collapse
|
14
|
Chen Q, Du X. FGF/FGFR-related lncRNAs based classification predicts prognosis and guides therapy in gastric cancer. Front Genet 2022; 13:948102. [PMID: 36105076 PMCID: PMC9465033 DOI: 10.3389/fgene.2022.948102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor (FGF) and its receptor (FGFR) play crucial roles in gastric cancer (GC). Long non-coding RNAs (lncRNAs) are defined as RNA molecules of around 200 nucleotides or more, which are not translated into proteins. As well-known regulatory factors, lncRNAs are considered as biomarkers for prognosis and treatment response in GC. It is of importance to identify FGF/FGFR-related lncRNAs in GC. Here, some FGF/FGFR-related lncRNAs were identified in GC based on the data from public databases, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Then a four-lncRNAs (FGF10-AS1, MIR2052HG, POU6F2-AS2, and DIRC1) risk score (RS) model was established for predicting GC’s prognosis by using Cox analysis. According to the median value of RS, GC patients were divided into low and high RS group. Low RS group displayed high tumor mutation burden and infiltration of immune cells, as well as more sensitivity to immunotherapy or chemotherapy. High RS group showed high infiltration of stromal cells and more oncogenic signatures. In addition, a comprehensive analysis was carried out and found that high RS group may exhibit specific sensitivity to Panobinostat (histone deacetylases inhibitor) and Tivantinib (MET inhibitor). In summary, our study not only offers a novel personalized prognostication classification model according to FGF/FGFR-related lncRNAs, but also provides a new strategy for subclass-specific precision treatment in GC.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojing Du
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaojing Du,
| |
Collapse
|
15
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
16
|
Harrold E, Corrigan L, Barry S, Lowery M. Targeting MET amplification in Gastro-oesophageal (GO) malignancies and overcoming MET inhibitor resistance: challenges and opportunities. Expert Rev Gastroenterol Hepatol 2022; 16:601-624. [PMID: 35757852 DOI: 10.1080/17474124.2022.2093185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION MET, the hepatocyte growth factor receptor is amplified in 8% of gastroesophageal (GO) malignancies and associated with poor prognosis. Therapeutic targeting of MET amplification and MET mutations has the potential to improve outcomes for patients with GO cancers (GOC). AREAS COVERED The efficacy of MET inhibition (METi) in preclinical studies has yet to translate into meaningful improvements in the treatment paradigm for unselected GOC. MET amplification has been proposed as a superior modality for patient selection; however even if confirmed, frequency and duration of response to METi are limited by rapid activation of primary and secondary resistance pathways. These observations illustrate the challenges inherent in the application of precision oncology predicated on the theory of oncogenic addiction. EXPERT OPINION A standardized definition of MET positivity is critical to enhance patient selection. Early successes targeting the METex14 skipping mutation demonstrate the potent therapeutic effects of METi in a clearly molecularly defined cohort. There is robust preclinical rationale and early-phase data supporting exploitation of immune system interaction with MET. Pragmatic investigation of rational therapeutic combinations based on molecular profiling of both primary and metastatic disease sites with sequential circulating tumor DNA analysis can inform successful clinical development of METi agents in GOC.
Collapse
Affiliation(s)
- Emily Harrold
- Medical Oncology Department, Mater Private Hospital Dublin, Leinster, Ireland.,Trinity St James Cancer Institute, Trinity College Dublin, Leinster, Ireland
| | - Lynda Corrigan
- Trinity St James Cancer Institute, Trinity College Dublin, Leinster, Ireland.,Medical Oncology Department, Tallaght/AMNCH Hospital Dublin, Leinster, Ireland
| | - Simon Barry
- Medical Oncology Department, St James University Hospital Dublin, Leinster, Ireland
| | - Maeve Lowery
- Trinity St James Cancer Institute, Trinity College Dublin, Leinster, Ireland.,Medical Oncology Department, St James University Hospital Dublin, Leinster, Ireland
| |
Collapse
|
17
|
Zhao S, Wu W, Jiang H, Ma L, Pan C, Jin C, Mo J, Wang L, Wang K. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tivantinib? Front Immunol 2021; 12:731527. [PMID: 34804015 PMCID: PMC8600564 DOI: 10.3389/fimmu.2021.731527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) remains a formidable health challenge worldwide, with a 5-year survival rate of 2.4% in patients with distant metastases. The hepatocyte growth factor/cellular-mesenchymal-epithelial transition (HGF/c-Met) signaling pathway represents an encouraging therapeutic target for progressive HCC. Tivantinib, a non-adenosine triphosphate-competitive c-Met inhibitor, showed an attractive therapeutic effect on advanced HCC patients with high MET-expression in phase 2 study but failed to meet its primary endpoint of prolonging the overall survival (OS) in two phase 3 HCC clinical trials. Seven clinical trials have been registered in the "ClinicalTrials.gov" for investigating the safety and efficacy of tivantinib in treating advanced or unresectable HCC. Eight relevant studies have been published with results. The sample size ranged from 20 to 340 patients. The methods of tivantinib administration and dosage were orally 120/240/360 mg twice daily. MET overexpression was recorded at 34.6% to 100%. Two large sample phase 3 studies (the METIV-HCC study of Australia and European population and the JET-HCC study of the Japanese population) revealed that tivantinib failed to show survival benefits in advanced HCC. Common adverse events with tivantinib treatment include neutropenia, ascites, rash, and anemia, etc. Several factors may contribute to the inconsistency between the phase 2 and phase 3 studies of tivantinib, including the sample size, drug dosing, study design, and the rate of MET-High. In the future, high selective MET inhibitors combined with a biomarker-driven patient selection may provide a potentially viable therapeutic strategy for patients with advanced HCC.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lei Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chengyi Pan
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
18
|
Liao H, Tian T, Sheng Y, Peng Z, Li Z, Wang J, Li Y, Zhang C, Gao J. The Significance of MET Expression and Strategies of Targeting MET Treatment in Advanced Gastric Cancer. Front Oncol 2021; 11:719217. [PMID: 34557411 PMCID: PMC8453156 DOI: 10.3389/fonc.2021.719217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background Accurate assessment of predictive biomarker expression is critical in patient selection in clinical trials or clinical practice. However, changes in biomarker expression may occur after treatment. The aim of the present study was to evaluate the effects of chemotherapy on MET expression in gastric cancer (GC). Methods MET expression was examined immunohistochemically before and after treatment in 122 patients with unresectable or recurrent GC, and was evaluated according to H-score or the scoring criteria used in the MetMAb trial. MET gene amplification was assessed by chromogenic in situ hybridization (CISH). The antitumor effect of MET targeted therapy was investigated in human gastric cancer cells in vitro and in vivo, and the underlying molecular mechanisms were analyzed by western blot. Results MET expression was associated with Lauren classification as well as tumor differentiation by either scoring system. MET amplification was not associated with clinical characteristics. Of the 71 patients who had paired pre- and post-treatment tumor tissues, 28 patients (39%) were initially positive for MET expression, and 43 (61%) were negative. Twenty-five patients (35%) showed significant changes in MET expression after treatment (P=0.007). Additionally, there was a concomitant overexpression of MET and HER2 in a subset of GC patients. MET inhibitor volitinib could significantly inhibit cell proliferation and xenograft growth in vitro and in vivo in MKN45 cells with MET and phosphorylated MET (pMET) high expressions via suppressing downstream PI3K/Akt and MAPK signaling pathways. Furthermore, combination therapy targeting both MET and HER2 demonstrated a synergistic antitumor activity. Conclusions MET expression is altered post chemotherapy and MET status should be evaluated in real-time. Both MET and pMET expressions might need to be considered for patients suitable for volitinib treatment.
