1
|
Rendek T, Pos O, Duranova T, Saade R, Budis J, Repiska V, Szemes T. Current Challenges of Methylation-Based Liquid Biopsies in Cancer Diagnostics. Cancers (Basel) 2024; 16:2001. [PMID: 38893121 PMCID: PMC11171112 DOI: 10.3390/cancers16112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In current clinical practice, effective cancer testing and screening paradigms are limited to specific types of cancer, exhibiting varying efficiency, acceptance, and adherence. Cell-free DNA (cfDNA) methylation profiling holds promise in providing information about the presence of malignity regardless of its type and location while leveraging blood-based liquid biopsies as a method to obtain analytical samples. However, technical difficulties, costs and challenges resulting from biological variations, tumor heterogeneity, and exogenous factors persist. This method exploits the mechanisms behind cfDNA release but faces issues like fragmentation, low concentrations, and high background noise. This review explores cfDNA methylation's origins, means of detection, and profiling for cancer diagnostics. The critical evaluation of currently available multi-cancer early detection methods (MCEDs) as well as tests targeting single genes, emphasizing their potential and limits to refine strategies for early cancer detection, are explained. The current methodology limitations, workflows, comparisons of clinically approved liquid biopsy-based methylation tests for cancer, their utilization in companion diagnostics as well as the biological limitations of the epigenetics approach are discussed, aiming to help healthcare providers as well as researchers to orient themselves in this increasingly complex and evolving field of diagnostics.
Collapse
Affiliation(s)
- Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Ondrej Pos
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | | | - Rami Saade
- 2nd Department of Gynaecology and Obstetrics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| |
Collapse
|
2
|
Lu YW, Ding ZL, Mao R, Zhao GG, He YQ, Li XL, Liu J. Early results of the integrative epigenomic-transcriptomic landscape of colorectal adenoma and cancer. World J Gastrointest Oncol 2024; 16:414-435. [PMID: 38425399 PMCID: PMC10900154 DOI: 10.4251/wjgo.v16.i2.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM To identify potential DNA methylation markers specific to ADE and CRC. METHODS Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Zhao-Li Ding
- Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technical Service Center, Kunming Institute of Zoology, Kunming 650223, Yunnan Province, China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Gui-Gang Zhao
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Yu-Qi He
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Xiao-Lu Li
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Jiang Liu
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
3
|
He C, Huang Q, Zhong S, Chen LS, Xiao H, Li L. Screening and identifying of biomarkers in early colorectal cancer and adenoma based on genome-wide methylation profiles. World J Surg Oncol 2023; 21:312. [PMID: 37779184 PMCID: PMC10544418 DOI: 10.1186/s12957-023-03189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.
Collapse
Affiliation(s)
- Chungang He
- Department of Colorectal and Anal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Tao Yuan Road No.6, Nanning, 530021, Guangxi, China.
| | - Qinyuan Huang
- Nursing College of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shibiao Zhong
- Department of Gastrointestinal Surgery, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011, Guangxi, China
| | - Li Sheng Chen
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hewei Xiao
- Office of Academic Research, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lei Li
- Department of Gastrointestinal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| |
Collapse
|
4
|
Tirendi S, Marengo B, Domenicotti C, Bassi AM, Almonti V, Vernazza S. Colorectal cancer and therapy response: a focus on the main mechanisms involved. Front Oncol 2023; 13:1208140. [PMID: 37538108 PMCID: PMC10396348 DOI: 10.3389/fonc.2023.1208140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna M. Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
5
|
Rodger EJ, Gimenez G, Ajithkumar P, Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison S, McCall JL, Schmeier S, Frizelle FA, Eccles MR, Purcell RV, Chatterjee A. An epigenetic signature of advanced colorectal cancer metastasis. iScience 2023; 26:106986. [PMID: 37378317 PMCID: PMC10291510 DOI: 10.1016/j.isci.2023.106986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L. Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Frank A. Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rachel V. Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, School of Health Sciences and Technology, UPES University, India
| |
Collapse
|
6
|
Bernstein H, Bernstein C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp Biol Med (Maywood) 2023; 248:79-89. [PMID: 36408538 PMCID: PMC9989147 DOI: 10.1177/15353702221131858] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colon cancer incidence is associated with a high-fat diet. Such a diet is linked to elevated levels of bile acids in the gastrointestinal system and the circulation. Secondary bile acids are produced by microorganisms present at high concentrations in the colon. Recent prospective studies and a retrospective study in humans associate high circulating blood levels of secondary bile acids with increased risk of colon cancer. Feeding mice a diet containing a secondary bile acid, so their feces have the bile acid at a level comparable to that in the feces of humans on a high-fat diet, also causes colon cancer in the mice. Studies using human cells grown in culture illuminate some mechanisms by which bile acids cause cancer. In human cells, bile acids cause oxidative stress leading to oxidative DNA damage. Increased DNA damage increases the occurrence of mutations and epimutations, some of which provide a cellular growth advantage such as apoptosis resistance. Cells with such mutations/epimutations increase by natural selection. Apoptosis, or programmed cell death, is a beneficial process that eliminates cells with unrepaired DNA damage, whereas apoptosis-resistant cells are able to survive DNA damage using inaccurate repair processes. This results in apoptosis-resistant cells having more frequent mutations/epimutations, some of which are carcinogenic. The experiments on cultured human cells have provided a basis for understanding at the molecular level the human studies that recently reported an association of bile acids with colon cancer, and the mouse studies showing directly that bile acids cause colon cancer. Similar, but more limited, findings of an association of dietary bile acids with other cancers of the gastrointestinal system suggest that understanding the role of bile acids in colon carcinogenesis may contribute to understanding carcinogenesis in other organs.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA
| |
Collapse
|
7
|
Wang S, Xu D, Gao B, Yan S, Sun Y, Tang X, Jiao Y, Huang S, Zhang S. Heterogeneity Analysis of Bladder Cancer Based on DNA Methylation Molecular Profiling. Front Oncol 2022; 12:915542. [PMID: 35747826 PMCID: PMC9209659 DOI: 10.3389/fonc.2022.915542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is a highly complex and heterogeneous malignancy. Tumor heterogeneity is a barrier to effective diagnosis and treatment of bladder cancer. Human carcinogenesis is closely related to abnormal gene expression, and DNA methylation is an important regulatory factor of gene expression. Therefore, it is of great significance for bladder cancer research to characterize tumor heterogeneity by integrating genetic and epigenetic characteristics. This study explored specific molecular subtypes based on DNA methylation status and identified subtype-specific characteristics using patient samples from the TCGA database with DNA methylation and gene expression were measured simultaneously. The results were validated using an independent cohort from GEO database. Four DNA methylation molecular subtypes of bladder cancer were obtained with different prognostic states. In addition, subtype-specific DNA methylation markers were identified using an information entropy-based algorithm to represent the unique molecular characteristics of the subtype and verified in the test set. The results of this study can provide an important reference for clinicians to make treatment decisions.
Collapse
Affiliation(s)
- Shuyu Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuhan Yan
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yiwei Sun
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Xinxing Tang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjia Jiao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shumei Zhang, ; Shan Huang,
| | - Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Shumei Zhang, ; Shan Huang,
| |
Collapse
|
8
|
Katsaounou K, Nicolaou E, Vogazianos P, Brown C, Stavrou M, Teloni S, Hatzis P, Agapiou A, Fragkou E, Tsiaoussis G, Potamitis G, Zaravinos A, Andreou C, Antoniades A, Shiammas C, Apidianakis Y. Colon Cancer: From Epidemiology to Prevention. Metabolites 2022; 12:499. [PMID: 35736432 PMCID: PMC9229931 DOI: 10.3390/metabo12060499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers affecting humans, with a complex genetic and environmental aetiology. Unlike cancers with known environmental, heritable, or sex-linked causes, sporadic CRC is hard to foresee and has no molecular biomarkers of risk in clinical use. One in twenty CRC cases presents with an established heritable component. The remaining cases are sporadic and associated with partially obscure genetic, epigenetic, regenerative, microbiological, dietary, and lifestyle factors. To tackle this complexity, we should improve the practice of colonoscopy, which is recommended uniformly beyond a certain age, to include an assessment of biomarkers indicative of individual CRC risk. Ideally, such biomarkers will be causal to the disease and potentially modifiable upon dietary or therapeutic interventions. Multi-omics analysis, including transcriptional, epigenetic as well as metagenomic, and metabolomic profiles, are urgently required to provide data for risk analyses. The aim of this article is to provide a perspective on the multifactorial derailment of homeostasis leading to the initiation of CRC, which may be explored via multi-omics and Gut-on-Chip analysis to identify much-needed predictive biomarkers.
Collapse
Affiliation(s)
- Kyriaki Katsaounou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (K.K.); (S.T.)
| | | | - Paris Vogazianos
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (P.V.); (C.B.); (A.A.)
| | - Cameron Brown
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (P.V.); (C.B.); (A.A.)
