1
|
Liu H, Wang H, Gao W, Yuan Y, Tang T, Sang M, Liu F, Geng C. CircATP5C1 promotes triple-negative breast cancer progression by binding IGF2BP2 to modulate CSF-1 secretion. Cancer Biol Ther 2025; 26:2479926. [PMID: 40176374 PMCID: PMC11980513 DOI: 10.1080/15384047.2025.2479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a common malignant disease among females and severely threatens the health of women worldwide. Nowadays, circular RNAs (circRNAs) aroused our interest for their functions in human cancers, including TNBC. However, the mechanism of most circRNAs in the progression of TNBC remains unclear. We found a novel circRNA named circATP5C1, whose function in TNBC remains uncovered. Tissue microarray was used to analyze the association between the expression of circATP5C1 and the prognoses of TNBC patients. Gain-and loss-of-function experiments were performed to validate the biological functions of circATP5C1 in different TNBC cell lines. RNA-seq analyses were conducted to find out the target genes regulated by circATP5C1. RNA pull-down assay and mass spectrometry were used to select the proteins associated with circATP5C1. RNA FISH-immunofluorescence and RNA immunoprecipitation (RIP) were complemented to validate the interaction between circATP5C1 and its binding protein. CircATP5C1 was identified to have predictive function in prognosis of TNBC patients. CircATP5C1 advanced the progression of TNBC cells. Mechanistically, Colony stimulating factor 1 (CSF-1) is a vital downstream gene regulated by circATP5C1. The alteration of CSF-1 expression level was validated due to the interaction between circATP5C1 and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2). Rescue experiments demonstrated that circATP5C1 accelerates the progression of TNBC partly via binding with IGF2BP2 to increase the secretion of CSF-1. This study uncovers a novel mechanism of circATP5C1/IGF2BP2/CSF-1 pathway in regulating progression of TNBC.
Collapse
Affiliation(s)
- Hongbo Liu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Haoqi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yang Yuan
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tiantian Tang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fei Liu
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
2
|
Wang Z, Su X, Zhan Z, Wang H, Zhou S, Mao J, Xu H, Duan S. miR-660: A novel regulator in human cancer pathogenesis and therapeutic implications. Gene 2025; 953:149434. [PMID: 40120868 DOI: 10.1016/j.gene.2025.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. Among these, miR-660, located on chromosome Xp11.23, is increasingly studied for its role in cancer due to its abnormal expression in various biological contexts. It is regulated by 8 competing endogenous RNAs (ceRNAs), which adds complexity to its function. miR- 660 targets 19 genes involved in 6 pathways such as PI3K/AKT/mTOR, STAT3, Wnt/β-catenin, p53, NF‑κB, and RAS, influencing cell cycle, proliferation, apoptosis, and invasion/migration. It also plays a role in resistance to chemotherapies like cisplatin, gemcitabine, and sorafenib in lung adenocarcinoma (LUAD), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC), thus highlighting its clinical importance. Additionally, leveraging liposomes as nanocarriers presents a promising avenue for enhancing cancer drug delivery. Our comprehensive study not only elucidates the aberrant expression patterns, biological functions, and regulatory networks of miR-660 and its ceRNAs but also delves into the intricate signaling pathways implicated. We envisage that our findings will furnish a robust framework and serve as a seminal reference for future investigations of miR-660, fostering advancements in cancer research and potentially catalyzing breakthroughs in cancer diagnosis and treatment paradigms.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiqing Zhan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangxuan Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shuhan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jiasheng Mao