Collapse
Affiliation(s)
- Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Tiantian Tian
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.,Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yuling Sheng
- School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jingyuan Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
19
|
Maguire WF, Schmitz JC, Scemama J, Czambel K, Lin Y, Green AG, Wu S, Lin H, Puhalla S, Rhee J, Stoller R, Tawbi H, Lee JJ, Wright JJ, Beumer JH, Chu E, Appleman LJ. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:643-654. [PMID: 34164713 DOI: 10.1007/s00280-021-04317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody. METHODS Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120-360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin. RESULTS Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin. CONCLUSIONS The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression. TRIAL REGISTRATION NCT01749384 (First posted 12/13/2012).
Collapse
Affiliation(s)
- William F Maguire
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Schmitz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Ken Czambel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center Biostatistics Facility, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony G Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Shaoyu Wu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Huang Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Roche Product Development, Roche (China) Holding Ltd., Shanghai, China
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Rhee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Stoller
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Department of Melanoma and Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
20
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
21
|
Riu F, Sanna L, Ibba R, Piras S, Bordoni V, Scorciapino MA, Lai M, Sestito S, Bagella L, Carta A. A comprehensive assessment of a new series of 5',6'-difluorobenzotriazole-acrylonitrile derivatives as microtubule targeting agents (MTAs). Eur J Med Chem 2021; 222:113590. [PMID: 34139625 DOI: 10.1016/j.ejmech.2021.113590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Microtubules (MTs) are the principal target for drugs acting against mitosis. These compounds, called microtubule targeting agents (MTAs), cause a mitotic arrest during G2/M phase, subsequently inducing cell apoptosis. MTAs could be classified in two groups: microtubule stabilising agents (MSAs) and microtubule destabilising agents (MDAs). In this paper we present a new series of (E) (Z)-2-(5,6-difluoro-(1H)2H-benzo[d] [1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile (9a-j, 10e, 11a,b) and (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(R)acrylonitrile derivatives (13d,j), which were recognised to act as MTAs agents. They were rationally designed, synthesised, characterised and subjected to different biological assessments. Computational docking was carried out in order to investigate the potential binding to the colchicine-binding site on tubulin. From this first prediction, the di-fluoro substitution seemed to be beneficial for the binding affinity with tubulin. The new fluorine derivatives, here presented, showed an improved antiproliferative activity when compared to the previously reported compounds. The biological evaluation included a preliminary antiproliferative screening on NCI60 cancer cells panel (1-10 μM). Compound 9a was selected as lead compound of the new series of derivatives. The in vitro XTT assay, flow cytometry analysis and immunostaining performed on HeLa cells treated with 9a showed a considerable antiproliferative effect, (IC50 = 3.2 μM), an increased number of cells in G2/M-phase, followed by an enhancement in cell division defects. Moreover, β-tubulin staining confirmed 9a as a MDA triggering tubulin disassembly, whereas colchicine-9a competition assay suggested that compound 9a compete with colchicine for the binding site on tubulin. Then, the co-administration of compound 9a and an extrusion pump inhibitor (EPI) was investigated: the association resulted beneficial for the antiproliferative activity and compound 9a showed to be client of extrusion pumps. Finally, structural superimposition of different colchicine binding site inhibitors (CBIs) in clinical trial and our MDA, provided an additional confirmation of the targeting to the predicted binding site. Physicochemical, pharmacokinetic and druglikeness predictions were also conducted and all the newly synthesised derivatives showed to be drug-like molecules.
Collapse
Affiliation(s)
- Federico Riu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - M Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 Km 0.700, 09042, Monserrato (CA), Italy
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale Del Brennero, 2, Pisa, Italy; CISUP - Centre for Instrumentation Sharing - University of Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
22
|
Grojean M, Schwarz MA, Schwarz JR, Hassan S, von Holzen U, Zhang C, Schwarz RE, Awasthi N. Targeted dual inhibition of c-Met/VEGFR2 signalling by foretinib improves antitumour effects of nanoparticle paclitaxel in gastric cancer models. J Cell Mol Med 2021; 25:4950-4961. [PMID: 33939252 PMCID: PMC8178268 DOI: 10.1111/jcmm.16362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Elevated expression of multiple growth factors and receptors including c‐Met and VEGFR has been reported in gastric adenocarcinoma (GAC) and thus provides a potentially useful therapeutic target. The therapeutic efficacy of foretinib, a c‐Met/VEGFR2 inhibitor, was determined in combination with nanoparticle paclitaxel (NPT) in GAC. Animal studies were conducted in NOD/SCID mice in subcutaneous and peritoneal dissemination xenografts. The mechanism of action was assessed by Immunohistochemical and Immunoblot analyses. In c‐Met overexpressing MKN‐45 cell‐derived xenografts, NPT and foretinib demonstrated inhibition in tumour growth, while NPT plus foretinib showed additive effects. In c‐Met low‐expressing SNU‐1 or patient‐derived xenografts, the foretinib effect was smaller, while NPT had a similar effect compared with MKN‐45, as NPT plus foretinib still exhibited an additive response. Median mice survival was markedly improved by NPT (83%), foretinib (100%) and NPT plus foretinib (230%) in peritoneal dissemination xenografts. Subcutaneous tumour analyses exhibited that foretinib increased cancer cell death and decreased cancer cell proliferation and tumour vasculature. NPT and foretinib suppressed the proliferation of GAC cells in vitro and had additive effects in combination. Further, foretinib caused a dramatic decrease in phosphorylated forms of c‐Met, ERK, AKT and p38. Foretinib led to a decrease in Bcl‐2, and an increase in p27, Bax, Bim, cleaved PARP‐1 and cleaved caspase‐3. Thus, these findings highlight the antitumour impact of simultaneous suppression of c‐Met and VEGFR2 signalling in GAC and its potential to enhance nanoparticle paclitaxel response. This therapeutic approach might lead to a clinically beneficial combination to increase GAC patients’ survival.
Collapse
Affiliation(s)
- Meghan Grojean
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Johann R Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA.,Goshen Center for Cancer Care, Goshen, IN, USA.,University of Basel, Basel, Switzerland
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,University of Buffalo, Buffalo, NY, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
23
|
Molecularly targeted therapy for advanced gastrointestinal noncolorectal cancer treatment: how to choose? Past, present, future. Anticancer Drugs 2021; 32:593-601. [PMID: 33929995 DOI: 10.1097/cad.0000000000001071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal cancer is a leading cause of death worldwide. Conventional cytotoxic chemotherapy has been the backbone of advanced gastrointestinal cancer treatment for decades and still represents a key element of the therapeutic armamentarium. However, only small increments in survival outcomes have been reached. New clinical trials are designed, including classic chemotherapy in association with either small-molecule inhibitors or mAb. During the past few years, remarkable progress in molecular biology of gastrointestinal noncolorectal cancers, the discovery of specific targets and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress. New biological agents with molecularly targeted therapies are now available or currently included in clinical trials (EGFR inhibitors (i), antiangiogenic agents, c-METi, IDHi, FGFR2i, BRAFi, Pi3Ki/AKTi/mTORi, NTRKi). When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. The aim of this review is to focus on the studies that have been completed to date with target therapies and to understand which of these are currently the accepted choice in clinical practice and which need further confirmation and approval for inclusion in guidelines. All these findings will enable to guide clinical practice for oncologists in the design of the next round of clinical trials.
Collapse
|
24
|
El Darsa H, El Sayed R, Abdel-Rahman O. MET Inhibitors for the Treatment of Gastric Cancer: What's Their Potential? J Exp Pharmacol 2020; 12:349-361. [PMID: 33116950 PMCID: PMC7547764 DOI: 10.2147/jep.s242958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer remains a disease with a dismal prognosis. Extensive efforts to find targetable disease drivers in gastric cancer were implemented to improve patient outcomes. Beyond anti-HER2 therapy, MET pathway seems to be culprit of cancer invasiveness with MET-overexpressing tumors having poorer prognosis. Tyrosine kinase inhibitors targeting the HGF/MET pathway were studied in MET-positive gastric cancer, but no substantial benefit was proven. Some patients responded in early phase trials but later developed resistance. Others failed to show any benefit at all. Etiologies of resistance may entail inappropriate patient selection with a lack of MET detection standardization, tumor alternative pathways, variable MET amplification, and genetic variation. Optimizing MET detection techniques and better understanding the MET pathway, as well as tumor bypass mechanisms, are an absolute need to devise means to overcome resistance using targeted therapy alone, or in combination with other synergistic agents to improve outcomes of patients with MET-positive GC.
