1
|
Wei GX, Du Y, Zhou YW, Li LJ, Qiu M. Peritoneal carcinomatosis with intraperitoneal immunotherapy: current treatment options and perspectives. Expert Rev Gastroenterol Hepatol 2022; 16:851-861. [PMID: 36107723 DOI: 10.1080/17474124.2022.2125866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peritoneal carcinomatosis (PC) is an advanced malignancy that is not sensitive to systemic conventional chemotherapy. Treatment options for PC are usually palliative rather than curative. Cytoreductive surgery and hyperthermic intraperitoneal (IP) chemotherapy are associated with limited efficacy in patients with PC. However, the peritoneum can produce effective immunity by inducing T-lymphocyte recruitment and proliferation, and the unique immune environment of the peritoneum provides the rationale for IP immunotherapy in PC. AREAS COVERED The authors retrieved relevant documents of IP immunotherapy for PC from PubMed and Medline. This review elaborates on the knowledge of the peritoneal immune microenvironment and IP immunotherapy for PC covering immune stimulators, radioimmunotherapy, catumaxomab, cancer vaccines, chimeric antigen receptor (CAR)-T cells, and immune checkpoint inhibitors. EXPERT OPINION The prognosis of PC is poor. However, the peritoneal cavity is a unique immune compartment with abundant immune cells which can produce effective immunity. IP immunotherapy may be a promising strategy in patients with PC.
Collapse
Affiliation(s)
- Gui-Xia Wei
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Du
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lin-Juan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
3
|
Guerrouahen B, Elnaggar M, Al-Mohannadi A, Kizhakayil D, Bonini C, Benjamin R, Brentjens R, Buchholz CJ, Casorati G, Ferrone S, Locke FL, Martin F, Schambach A, Turtle C, Veys P, van der Vliet HJ, Maccalli C. Proceedings From the First International Workshop at Sidra Medicine: "Engineered Immune Cells in Cancer Immunotherapy (EICCI): From Discovery to Off-the-Shelf Development", 15 th-16 th February 2019, Doha, Qatar. Front Immunol 2021; 11:589381. [PMID: 33584653 PMCID: PMC7874217 DOI: 10.3389/fimmu.2020.589381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The progress in the isolation and characterization of tumor antigen (TA)-specific T lymphocytes and in the genetic modification of immune cells allowed the clinical development of adoptive cell therapy (ACT). Several clinical studies highlighted the striking clinical activity of T cells engineered to express either Chimeric Antigen (CAR) or T Cell (TCR) Receptors to target molecularly defined antigens expressed on tumor cells. The breakthrough of immunotherapy is represented by the approval of CAR-T cells specific for advanced or refractory CD19+ B cell malignancies by both the Food and Drug Administration (FDA) and the European Medicinal Agency (EMA). Moreover, advances in the manufacturing and gene editing of engineered immune cells contributed to the selection of drug products with desired phenotype, refined specificity and decreased toxicity. An important step toward the optimization of CAR-T cell therapy is the development of "off-the shelf" T cell products that allow to reduce the complexity and the costs of the manufacturing and to render these drugs available for a broad number of cancer patients. The Engineered Immune Cells in Cancer Immunotherapy (EICCI) workshop hosted in Doha, Qatar, renowned experts, from both academia and industry, to present and discuss the progress on both pre-clinical and clinical development of genetically modified immune cells, including advances in the "off-the-shelf" manufacturing. These experts have addressed also organizational needs and hurdles for the clinical grade production and application of these biological drugs.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Bonini
- Experimental Hematology Unit, University Vita-Salute San Raffaele and Hospital San Raffaele Scientific Institute, Milan, Italy
| | - Reuben Benjamin
- Division of Cancer Studies, King's College Hospital, London, United Kingdom
| | - Renier Brentjens
- Cellular Therapeutics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian J Buchholz
- Research Unit for Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Giulia Casorati
- Experimental Immunology Unit, University Vita-Salute San Raffaele and Hospital San Raffaele Scientific Institute, Milan, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, United States
| | - Francisco Martin
- Pfizer/University of Granada/Andalusian Regional Government, Genomic Medicine Department, Granada, Spain
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boson, MA, United States
| | - Cameron Turtle
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Paul Veys