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hening Xu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Xu F, Wang Y, Liang R, Jiang S. Hsa_circ_0000467 promotes colorectal cancer proliferation and stem cell characteristics by activating the TCF4/Wnt/β-catenin pathway via sponging miR-520g. APL Bioeng 2025; 9:026111. [PMID: 40290725 PMCID: PMC12033044 DOI: 10.1063/5.0252083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
This study explores the role of circ_0000467 in colorectal cancer (CRC) progression and its potential as a therapeutic target. Circ_0000467 expression was analyzed using public datasets and clinical samples from 103 CRC patients. Functional assays evaluated its influence on CRC cell proliferation, migration, and stem-like properties. Molecular interactions with miR-520g and TCF4 were examined, and in vivo experiments assessed tumor growth. Circ_0000467 was significantly overexpressed in CRC and associated with poor prognosis. Its upregulation enhanced tumor growth, invasion, epithelial-mesenchymal transition, and stem-like characteristics by increasing key markers (CD44, EpCAM, SOX2, and Nanog). Mechanistically, circ_0000467 acted as a molecular sponge for miR-520g, leading to increased TCF4 expression and activation of the Wnt/β-catenin pathway. Silencing TCF4 or overexpressing miR-520g reversed these effects. Circ_0000467 promotes CRC progression by regulating the TCF4/Wnt/β-catenin pathway through miR-520g, highlighting its potential as a biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Fanggen Xu
- Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330038, China
| | - Yujing Wang
- Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, Urumqi, Jiangxi 330038, China
| | - Rongzhou Liang
- Department of Plastic and Cosmetic Surgery, The Sixth People's Hospital of Dongguan, Guangdong, China
| | - Sicong Jiang
- Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330038, China
| |
Collapse
|
4
|
Li H, Zhang L, Jiao J, Zhang H, Si X, Huang Y, Chen W. Distinct roles of the circMKNK2/miR-15a Axis in regulating chicken skeletal muscle development and glucose metabolism. Int J Biol Macromol 2025; 313:144201. [PMID: 40373921 DOI: 10.1016/j.ijbiomac.2025.144201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators of biological processes, but their roles in avian muscle development remain less explored. Here we characterize circMKNK2, a novel circRNA derived from the MKNK2 gene, which is highly expressed in slow-growing Silky chickens compared to fast-growing broilers. Functional studies demonstrate that circMKNK2 acts as a sponge for miR-15a, with overexpression inhibiting myoblast proliferation, differentiation, apoptosis, and glucose metabolism, while miR-15a knockdown produces similar effects except for enhanced glucose uptake. RNA-seq analysis identified 2189 differentially expressed genes regulated by circMKNK2 in chicken primary myoblasts, including key targets of the circMKNK2/miR-15a axis such as PIK3R1 (a core node regulating PI3K-Akt signaling), BHLHE41, KANK1, and ARHGAP20. Pathway analysis revealed modulation of myogenesis through Calcium signaling pathway, ECM-receptor interaction, Neuroactive ligand-receptor interaction and immune-related pathways (Toll-like receptor, cytokine-cytokine receptor interactions). Further analysis highlighted the circMKNK2/miR-15a axis's role in suppressing myogenesis through transcriptional regulation of key factors (e.g., SOX7, MAF) and metabolic reprogramming. Unlike pro-myogenic circRNAs, circMKNK2 uniquely inhibited muscle development and glucose metabolism, suggesting its involvement in breed-specific phenotypic differences. This study provides insights into circRNA-mediated regulation of muscle biology and offers potential targets for improving poultry production through genetic and metabolic modulation.