Collapse
Affiliation(s)
- Haidar El Darsa
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rola El Sayed
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Abdel-Rahman
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Shao Z, Pan H, Tu S, Zhang J, Yan S, Shao A. HGF/c-Met Axis: The Advanced Development in Digestive System Cancer. Front Cell Dev Biol 2020; 8:801. [PMID: 33195182 PMCID: PMC7649216 DOI: 10.3389/fcell.2020.00801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have indicated that abnormal activation of the HGF/c-Met signaling pathway can lead to cell proliferation, invasiveness, and metastasis of cancers of the digestive system. Moreover, overexpression of c-Met has been implicated in poor prognosis of patients with these forms of cancer, suggesting the possibility for HGF/c-Met axis as a potential therapeutic target. Despite the large number of clinical and preclinical trials worldwide, no significant positive success in the use of anti-HGF/c-Met treatments on cancers of the digestive system has been achieved. In this review, we summarize advanced development of clinical research on HGF/c-Met antibody and small-molecule c-Met inhibitors of cancers of the digestive system and provide a possible direction for future research.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingying Zhang
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Kudo M, Morimoto M, Moriguchi M, Izumi N, Takayama T, Yoshiji H, Hino K, Oikawa T, Chiba T, Motomura K, Kato J, Yasuchika K, Ido A, Sato T, Nakashima D, Ueshima K, Ikeda M, Okusaka T, Tamura K, Furuse J. A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci 2020; 111:3759-3769. [PMID: 32716114 PMCID: PMC7541009 DOI: 10.1111/cas.14582] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
A previous randomized phase 2 study of hepatocellular carcinoma revealed that the c‐Met inhibitor tivantinib as second‐line treatment significantly prolonged progression‐free survival in a subpopulation whose tumor samples highly expressed c‐Met (MET‐high). Accordingly, this phase 3 study was conducted to evaluate the efficacy of tivantinib as a second‐line treatment for Japanese patients with MET‐high hepatocellular carcinoma. This randomized, double‐blind, placebo‐controlled study was conducted at 60 centers in Japan. Hepatocellular carcinoma patients with one prior sorafenib treatment and those with MET‐high tumor samples were eligible for inclusion. Registered patients were randomly assigned to either the tivantinib or placebo group at a 2:1 ratio and were treated with twice‐a‐day oral tivantinib (120 mg bid) or placebo until the discontinuation criteria were met. The primary endpoint was progression‐free survival while the secondary endpoints included overall survival and safety. Between January 2014 and June 2016, 386 patients provided consent, and 195 patients were randomized to the tivantinib (n = 134) or placebo (n = 61) group. Median progression‐free survival was 2.8 (95% confidence interval: 2.7‐2.9) and 2.3 (1.5‐2.8) mo in the tivantinib and placebo groups, respectively (hazard ratio = 0.74, 95% confidence interval: 0.52‐1.04, P = .082). Median overall survival was 10.3 (95% confidence interval: 8.1‐11.6) and 8.5 (6.2‐11.4) mo in the tivantinib and placebo group, respectively (hazard ratio = 0.82, 95% confidence interval: 0.58‐1.15). The most common tivantinib‐related grade ≥3 adverse events were neutropenia (31.6%), leukocytopenia (24.8%), and anemia (12.0%). This study did not confirm the significant efficacy of tivantinib as a second‐line treatment for Japanese patients with MET‐high hepatocellular carcinoma. (NCT02029157).
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Manabu Morimoto
- Department of Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Michihisa Moriguchi
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Okayama, Japan
| | - Takayoshi Oikawa
- Department of Internal Medicine, Division of Hepatology, Iwate Medical University, Iwate, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenta Motomura
- Department of Hepatology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Junko Kato
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kentaro Yasuchika
- Department of Surgery, Division of Hepatobiliary Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ido
- Department of Gastroenterology, Kagoshima University Medical and Dental Hospital, Kagoshima, Japan
| | - Takashi Sato
- R&D Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | | | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuo Tamura
- General Medical Research Center, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Furuse
- Department of Medical Oncology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
27
|
Cartwright E, Athauda A, Chau I. Emerging precision therapies for gastric cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1760089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Avani Athauda
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| |
Collapse
|
28
|
Kim BJ, Kim YJ, Sohn SH, Kim B, Sul HJ, Kim HS, Zang DY. Tivantinib inhibits the VEGF signaling pathway and induces apoptosis in gastric cancer cells with c-MET or VEGFA amplification. Invest New Drugs 2020; 38:1633-1640. [PMID: 32361789 DOI: 10.1007/s10637-020-00940-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Tivantinib has been described as a selective inhibitor of c-Met and is being studied in various types of cancer. In this study, we evaluated the effects of tivantinib on the suppression of gastric cancer (GC) cell migration and apoptosis. We also examined the mechanism of action of tivantinib by oncogenic pathway analysis. We applied an RNA-sequencing approach in 34 GC patients to identify oncogenes that are differentially expressed in GC tissues. To examine the inhibitory effect of tivantinib on GC cells, we conducted apoptosis analysis using an annexin V-APC/PI apoptosis detection kit and trans-well migration assay with human GC cell lines. For oncogenic pathway analysis, Western blot and quantitative real-time PCR analysis were used to detect the expression of proteins and genes before and after tivantinib exposure. In the RNA-sequencing analysis of 34 GC patients, c-Met and VEGFA genes were expressed and positively correlated with each other. Cell migration and apoptosis analysis demonstrated that tivantinib induced the best inhibition effect in SNU620, MKN45 (carries VEGFB mutation), AGS, and MKN28 cells, but not in KATO III (carries VEGFB and VEGFC mutations) cells. Oncogenic pathway analysis showed that tivantinib, in addition to c-Met signaling pathway inhibition, also inhibits VEGF signaling and MYC expression in VEGFA-expressing GC cells. We found that tivantinib has anti-cancer activity not only in GC cells overexpressing c-Met but also in non-c-Met GC cells by inhibition of the VEGF signaling pathway.
Collapse
Affiliation(s)
- Bum Jun Kim
- Division of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam, 13574, Republic of Korea
| | - Yoo Jin Kim
- Hallym Translational Research Institute, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea
| | - Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea
| | - Hyeong Su Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea. .,Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, 14068, Republic of Korea.
| |
Collapse
|
29
|
Kumboonma P, Saenglee S, Senawong T, Phaosiri C. Histone Deacetylase Inhibitors and Antioxidants From the Root of Gluta usitata. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19895370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new glycoside, glutacoside (1), as well as 6 known compounds was isolated and identified from the root of Gluta usitata. Their structures were determined by Infrared spectroscopy, Mass spectroscopy, and 1-Dimensional and 2-dimensional nuclear magnetic resonance spectroscopy data. The histone deacetylase (HDAC) inhibitory and antioxidant activities of the obtained compounds were evaluated. Molecular docking experiments of the selected compound with representatives of class I (HDAC2 and HDAC8) and class II (HDAC4 and HDAC7) HDAC isoforms displayed potential isoform-selective HDAC inhibitors. Molecular docking data showed consistent results to the in vitro experiments with the highest potency against HDAC8. The docking studies suggested that the phenolic and carbonyl group can be favorably accommodated at the gorge region of the binding site. Furthermore, the phenolic groups also acted as major roles for antioxidant activities.