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.S.); (C.A.)
| | - Savvas Teloni
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (K.K.); (S.T.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari 16672, Greece;
| | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus;
| | | | | | | | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Basic and Translational Cancer Research Center, Nicosia 1516, Cyprus
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.S.); (C.A.)
| | - Athos Antoniades
- Stremble Ventures Ltd., Limassol 4042, Cyprus; (P.V.); (C.B.); (A.A.)
| | | | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; (K.K.); (S.T.)
| |
Collapse
|
9
|
Zhang S, Zhang J, Zhang Q, Liang Y, Du Y, Wang G. Identification of Prognostic Biomarkers for Bladder Cancer Based on DNA Methylation Profile. Front Cell Dev Biol 2022; 9:817086. [PMID: 35174173 PMCID: PMC8841402 DOI: 10.3389/fcell.2021.817086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background: DNA methylation is an important epigenetic modification, which plays an important role in regulating gene expression at the transcriptional level. In tumor research, it has been found that the change of DNA methylation leads to the abnormality of gene structure and function, which can provide early warning for tumorigenesis. Our study aims to explore the relationship between the occurrence and development of tumor and the level of DNA methylation. Moreover, this study will provide a set of prognostic biomarkers, which can more accurately predict the survival and health of patients after treatment. Methods: Datasets of bladder cancer patients and control samples were collected from TCGA database, differential analysis was employed to obtain genes with differential DNA methylation levels between tumor samples and normal samples. Then the protein-protein interaction network was constructed, and the potential tumor markers were further obtained by extracting Hub genes from subnet. Cox proportional hazard regression model and survival analysis were used to construct the prognostic model and screen out the prognostic markers of bladder cancer, so as to provide reference for tumor prognosis monitoring and improvement of treatment plan. Results: In this study, we found that DNA methylation was indeed related with the occurrence of bladder cancer. Genes with differential DNA methylation could serve as potential biomarkers for bladder cancer. Through univariate and multivariate Cox proportional hazard regression analysis, we concluded that FASLG and PRKCZ can be used as prognostic biomarkers for bladder cancer. Patients can be classified into high or low risk group by using this two-gene prognostic model. By detecting the methylation status of these genes, we can evaluate the survival of patients. Conclusion: The analysis in our study indicates that the methylation status of tumor-related genes can be used as prognostic biomarkers of bladder cancer.
Collapse
Affiliation(s)
- Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youwen Du
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Guohua Wang,
| |
Collapse
|
10
|
Aberrant Methylation of SLIT2 Gene in Plasma Cell-Free DNA of Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14020296. [PMID: 35053460 PMCID: PMC8773699 DOI: 10.3390/cancers14020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Despite significant advances in the detection, prevention, and treatment of lung cancer, the prognosis of the patients is still very poor due in part to micrometastasis of cancer cells to surrounding tissues at the time of diagnosis. Therefore, identifying biomarkers for early detection of lung cancer is very important for prolonging the lifespan of patients with lung cancer. The methylation statuses of SLIT1, SLIT2, SLIT3 genes were analyzed in bronchial washing, bronchial biopsy, sputum, tumor and matched normal tissues, or plasma samples obtained from a total of 208 non-small cell lung cancer (NSCLC) patients and 121 cancer-free patients to understand the feasibility of the genes as biomarkers for early detection and survival prediction of NSCLC. The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA might be a potential biomarker for the early detection and prognosis prediction of NSCLC patient. Abstract This study aimed to understand aberrant methylation of SLITs genes as a biomarker for the early detection and prognosis prediction of non-small cell lung cancer (NSCLC). Methylation levels of SLITs were determined using the Infinium HumanMethylation450 BeadChip or pyrosequencing. Five CpGs at the CpG island of SLIT1, SLIT2 or SLIT3 genes were significantly (Bonferroni corrected p < 0.05) hypermethylated in tumor tissues obtained from 42 NSCLC patients than in matched normal tissues. Methylation levels of these CpGs did not differ significantly between bronchial washings obtained from 76 NSCLC patients and 60 cancer-free patients. However, methylation levels of SLIT2 gene were significantly higher in plasma cell-free DNA of 72 NSCLC patients than in that of 61 cancer-free patients (p = 0.001, Wilcoxon rank sum test). Prediction of NSCLC using SLIT2 methylation was achieved with a sensitivity of 73.7% and a specificity of 61.9% in a plasma test dataset (N = 40). A Cox proportional hazards model showed that SLIT2 hypermethylation in plasma cell-free DNA was significantly associated with poor recurrence-free survival (hazards ratio = 2.19, 95% confidence interval = 1.21–4.36, p = 0.01). The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA is a valuable biomarker for the early detection of NSCLC and prediction of recurrence-free survival. However, further research is needed with larger sample size to confirm results.
Collapse
|
11
|
Murgas KA, Ma Y, Shahidi LK, Mukherjee S, Allen AS, Shibata D, Ryser MD. A Bayesian hierarchical model to estimate DNA methylation conservation in colorectal tumors. Bioinformatics 2021; 38:22-29. [PMID: 34487148 DOI: 10.1093/bioinformatics/btab637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Conservation is broadly used to identify biologically important (epi)genomic regions. In the case of tumor growth, preferential conservation of DNA methylation can be used to identify areas of particular functional importance to the tumor. However, reliable assessment of methylation conservation based on multiple tissue samples per patient requires the decomposition of methylation variation at multiple levels. RESULTS We developed a Bayesian hierarchical model that allows for variance decomposition of methylation on three levels: between-patient normal tissue variation, between-patient tumor-effect variation and within-patient tumor variation. We then defined a model-based conservation score to identify loci of reduced within-tumor methylation variation relative to between-patient variation. We fit the model to multi-sample methylation array data from 21 colorectal cancer (CRC) patients using a Monte Carlo Markov Chain algorithm (Stan). Sets of genes implicated in CRC tumorigenesis exhibited preferential conservation, demonstrating the model's ability to identify functionally relevant genes based on methylation conservation. A pathway analysis of preferentially conserved genes implicated several CRC relevant pathways and pathways related to neoantigen presentation and immune evasion. Our findings suggest that preferential methylation conservation may be used to identify novel gene targets that are not consistently mutated in CRC. The flexible structure makes the model amenable to the analysis of more complex multi-sample data structures. AVAILABILITY AND IMPLEMENTATION The data underlying this article are available in the NCBI GEO Database, under accession code GSE166212. The R analysis code is available at https://github.com/kevin-murgas/DNAmethylation-hierarchicalmodel. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kevin A Murgas
- Department of Biomedical Informatics, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lidea K Shahidi
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Mathematics, Duke University, Durham, NC 27708, USA
- Department of Bioinformatics and Biostatistics, Duke University, Durham, NC 27710, USA
| | - Andrew S Allen
- Department of Bioinformatics and Biostatistics, Duke University, Durham, NC 27710, USA
- Duke Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc D Ryser
- Department of Mathematics, Duke University, Durham, NC 27708, USA
- Department of Population Health Sciences, Duke University Medical Center, Durham, NC 27701, USA
| |
Collapse
|
12
|
Mamelli RE, Felipe AV, Silva TD, Hinz V, Forones NM. RNAM EXPRESSION AND DNA METHYLATION OF DKK2 GENE IN COLORECTAL CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:55-60. [PMID: 33909798 DOI: 10.1590/s0004-2803.202100000-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Colorectal cancer is the third most common neoplasm in the world. Methylation of tumor related genes in CpG islands can cause gene silencing and been involved in the development of cancer. The potential role of DKK2 as a biomarker for early diagnosis of colorectal cancer remains unclear. OBJECTIVE The aim of the study was to evaluate the profile of methylation and RNAm expression of DKK2 as potential predictors of colorectal cancer diagnosis and prognosis. METHODS Expression of mRNAs encoding DKK2 in 35 colorectal cancer tissues was quantified using real-time polymerase chain reaction analysis. The DNA methylation was studied by high resolution melting analysis. The general characteristics of the patients were collected. DKK2 methylation and expression were compared to clinical, pathological aspects and overall survival. RESULTS Among the 35 patients studied, 18 were male, 10 were on right colon and 25 on left colon. Among the 20 patients with high hypermethylation, 15 of them had mRNA low expression of DKK2. There was no significant association between DKK2 promoter methylation and mRNA DKK2 expression and clinical or pathological features. DKK2 promoter methylation (P=0.154) and DKK2 RNA expression (P=0.345) did not show significant correlation with overall survival. CONCLUSION DKK2 promoter methylation and DKK2 RNA status appear to be biomarkers of cancer diagnosis but not predictors of prognosis.
Collapse
Affiliation(s)
- Ronaldo Eliezer Mamelli
- Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, SP, Brasil
| | - Aledson Vitor Felipe
- Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, SP, Brasil
| | - Tiago Donizetti Silva
- Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, SP, Brasil
| | - Vanessa Hinz
- Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, SP, Brasil
| | - Nora Manoukian Forones
- Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, SP, Brasil
| |
Collapse
|
13
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
14
|
Raza Y, Ahmed A, Khan A, Chishti AA, Akhter SS, Mubarak M, Bernstein C, Zaitlin B, Kazmi SU. Helicobacter pylori severely reduces expression of DNA repair proteins PMS2 and ERCC1 in gastritis and gastric cancer. DNA Repair (Amst) 2020; 89:102836. [PMID: 32143126 DOI: 10.1016/j.dnarep.2020.102836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Gastric cancers are the third leading cause of cancer mortality in the world. Helicobacter pylori causes over 60 % of all stomach cancers. Colonization of the gastric mucosa by H. pylori results in increased DNA damage. Repair of DNA damage may also be reduced by H. pylori infection. Reduced DNA repair in combination with increased DNA damage can cause carcinogenic mutations. During progression to gastric cancer, gastric epithelium goes through stages of increasing pathology. Determining the levels of DNA repair enzymes during progression to gastric cancer could illuminate treatment approaches. Our aim is to determine the level of gastric expression of DNA repair proteins ERCC1 (a nucleotide excision repair enzyme) and PMS2 (a mismatch repair enzyme) in the presence of H. pylori infection at successive stages of gastric pathology and in gastric cancers. We analyzed gastric tissues of 300 individuals, including 30 without dyspepsia, 200 with dyspepsia and 70 with gastric cancers. The presence of H. pylori, gastric pathology and expression of DNA repair proteins ERCC1 and PMS2 were evaluated. Infection by H. pylori carrying the common cagA gene reduced median nuclear expression of ERCC1 and PMS2 to less than 20 % and 15 % of normal, respectively, in all pathologic stages preceding cancer. ERCC1 and PMS2 nuclear expression was 0-5 % of normal in gastric cancers. H. pylori can cause deficiency of ERCC1 and PMS2 protein expression. These deficiencies are associated with gastric pathology and cancer. This reduction in DNA repair likely causes carcinogenic mutations. Substantially reduced ERCC1 and PMS2 expression appears to be an early step in progression to H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Yasir Raza
- Department of Microbiology, University of Karachi, Karachi, Pakistan; Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine & Drug Research, University of Karachi, Karachi, Pakistan.