Collapse
Affiliation(s)
- Huihong Li
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jingya Jiao
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Xuemeng Si
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
5
|
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Ramezani Farani M, Rahmati R, Zarimeidani F, Bassereh H, Bakhtiyari S, Alipourfard I. Circular RNA, A Molecule with Potential Chemistry and Applications in RNA-based Cancer Therapeutics: An Insight into Recent Advances. Top Curr Chem (Cham) 2025; 383:21. [PMID: 40343623 PMCID: PMC12064628 DOI: 10.1007/s41061-025-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Among these, circular RNAs (circRNAs) represent a recently identified class of endogenous ncRNAs with a pivotal role in gene regulation, alongside short ncRNAs (e.g., microRNAs or miRNAs) and long non-coding RNAs (lncRNAs). CircRNAs are characterized by their single-stranded, covalently closed circular structure, which lacks polyadenylated tails and 5'-3' ends. This unique circular conformation makes them resistant to exonuclease degradation, rendering them more stable than linear RNAs, such as mRNAs in human blood cells, which highlights their potential as biomarkers. Both linear and circular RNAs are derived from pre-mRNA precursors. However, while linear RNAs are produced through conventional splicing, circRNAs are primarily formed through a process known as reverse splicing. CircRNAs can be categorized into five basic types: exon circRNAs, circular intronic RNAs, exon-intron circRNAs, intergenic circRNAs, and fusion circRNAs. These molecules have been shown to significantly influence key hallmarks of cancer, including sustained growth signaling, proliferation, angiogenesis, resistance to apoptosis, unlimited replicative potential, and metastasis. This article will delve into the biogenesis and functions of circRNAs, explore their roles in cancer, and discuss their potential applications as therapeutic options and diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Radmehr
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amirhossein Khosrozadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Feiz
- Biology Department, Texas State University, San Marcos, TX, USA
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P. O. Box 61413, 9088, Abha, Saudi Arabia
| | - Gholamreza Taheripak
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, Republic of Korea
| | - Rahem Rahmati
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Bassereh
- Computational Discovery Research Group, Institute for Diabetes and Obesity, Helmholtz, Munich, Germany
| | - Salar Bakhtiyari
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Regenerative Medicine, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| |
Collapse
|
6
|
Wang Y, Tu M, Gao H, Deng S. Impacts of Circular RNAs on the Osteogenic Differentiation of Dental Stem Cells. Stem Cells Int 2025; 2025:8338337. [PMID: 40376229 PMCID: PMC12081154 DOI: 10.1155/sci/8338337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Dental stem cells are widely viewed as good options for bone regeneration because of their ease of acquisition, innate ability to renew themselves, and ability to differentiate into different types of cells. However, the process of osteogenic differentiation of dental stem cells is orchestrated by an intricate system of regulatory mechanisms. Recent studies have demonstrated the critical impacts of circular RNAs (circRNAs) on osteogenic differentiation of dental stem cells. Exploring the roles and regulatory pathways of circRNAs in dental stem cells could identify novel targets and approaches for utilizing dental stem cell therapy in clinical settings. This review provides a comprehensive overview of the functions and mechanisms of circRNAs, with a particular focus on their expression patterns and regulatory roles in osteogenic differentiation of various dental stem cell types. Furthermore, this review discusses current research challenges in this field and proposes future directions for advancing our understanding of circRNA-mediated regulation in dental stem cell biology.
Collapse
Affiliation(s)
- Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Meijie Tu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Huihui Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Hsu CY, Bediwi AK, Zwamel AH, Uthirapathy S, Ballal S, Singh A, Sharma GC, Devi A, Almalki SG, Kadhim IM. circRNA/TLR interaction: key players in immune regulation and autoimmune diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04221-9. [PMID: 40328911 DOI: 10.1007/s00210-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Circular RNAs are a class of non-coding RNAs with covalently closed loops. They have been revealed to regulate immune responses by affecting gene expression. Although initially considered splicing byproducts, new studies have indicated their role in transcriptional and post-transcriptional control, especially with TLRs. TLRs start inflammatory signaling and let the innate immune system recognize PAMPs. circRNAs interact context-dependently with TLR pathways to influence immune homeostasis and inflammation in either pathogenic or protective roles. In autoimmune diseases, dysregulated circRNA expression can aggravate immune responses and damage tissue. CircRNAs can interact with RNA-binding proteins, function as molecular sponges for miRNAs, and change inflammatory pathways like the NF-κB signaling cascade, influencing immune responses. They control adaptive immunity, function of antigen-presenting cells, and cytokine generation. The stability and presence of circRNAs in many body fluids make them therapeutic targets and biomarkers for inflammatory and autoimmune diseases. The several immune control roles of circRNA-TLR interactions are discussed in this review, as well as their consequences for immunologically mediated disease diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Alaa Khalaf Bediwi
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Issa Mohammed Kadhim