Collapse
Affiliation(s)
- Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Somprasong Saenglee
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Thailand
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Thailand
| | - Chanokbhorn Phaosiri
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Thailand
| |
Collapse
|
30
|
Wu Y, Li Z, Zhang L, Liu G. Tivantinib Hampers the Proliferation of Glioblastoma Cells via PI3K/Akt/Mammalian Target of Rapamycin (mTOR) Signaling. Med Sci Monit 2019; 25:7383-7390. [PMID: 31575848 PMCID: PMC6790099 DOI: 10.12659/msm.919319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Glioblastoma, the most common and malignant glial tumor, often has poor prognosis. Tivantinib has shown its potential in treating c-Met-high carcinoma. No studies have explored whether tivantinib inhibits the development of glioblastoma. Material/Methods The correlation between c-Met expression and clinicopathological characteristics of glioblastoma was investigated. U251 and T98MG glioblastoma cells treated with tivantinib, PI3K inhibitor (LY294002), PI3K activator (740 Y-P), and/or mammalian target of rapamycin (mTOR) inhibitor were subjected to MTT assay or colony formation assay to evaluate cell proliferation. The expression of mTOR signaling and caspase-3 in tivantinib-treated glioblastoma cells was differentially measured by western blotting. Results In a group of Chinese patients, expression of c-Met was elevated with the size of glioblastoma, but not with the other clinicopathological characteristics, including gender, age, grade, IDH status, 1p/19q status, and Ki67 status. High dose of tivantinib (1 μmol/L) obviously repressed the proliferation and colony formation of U251 and T98MG glioblastoma cells, but low dose (0.1 μmol/L) of tivantinib failed to retard cell proliferation. Tivantinib blocked PI3K/Akt/mTOR signaling but did not change the expression of cleaved caspase-3. PI3K activator 740 Y-P (20 μmol/L) significantly rescued tivantinib-induced decrease of cell proliferation. Tivantinib (1 μmol/L) in combination with PI3K inhibitor LY294002 (0.5 μmol/L) and mTOR inhibitor rapamycin (0.1 nmol/L) largely inhibited the proliferation of glioblastoma cells. Conclusions c-MET inhibitor tivantinib blocks PIKE/Akt/mTOR signaling and hampers the proliferation of glioblastoma cells, which endows the drug a therapeutic effect.
Collapse
Affiliation(s)
- Yukun Wu
- Department of General Practice, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Zhizhang Li
- Department of General Practice, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Lijuan Zhang
- Department of Cardiovascular Medicine, Linyi Central Hospital, Yishui, Shandong, China (mainland)
| | - Guiyang Liu
- Department of Neurosurgery, Jinan Fourth People's Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
31
|
Seo S, Ryu MH, Ryoo BY, Park Y, Park YS, Na YS, Lee CW, Lee JK, Kang YK. Clinical significance of MET gene amplification in metastatic or locally advanced gastric cancer treated with first-line fluoropyrimidine and platinum combination chemotherapy. Chin J Cancer Res 2019; 31:620-631. [PMID: 31564805 PMCID: PMC6736660 DOI: 10.21147/j.issn.1000-9604.2019.04.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the clinical significance of MET gene amplification in patients with gastric cancer in the palliative setting.
Methods MET amplification was assessed using fluorescence in situ hybridization (FISH) in 50 patients and quantitative polymerase chain reaction (qPCR) in 326 patients; 259 patients treated with first-line fluoropyrimidine and platinum were included for survival analysis.
Results The results of FISH and qPCR indicated that the c-MET/CEP7 ratio was correlated with gene copy number. The optimal cutoff value for the copy number using qPCR to detect MET gene amplification with FISH was 5 (κ=0.778, P<0.001). Twenty-one out of 326 patients (6.4%) were identified asMET amplification with a copy number of >5 detected by qPCR. MET-amplified gastric cancer was associated with an Eastern Cooperative Oncology Group (ECOG) performance status (PS) score of ≥2 (33.3% vs. 10.5% P=0.007), peritoneal metastasis (76.2% vs. 46.2%, P=0.008), and elevated bilirubin levels (28.6% vs. 7.3%, P=0.006). The median overall survival (OS) and progression-free survival (PFS) were 11.9 and 5.6 months, respectively. MET-amplified gastric cancer was not associated with survival outcomes [hazard ratio (HR)=0.68, 95% confidence interval (95% CI): 0.35−1.32, P=0.254 for PFS; HR=0.68, 95% CI: 0.35−1.32, P=0.251 for OS].
Conclusions qPCR can be used to detect MET gene amplification. MET amplification was not a predictor of poor prognosis in patients with metastatic or unresectable gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Soon Na
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chae-Won Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ju-Kyung Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | |
Collapse
|
32
|
Liu G, Hu Y, Cheng X, Wang Y, Gu Y, Liu T, Shi H. Volumetric parameters on 18F-FDG PET/CT predict the survival of patients with gastric cancer associated with their expression status of c-MET. BMC Cancer 2019; 19:790. [PMID: 31395059 PMCID: PMC6686274 DOI: 10.1186/s12885-019-5935-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background This study aimed to investigate the prognostic value of volumetric parameters on 18F- fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in gastric-cancer patients, according to the expression status of c-MET (MET proto-oncogene, receptor tyrosine kinase), which was previously unclear. Methods The study included 61 patients with advanced gastric cancer. Data on the baseline 18F-FDG PET/CT, clinical-pathological information, progression-free survival (PFS), and overall survival (OS) were collected. The maximum standardized uptake value (SUVmax), peak SUV (SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of gastric tumors in situ were measured on PET/CT. The expression status of c-MET was recorded based on immunohistochemical staining. Associations between the parameters on PET/CT and patients’ survival outcomes were analyzed in relation to expression status of c-MET. Results Patients with positive c-MET expression had significantly shorter PFS (11.5 vs. 17.6 months, P = 0.039) and OS (17.0 vs. 24.3 months, P = 0.043), and had gastric tumors with a larger MTV (70.8 ± 53.11 vs. 41.1 ± 52.32, P = 0.034) and TLG (428.39 ± 442.95 vs. 205.7 ± 354.40, P = 0.039), compared with those with negative c-MET expression. However, SUVmax (9.6 ± 7.40 vs. 8.0 ± 4.91, P = 0.335) and SUVpeak (7.7 ± 5.99 vs. 6.62 ± 4.08, P = 0.438) were similar between these two patient groups. In patients with c-MET-positive tumors, MTV and TLG were independent factors in predicting patient OS after correction by distant metastasis (hazards ratio = 1.014 and 1.002, respectively; P = 0.024 and 0.027, respectively), while these associations were not significant in patients with c-MET-negative tumors. Conclusions Patients with c-MET-positive gastric cancer had higher MTV and TLG values compared to those with c-MET-negative gastric cancer. In patients with c-MET-positive gastric cancer, volumetric parameters on 18F-FDG PET/CT have prognostic value for patient overall survival.
Collapse
Affiliation(s)
- Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xi Cheng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
33
|
Casaletto JB, Geddie ML, Abu-Yousif AO, Masson K, Fulgham A, Boudot A, Maiwald T, Kearns JD, Kohli N, Su S, Razlog M, Raue A, Kalra A, Håkansson M, Logan DT, Welin M, Chattopadhyay S, Harms BD, Nielsen UB, Schoeberl B, Lugovskoy AA, MacBeath G. MM-131, a bispecific anti-Met/EpCAM mAb, inhibits HGF-dependent and HGF-independent Met signaling through concurrent binding to EpCAM. Proc Natl Acad Sci U S A 2019; 116:7533-7542. [PMID: 30898885 PMCID: PMC6462049 DOI: 10.1073/pnas.1819085116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.