- Bone Marrow Transplant Unit, Great Ormond Street (GOS) Hospital, and University College London GOS Institute of Child Health, London, United Kingdom
| | - Hans J van der Vliet
- Hans van Der Vliet, Department of Medical Oncology, Amsterdam UMC, VU University and Cancer Center, Amsterdam, Netherlands.,Lava Therapeutics, Utrecht, Netherlands
| | | | | |
Collapse
|
4
|
Macrì A, Morabito F. The use of intraperitoneal chemotherapy for gastric malignancies. Expert Rev Anticancer Ther 2019; 19:879-888. [PMID: 31544548 DOI: 10.1080/14737140.2019.1671189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Introduction: Gastric cancer is the fourth/fifth most common malignancy worldwide, with only a quarter of patients achieving a 5-year survival rate. It has been estimated that 15-50% or more of patients have peritoneal disease upon surgical exploration. Until the early 1990s, peritoneal metastasis was considered as terminal stage of the disease; in the late 1990s, selected patients with peritoneal metastasis were recategorized as local disease. Over the past two decades, the treatment of peritoneal involvement has transformed, and cytoreductive surgery plus intraperitoneal therapy have drastically altered the natural course of several malignancies. Areas covered: We performed a review of studies available on PubMed from 1 January 2014 to 31 July 2019 and the analysis of their reference citations. We describe the most current intraperitoneal chemotherapy opportunities in the treatment of gastric cancer: hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC), laparoscopic hyperthermic intraperitoneal chemotherapy (LHIPEC), neoadjuvant intraperitoneal and systemic chemotherapy (NIPS), LHIPEC + NIPS, extensive intraoperative peritoneal lavage (EIPL), early postoperative intraperitoneal chemotherapy (EPIC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC). Expert opinion: Comprehensive treatment consisting of CRS combined with perioperative intraperitoneal/systemic chemotherapy can, today, be considered an effective strategy to improve the long-term survival of gastric cancer patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Antonio Macrì
- Peritoneal Surface Malignancy and Soft Tissue Sarcoma Program, Messina University Medical School Hospital , Messina , Italy
| | - Federico Morabito
- Peritoneal Surface Malignancy and Soft Tissue Sarcoma Program, Messina University Medical School Hospital , Messina , Italy
| |
Collapse
|
5
|
Ma X, Kang X, He L, Zhou J, Zhou J, Sturm MB, Beer DG, Kuick R, Nancarrow DJ, Appelman HD, Pang Z, Li W, Zhang C, Zhang W, Zhang Y, Wang TD, Li M. Identification of Tumor Specific Peptide as EpCAM Ligand and Its Potential Diagnostic and Therapeutic Clinical Application. Mol Pharm 2019; 16:2199-2213. [PMID: 30974945 DOI: 10.1021/acs.molpharmaceut.9b00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor targeting agents are being developed for early tumor detection and therapeutics. We previously identified the peptide SNFYMPL (SNF*) and demonstrated its specific binding to human esophageal specimens of high-grade dysplasia (HGD) and adenocarcinoma with imaging ex vivo. Here, we aim to identify the target for this peptide and investigate its potential applications in imaging and drug delivery. With SNF* conjugated affinity chromatography, mass spectrum, Western blot, enzyme-linked immunosorbent assay (ELISA), and molecular docking, we found that the epithelial cell adhesion molecule (EpCAM) was the potential target of SNF*. Next, we showed that FITC-labeled SNF* (SNF*-FITC) colocalized with EpCAM antibody on the surface of esophageal adenocarcinoma cells OE33, and SNF*-FITC binding patterns significantly changed after EpCAM knockdown or exogenous EpCAM transfection. With the data from TCGA, we demonstrated that EpCAM was overexpressed in 17 types of cancers. Using colon and gastric adenocarcinoma cells and tissues as examples, we found that SNF*-FITC bound in a pattern was colocalized with EpCAM antibody, and the SNF* binding did not upregulate the EpCAM downstream Wnt signals. Subsequently, we conjugated SNF* with our previously constructed poly(histidine)-PEG/DSPE copolymer micelles. SNF* labeling significantly improved the micelle binding with colon and gastric adenocarcinoma cells in vitro, and enhanced the antitumor effects and decreased the toxicities of the micelles in vivo. In conclusion, we identified and validated SNF* as a specific peptide for EpCAM. The future potential use of SNF* peptide in multiple tumor surveillance and tumor-targeted therapeutics was demonstrated.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacy , The 960 Hospital of Chinese People's Liberation Army , Jinan 250031 , China
| | | | | | | | | | | | | | | | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Leiting JL, Grotz TE. Optimizing outcomes for patients with gastric cancer peritoneal carcinomatosis. World J Gastrointest Oncol 2018; 10:282-289. [PMID: 30364780 PMCID: PMC6198298 DOI: 10.4251/wjgo.v10.i10.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 02/05/2023] Open