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
8
|
Zuo Y, Ren D, He H, Huang C, Zhu X. CircST6GALNAC6 Inhibits Glycolysis of Bladder Cancer by Regulating PRKN/HK1 Signaling Pathway. Mol Carcinog 2025; 64:870-882. [PMID: 39960214 DOI: 10.1002/mc.23894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 04/12/2025]
Abstract
Bladder cancer (BCa) is an aggressive malignancy of urinary system. Aerobic glycolysis refers to the phenomenon wherein cancer cells increase glucose consumption and produce lactic acid. Our study focused on the role and mechanism of circST6GALNAC6 in BCa glycolysis. The 24 h glucose intake was detected using flow cytometry. Lactic acid and ATP were detected in BCa cells utilizing commercially provided kits. Extracellular acidification rate was measured using Seahorse XF-96p Extracellular Flux Analyzer. Cell proliferation was determined using colony formation assay. RNA immunoprecipitation and co-immunoprecipitation experiments were adopted to validate molecular interactions. BALB/C nude mice were utilized to establish xenograft tumor model. CircST6GALNAC6 was decreased in BCa cells, and overexpression of circST6GALNAC6 inhibited glycolysis and proliferation of BCa cells. Additionally, overexpression of circST6GALNAC6 promoted the degradation of glycolytic regulatory protein HK1 and decreased its expression, and PRKN facilitated ubiquitination-related degradation of HK1. CircST6GALNAC6 enhanced the mRNA stability and expression of PRKN by recruiting FUS. Furthermore, the inhibitory impact of circST6GALNAC6 overexpression on glycolysis in BCa cells was reversed by PRKN knockdown. Finally, overexpression of circST6GALNAC6 suppressed tumor growth through increasing PRKN in nude mice. CircST6GALNAC6 suppressed glycolysis in BCa through FUS/PRKN/HK1 axis. Targeting circST6GALNAC6 holds promise as a novel approach for treating BCa.
Collapse
Affiliation(s)
- Yali Zuo
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Da Ren
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Changkun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
10
|
Hong M, Huang X, Zhu H, Ma J, Li F. The role of circular RNA in immune response to tuberculosis and its potential as a biomarker and therapeutic target. Front Immunol 2025; 16:1542686. [PMID: 40308608 PMCID: PMC12040640 DOI: 10.3389/fimmu.2025.1542686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Circular RNA (circRNA) is a new type of non-coding RNA that has gained significant attention in recent years, especially in tuberculosis research. Tuberculosis poses a major global public health threat. Its complex pathological mechanisms and worsening drug resistance urgently necessitate new research breakthroughs. The role of circRNA in mycobacterium tuberculosis infection is being gradually revealed, highlighting its importance in regulating gene expression, immune response, and inflammation. Additionally, researchers are interested in circRNA because of its potential for early tuberculosis diagnosis and its role as a biomarker. This article systematically analyzes existing literature to provide new insights into early tuberculosis diagnosis and personalized treatment. We also emphasize the need for future research to enhance the application of circRNA in tuberculosis prevention and control.
Collapse
Affiliation(s)
- Mingyang Hong
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Xu Huang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huiming Zhu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Jiahui Ma
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Feng Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| |
Collapse
|
11
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2025; 67:1310-1320. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
12
|
Guo W, Liu H, Zhong M, Qi Q, Li Y. circ_0006528 promotes nonsmall cell lung cancer progression by sponging miR-892a and regulating NRAS expression. Anticancer Drugs 2025; 36:261-270. [PMID: 37982201 DOI: 10.1097/cad.0000000000001439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Micro-RNAs play essential roles in developing and progressing nonsmall cell lung cancer (NSCLC) and drug resistance. Nevertheless, the functions and mechanisms are partly explored. Therefore, the present study analyzes the effect of circ_0006528 and the mechanism of regulation of NSCLC cell progression by sponging miR-892a to regulate neuroblastoma rat sarcoma viral oncogene (NRAS) expression. Initially, circ_0006528 is identified using divergent primers-based PCR and RNase R exonuclease treatments. After administration of the designed circ_0006528-specific siRNA, the RT-qPCR analysis is used to determine the interference efficiency of siRNA. At the same time, cell growth, invasion, and migration are assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), Transwell, and scratch assays in the NSCLC cell lines [secretory pathway Ca2+-ATPase isoform 1 (SPCA-1) and A549] in vitro, respectively. Further, miR-892a inhibitor is added to the cells for functional recovery assay. Finally, the xenograft mouse model is constructed to explore the effect of circ_0006528 on tumor growth in vivo . The RT-qPCR analysis in 66 pairs of NSCLC cancer and noncancerous tissues revealed that circ_0006528 is highly expressed in NSCLC patient tissues. The RNase R experiments revealed that HSA_circ_0006528 is unaffected by RNase R exonuclease. MTT assay showed that knockdown of hsa_circ_0006528 by siRNA significantly decreased cell proliferation and viability in A549 and SPCA-1 cells. The luciferase reporter assay showed direct binding of hsa_circ_0006528 to miR-892a, and miR-892a targets binding NRAS. In addition, the miR-892a inhibitor terminated the hsa_circ_0006528 siRNA, triggering inhibition of proliferation, invasion, and migration of NSCLC cells. In summary, the study revealed that the knockout of hsa_circ_0006528 downregulation of NRAS expression by sponging miR-892a inhibited NSCLC cell growth and invasion.