Collapse
Affiliation(s)
| | - Melissa L Geddie
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Adnan O Abu-Yousif
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Kristina Masson
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Aaron Fulgham
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Antoine Boudot
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Tim Maiwald
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Jeffrey D Kearns
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Neeraj Kohli
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Stephen Su
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Maja Razlog
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Andreas Raue
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139;
| | - Ashish Kalra
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
| | - Martin Welin
- SARomics Biostructures AB, Medicon Village, SE-223 81 Lund, Sweden
| | | | - Brian D Harms
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Ulrik B Nielsen
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Birgit Schoeberl
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Alexey A Lugovskoy
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Gavin MacBeath
- Discovery Division, Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139;
| |
Collapse
|
34
|
Ghanaatgar-Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C-MET/HGF Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Curr Pharm Des 2019; 24:4619-4625. [PMID: 30636579 DOI: 10.2174/1381612825666190110145855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The c-mesenchymal-epithelial transition factor (c-MET) is involved in the tumorigenesis of various
cancers. HGF/Met inhibitors are now attracting considerable interest due to their anti-tumor activity in multiple
malignancies such as pancreatic cancer. It is likely that within the next few years, HGF/Met inhibitors will become
a crucial component for cancer management. In this review, we summarize the role of HGF/Met pathway in
the pathogenesis of pancreatic cancer, with particular emphasize on HGF/Met inhibitors in the clinical setting,
including Cabozantinib (XL184, BMS-907351), Crizotinib (PF-02341066), MK-2461, Merestinib (LY2801653),
Tivantinib (ARQ197), SU11274, Onartuzumab (MetMab), Emibetuzumab (LY2875358), Ficlatuzumab (AV-
299), Rilotumumab (AMG 102), and NK4 in pancreatic cancer.
Collapse
Affiliation(s)
- Sadaf Ghanaatgar-Kasbi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A. Aledavoud
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| |
Collapse
|
35
|
Ndolo KM, An SJ, Park KR, Lee HJ, Yoon KB, Kim YC, Han SY. Discovery of an Indirubin Derivative as a Novel c-Met Kinase Inhibitor with In Vitro Anti-Tumor Effects. Biomol Ther (Seoul) 2019; 27:216-221. [PMID: 30060294 PMCID: PMC6430219 DOI: 10.4062/biomolther.2018.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023] Open
Abstract
The c-Met protein is a receptor tyrosine kinase involved in cell growth, proliferation, survival, and angiogenesis of several human tumors. Overexpression of c-Met has been found in gastric cancers and correlated with a poor prognosis. Indirubin is the active component of Danggui Longhui Wan, which is a traditional Chinese antileukemic recipe. In the present study, we tested the anti-cancer effects of an indirubin derivative, LDD-1937, on human gastric cancer cells SNU-638. When we performed the in vitro kinase assay against the c-Met activity, LDD-1937 inhibited the activity of c-Met. This result was confirmed by immunoblot and immunofluorescence of phosphorylated c-Met. Immunoblot analysis showed that LDD-1937 decreased the expression of the Erk1/2, STAT3, STAT5, and Akt, downstream proteins of c-Met. In addition, LDD-1937 reduced the cell viability and suppressed colony formation and migration of SNU-638 cells. Furthermore, LDD-1937 induced G2/M phase arrest in the SNU-638 cells by decreasing the expression levels of cyclin B1 and CDC2. Cleaved-PARP, an apoptosis-related protein, was up-regulated in cells treated with LDD-1937. Overall, this study suggests that LDD-1937 may be a novel small-molecule with therapeutic potential for selectively inhibiting c-Met and c-Met downstream pathways in human gastric cancers overexpressing c-Met.
Collapse
Affiliation(s)
- Karyn Muzinga Ndolo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su Jin An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61186, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
36
|
Lin H, Han D, Fu G, Liu C, Wang L, Han S, Liu B, Yu J. Concurrent apatinib and docetaxel vs apatinib monotherapy as third- or subsequent-line therapy for advanced gastric adenocarcinoma: a retrospective study. Onco Targets Ther 2019; 12:1681-1689. [PMID: 30881023 PMCID: PMC6400117 DOI: 10.2147/ott.s193801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of this study was to assess the efficacy and safety of concurrent apatinib and docetaxel therapy vs apatinib monotherapy as third- or subsequent-line treatment for advanced gastric adenocarcinoma (GAC). Methods Patients, who had received apatinib with or without docetaxel as third or more line therapy for advanced GAC, were retrospectively reviewed. Propensity score matching (PSM) analysis was performed to minimize the potential confounding bias. Kaplan–Meier curve and log-rank test were used to analyze the survival. Prognostic factors were estimated by Cox regression. Adverse events (AEs) were evaluated using CTCAE 4.0. Results Thirty-four patients received concurrent therapy, whereas 31 received monotherapy. The median progression-free survival (PFS) and overall survival (OS) in monotherapy and con-therapy groups were 2.5 and 4 months (P=0.002), 3.3 and 6 months (P=0.004), respectively. After PSM, the median PFS and OS in the con-therapy group were also superior to the monotherapy group (P=0.004 and P=0.017). Cox regression suggested that Eastern Cooperative Oncology Group performance status (ECOG PS; HR =2.437, 95% CI: 1.349–4.404, P=0.003), CA199 (HR =1.001, 95% CI: 1.000–1.002, P=0.016), and treatment options (HR =0.388, 95% CI: 0.222–0.679, P=0.001) had significant effects on OS. Grade 3/4 toxicities in the monotherapy and con-therapy groups were as follows: leukopenia (0% vs 8.8%), neutropenia (3.2% vs 2.9%), anemia (9.8% vs 8.8%), thrombocytopenia (6.4% vs 2.9%), proteinuria (3.2% vs 2.9%), aminotransferase (0% vs 11.8%), hyperbilirubinemia (9.8% vs 5.9%), hypertension (9.8% vs5.9%), hand–foot syndrome (3.2% vs 8.8%), nausea and vomiting (0% vs 11.8%), diarrhea (0% vs 5.9%), and fatigue (6.5% vs 2.9%). Conclusion Patients with advanced GAC benefit more from concurrent apatinib and docetaxel therapy than apatinib monotherapy.
Collapse
Affiliation(s)
- Haimin Lin
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China, .,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250200, China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Guobin Fu
- Department of Medical Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Lili Wang
- Department of Bone and Soft Tumor, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China
| | - Shumei Han
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Bo Liu
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China,
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, China,
| |
Collapse
|
37
|
HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19:ijms19113295. [PMID: 30360560 PMCID: PMC6274736 DOI: 10.3390/ijms19113295] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.
Collapse
|
38
|
Third line treatment of advanced oesophagogastric cancer: A critical review of current evidence and evolving trends. Cancer Treat Rev 2018; 71:32-38. [PMID: 30343173 DOI: 10.1016/j.ctrv.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
Abstract
There is increasing evidence that treatment beyond second line provides significant survival benefit for selected advanced oesophageal and gastric adenocarcinoma patients, and important randomised controlled trials of both chemotherapy, targeted therapy and immunotherapy have recently been reported in this space. Despite this growing evidence base there are presently no formal guidelines for third line treatment available to clinicians, and as these agents move into routine clinical practice patient selection and rational sequencing of treatment will become an increasingly relevant clinical challenge. This review critically appraises the current evidence base for third line treatment and discusses patient selection, potential predictive biomarkers and future directions for third line treatment in this challenging condition.