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi, Pakistan.
| | | | | | - Muhammad Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
| | - Carol Bernstein
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | - Beryl Zaitlin
- Zaitlin Geoconsulting Ltd., Calgary, Alberta, Canada.
| | | |
Collapse
|
15
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Gu S, Lin S, Ye D, Qian S, Jiang D, Zhang X, Li Q, Yang J, Ying X, Li Z, Tang M, Wang J, Jin M, Chen K. Genome-wide methylation profiling identified novel differentially hypermethylated biomarker MPPED2 in colorectal cancer. Clin Epigenetics 2019; 11:41. [PMID: 30846004 PMCID: PMC6407227 DOI: 10.1186/s13148-019-0628-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epigenetic alternation is a common contributing factor to neoplastic transformation. Although previous studies have reported a cluster of aberrant promoter methylation changes associated with silencing of tumor suppressor genes, little is known concerning their sequential DNA methylation changes during the carcinogenetic process. The aim of the present study was to address a genome-wide search for identifying potentially important methylated changes and investigate the onset and pattern of methylation changes during the progression of colorectal neoplasia. METHODS A three-phase design was employed in this study. In the screening phase, DNA methylation profile of 12 pairs of colorectal cancer (CRC) and adjacent normal tissues was analyzed by using the Illumina MethylationEPIC BeadChip. Significant CpG sites were selected based on a cross-validation analysis from The Cancer Genome Atlas (TCGA) database. Methylation levels of candidate CpGs were assessed using pyrosequencing in the training dataset (tumor lesions and adjacent normal tissues from 46 CRCs) and the validation dataset (tumor lesions and paired normal tissues from 13 hyperplastic polyps, 129 adenomas, and 256 CRCs). A linear mixed-effects model was used to examine the incremental changes of DNA methylation during the progression of colorectal neoplasia. RESULTS The comparisons between normal and tumor samples in the screening phase revealed an extensive CRC-specific methylomic pattern with 174,006 (21%) methylated CpG sites, of which 22,232 (13%) were hyermethylated and 151,774 (87%) were hypomethylated. Hypermethylation mostly occurred in CpG islands with an overlap of gene promoters, while hypomethylation tended to be mapped far away from functional regions. Further cross validation analysis from TCGA dataset confirmed 265 hypermethylated promoters coupling with downregulated gene expression. Among which, hypermethylated changes in MEEPD2 promoter was successfully replicated in both training and validation phase. Significant hypermethylation appeared since precursor lesions with an extensive modification in CRCs. The linear mixed-effects modeling analysis found that a cumulative pattern of MPPED2 methylation changes from normal mucosa to hyperplastic polyp to adenoma, and to carcinoma (P < 0.001). CONCLUSIONS Our findings indicate that epigenetic alterations of MPPED2 promoter region appear sequentially during the colorectal neoplastic progression. It might be able to serve as a promising biomarker for early diagnosis and stage surveillance of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shujuan Lin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University School of Public Health, 548 Binwen Road, Hangzhou, 310053, China
| | - Sangni Qian
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danjie Jiang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaocong Zhang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qilong Li
- Jiashan Institute of Cancer Prevention and Treatment, 345 Jiefangdong Road, Jiashan, 314100, China
| | - Jinhua Yang
- Jiashan Institute of Cancer Prevention and Treatment, 345 Jiefangdong Road, Jiashan, 314100, China
| | - Xiaojiang Ying
- Department of Anorectal Surgery, Shaoxing People's Hospital, 568 Zhongxingbei Road, Shaoxing, 312000, China
| | - Zhenjun Li
- Department of Anorectal Surgery, Shaoxing People's Hospital, 568 Zhongxingbei Road, Shaoxing, 312000, China
| | - Mengling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
17
|
Dilworth MP, Nieto T, Stockton JD, Whalley CM, Tee L, James JD, Noble F, Underwood TJ, Hallissey MT, Hejmadi R, Trudgill N, Tucker O, Beggs AD. Whole Genome Methylation Analysis of Nondysplastic Barrett Esophagus that Progresses to Invasive Cancer. Ann Surg 2019; 269:479-485. [PMID: 29384778 PMCID: PMC6369874 DOI: 10.1097/sla.0000000000002658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate differences in methylation between patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma and those who do not. BACKGROUND Identifying patients with nondysplastic Barrett esophagus who progress to invasive adenocarcinoma remains a challenge. Previous studies have demonstrated the potential utility of epigenetic markers for identifying this group. METHODS A whole genome methylation interrogation using the Illumina HumanMethylation 450 array of patients with nondysplastic Barrett esophagus who either develop adenocarcinoma or remain static, with validation of findings by bisulfite pyrosequencing. RESULTS In all, 12 patients with "progressive" versus 12 with "nonprogressive" nondysplastic Barrett esophagus were analyzed via methylation array. Forty-four methylation markers were identified that may be able to discriminate between nondysplastic Barrett esophagus that either progress to adenocarcinoma or remain static. Hypomethylation of the recently identified tumor suppressor OR3A4 (probe cg09890332) validated in a separate cohort of samples (median methylation in progressors 67.8% vs 96.7% in nonprogressors; P = 0.0001, z = 3.85, Wilcoxon rank-sum test) and was associated with the progression to adenocarcinoma. There were no differences in copy number between the 2 groups, but a global trend towards hypomethylation in the progressor group was observed. CONCLUSION Hypomethylation of OR3A4 has the ability to risk stratify the patient with nondysplastic Barrett esophagus and may form the basis of a future surveillance program.
Collapse
Affiliation(s)
- Mark P. Dilworth
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Tom Nieto
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Jo D. Stockton
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Celina M. Whalley
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Louise Tee
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Jonathan D. James
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim J. Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Rahul Hejmadi
- Institute of Cancer and Genomic Science, University of Birmingham, UK
| | | | | | - Andrew D. Beggs
- Institute of Cancer and Genomic Science, University of Birmingham, UK
- Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
18
|
Beggs AD, Mehta S, Deeks JJ, James JD, Caldwell GM, Dilworth MP, Stockton JD, Blakeway D, Pestinger V, Vince A, Taniere P, Iqbal T, Magill L, Matthews G, Morton DG. Validation of epigenetic markers to identify colitis associated cancer: Results of module 1 of the ENDCAP-C study. EBioMedicine 2019; 39:265-271. [PMID: 30473377 PMCID: PMC6355942 DOI: 10.1016/j.ebiom.2018.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Chronic inflammation caused by ulcerative colitis (UC) causes a pro-neoplastic drive in the inflamed colon, leading to a markedly greater risk of invasive malignancy compared to the general population. Despite surveillance protocols, 50% of cases proceed to cancer before neoplasia is detected. The Enhanced Neoplasia Detection and Cancer Prevention in Chronic Colitis (ENDCaP-C) trial is an observational multi-centre test accuracy study to ascertain the role of molecular markers in improving the detection of dysplasia. We aimed to validate previously identified biomarkers of neoplasia in a retrospective cohort and create predictive models for later validation in a prospective cohort. METHODS A retrospective analysis using bisulphite pyrosequencing of an 11 marker panel (SFRP1, SFRP2, SRP4, SRP5, WIF1, TUBB6, SOX7, APC1A, APC2, MINT1, RUNX3) in samples from 35 patients with cancer, 78 with dysplasia and 343 without neoplasia undergoing surveillance for UC associated neoplasia across 6 medical centres. Predictive models for UC associated cancer/dysplasia were created in the setting of neoplastic and non-neoplastic mucosa. FINDINGS For neoplastic mucosa a five marker panel (SFRP2, SFRP4, WIF1, APC1A, APC2) was accurate in detecting pre-cancerous and invasive neoplasia (AUC = 0.83; 95% CI: 0.79, 0.88), and dysplasia (AUC = 0.88; (0.84, 0.91). For non-neoplastic mucosa a four marker panel (APC1A, SFRP4, SFRP5, SOX7) had modest accuracy (AUC = 0.68; 95% CI: 0.62,0.73) in predicting associated bowel neoplasia through the methylation signature of distant non-neoplastic colonic mucosa. INTERPRETATION This multiplex methylation marker panel is accurate in the detection of ulcerative colitis associated dysplasia and neoplasia and is currently being validated in a prospective clinical trial. FUNDING The ENDCAP-C study was funded by the National Institute for Health Research Efficacy and Mechanism Evaluation (EME) Programme (11/100/29).