Collapse
Affiliation(s)
- Weixi Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University
| | - Hongming Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University
| | - Ming Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University
| | - Qinghua Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University
| | - Yibin Li
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Feng Z, Gao Y, Cai C, Tan J, Liu P, Chen Y, Deng G, Ouyang Y, Liu X, Cao K, Zeng S, Han Y, Deng X, Shen H. CSF3R-AS promotes hepatocellular carcinoma progression and sorafenib resistance through the CSF3R/JAK2/STAT3 positive feedback loop. Cell Death Dis 2025; 16:217. [PMID: 40155591 PMCID: PMC11953311 DOI: 10.1038/s41419-025-07558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Antisense circular RNA is a special type of circular RNA that is derived from the antisense complementary strand of parental mRNA. However, the function of antisense circRNA in hepatocellular carcinoma (HCC) is still unclear. Here, we reported that CSF3R-AS was upregulated in HCC and correlated with a poor prognosis. CSF3R-AS promoted the proliferation, angiogenesis, and metastasis of HCC, and inhibited apoptosis. Mechanistically, CSF3R-AS has a 180-base complementary pairing sequence with its parental mRNA CSF3R, which can directly bind to CSF3R and recruit RBMS3 to stabilize its parental mRNA, and finally activate JAK2/STAT3 signaling pathway. Interestingly, STAT3 can act as a transcription factor of CSF3R-AS, which means that there is a CSF3R-AS/CSF3R/JAK2/STAT3 positive feedback loop in HCC. Finally, the CSF3R-AS/CSF3R/JAK2/STAT3 positive feedback loop was also activated in HCC sorafenib-resistant cells, and blocking this loop was expected to improve the sensitivity of HCC to sorafenib. These findings suggested that the CSF3R-AS/CSF3R/JAK2/STAT3 positive feedback loop could promote HCC progression and sorafenib resistance. Blocking this loop is expected to provide new research directions and therapy targets for HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Janus Kinase 2/metabolism
- Janus Kinase 2/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Disease Progression
- Animals
- Cell Line, Tumor
- Signal Transduction/drug effects
- Mice
- Receptors, Colony-Stimulating Factor/metabolism
- Receptors, Colony-Stimulating Factor/genetics
- Feedback, Physiological
- Mice, Nude
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Male
- Gene Expression Regulation, Neoplastic
- Female
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Apoptosis/drug effects
- Mice, Inbred BALB C
Collapse
Grants
- 82403854 National Natural Science Foundation of China (National Science Foundation of China)
- 82373275, 81974384, 82173342 & 82203015 National Natural Science Foundation of China (National Science Foundation of China)
- 2024M753681 China Postdoctoral Science Foundation
- 2023JJ40942 China Postdoctoral Science Foundation
- Postdoctoral Fellowship Program of CPSF, GZC20233168 Natural Science Foundation of Hunan Province, 2024JJ6606
- Key Research and Development Program of Hainan Province, ZDYF2020228 & ZDYF2020125
- Natural Science Foundation of Hunan Province, 2021JJ3109, 2021JJ31048, 2023JJ40942 Natural Science Foundation of Changsha, 73201 CSCO Cancer Research Foundation, Y-HR2019-0182 & Y-2019Genecast-043
Collapse
Affiliation(s)
- Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Postdoctoral Station of Medical Aspects of Specific Environments, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, 570311, China
| | - Xuewen Liu
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiangying Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Wei Y, Tan Z, Liu L. CR-deal: Explainable Neural Network for circRNA-RBP Binding Site Recognition and Interpretation. Interdiscip Sci 2025:10.1007/s12539-025-00694-7. [PMID: 40146403 DOI: 10.1007/s12539-025-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