Abstract
Peritoneal carcinomatosis (PC) from gastric cancer has traditionally been considered a terminal progression of the disease and is associated with poor survival outcomes. Positive peritoneal cytology similarly worsens the survival of patients with gastric cancer and treatment options for these patients have been limited. Recent advances in multimodality treatment regimens have led to innovative ways to care for and treat patients with this disease burden. One of these advances has been to use neoadjuvant therapy to try and convert patients with positive cytology or low-volume PC to negative cytology with no evidence of active peritoneal disease. These strategies include the use of neoadjuvant systemic chemotherapy alone, using neoadjuvant laparoscopic heated intraperitoneal chemotherapy (NLHIPEC) after systemic chemotherapy, or using neoadjuvant intraperitoneal and systemic chemotherapy (NIPS) in a bidirectional manner. For patients with higher volume PC, cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been mainstays of treatment. When used together, CRS and HIPEC can improve overall outcomes in properly selected patients, but overall survival outcomes remain unacceptably low. The extent of peritoneal disease, commonly measured by the peritoneal carcinomatosis index (PCI), and the completeness of cytoreduction, has been shown to greatly impact outcomes in patients undergoing CRS and HIPEC. The uses of NLHIPEC and NLHIPEC plus NIPS have both been shown to decrease the PCI and thus increase the opportunity for complete cytoreduction. Newer therapies like pressurized intraperitoneal aerosol chemotherapy and immunotherapy, such as catumaxomab, along with improved systemic chemotherapeutic regimens, are being explored with great interest. There is exciting progress being made in the management of PC from gastric cancer and its' treatment is no longer futile.
Collapse
Affiliation(s)
- Jennifer L Leiting
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Travis E Grotz
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
7
|
Thadi A, Khalili M, Morano WF, Richard SD, Katz SC, Bowne WB. Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis. Vaccines (Basel) 2018; 6:E54. [PMID: 30103457 PMCID: PMC6160982 DOI: 10.3390/vaccines6030054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Abstract
Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor α expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM.
Collapse
Affiliation(s)
- Anusha Thadi
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Marian Khalili
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - William F Morano
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA.
| | - Steven C Katz
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Wilbur B Bowne
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
8
|
Knödler M, Körfer J, Kunzmann V, Trojan J, Daum S, Schenk M, Kullmann F, Schroll S, Behringer D, Stahl M, Al-Batran SE, Hacker U, Ibach S, Lindhofer H, Lordick F. Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer 2018; 119:296-302. [PMID: 29988111 PMCID: PMC6070920 DOI: 10.1038/s41416-018-0150-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/12/2018] [Accepted: 05/21/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Peritoneal carcinomatosis (PC) represents an unfavourable prognostic factor for patients with gastric cancer (GC). Intraperitoneal treatment with the bispecific and trifunctional antibody catumaxomab (EpCAM, CD3), in addition to systemic chemotherapy, could improve elimination of PC. METHODS This prospective, randomised, phase II study investigated the efficacy of catumaxomab followed by chemotherapy (arm A, 5-fluorouracil, leucovorin, oxaliplatin, docetaxel, FLOT) or FLOT alone (arm B) in patients with GC and PC. Primary endpoint was the rate of macroscopic complete remission (mCR) of PC at the time of second diagnostic laparoscopy/laparotomy prior to optional surgery. RESULTS Median follow-up was 52 months. Out of 35 patients screened, 15 were allocated to arm A and 16 to arm B. mCR rate was 27% in arm A and 19% in arm B (p = 0.69). Severe side effects associated with catumaxomab were nausea, infection, abdominal pain, and elevated liver enzymes. Median progression-free (6.7 vs. 5.4 months, p = 0.71) and overall survival (13.2 vs. 13.0 months, p = 0.97) were not significantly different in both treatment arms. CONCLUSIONS Addition of catumaxomab to systemic chemotherapy was feasible and tolerable in advanced GC. Although the primary endpoint could not be demonstrated, results are promising for future investigations integrating intraperitoneal immunotherapy into a multimodal treatment strategy.