Collapse
Affiliation(s)
- Andrew D Beggs
- Institute of Cancer & Genomic Science, University of Birmingham, UK.
| | - Samir Mehta
- Birmingham Clinical Trials Unit, University of Birmingham, UK
| | - Jonathan J Deeks
- Birmingham Clinical Trials Unit, University of Birmingham, UK; National Institute for Health Research (NIHR), Birmingham Inflammation Biomedical Research Centre, UK
| | - Jonathan D James
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| | | | - Mark P Dilworth
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| | | | - Daniel Blakeway
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| | | | - Alexandra Vince
- Birmingham Clinical Trials Unit, University of Birmingham, UK
| | | | - Tariq Iqbal
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| | - Laura Magill
- Birmingham Clinical Trials Unit, University of Birmingham, UK
| | - Glenn Matthews
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| | - Dion G Morton
- Institute of Cancer & Genomic Science, University of Birmingham, UK
| |
Collapse
|
19
|
Gallo Cantafio ME, Grillone K, Caracciolo D, Scionti F, Arbitrio M, Barbieri V, Pensabene L, Guzzi PH, Di Martino MT. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High Throughput 2018; 7:ht7040033. [PMID: 30373182 PMCID: PMC6306876 DOI: 10.3390/ht7040033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Integration of multi-omics data from different molecular levels with clinical data, as well as epidemiologic risk factors, represents an accurate and promising methodology to understand the complexity of biological systems of human diseases, including cancer. By the extensive use of novel technologic platforms, a large number of multidimensional data can be derived from analysis of health and disease systems. Comprehensive analysis of multi-omics data in an integrated framework, which includes cumulative effects in the context of biological pathways, is therefore eagerly awaited. This strategy could allow the identification of pathway-addiction of cancer cells that may be amenable to therapeutic intervention. However, translation into clinical settings requires an optimized integration of omics data with clinical vision to fully exploit precision cancer medicine. We will discuss the available technical approach and more recent developments in the specific field.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | | | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Licia Pensabene
- Department of Medical and Surgical Sciences Pediatric Unit, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Pietro Hiram Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| |
Collapse
|
20
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
- Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624 Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| |
Collapse
|
22
|
Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Sapsakos TM, Papadakis GZ, Spandidos DA, Tsatsakis AM, Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol Rep 2018; 39:2455-2472. [PMID: 29565457 PMCID: PMC5983921 DOI: 10.3892/or.2018.6330] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the most common cancers. In fact, it is placed in the third place among the most diagnosed cancer in men, after lung and prostate cancer, and in the second one for the most diagnosed cancer in women, following breast cancer. Moreover, its high mortality rates classifies it among the leading causes of cancer‑related death worldwide. Thus, in order to help clinicians to optimize their practice, it is crucial to introduce more effective tools that will improve not only early diagnosis, but also prediction of the most likely progression of the disease and response to chemotherapy. In that way, they will be able to decrease both morbidity and mortality of their patients. In accordance with that, colon cancer research has described numerous biomarkers for diagnostic, prognostic and predictive purposes that either alone or as part of a panel would help improve patient's clinical management. This review aims to describe the most accepted biomarkers among those proposed for use in CRC divided based on the clinical specimen that is examined (tissue, faeces or blood) along with their restrictions. Lastly, new insight in CRC monitoring will be discussed presenting promising emerging biomarkers (telomerase activity, telomere length and micronuclei frequency).
Collapse
Affiliation(s)
| | - Loukia Vassilopoulou
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Theodoros Mariolis Sapsakos
- Laboratory of Anatomy and Histology, Nursing School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Z. Papadakis
- Foundation for Research and Technology Hellas (FORTH), Institute of Computer Sciences (ICS), Computational Biomedicine Laboratory (CBML), 71003 Heraklion, Crete, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aristides M. Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
23
|
Gallardo-Gómez M, Moran S, Páez de la Cadena M, Martínez-Zorzano VS, Rodríguez-Berrocal FJ, Rodríguez-Girondo M, Esteller M, Cubiella J, Bujanda L, Castells A, Balaguer F, Jover R, De Chiara L. A new approach to epigenome-wide discovery of non-invasive methylation biomarkers for colorectal cancer screening in circulating cell-free DNA using pooled samples. Clin Epigenetics 2018; 10:53. [PMID: 29686738 PMCID: PMC5902929 DOI: 10.1186/s13148-018-0487-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal cancer is the fourth cause of cancer-related deaths worldwide, though detection at early stages associates with good prognosis. Thus, there is a clear demand for novel non-invasive tests for the early detection of colorectal cancer and premalignant advanced adenomas, to be used in population-wide screening programs. Aberrant DNA methylation detected in liquid biopsies, such as serum circulating cell-free DNA (cfDNA), is a promising source of non-invasive biomarkers. This study aimed to assess the feasibility of using cfDNA pooled samples to identify potential serum methylation biomarkers for the detection of advanced colorectal neoplasia (colorectal cancer or advanced adenomas) using microarray-based technology. RESULTS cfDNA was extracted from serum samples from 20 individuals with no colorectal findings, 20 patients with advanced adenomas, and 20 patients with colorectal cancer (stages I and II). Two pooled samples were prepared for each pathological group using equal amounts of cfDNA from 10 individuals, sex-, age-, and recruitment hospital-matched. We measured the methylation levels of 866,836 CpG positions across the genome using the MethylationEPIC array. Pooled serum cfDNA methylation data meets the quality requirements. The proportion of detected CpG in all pools (> 99% with detection p value < 0.01) exceeded Illumina Infinium methylation data quality metrics of the number of sites detected. The differential methylation analysis revealed 1384 CpG sites (5% false discovery rate) with at least 10% difference in the methylation level between no colorectal findings controls and advanced neoplasia, the majority of which were hypomethylated. Unsupervised clustering showed that cfDNA methylation patterns can distinguish advanced neoplasia from healthy controls, as well as separate tumor tissue from healthy mucosa in an independent dataset. We also observed that advanced adenomas and stage I/II colorectal cancer methylation profiles, grouped as advanced neoplasia, are largely homogenous and clustered close together. CONCLUSIONS This preliminary study shows the viability of microarray-based methylation biomarker discovery using pooled serum cfDNA samples as an alternative approach to tissue specimens. Our strategy sets an open door for deciphering new non-invasive biomarkers not only for colorectal cancer detection, but also for other types of cancers.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, Centro Singular de Investigación de Galicia (CINBIO), University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - María Páez de la Cadena
- Department of Biochemistry, Genetics and Immunology, Centro Singular de Investigación de Galicia (CINBIO), University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Vicenta Soledad Martínez-Zorzano
- Department of Biochemistry, Genetics and Immunology, Centro Singular de Investigación de Galicia (CINBIO), University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Francisco Javier Rodríguez-Berrocal
- Department of Biochemistry, Genetics and Immunology, Centro Singular de Investigación de Galicia (CINBIO), University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
- SiDOR Research Group and Centro de Investigaciones Biomédicas (CINBIO), Faculty of Economics and Business Administration, University of Vigo, Vigo, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Ourense, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Rodrigo Jover
- Department of Gastroenterology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, Centro Singular de Investigación de Galicia (CINBIO), University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
24
|
Wei J, Li G, Zhang J, Zhou Y, Dang S, Chen H, Wu Q, Liu M. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer. Oncotarget 2018; 7:62547-62558. [PMID: 27566576 PMCID: PMC5308745 DOI: 10.18632/oncotarget.11534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
DNA methylation was regarded as the promising biomarker for rectal cancer diagnosis. However, the optimal methylation biomarkers with ideal diagnostic performance for rectal cancer are still limited. To identify new molecular markers for rectal cancer, we mapped DNA methylation and transcriptomic profiles in the six rectal cancer and paired normal samples. Further analysis revealed the hypermethylated probes in cancer prone to be located in gene promoter. Meanwhile, transcriptome analysis presented 773 low-expressed and 1,161 over-expressed genes in rectal cancer. Correction analysis identified a panel of 36 genes with an inverse correlation between methylation and gene expression levels, including 10 known colorectal cancer related genes. From the other 26 novel marker genes, GFRA1 and GSTM2 were selected for further analysis on the basis of their biological functions. Further experiment analysis confirmed their methylation and expression status in a larger number (44) of rectal cancer samples, and ROC curves showed higher AUC than SEPT9, which has been used as a biomarker in rectal cancer. Our data suggests that aberrant DNA methylation of contiguous CpG sites in methylation array may be potential diagnostic markers of rectal cancer.
Collapse
Affiliation(s)
- Jiufeng Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Jinning Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Yuhui Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Shuwei Dang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Hongsheng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| |
Collapse
|
25
|
Wang Y, Chen PM, Liu RB. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection. World J Gastrointest Oncol 2018; 10:15-22. [PMID: 29375744 PMCID: PMC5767789 DOI: 10.4251/wjgo.v10.i1.15] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.