circRNAs are a type of single-stranded non-coding RNA molecules, and their unique feature is their closed circular structure. The interaction between circRNAs and RNA-binding proteins (RBPs) plays a key role in biological functions and is crucial for studying post-transcriptional regulatory mechanisms. The genome-wide circRNA binding event data obtained by cross-linking immunoprecipitation sequencing technology provides a foundation for constructing efficient computational model prediction methods. However, in existing studies, although machine learning techniques have been applied to predict circRNA-RBP interaction sites, these methods still have room for improvement in accuracy and lack interpretability. We propose CR-deal, which is an interpretable joint deep learning network that predicts the binding sites of circRNA and RBP through genome-wide circRNA data. CR-deal utilizes a graph attention network to unify sequence and structural features into the same view, more effectively utilizing structural features to improve accuracy. It can infer marker genes in the binding site through integrated gradient feature interpretation, thereby inferring functional structural regions in the binding site. We conducted benchmark tests on CR-deal on 37 circRNA datasets and 7 lncRNA datasets, respectively, and obtained the interpretability of CR-deal and discovered functional structural regions through 5 circRNA datasets. We believe that CR-deal can help researchers gain a deeper understanding of the functions and mechanisms of circRNA in living organisms and its critical role in the occurrence and development of diseases. The source code of CR-deal is provided free of charge on https://github.com/liuliwei1980/CR .
Collapse
Affiliation(s)
- Yuxiao Wei
- College of Software, Dalian Jiaotong University, Dalian, 116028, China
| | - Zhebin Tan
- College of Software, Dalian Jiaotong University, Dalian, 116028, China
| | - Liwei Liu
- College of Science, Dalian Jiaotong University, Dalian, 116028, China.
| |
Collapse
|
15
|
Yang LX, Li H, Cheng ZH, Sun HY, Huang JP, Li ZP, Li XX, Hu ZG, Wang J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int J Mol Sci 2025; 26:3055. [PMID: 40243658 PMCID: PMC11988403 DOI: 10.3390/ijms26073055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNAs that largely lack the capacity to encode proteins. They have garnered significant attention due to their central regulatory functions across numerous cellular and physiological processes at transcriptional, post-transcriptional, and translational levels. Over the past decade, ncRNA-based therapies have gained considerable attention in the diagnosis, treatment, and prevention of diseases, and many studies have revealed a significant relationship between ncRNAs and diseases. At the same time, due to their tissue specificity, an increasing number of projects have focused on the application of ncRNAs as biomarkers in diseases, as well as the design and development of novel ncRNA-based vaccines and therapies for clinical use. These ncRNAs may also drive research into the potential molecular mechanisms and complex pathogenesis of related diseases. However, new biomarkers need to be validated for their clinical effectiveness. Additionally, to produce safe and stable RNA products, factors such as purity, precise dosage, and effective delivery methods must be ensured to achieve optimal bioactivity. These challenges remain key issues in the clinical application of ncRNAs. This review summarizes the prospects of ncRNAs as potential biomarkers, as well as the current research status and clinical applications of ncRNAs in therapies and vaccines, and discusses the challenges and expectations of ncRNAs in disease diagnosis and drug therapy.