Collapse
|
39
|
Buttigliero C, Shepherd FA, Barlesi F, Schwartz B, Orlov S, Favaretto AG, Santoro A, Hirsh V, Ramlau R, Blackler AR, Roder J, Spigel D, Novello S, Akerley W, Scagliotti GV. Retrospective Assessment of a Serum Proteomic Test in a Phase III Study Comparing Erlotinib plus Placebo with Erlotinib plus Tivantinib (MARQUEE) in Previously Treated Patients with Advanced Non-Small Cell Lung Cancer. Oncologist 2018; 24:e251-e259. [PMID: 30139835 DOI: 10.1634/theoncologist.2018-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The VeriStrat test provides accurate predictions of outcomes in all lines of therapy for patients with non-small cell lung cancer (NSCLC). We investigated the predictive and prognostic role of VeriStrat in patients enrolled on the MARQUEE phase III trial of tivantinib plus erlotinib (T+E) versus placebo plus erlotinib (P+E) in previously treated patients with advanced NSCLC. METHODS Pretreatment plasma samples were available for 996 patients and were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to generate VeriStrat labels (good, VS-G, or poor, VS-P). RESULTS Overall, no significant benefit in overall survival (OS) and progression-free survival (PFS) were observed for the addition of tivantinib to erlotinib. Regardless of treatment arm, patients who were classified as VS-G had significantly longer PFS (3.8 mo for T+E arm, 2.0 mo for P+E arm) and OS (11.6 mo for T+E, 10.2 mo for P+E arm) than patients classified as VS-P (PFS: 1.9 mo for both arms, hazard ratio [HR], 0.584; 95% confidence interval [CI], 0.468-0.733; p < .0001 for T+E, HR, 0.686; 95% CI, 0.546-0.870; p = .0015 for P+E; OS: 4.0 mo for both arms, HR, 0.333; 95% CI, 0.264-0.422; p < .0001 for T+E; HR, 0.449; 95% CI, 0.353-0.576; p < .0001 for P+E). The VS-G population had higher OS than the VS-P population within Eastern Cooperative Oncology Group (ECOG) performance score (PS) categories. VS-G patients on the T+E arm had longer PFS, but not OS, than VS-G patients on the P+E arm (p = .0108). Among EGFR mutation-positive patients, those with VS-G status had a median OS more than twice that of any other group (OS: 31.6 mo for T+E and 22.8 mo for P+E), whereas VS-P patients had similar survival rates as VS-G, EGFR-wild type patients (OS: 13.7 mo for T+E and 6.5 mo for P+E). CONCLUSION In these analyses, VeriStrat showed a prognostic role within EGOC PS categories and regardless of treatment arm and EGFR status, suggesting that VeriStrat could be used to identify EGFR mutation-positive patients who will have a poor response to EGFR tyrosine kinase inhibitors. IMPLICATIONS FOR PRACTICE This study suggests that VeriStrat testing could enhance the prognostic role of performance status and smoking status and replicates findings from other trials that showed that the VeriStrat test identifies EGFR mutation-positive patients likely to have a poor response to EGFR tyrosine kinase inhibitors (TKIs). Although these findings should be confirmed in other populations, VeriStrat use could be considered in EGFR mutation-positive patients as an additional prognostic tool, and these results suggest that EGFR mutation-positive patients with VeriStrat "poor" classification could benefit from other therapeutic agents given in conjunction with TKI monotherapy.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | | | | | - Sergey Orlov
- St. Petersburg State Medical University, St. Petersburg, Russian Federation
| | | | | | - Vera Hirsh
- McGill University Health Centre, Montreal, Canada
| | - Rodryg Ramlau
- Oncology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - David Spigel
- Tennessee Oncology Associates, Nashville, Tennessee, USA
| | - Silvia Novello
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| |
Collapse
|
40
|
Liu SV, Groshen SG, Kelly K, Reckamp KL, Belani C, Synold TW, Goldkorn A, Gitlitz BJ, Cristea MC, Gong IY, Semrad TJ, Xu Y, Xu T, Koczywas M, Gandara DR, Newman EM. A phase I trial of topotecan plus tivantinib in patients with advanced solid tumors. Cancer Chemother Pharmacol 2018; 82:723-732. [PMID: 30128950 DOI: 10.1007/s00280-018-3672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/17/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) that target MET signaling have shown promise in various types of cancer, including lung cancer. Combination strategies have been proposed and developed to increase their therapeutic index. Based on preclinical synergy between inhibition of MET and topoisomerase I, a phase I study was designed to explore the combination of topotecan with the MET TKI tivantinib. METHODS Eligible patients with advanced solid malignancies for which there was no known effective treatment received topotecan at doses of 1.0-1.5 mg/m2/day for five consecutive days in 21-day cycles with continuous, oral tivantinib given at escalating doses of 120-360 mg orally twice daily. Pharmacokinetic analyses of tivantinib were included. Circulating tumor cells (CTC) were collected serially to identify peripheral changes in MET phosphorylation. RESULTS The trial included 18 patients, 17 of whom received treatment. At the planned doses, the combination of topotecan and tivantinib was not tolerable due to thrombocytopenia and neutropenia. The addition of G-CSF to attenuate neutropenia did not improve tolerability. Greater tivantinib exposure, assessed through pharmacokinetic analysis, was associated with greater toxicity. No responses were seen. MET phosphorylation was feasible in CTC, but no changes were seen with therapy. CONCLUSIONS The combination of topotecan and oral tivantinib was not tolerable in this patient population.
Collapse
Affiliation(s)
- Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| | - Susan G Groshen
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Karen Kelly
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | | | | | - Amir Goldkorn
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Barbara J Gitlitz
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.,Genentech Inc., San Francisco, CA, USA
| | | | - I-Yeh Gong
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Thomas J Semrad
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Yucheng Xu
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Tong Xu
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | - David R Gandara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | |
Collapse
|
41
|
Monk P, Liu G, Stadler WM, Geyer S, Huang Y, Wright J, Villalona-Calero M, Wade J, Szmulewitz R, Gupta S, Mortazavi A, Dreicer R, Pili R, Dawson N, George S, Garcia JA. Phase II randomized, double-blind, placebo-controlled study of tivantinib in men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Invest New Drugs 2018; 36:919-926. [PMID: 30083962 PMCID: PMC6153554 DOI: 10.1007/s10637-018-0630-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
Background Tivantinib is a non-ATP competitive inhibitor of c-MET receptor tyrosine kinase that may have additional cytotoxic mechanisms including tubulin inhibition. Prostate cancer demonstrates higher c-MET expression as the disease progresses to more advanced stages and to a castration resistant state. Methods 80 patients (pts) with asymptomatic or minimally symptomatic mCRPC were assigned (2:1) to either tivantinib 360 mg PO BID or placebo (P). The primary endpoint was progression free survival (PFS). Results Of the 80 pts. enrolled, 78 (52 tivantinib, 26 P) received treatment and were evaluable. Median follow up is 8.9 months (range: 2.3 to 19.6 months). Patients treated with tivantinib had significantly better PFS vs. those treated with placebo (medians: 5.5 mo vs 3.7 mo, respectively; HR = 0.55, 95% CI: 0.33 to 0.90; p = 0.02). Grade 3 febrile neutropenia was seen in 1 patient on tivantinib while grade 3 and 4 neutropenia was recorded in 1 patient each on tivantinib and placebo. Grade 3 sinus bradycardia was recorded in two men on the tivantinib arm. Conclusions Tivantinib has mild toxicity and improved PFS in men with asymptomatic or minimally symptomatic mCRPC.