Collapse
Affiliation(s)
- Yu Wang
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Pei-Min Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Rong-Bin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
26
|
Raghuram GV, Gupta D, Subramaniam S, Gaikwad A, Khare NK, Nobre M, Nair NK, Mittra I. Physical shearing imparts biological activity to DNA and ability to transmit itself horizontally across species and kingdom boundaries. BMC Mol Biol 2017; 18:21. [PMID: 28793862 PMCID: PMC5550992 DOI: 10.1186/s12867-017-0098-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background We have recently reported that cell-free DNA (cfDNA) fragments derived from dying cells that circulate in blood are biologically active molecules and can readily enter into healthy cells to activate DNA damage and apoptotic responses in the recipients. However, DNA is not conventionally known to spontaneously enter into cells or to have any intrinsic biological activity. We hypothesized that cellular entry and acquisition of biological properties are functions of the size of DNA. Results To test this hypothesis, we generated small DNA fragments by sonicating high molecular weight DNA (HMW DNA) to mimic circulating cfDNA. Sonication of HMW DNA isolated from cancerous and non-cancerous human cells, bacteria and plant generated fragments 300–3000 bp in size which are similar to that reported for circulating cfDNA. We show here that while HMW DNAs were incapable of entering into cells, sonicated DNA (sDNA) from different sources could do so indiscriminately without heed to species or kingdom boundaries. Thus, sDNA from human cells and those from bacteria and plant could enter into nuclei of mouse cells and sDNA from human, bacterial and plant sources could spontaneously enter into bacteria. The intracellular sDNA associated themselves with host cell chromosomes and integrated into their genomes. Furthermore, sDNA, but not HMW DNA, from all four sources could phosphorylate H2AX and activate the pro-inflammatory transcription factor NFκB in mouse cells, indicating that sDNAs had acquired biological activities. Conclusions Our results show that small fragments of DNA from different sources can indiscriminately enter into other cells across species and kingdom boundaries to integrate into their genomes and activate biological processes. This raises the possibility that fragmented DNA that are generated following organismal cell-death may have evolutionary implications by acting as mobile genetic elements that are involved in horizontal gene transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gorantla Venkata Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Deepika Gupta
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Siddharth Subramaniam
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Ashwini Gaikwad
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Malcolm Nobre
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India.
| |
Collapse
|
27
|
Mahasneh A, Al-Shaheri F, Jamal E. Molecular biomarkers for an early diagnosis, effective treatment and prognosis of colorectal cancer: Current updates. Exp Mol Pathol 2017; 102:475-483. [PMID: 28506769 DOI: 10.1016/j.yexmp.2017.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world. Globally, it has been estimated that about 1.4 million new cases of colorectal cancer are diagnosed every year. CRC is a multifactorial disease that arises due to genetics as well as epigenetic alterations in a number of oncogenes, tumor suppressor genes, mismatch repair genes, as well as cell cycle regulating genes in colon mucosal cells. These molecular alterations have been considered as potential CRC biomarkers because they can provide the physicians with diagnostic, prognostic and treatment response information. The goal is to identify relevant, cheap and applicable biomarkers that contribute to patient management decisions, resulting in direct benefits to patients. In this review, we will outline the most currently available and developing tumor tools, and blood molecular biomarkers. Also, we will illustrate their diagnostic, therapeutic and prognostic applications.
Collapse
Affiliation(s)
- Amjad Mahasneh
- Faculty of Arts and Science, Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fawaz Al-Shaheri
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Eshraq Jamal
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
28
|
Hanley MP, Hahn MA, Li AX, Wu X, Lin J, Wang J, Choi AH, Ouyang Z, Fong Y, Pfeifer GP, Devers TJ, Rosenberg DW. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colonic neoplasia. Oncogene 2017; 36:5035-5044. [PMID: 28459462 PMCID: PMC5578878 DOI: 10.1038/onc.2017.130] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is characterized by genome-wide alterations to DNA methylation that influence gene expression and genomic stability. Less is known about the extent to which methylation is disrupted in the earliest stages of CRC development. In this study we have combined laser-capture microdissection (LCM) with reduced representation bisulfite sequencing (RRBS) to identify cancer-associated DNA methylation changes in human aberrant crypt foci (ACF), the earliest putative precursor to CRC. Using this approach, methylation profiles have been generated for 10 KRAS-mutant ACF and 10 CRCs harboring a KRAS mutation, as well as matched samples of normal mucosa. Of 811 differentially methylated regions (DMRs) identified in ACF, 537 (66%) were hypermethylated and 274 (34%) were hypomethylated. DMRs located within intergenic regions were heavily enriched for AP-1 transcription factor binding sites and were frequently hypomethylated. Furthermore, gene ontology (GO) analysis demonstrated that DMRs associated with promoters were enriched for genes involved in intestinal development, including homeobox genes and targets of the Polycomb repressive complex 2 (PRC2). Consistent with their role in the earliest stages of colonic neoplasia, 75% of the loci harboring methylation changes in ACF were also altered in CRC samples, though the magnitude of change at these sites was lesser in ACF. While aberrant promoter methylation was associated with altered gene expression in CRC, this was not the case in ACF, suggesting the insufficiency of methylation changes to modulate gene expression in early colonic neoplasia. Together, these data demonstrate that DNA methylation changes, including significant hypermethylation, occur more frequently in early colonic neoplasia than previously believed, and identify epigenomic features of ACF that may provide new targets for cancer chemoprevention or lead to the development of new biomarkers for CRC risk.
Collapse
Affiliation(s)
- M P Hanley
- Center for Molecular Medicine, School of Medicine, UConn Health, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - M A Hahn
- Department of Surgery, City of Hope, Duarte, CA, USA
| | - A X Li
- Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - X Wu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - J Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - J Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - A H Choi
- Department of Surgery, City of Hope, Duarte, CA, USA
| | - Z Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Y Fong
- Department of Surgery, City of Hope, Duarte, CA, USA
| | - G P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - T J Devers
- Division of Gastroenterology, School of Medicine, UConn Health, Farmington, CT, USA
| | - D W Rosenberg
- Center for Molecular Medicine, School of Medicine, UConn Health, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.,Colon Cancer Prevention Program, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT, USA
| |
Collapse
|
29
|
Dirks RAM, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics 2016; 8:122. [PMID: 27895806 PMCID: PMC5117701 DOI: 10.1186/s13148-016-0284-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
A myriad of diseases is caused or characterized by alteration of epigenetic patterns, including changes in DNA methylation, post-translational histone modifications, or chromatin structure. These changes of the epigenome represent a highly interesting layer of information for disease stratification and for personalized medicine. Traditionally, epigenomic profiling required large amounts of cells, which are rarely available with clinical samples. Also, the cellular heterogeneity complicates analysis when profiling clinical samples for unbiased genome-wide biomarker discovery. Recent years saw great progress in miniaturization of genome-wide epigenomic profiling, enabling large-scale epigenetic biomarker screens for disease diagnosis, prognosis, and stratification on patient-derived samples. All main genome-wide profiling technologies have now been scaled down and/or are compatible with single-cell readout, including: (i) Bisulfite sequencing to determine DNA methylation at base-pair resolution, (ii) ChIP-Seq to identify protein binding sites on the genome, (iii) DNaseI-Seq/ATAC-Seq to profile open chromatin, and (iv) 4C-Seq and HiC-Seq to determine the spatial organization of chromosomes. In this review we provide an overview of current genome-wide epigenomic profiling technologies and main technological advances that allowed miniaturization of these assays down to single-cell level. For each of these technologies we evaluate their application for future biomarker discovery. We will focus on (i) compatibility of these technologies with methods used for clinical sample preservation, including methods used by biobanks that store large numbers of patient samples, and (ii) automation of these technologies for robust sample preparation and increased throughput.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
30
|
Vymetalkova V, Vodicka P, Pardini B, Rosa F, Levy M, Schneiderova M, Liska V, Vodickova L, Nilsson TK, Farkas SA. Epigenome-wide analysis of DNA methylation reveals a rectal cancer-specific epigenomic signature. Epigenomics 2016; 8:1193-207. [DOI: 10.2217/epi-2016-0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of the present study is to address a genome-wide search for novel methylation biomarkers in the rectal cancer (RC), as only scarce information on methylation profile is available. Materials & methods: We analyzed methylation status in 25 pairs of RC and adjacent healthy mucosa using the Illumina Human Methylation 450 BeadChip. Results: We found significantly aberrant methylation in 33 genes. After validation of our results by pyrosequencing, we found a good agreement with our findings. The BPIL3 and HBBP1 genes resulted hypomethylated in RC, whereas TIFPI2, ADHFE1, FLI1 and TLX1 were hypermethylated. An external validation by TCGA datasets confirmed the results. Conclusion: Our study, with external validation, has demonstrated the feasibility of using specific methylated DNA signatures for developing biomarkers in RC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Fabio Rosa
- Human Genetics Foundation, (HuGeF), Torino, Italy
| | - Miroslav Levy
- Department of Surgery, 1st Faculty of Medicine, Charles University & Thomayer Hospital, Prague, Czech Republic
| | | | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
- Department of Surgery, Teaching Hospital & Medical School in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology & Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | | | - Sanja A Farkas
- Department of Laboratory Medicine, Örebro University; Örebro, Sweden
| |
Collapse
|
31
|
Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer 2016; 1866:106-20. [PMID: 27385266 DOI: 10.1016/j.bbcan.2016.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Since genetic and epigenetic alterations influence the development of colorectal cancer (CRC), huge potential lies in the use of DNA methylation as biomarkers to improve the current diagnosis, screening, prognosis and treatment prediction. Here we performed a systematic review on DNA methylation-based biomarkers published in CRC, and discussed the current state of findings and future challenges. Based on the findings, we then provide a perspective on future studies. Genome-wide studies on DNA methylation revealed novel biomarkers as well as distinct subgroups that exist in CRC. For diagnostic purposes, the most independently validated genes to study further are VIM, SEPT9, ITGA4, OSM4, GATA4 and NDRG4. These hypermethylated biomarkers can even be combined with LINE1 hypomethylation and the performance of markers should be examined in comparison to FIT further to find sensitive combinations. In terms of prognostic markers, myopodin, KISS1, TMEFF2, HLTF, hMLH1, APAF1, BCL2 and p53 are independently validated. Most prognostic markers published lack both a multivariate analysis in comparison to clinical risk factors and the appropriate patient group who will benefit by adjuvant chemotherapy. Methylation of IGFBP3, mir148a and PTEN are found to be predictive markers for 5-FU and EGFR therapy respectively. For therapy prediction, more studies should focus on finding markers for chemotherapeutic drugs as majority of the patients would benefit. Translation of these biomarkers into clinical utility would require large-scale prospective cohorts and randomized clinical trials in future. Based on these findings and consideration we propose an avenue to introduce methylation markers into clinical practice in near future. For future studies, multi-omics profiling on matched tissue and non-invasive cohorts along with matched cohorts of adenoma to carcinoma is indispensable to concurrently stratify CRC and find novel, robust biomarkers. Moreover, future studies should examine the timing and heterogeneity of methylation as well as the difference in methylation levels between epithelial and stromal tissues.