Collapse
Affiliation(s)
- Maren Knödler
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany.
| | - Justus Körfer
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany
| | - Volker Kunzmann
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Severin Daum
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, University Hospital Berlin (Charite), Campus Benjamin Franklin, Berlin, Germany
| | - Michael Schenk
- Department of Clinical Oncology and Hematology, Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Frank Kullmann
- Department of Internal Medicine I, Hospital Weiden, Weiden, Germany
| | - Sebastian Schroll
- Department of Internal Medicine III, Hospital Braunschweig, Braunschweig, Germany
| | - Dirk Behringer
- Department of Hematology, Oncology and Palliative Medicine, Augusta-Kranken-Anstalt, Bochum, Germany
| | - Michael Stahl
- Department of Clinical Oncology and Hematology, Hospital Essen-Mitte Essen, Essen, Germany
| | - Salah-Eddin Al-Batran
- Department of Clinical Oncology and Hematology, Hospital Nordwest GmbH, Frankfurt, Germany
| | - Ulrich Hacker
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany
| | - Stefan Ibach
- WiSP Scientific Service Pharma GmbH, Langenfeld, Germany
| | | | - Florian Lordick
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, Chen L. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 2017; 116:973-989. [PMID: 28301871 PMCID: PMC5396111 DOI: 10.1038/bjc.2017.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients.
Collapse
Affiliation(s)
- Yanjing Song
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xudong Zhao
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther 2016; 23:373-381. [PMID: 27834358 DOI: 10.1038/cgt.2016.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Intraperitoneal immunotherapy represents a novel strategy for the management of peritoneal metastases (PM). Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has remained the gold standard of treatment for patients with PM, yet despite optimal treatment, recurrence rates remain high and long-term survival poor. From Coley's toxins to immune checkpoint inhibitors, the wide variety of anticancer immunotherapeutic strategies are now garnering attention for control of regional disease of the peritoneal cavity. Early studies with vaccine-based therapies, adoptive cell transfer, immune checkpoint inhibitors, and chimeric T cells with tumor-specific antigen receptors (CAR-T cells) are being performed, showing promise for control of peritoneal spread and induction of lasting anticancer immunity. In addition, catumaxomab, a trifunctional antibody, has been approved for intraperitoneal immunotherapy in Europe for the control of malignant ascites in patients with epithelial cell adhesion molecule positive cancers. We review a brief history of immunotherapy and current modalities under investigation for intraperitoneal use in the treatment of PM.
Collapse
|
11
|
Polom K, Marano L, Roviello G, Petrioli R, Piagnerelli R, de Franco L, Marrelli D, Roviello F. Evolution and emerging future of cytoreducxtive surgery and hyperthermic intraperitoneal chemoperfusion in gastric cancer: From treating the incurable to preventing recurrence. Int J Hyperthermia 2015; 32:173-179. [PMID: 26670720 DOI: 10.3109/02656736.2015.1111432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The number of new gastric cancer (GC) cases is decreasing, and these patients have longer survival thanks to new oncological treatments. In advanced GC a common evolution of this neoplasm is peritoneal metastases (PM). In the past this finding meant no chance for cure. However, today, using high quality operations and HIPEC, we are able to increase the number of patients treated with curative intention. New options in the diagnosis of PM, tumour susceptibility for different drugs, importance of quality of life, usage in ascites treatment, diagnostic tools in image-guided surgery, new targeted therapies and analysis of currently ongoing trials are presented together with today's knowledge of HIPEC efficacy in order to evaluate gastric PM. HIPEC is an effective tool in the treatment of selected patients with PM from GC. Together with new diagnostic options such as targeted therapies, HIPEC may improve the prognosis of these patients, not only by treating clinically manifest carcinomatosis, but also in the prophylactic setting, addressing occult peritoneal seeding.
Collapse
Affiliation(s)
- Karol Polom
- a Department of Medicine , Surgery and Neurosciences, University of Siena
| | - Luigi Marano
- b General, Minimally Invasive and Robotic Surgery, Department of Surgery, 'San Matteo degli Infermi' Hospital , Spoleto , and
| | | | | | | | - Lorenzo de Franco
- a Department of Medicine , Surgery and Neurosciences, University of Siena
| | - Daniele Marrelli
- a Department of Medicine , Surgery and Neurosciences, University of Siena
| | - Franco Roviello
- a Department of Medicine , Surgery and Neurosciences, University of Siena
| |
Collapse
|