Collapse
Affiliation(s)
- Paul Monk
- Ohio State University, A433b Starling-Loving Hall, 310 W. 10th ave, Columbus, OH, 43082, USA.
| | - Glenn Liu
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Walter M Stadler
- University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Susan Geyer
- University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA
| | - Ying Huang
- Ohio State University, 320 W 10th Ave, Columbus, OH, 43210-1280, USA
| | - John Wright
- National Cancer Institute, 9609 Medical Center Dr., MSC, Bethesda, MD, 9739, USA
| | | | - James Wade
- Cancer Care Specialists of Central Illinois, 210 W Mckinley Ave, Decatur, IL, 62526, USA
| | - Russell Szmulewitz
- University of Chicago Medical Center, 5841 S Maryland Ave # MC2115, Chicago, IL, 60637-1447, USA
| | - Shilpa Gupta
- University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455-0341, USA
| | - Amir Mortazavi
- Ohio State University, 320 W 10th Ave, Columbus, OH, 43210-1280, USA
| | - Robert Dreicer
- University of Virginia School of Medicine, PO Box 800716, Charlottesville, VA, 22908-0716, USA
| | - Roberto Pili
- Indiana University, 535 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Nancy Dawson
- Georgetown-Lombardi Comprehensive Cancer Center, 3800 Reservoir Rd NW, Washington, DC, 20007-2113, USA
| | - Saby George
- Roswell Park Cancer Institute, 6 Symphony Cir, Orchard Park, NY, 14127, USA
| | - Jorge A Garcia
- Taussig Cancer Institute, 9500 Euclid Ave, Cleveland, OH, 44195-0001, USA
| |
Collapse
|
42
|
Chen C, Yang D, Zeng Q, Luo L, Cai C. PF-2341066 combined with celecoxib promotes apoptosis and inhibits proliferation in human cholangiocarcinoma QBC939 cells. Exp Ther Med 2018; 15:4543-4549. [PMID: 29725387 PMCID: PMC5920157 DOI: 10.3892/etm.2018.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with high incidence and an average age of onset of 50-70 years old. However, at present there is no effective treatment for this disease. The aim of the present study was to investigate the effects of a c-Met inhibitor, PF-2341066 and a cyclooxygenase-2 (COX-2) inhibitor, celecoxib, on c-Met and COX-2 expression, proliferation and apoptosis. The results demonstrated that c-Met and COX-2 are highly expressed in hepatobiliary calculus with cholangiocarcinoma. PF-2341066 was able to downregulate the expression of c-Met and COX-2 in a dose-dependent manner at the mRNA and protein levels in human cholangiocarcinoma QBC939 cells. Furthermore, combined treatment with PF-2341066 with celecoxib downregulated the mRNA expression of both genes, inhibited cell proliferation and promoted cell apoptosis. It was also demonstrated that PF-2341066 and celecoxib treatment was able to restrict the expression of vascular endothelial growth factor (VEGF). The results of the present study suggest that PF-2341066 and celecoxib may inhibit the development of cholangiocarcinoma by downregulating the expression of c-Met and COX-2 to inhibit cell proliferation, promote apoptosis and prevent VEGF-mediated tumor angiogenesis. Co-treatment with PF-2341066 and celecoxib may be a potential therapeutic strategy for hepatobiliary calculus with cholangiocarcinoma.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qinghua Zeng
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Liang Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| | - Chengzhi Cai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410002, P.R. China
| |
Collapse
|
43
|
Raghav K, Bailey AM, Loree JM, Kopetz S, Holla V, Yap TA, Wang F, Chen K, Salgia R, Hong D. Untying the gordion knot of targeting MET in cancer. Cancer Treat Rev 2018; 66:95-103. [PMID: 29730462 DOI: 10.1016/j.ctrv.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
Despite compelling evidence backing the crucial role of a dysregulated MET axis in cancer and a myriad of agents targeting this pathway in active clinical development, the therapeutic value of MET inhibition in cancer oncology remains to be established. Although a series of disappointing clinical trials, at first, lessened fervor for targeting this pathway, investigations continue unabated with a number of novel active compounds entering clinical trials. Suboptimal designs which lacked biomarker selection have been the main reason for these early failures and this has stimulated a more biomarker enriched approach lately. Fresh insights into the mechanics of diverse MET aberrations (amplifications and mutations) have allowed trial enrichment for appropriate patients in appropriate disease settings. Development of MET inhibition as a therapeutic strategy in cancer has been a lesson in itself reflecting the challenging opportunities enclosed in the genetic landscape of cancer. Here, we will review the status of MET targeted therapy in development as it stands today, discuss emerging paradigms in MET inhibition and theorize on concepts for future development. We venture to propose that in spite of early disappointments, the future of this therapeutic strategy is promising with use of appropriate predictive biomarker in the right clinical context.
Collapse
Affiliation(s)
- Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann Marie Bailey
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Timothy Anthony Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fang Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken Chen
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
44
|
Zhang H, Wang Y, Bai M, Wang J, Zhu K, Liu R, Ge S, Li J, Ning T, Deng T, Fan Q, Li H, Sun W, Ying G, Ba Y. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci 2018; 109:629-641. [PMID: 29285843 PMCID: PMC5834801 DOI: 10.1111/cas.13488] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF‐cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co‐culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA.
Collapse
Affiliation(s)
- Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Junyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Kegan Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - JiaLu Li
- Department of Gastroenterology, Tianjin First Center Hospital, Tianjin, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
45
|
Kuboki Y, Schatz CA, Koechert K, Schubert S, Feng J, Wittemer-Rump S, Ziegelbauer K, Krahn T, Nagatsuma AK, Ochiai A. In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual-color in situ hybridization in a large cohort of gastric cancer patients. Gastric Cancer 2018; 21:401-412. [PMID: 28852882 PMCID: PMC5906494 DOI: 10.1007/s10120-017-0758-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR2) has been proposed as a target in gastric cancer. However, appropriate methods to select patients for anti-FGFR2 therapies have not yet been established. METHODS We used in situ techniques to investigate FGFR2 mRNA expression and gene amplification in a large cohort of 1036 Japanese gastric cancer patients. FGFR2 mRNA expression was determined by RNAscope. FGFR2 gene amplification was determined by dual-color in situ hybridization (DISH). RESULTS We successfully analyzed 578 and 718 samples by DISH and RNAscope, respectively; 2% (12/578) showed strong FGFR2 gene amplification (FGFR2:CEN10 >10); moderate FGFR2 gene amplification (FGFR2:CEN10 <10; ≥2) was detected in 8% (47/578); and high FGFR2 mRNA expression of score 4 (>10 dots/cell and >10% of positive cells with dot clusters under a 20× objective) was seen in 4% (29/718). For 468 samples, both mRNA and DISH data were available. FGFR2 mRNA expression levels were associated with gene amplification; FGFR2 mRNA levels were highest in the highly amplified samples (n = 12). All highly amplified samples showed very strong FGFR2 mRNA expression (dense clusters of the signal visible under a 1× objective). Patients with very strong FGFR2 mRNA expression showed more homogeneous FGFR2 mRNA expression compared to patients with lower FGFGR2 mRNA expression. Gastric cancer patients with tumors that had an FGFR2 mRNA expression score of 4 had shorter RFS compared with score 0-3 patients. CONCLUSION RNAscope and DISH are suitable methods to evaluate FGFR2 status in gastric cancer. Formalin-fixed paraffin-embedded (FFPE) tissue slides allowed evaluation of the intratumor heterogeneity of these FGFR2 biomarkers.