Collapse
Affiliation(s)
- Kevin Lam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Kathy Pan
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Fiona Linnekamp
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Raju Kandimalla
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid Biopsies. Trends Genet 2016; 31:564-575. [PMID: 26450339 DOI: 10.1016/j.tig.2015.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
Abstract
Recent scientific advances in understanding circulating tumor cells, cell-free DNA/RNA, and exosomes in blood have laid a solid foundation for the development of routine molecular 'liquid biopsies'. This approach provides non-invasive access to genetic information--somatic mutations, epigenetic changes, and differential expression--about the physiological conditions of our body and diseases. It opens a valuable avenue for future genetic studies and human disease diagnosis, including prenatal and neurodegenerative disease diagnosis, as well as for cancer screening and monitoring. With the rapid development of highly sensitive and accurate technologies such as next-generation sequencing, molecular 'liquid biopsies' will quickly become a central piece in the future of precision medicine.
Collapse
Affiliation(s)
- Xuyu Cai
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Filip Janku
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jian-Bing Fan
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA.
| |
Collapse
|
33
|
Wang J, Sun K, Shen Y, Xu Y, Xie J, Huang R, Zhang Y, Xu C, Zhang X, Wang R, Lin Y. DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Sci Rep 2016; 6:19162. [PMID: 26759063 PMCID: PMC4725352 DOI: 10.1038/srep19162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Hypodontia is caused by interactions among genetic, epigenetic, and environmental factors during tooth development, but the actual mechanism is unknown. DNA methylation now appears to play a significant role in abnormal developments, flawed phenotypes, and acquired diseases. Methylated DNA immunoprecipitation (MeDIP) has been developed as a new method of scanning large-scale DNA-methylation profiles within particular regions or in the entire genome. Here, we performed a genome-wide scan of paired DNA samples obtained from 4 patients lacking two mandibular incisors and 4 healthy controls with normal dentition. We scanned another female with non-syndromic anodontia and her younger brother with the same gene mutations of the PAX9,MSX1,AXIN2 and EDA, but without developmental abnormalities in the dentition. Results showed significant differences in the methylation level of the whole genome between the hypodontia and the normal groups. Nine genes were spotted, some of which have not been associated with dental development; these genes were related mainly to the development of cartilage, bone, teeth, and neural transduction, which implied a potential gene cascade network in hypodontia at the methylation level. This pilot study reveals the critical role of DNA methylation in hypodontia and might provide insights into developmental biology and the pathobiology of acquired diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Ke Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Yun Shen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Renhuan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Chenyuan Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| |
Collapse
|
34
|
Sahnane N, Magnoli F, Bernasconi B, Tibiletti MG, Romualdi C, Pedroni M, Ponz de Leon M, Magnani G, Reggiani-Bonetti L, Bertario L, Signoroni S, Capella C, Sessa F, Furlan D. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015; 7:131. [PMID: 26697123 PMCID: PMC4687378 DOI: 10.1186/s13148-015-0165-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs), and extensive work has been performed to characterize different methylation profiles of CRC. Less information is available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1) hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220 CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under 40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI) and 98 that were microsatellite stable (S-MSS). All tumor methylation patterns were integrated with clinico-pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations. Results LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation. S-MSI were mainly characterized by MLH1 methylation, BRAF mutation, and absence of a CIN phenotype and of TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs. Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53 deletion. In all four classes, hypermethylation of ESR1, GATA5, and WT1 was very common. Conclusions Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1 hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0165-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Sahnane
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Francesca Magnoli
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Barbara Bernasconi
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | | - Chiara Romualdi
- CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Monica Pedroni
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Lucio Bertario
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Carlo Capella
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Daniela Furlan
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | |
Collapse
|
35
|
Joensuu EI, Nieminen TT, Lotsari JE, Pavicic W, Abdel-Rahman WM, Peltomäki P. Methyltransferase expression and tumor suppressor gene methylation in sporadic and familial colorectal cancer. Genes Chromosomes Cancer 2015; 54:776-787. [PMID: 26305882 DOI: 10.1002/gcc.22289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/01/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2023] Open
Abstract
Molecular mechanisms underlying coordinated hypermethylation of multiple CpG islands in cancer remain unclear and studies of methyltransferase enzymes have arrived at conflicting results. We focused on DNMT1 and DNMT3B, DNA methyltransferases responsible for (de novo) methylation, and EZH2, histone (H3K27) methyltransferase, and examined their roles in tumor suppressor gene (TSG) methylation patterns we have previously established in sporadic and familial cancers. Our investigation comprised 165 tumors, stratified by tissue of origin (117 colorectal and 48 endometrial carcinomas) and sporadic vs. familial disease (57 sporadic vs. 60 familial, mainly Lynch syndrome, colorectal carcinomas). By immunohistochemical evaluation, EZH2 protein expression was associated with a TSG methylator phenotype. DNMT1, DNMT3B, and EZH2 were expressed at significantly higher levels in tumor vs. normal tissues. DNMT1 and EZH2 expression were positively correlated and higher in microsatellite-unstable vs. microsatellite-stable tumors, whether sporadic or hereditary. Ki-67 expression mirrored the same pattern. Promoter methylation of the methyltransferase genes themselves was addressed as a possible cause behind their altered expression. While DNMT1 or EZH2 did not show differential methylation between normal and tumor tissues, DNMT3B analysis corroborated the regulatory role of a distal promoter region. Our study shows that methyltransferase expression in cancer depends on the tissue of origin, microsatellite-instability status, cellular proliferation, and--in the case of DNMT3B--promoter methylation of the respective gene. Translation of methyltransferase expression into DNA methylation appears complex as suggested by the fact that except for EZH2, no clear association between methyltransferase protein expression and TSG methylation was observed.
Collapse
Affiliation(s)
- Emmi I Joensuu
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna E Lotsari
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Walter Pavicic
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Cytogenetics and Mutagenesis Unit, IMBICE-CONICET-CICPBA, La Plata, Argentina
| | - Wael M Abdel-Rahman
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Vettore AL, Ramnarayanan K, Poore G, Lim K, Ong CK, Huang KK, Leong HS, Chong FT, Lim TKH, Lim WK, Cutcutache I, Mcpherson JR, Suzuki Y, Zhang S, Skanthakumar T, Wang W, Tan DSW, Cho BC, Teh BT, Rozen S, Tan P, Iyer NG. Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med 2015; 7:98. [PMID: 26395002 PMCID: PMC4580363 DOI: 10.1186/s13073-015-0219-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Background Carcinoma of the oral tongue (OTSCC) is the most common malignancy of the oral cavity, characterized by frequent recurrence and poor survival. The last three decades has witnessed a change in the OTSCC epidemiological profile, with increasing incidence in younger patients, females and never-smokers. Here, we sought to characterize the OTSCC genomic landscape and to determine factors that may delineate the genetic basis of this disease, inform prognosis and identify targets for therapeutic intervention. Methods Seventy-eight cases were subjected to whole-exome (n = 18) and targeted deep sequencing (n = 60). Results While the most common mutation was in TP53, the OTSCC genetic landscape differed from previously described cohorts of patients with head and neck tumors: OTSCCs demonstrated frequent mutations in DST and RNF213, while alterations in CDKN2A and NOTCH1 were significantly less frequent. Despite a lack of previously reported NOTCH1 mutations, integrated analysis showed enrichments of alterations affecting Notch signaling in OTSCC. Importantly, these Notch pathway alterations were prognostic on multivariate analyses. A high proportion of OTSCCs also presented with alterations in drug targetable and chromatin remodeling genes. Patients harboring mutations in actionable pathways were more likely to succumb from recurrent disease compared with those who did not, suggesting that the former should be considered for treatment with targeted compounds in future trials. Conclusions Our study defines the Asian OTSCC mutational landscape, highlighting the key role of Notch signaling in oral tongue tumorigenesis. We also observed somatic mutations in multiple therapeutically relevant genes, which may represent candidate drug targets in this highly lethal tumor type. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0219-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andre Luiz Vettore
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Laboratory of Cancer Molecular Biology, Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, São Paulo, 04039-032, Brazil.
| | - Kalpana Ramnarayanan
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Gregory Poore
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Kevin Lim
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Choon Kiat Ong
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Laboratory of Cancer Molecular Biology, Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, São Paulo, 04039-032, Brazil.
| | - Kie Kyon Huang
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Tony Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| | - Weng Khong Lim
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Laboratory of Cancer Epigenome, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Ioana Cutcutache
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - John R Mcpherson
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Yuka Suzuki
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Shenli Zhang
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore.
| | - Thakshayeni Skanthakumar
- Department of Surgical Oncology, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Weining Wang
- Department of Surgical Oncology, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Byoung Chul Cho
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Division of Medical Oncology, Yonsei Cancer Center, Yonsei Unversity College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Bin Tean Teh
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Laboratory of Cancer Epigenome, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
| | - Steve Rozen
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Patrick Tan
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore.
| | - N Gopalakrishna Iyer
- Cancer Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singaore. .,Cancer Therapeutics Research Laboratory, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Department of Surgical Oncology, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
37
|
Abstract
Cancer genome sequencing has created an opportunity for precision medicine. Thus far, genetic alterations can only be used to guide treatment for small subsets of certain cancer types with these key alterations. Similar to mutations, epigenetic events are equally suitable for personalized medicine. DNA methylation alterations have been used to identify tumor-specific drug responsive markers. Methylation of MGMT sensitizes gliomas to alkylating agents is an example of epigenetic personalized medicine. Recent studies have revealed that 5-azacytidine and decitabine show activity in myelodysplasia, lung and other cancers. There are currently at least 20 kinds of histone deacetylase inhibitors in clinical testing. Inhibitors targeting other epigenetic regulators are being clinically tested, such as EZH2 inhibitor EPZ-6438.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
38
|
Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, Rakus D, Mann M. Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. J Proteome Res 2015; 14:4005-18. [PMID: 26245529 DOI: 10.1021/acs.jproteome.5b00523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is a leading cause of cancer-related death. It develops from normal enterocytes, through a benign adenoma stage, into the cancer and finally into the metastatic form. We previously compared the proteomes of normal colorectal enterocytes, cancer and nodal metastasis to a depth of 8100 proteins and found extensive quantitative remodeling between normal and cancer tissues but not cancer and metastasis (Wiśniewski et al. PMID 22968445). Here we utilize advances in the proteomic workflow to perform an in depth analysis of the normal tissue (N), the adenoma (A), and the cancer (C). Absolute proteomics of 10 000 proteins per patient from microdissected formalin-fixed and paraffin-embedded clinical material established a quantitative protein repository of the disease. Between N and A, 23% of all proteins changed significantly, 17.8% from A to C and 21.6% from N to C. Together with principal component analysis of the patient groups, this suggests that N, A, and C are equidistant but not on one developmental line. Our proteomics approach allowed us to assess changes in varied cell size, the composition of different subcellular components, and alterations in basic biological processes including the energy metabolism, plasma membrane transport, DNA replication, and transcription. This revealed several-fold higher concentrations of enzymes in fatty acid metabolism in C compared with N, and unexpectedly, the same held true of plasma membrane transporters.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Kamila Duś-Szachniewicz
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , 50-205 Wrocław, Poland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
39
|
Review of the development of DNA methylation as a marker of response to neoadjuvant therapy and outcomes in rectal cancer. Clin Epigenetics 2015. [PMID: 26203306 PMCID: PMC4511540 DOI: 10.1186/s13148-015-0111-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There is much debate around the preoperative treatment of colorectal cancer and, in particular, neoadjuvant chemoradiotherapy in locally advanced rectal cancer. This treatment carries a significant risk of harmful side effects and has a highly variable response rate. Predictive biomarkers have been the subject of a great deal of study with the aim of pretreatment risk stratification in order to more accurately determine which patients will derive the most benefit and least harm from these treatments. The study of epigenetics in colorectal cancer is relatively recent, and distinct patterns of aberrant DNA methylation, in particular the cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP), have been demonstrated in colorectal cancer, and their characterisation and significance are under debate, particularly in rectal cancer. These patterns of DNA methylation have been associated with differences in response to therapy and treatment outcomes and therefore have the potential to be used as biomarkers in tailored therapy regimes for patients with rectal cancer. This review aims to summarise the current state of the art in rectal cancer, with particular regard to the determination of DNA methylation patterns, the CpG island methylator phenotype and its potential as a novel biomarker in rectal cancer treatment and prediction of outcomes and response after neoadjuvant chemoradiotherapy.
Collapse
|
40
|
Valo S, Kaur S, Ristimäki A, Renkonen-Sinisalo L, Järvinen H, Mecklin JP, Nyström M, Peltomäki P. DNA hypermethylation appears early and shows increased frequency with dysplasia in Lynch syndrome-associated colorectal adenomas and carcinomas. Clin Epigenetics 2015. [PMID: 26203307 PMCID: PMC4511034 DOI: 10.1186/s13148-015-0102-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lynch syndrome (LS) is associated with germline mutations in DNA mismatch repair (MMR) genes. The first "hit" to inactivate one allele of the predisposing MMR gene is present in every cell, contributing to accelerated tumorigenesis. Less information is available of the nature, timing, and order of other molecular "hits" required for tumor development. To this end, MMR protein expression and coordinated promoter methylation were examined in colorectal specimens prospectively collected from LS mutation carriers (n = 55) during colonoscopy surveillance (10/2011-5/2013), supplemented with retrospective specimens. RESULTS Loss of MMR protein corresponding to the gene mutated in the germline increased with dysplasia, with frequency of 0 % in normal mucosa, 50-68 % in low-grade dysplasia adenomas, and 100 % in high-grade dysplasia adenomas and carcinomas. Promoter methylation as a putative "second hit" occurred in 1/56 (2 %) of tumors with silenced MMR protein. A general hypermethylation tendency was evaluated by two gene sets, eight CpG island methylator phenotype (CIMP) genes, and seven candidate tumor suppressor genes linked to colorectal carcinoma (CRC). Hypermethylation followed the same trend as MMR protein loss and was present in some low-grade dysplasia adenomas that still expressed MMR protein suggesting the absence of a "second hit." To assess prospectively collected normal mucosa for carcinogenic "fields," the specimen donors were stratified according to age at biopsy (50 years or below vs. above 50 years) and further according to the absence vs. presence of a (previous or concurrent) diagnosis of CRC. In mutation carriers over 50 years old, two markers from the candidate gene panel (SFRP1 and SLC5A8) revealed a significantly elevated average degree of methylation in individuals with CRC diagnosis vs. those without. CONCLUSIONS Our findings emphasize the importance and early appearance of epigenetic alterations in LS-associated tumorigenesis. The results serve early detection and assessment of progression of CRC.
Collapse
Affiliation(s)
- Satu Valo
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland ; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sippy Kaur
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, Helsinki, Finland ; Department of Pathology, HUSLAB, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal and General Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Järvinen
- Department of Gastrointestinal and General Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, University of Eastern Finland, Jyväskylä, Finland
| | - Minna Nyström
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Shen J, LeFave C, Sirosh I, Siegel AB, Tycko B, Santella RM. Integrative epigenomic and genomic filtering for methylation markers in hepatocellular carcinomas. BMC Med Genomics 2015; 8:28. [PMID: 26059414 PMCID: PMC4460673 DOI: 10.1186/s12920-015-0105-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2015] [Indexed: 02/05/2023] Open
Abstract
Background Epigenome-wide studies in hepatocellular carcinoma (HCC) have identified numerous genes with aberrant DNA methylation. However, methods for triaging functional candidate genes as useful biomarkers for epidemiological study have not yet been developed. Methods We conducted targeted next-generation bisulfite sequencing (bis-seq) to investigate associations of DNA methylation and mRNA expression in HCC. Integrative analyses of epigenetic profiles with DNA copy number analysis were used to pinpoint functional genes regulated mainly by altered DNA methylation. Results Significant differences between HCC tumor and adjacent non-tumor tissue were observed for 28 bis-seq amplicons, with methylation differences varying from 12% to 43%. Available mRNA expression data in Oncomine were evaluated. Two candidate genes (GRASP and TSPYL5) were significantly under-expressed in HCC tumors in comparison with precursor and normal liver tissues. The expression levels in tumor tissues were, respectively, 1.828 and − 0.148, significantly lower than those in both precursor and normal liver tissue. Validations in an additional 42 paired tissues showed consistent under-expression in tumor tissue for GRASP (−7.49) and TSPYL5 (−9.71). A highly consistent DNA hypermethylation and mRNA repression pattern was obtained for both GRASP (69%) and TSPYL5 (73%), suggesting that their biological function is regulated by DNA methylation. Another two genes (RGS17 and NR2E1) at Chr6q showed significantly decreased DNA methylation in tumors with loss of DNA copy number compared to those without, suggesting alternative roles of DNA copy number losses and hypermethylation in the regulation of RGS17 and NR2E1. Conclusions These results suggest that integrative analyses of epigenomic and genomic data provide an efficient way to filter functional biomarkers for future epidemiological studies in human cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0105-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Clare LeFave
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Iryna Sirosh
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Abby B Siegel
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Benjamin Tycko
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
42
|
Huang Z, Wen P, Kong R, Cheng H, Zhang B, Quan C, Bian Z, Chen M, Zhang Z, Chen X, Du X, Liu J, Zhu L, Fushimi K, Hua D, Wu JY. USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration. Int J Cancer 2015; 136:1792-1802. [PMID: 25242263 PMCID: PMC4323690 DOI: 10.1002/ijc.29226] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/16/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. However, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent noncancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Functional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival. Taken together, our data reveal USP33 as a previously unknown tumor-suppressing gene for CRC by mediating the inhibitory function of Slit-Robo signaling on CRC cell migration. Our work suggests the potential value of USP33 as an independent prognostic marker of CRC.