Collapse
Affiliation(s)
- Yasutoshi Kuboki
- 0000 0001 2168 5385grid.272242.3National Cancer Center Hospital East Kashiwa, Kashiwa, Japan
| | - Christoph A. Schatz
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Karl Koechert
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Schubert
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Janine Feng
- 0000 0004 0534 4718grid.418158.1Ventana Medical Systems Inc., Oro Valley, AZ USA
| | - Sabine Wittemer-Rump
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Karl Ziegelbauer
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Thomas Krahn
- 0000 0004 0374 4101grid.420044.6Bayer AG, Muellerstr. 178, 13353 Berlin, Germany
| | - Akiko Kawano Nagatsuma
- National Cancer Center, Exploratory Oncology Research and Clinical Trial Center, Tokyo, Japan
| | - Atsushi Ochiai
- 0000 0001 2168 5385grid.272242.3National Cancer Center Hospital East Kashiwa, Kashiwa, Japan
| |
Collapse
|
46
|
Farran B, Müller S, Montenegro RC. Gastric cancer management: Kinases as a target therapy. Clin Exp Pharmacol Physiol 2018; 44:613-622. [PMID: 28271563 DOI: 10.1111/1440-1681.12743] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
The molecular diagnostics revolution has reshaped the practice of oncology by facilitating the identification of genetic, epigenetic and proteomic modifications correlated with cancer, thus delineating 'oncomaps' for various cancer types. These advances have enhanced our understanding of gastric cancer, one of the most fatal diseases worldwide, and culminated in the approval of novel molecular therapies such as trastuzumab. Gastric tumours display recurrent aberrations in key kinase oncogenes such as Her2, epidermal growth factor receptor (EGFR), PI3K, mTOR or c-Met, suggesting that these receptors are amenable to inhibition using specific drug agents. In this review, we examine the mutational landscape of gastric cancer, the use of kinase inhibitors as targeted therapies in gastric tumours and the clinical trials underway for novel inhibitors, highlighting successes, failures and future directions.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Susanne Müller
- Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, DE, Germany
| | - Raquel C Montenegro
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
47
|
Mihailidou C, Karamouzis MV, Schizas D, Papavassiliou AG. Co-targeting c-Met and DNA double-strand breaks (DSBs): Therapeutic strategies in BRCA-mutated gastric carcinomas. Biochimie 2017; 142:135-143. [PMID: 28890386 DOI: 10.1016/j.biochi.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
|
48
|
Geller JI, Perentesis JP, Liu X, Minard CG, Kudgus RA, Reid JM, Fox E, Blaney SM, Weigel BJ. A phase 1 study of the c-Met inhibitor, tivantinib (ARQ197) in children with relapsed or refractory solid tumors: A Children's Oncology Group study phase 1 and pilot consortium trial (ADVL1111). Pediatr Blood Cancer 2017; 64:10.1002/pbc.26565. [PMID: 28449393 PMCID: PMC5657151 DOI: 10.1002/pbc.26565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND The c-Met receptor tyrosine kinase is dysregulated in many pediatric cancers. Tivantinib is an oral small molecule that inhibits the c-Met receptor tyrosine kinase. A phase 1 and pharmacokinetic (PK) trial evaluating tivantinib was conducted in children with relapsed/refractory solid tumors. METHODS Oral tivantinib capsules were administered twice daily with food, continuously in 28-day cycles. Dose levels 170, 200, and 240 mg/m2 /dose were evaluated using a rolling-six design (Part A). In Part B, subjects received tivantinib powder sprinkled on food at the recommended phase 2 dose (RP2D) from Part A. PK, CYP2C19 genotyping, and baseline tumor tissue c-Met expression were analyzed. RESULTS Thirty-six patients were enrolled: 20 in Part A, 6 in a PK expansion cohort, and 10 in Part B. Fifteen patients had primary central nervous system tumors and 21 had solid tumors. In Part A, there were no dose-limiting toxicities. One grade 4 intracranial hemorrhage occurred in a patient with a progressive brain tumor in the expanded PK cohort (240 mg/m2 ). PK analysis showed marked interpatient variability (20-fold) in the Cmax and AUC0-8h across all dose levels. Sprinkling tivantinib powder over food did not alter exposure. Membranous and total c-Met expression was moderate (2), low (4), or not detected (26). Two patients had stable disease as the best response. CONCLUSIONS The RP2D of tivantinib given with food in children with refractory solid tumors is 240 mg/m2 /dose. PK of tivantinib in children demonstrated high variability. Objective responses were not observed in this phase 1 trial.
Collapse
Affiliation(s)
- James I. Geller
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - John P. Perentesis
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | - Charles G. Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | | | | | - Elizabeth Fox
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Susan M. Blaney
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - Brenda J. Weigel
- Masonic Children’s Hospital, University of Minnesota Medical Center, Minneapolis, MN
| |
Collapse
|
49
|
A non-randomized, open-label, single-arm, Phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer. Cancer Chemother Pharmacol 2017; 80:1197-1207. [PMID: 29071414 PMCID: PMC5686250 DOI: 10.1007/s00280-017-3445-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Purpose Mesenchymal–epithelial transition factor (MET) is expressed in gastric cancer and associated with poor clinical outcomes. We assessed activity, safety, and pharmacokinetics of emibetuzumab, a bivalent monoclonal anti-MET antibody that blocks ligand-dependent and ligand-independent MET signaling. Methods This non-randomized, single-arm, Phase 2 study enrolled Asian patients with MET diagnostic positive advanced gastric adenocarcinoma. Emibetuzumab (2000 mg, intravenous) was given on days 1 and 15 (28-day cycle). The primary endpoint was 8-week progression-free survival rate. Secondary objectives included safety, pharmacokinetics, overall survival, and change in tumor size. Results Tumors from 65 patients were immunohistochemically screened to enroll 15 MET diagnostic positive patients (23% positivity; 8 Japanese, 7 Korean; 10 male). Eight-week progression-free survival rate was 0.47 (70% CI, 0.33–0.59). Disease control rate was 40% (target lesion decreases, three patients; no complete/partial responses according to RECIST). Median overall survival was 17.1 weeks (95% CI, 6.3–not achievable). No serious emibetuzumab-related adverse events or new safety signals emerged. Grade ≥ 3 possibly drug-related adverse events were hyperkalemia, hyponatremia, and hyperuricemia (one each). Emibetuzumab’s pharmacokinetics profile was similar to that observed previously. MET expression and clinical outcomes were not obviously associated. Conclusion Emibetuzumab was well tolerated with limited single-agent activity in advanced gastric adenocarcinoma.
Collapse
|
50
|
Shitara K, Kim TM, Yokota T, Goto M, Satoh T, Ahn JH, Kim HS, Assadourian S, Gomez C, Harnois M, Hamauchi S, Kudo T, Doi T, Bang YJ. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer. Oncotarget 2017; 8:79546-79555. [PMID: 29108334 PMCID: PMC5668067 DOI: 10.18632/oncotarget.18554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022] Open
Abstract
SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260-570 mg/m2) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety and pharmacokinetic profile. Antitumor activity was also assessed. Of 38 patients enrolled (median age 64.0 years), 22 had gastric cancer, including 14 with MET amplification. In the dose-escalation cohort (N = 19; unselected population, including three patients with MET-amplification [two with gastric cancer and one with lung cancer]), the MTD was not reached, and the recommended dose was established at 570 mg/m2. Most frequent treatment-emergent adverse events (AEs) were nausea (36.8%), vomiting (34.2%), decreased appetite (28.9%), and fatigue or asthenia, constipation, and abdominal pains (each 21.1%); none appeared to be dose-dependent. Grade ≥ 3 AEs were observed in 39.5% of patients and considered drug-related in 7.9%. SAR125844 exposure increased slightly more than expected by dose proportionality; dose had no significant effect on clearance. No objective responses were observed in the dose-escalation cohort, with seven patients (three gastric cancer, two colorectal cancer, one breast cancer, and one with cancer of unknown primary origin) having stable disease. Modest antitumor activity was observed at 570 mg/m2 in the dose-expansion cohort, comprising patients with MET-amplified tumors (N = 19). Two gastric cancer patients had partial responses, seven patients had stable disease (six gastric cancer and one kidney cancer), and 10 patients had progressive disease. Single-agent SAR125844 administered up to 570 mg/m2 has acceptable tolerability and modest antitumor activity in patients with MET-amplified gastric cancer.
Collapse
Affiliation(s)
- Kohei Shitara
- Department of Experimental Therapeutics and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tomoya Yokota
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical College Hospital, Osaka, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, Seoul, Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Corinne Gomez
- Pharmacokinetics and Distribution, Sanofi, Paris, France
| | | | - Satoshi Hamauchi
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Toshihiro Kudo
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihido Doi
- Department of Experimental Therapeutics and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|