Collapse
Affiliation(s)
- Zhaohui Huang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haipeng Cheng
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Binbin Zhang
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Cao Quan
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zehua Bian
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Mengmeng Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kazuo Fushimi
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Dong Hua
- Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Jane Y. Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Abstract
Colorectal cancer is a serious health problem, a challenge for research, and a model for studying the molecular mechanisms involved in its development. According to its incidence, this pathology manifests itself in three forms: family, hereditary, and most commonly sporadic, apparently not associated with any hereditary or familial factor. For the types having inheritance patterns and a family predisposition, the tumours develop through defined stages ranging from adenomatous lesions to the manifestation of a malignant tumour. It has been established that environmental and hereditary factors contribute to the development of colorectal cancer, as indicated by the accumulation of mutations in oncogenes, genes which suppress and repair DNA, signaling the existence of various pathways through which the appearance of tumours may occur. In the case of the suppressive and mutating tracks, these are characterised by genetic disorders related to the phenotypical changes of the morphological progression sequence in the adenoma/carcinoma. Moreover, alternate pathways through mutation in BRAF and KRAS genes are associated with the progression of polyps to cancer. This review surveys the research done at the cellular and molecular level aimed at finding specific alternative therapeutic targets for fighting colorectal cancer.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Felipe Sojo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Carlos Cotte
- Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| |
Collapse
|
44
|
Farkas SA, Vymetalkova V, Vodickova L, Vodicka P, Nilsson TK. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes. Epigenomics 2015; 6:179-91. [PMID: 24811787 DOI: 10.2217/epi.14.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM The onset and progression of colorectal cancer (CRC) involves a cascade of genetic and/or epigenetic events. The aim of the present study was to address the DNA methylation status of genes relevant in colorectal carcinogenesis and its progression, such as genes frequently mutated in CRC, genes involved in the DNA repair and Wnt signaling pathway. MATERIAL & METHODS We analyzed methylation status in totally 160 genes in 12 paired colorectal tumors and adjacent healthy mucosal tissues using the Illumina Infinium Human Methylation 450 BeadChip. RESULTS We found significantly aberrant methylation in 23 genes (NEIL1, NEIL3, DCLRE1C, NHEJ1, GTF2H5, CCNH, CTNNB1, DKK2, DKK3, FZD5 LRP5, TLE3, WNT2, WNT3A, WNT6, TCF7L1, CASP8, EDNRB1, GPC6, KIAA1804, MYO1B, SMAD2 and TTN). External validation by mRNA expression showed a good agreement between hypermethylation in cancer and down-regulated mRNA expression of the genes EDNRB1, GPC6 and SMAD2, and between hypomethylation and up-regulated mRNA expression of the CASP8 and DCLRE1C genes. CONCLUSION Aberrant methylation of the DCLRE1C and GPC6 genes are presented here for the first time and are therefore of special interest for further validation as novel candidate biomarker genes in CRC, and merit further validation with specific assays.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine, Örebro University Hospital; Örebro, Sweden
| | | | | | | | | |
Collapse
|
45
|
Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 2015; 28:14-29. [PMID: 24925058 PMCID: PMC4265316 DOI: 10.1038/modpathol.2014.81] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
The term 'field effect' (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, 'etiologic field effect', which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a 'field of susceptibility' to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; (2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying 'etiologic field effect' as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an 'etiologic field effect' paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine.
Collapse
Affiliation(s)
- Paul Lochhead
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA [3] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Abstract
Methylation data are continuous variables with most values in a sample lying in a narrow range. In a research project they can either be the outcome, or a variable potentially explaining some of the variation in other outcomes. A range of statistical methods are appropriate depending on the experimental questions. Before the formal analysis is carried out, it is important that data are checked and cleaned. Where batch effects may be present, this should be accounted for in the analysis. Where many methylation sites are investigated in a study, attention should be given to multiple comparisons and false discovery rates, and multivariate methods such as principal component analysis may be useful.
Collapse
Affiliation(s)
- Graham W Horgan
- Biomathematics and Statistics, University of Aberdeen, Aberdeen, UK.
| | - Sok-Peng Chua
- Biomathematics and Statistics, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
47
|
Li T, Liao X, Lochhead P, Morikawa T, Yamauchi M, Nishihara R, Inamura K, Kim SA, Mima K, Sukawa Y, Kuchiba A, Imamura Y, Baba Y, Shima K, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S, Qian ZR. SMO expression in colorectal cancer: associations with clinical, pathological, and molecular features. Ann Surg Oncol 2014; 21:4164-73. [PMID: 25023548 PMCID: PMC4221469 DOI: 10.1245/s10434-014-3888-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Smoothened, frizzled family receptor (SMO) is an important component of the hedgehog signaling pathway, which has been implicated in various human carcinomas. However, clinical, molecular, and prognostic associations of SMO expression in colorectal cancer remain unclear. METHODS Using a database of 735 colon and rectal cancers in the Nurse's Health Study and the Health Professionals Follow-up Study, we examined the relationship of tumor SMO expression (assessed by immunohistochemistry) to prognosis, and to clinical, pathological, and tumor molecular features, including mutations of KRAS, BRAF, and PIK3CA, microsatellite instability, CpG island methylator phenotype (CIMP), LINE-1 methylation, and expression of phosphorylated AKT and CTNNB1. RESULTS SMO expression was detected in 370 tumors (50 %). In multivariate logistic regression analysis, SMO expression was independently inversely associated with phosphorylated AKT expression [odds ratio (OR) 0.48; 95 % confidence interval (CI) 0.34-0.67] and CTNNB1 nuclear localization (OR 0.48; 95 % CI 0.35-0.67). SMO expression was not significantly associated with colorectal cancer-specific or overall survival. However, in CIMP-high tumors, but not CIMP-low/0 tumors, SMO expression was significantly associated with better colorectal cancer-specific survival (log-rank P = 0.012; multivariate hazard ratio, 0.36; 95 % CI 0.13-0.95; P interaction = 0.035, for SMO and CIMP status). CONCLUSIONS Our data reveal novel potential associations between the hedgehog, the WNT/CTNNB1, and the PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase)/AKT pathways, supporting pivotal roles of SMO and hedgehog signaling in pathway networking. SMO expression in colorectal cancer may interact with tumor CIMP status to affect patient prognosis, although confirmation by future studies is needed.
Collapse
Affiliation(s)
- Tingting Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silva AL, Dawson SN, Arends MJ, Guttula K, Hall N, Cameron EA, Huang THM, Brenton JD, Tavaré S, Bienz M, Ibrahim AEK. Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer 2014; 14:891. [PMID: 25432628 PMCID: PMC4265460 DOI: 10.1186/1471-2407-14-891] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 11/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is emerging evidence that Wnt pathway activity may increase during the progression from colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage. Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased Wnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia. METHODS We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the progression from normal to pre-invasive adenoma to colorectal carcinoma. RESULTS We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1 and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1 showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma to carcinoma stages. CONCLUSION Our study provides strong evidence for a correlation between progressive hypermethylation and silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated tumour-initiating Wnt signalling levels.
Collapse
Affiliation(s)
- Ana-Luisa Silva
- />Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ UK
| | - Sarah N Dawson
- />Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ UK
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Mark J Arends
- />Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ UK
- />University of Edinburgh Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR UK
| | - Kiran Guttula
- />Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ UK
| | - Nigel Hall
- />Cambridge Colorectal Unit, Department of Surgery, Addenbrooke’s Hospital, Box 201, Hills Road, Cambridge, CB2 2QQ UK
| | - Ewen A Cameron
- />Gastroenterology, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ UK
| | - Tim H-M Huang
- />University of Texas Health Science Center, 7979 Wurzbach Road, San Antonio, Texas 78229-3900 USA
| | - James D Brenton
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Simon Tavaré
- />Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Mariann Bienz
- />MRC, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH UK
| | - Ashraf EK Ibrahim
- />Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ UK
- />MRC, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH UK
| |
Collapse
|
49
|
Konda K, Konishi K, Yamochi T, Ito YM, Nozawa H, Tojo M, Shinmura K, Kogo M, Katagiri A, Kubota Y, Muramoto T, Yano Y, Kobayashi Y, Kihara T, Tagawa T, Makino R, Takimoto M, Imawari M, Yoshida H. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms. PLoS One 2014; 9:e103822. [PMID: 25093594 PMCID: PMC4122357 DOI: 10.1371/journal.pone.0103822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs). METHODS We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance. RESULTS S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41). CONCLUSION We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Kenichi Konda
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuo Konishi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Toshiko Yamochi
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Yoichi M. Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisako Nozawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Tojo
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kensuke Shinmura
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mari Kogo
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Atsushi Katagiri
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Muramoto
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuichiro Yano
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshiya Kobayashi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshihiro Kihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Teppei Tagawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Reiko Makino
- Clinical Collaborating laboratory, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Michio Imawari
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Lochhead P, Chan AT, Giovannucci E, Fuchs CS, Wu K, Nishihara R, O'Brien M, Ogino S. Progress and opportunities in molecular pathological epidemiology of colorectal premalignant lesions. Am J Gastroenterol 2014; 109:1205-14. [PMID: 24935274 PMCID: PMC4125459 DOI: 10.1038/ajg.2014.153] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/18/2014] [Indexed: 02/06/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative molecular and population health science that addresses the molecular pathogenesis and heterogeneity of disease processes. The MPE of colonic and rectal premalignant lesions (including hyperplastic polyps, tubular adenomas, tubulovillous adenomas, villous adenomas, traditional serrated adenomas, sessile serrated adenomas/sessile serrated polyps, and hamartomatous polyps) can provide unique opportunities for examining the influence of diet, lifestyle, and environmental exposures on specific pathways of carcinogenesis. Colorectal neoplasia can provide a practical model by which both malignant epithelial tumor (carcinoma) and its precursor are subjected to molecular pathological analyses. KRAS, BRAF, and PIK3CA oncogene mutations, microsatellite instability, CpG island methylator phenotype, and LINE-1 methylation are commonly examined tumor biomarkers. Future opportunities include interrogation of comprehensive genomic, epigenomic, or panomic datasets, and the adoption of in vivo pathology techniques. Considering the colorectal continuum hypothesis and emerging roles of gut microbiota and host immunity in tumorigenesis, detailed information on tumor location is important. There are unique strengths and caveats, especially with regard to case ascertainment by colonoscopy. The MPE of colorectal premalignant lesions can identify etiologic exposures associated with neoplastic initiation and progression, help us better understand colorectal carcinogenesis, and facilitate personalized prevention, screening, and therapy.
Collapse
Affiliation(s)
- Paul Lochhead
- 1] Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK [2] The first two authors contributed equally to this work
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA [3] The first two authors contributed equally to this work
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA [3] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Kana Wu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Reiko Nishihara
- 1] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael O'Brien
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Shuji Ogino
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA [3] Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|