Collapse
Affiliation(s)
- Lu-Xuan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Hui Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - He-Yue Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Jie-Ping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Peng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Xin-Xin Li
- Institute of Scientific Research, Guangxi University, Nanning 530004, China;
| | - Zhi-Gang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| |
Collapse
|
16
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
17
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
18
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
19
|
Zhou L, Li J, Sun X, Xin Y, Yin S, Ning X. CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110121. [PMID: 39788357 DOI: 10.1016/j.cbpc.2025.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress. Following HB stress, H&E and TUNEL staining identified heightened hepatocyte apoptosis, intracellular vacuolation, and inflammatory tissue damage. RT-qPCR elucidated that differentially expressed genes stimulated by HB synergistically enhanced apoptosis and inflammatory responses. Importantly, we systematically evaluated differentially expressed circRNAs (DEcirs) in yellow catfish under hypoxia with and without Aeromonas veronii infection and identified a novel HB-specific DEcir, designated as circArid4b, whose parental gene Arid4b is highly associated with apoptosis. Experiments confirmed the circular structure of circArid4b and revealed that under HB stimulation, specific knockdown of circArid4b inhibited the expression of Arid4b, while concurrent alterations in multiple apoptosis- and inflammation-related genes synergistically indicated the promotion of apoptotic and inflammatory pathways. Notably, the downregulation of circArid4b expression significantly reduced the susceptibility to bacterial infection in yellow catfish during hypoxia. These results suggest that HB-induced suppression of circArid4b promotes cell apoptosis and inflammation by inhibiting its parental gene and thereby facilitating resistance to bacterial infection during hypoxia. Our study enriches the understanding of fish circRNA mechanisms and offers novel preventive and control strategies for bacterial infections in fish under hypoxic environments.
Collapse
Affiliation(s)
- Linxin Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiayi Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinxin Sun
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yingying Xin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Xianhui Ning
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
20
|
Habara A. Exploratory Review and In Silico Insights into circRNA and RNA-Binding Protein Roles in γ-Globin to β-Globin Switching. Cells 2025; 14:312. [PMID: 39996784 PMCID: PMC11854342 DOI: 10.3390/cells14040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
β-globin gene cluster regulation involves complex mechanisms to ensure proper expression and function in RBCs. During development, switching occurs as γ-globin is replaced by β-globin. Key regulators, like BCL11A and ZBTB7A, repress γ-globin expression to facilitate this transition with other factors, like KLF1, LSD1, and PGC-1α; these regulators ensure an orchestrated transition from γ- to β-globin during development. While these mechanisms have been extensively studied, circRNAs have recently emerged as key contributors to gene regulation, but their role in β-globin gene cluster regulation remains largely unexplored. Although discovered in the 1970s, circRNAs have only recently been recognized for their functional roles, particularly in interactions with RNA-binding proteins. Understanding how circRNAs contribute to switching from γ- to β-globin could lead to new therapeutic strategies for hemoglobinopathies, such as sickle cell disease and β-thalassemia. This review uses the circAtlas 3.0 database to explore circRNA expressions in genes related to switching from γ- to β-globin expression, focusing on blood, bone marrow, liver, and spleen. It emphasizes the exploration of the potential interactions between circRNAs and RNA-binding proteins involved in β-globin gene cluster regulatory mechanisms, further enhancing our understanding of β-globin gene cluster expression.
Collapse
Affiliation(s)
- Alawi Habara
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
21
|
Guo L, Lv N, Ji JL, Gao C, Liu SY, Liu ZY, Lin XT, Liu ZD, Wang Y. Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Acta Pharmacol Sin 2025:10.1038/s41401-025-01486-x. [PMID: 39962265 DOI: 10.1038/s41401-025-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/16/2025] [Indexed: 03/17/2025]
Abstract
Current anti-epileptic drugs remain to be unsatisfactory, new therapeutic approaches are needed. Circular RNA is a promising class of therapeutic RNAs. Recent studies have shown the role of circRNA in the pathologic process of epilepsy. In this study, we identified the circRNA in epileptic patients in remission that inhibited the epileptic course. By comparing the profiles of differentially expressed circRNAs in peripheral serum between patients in remission and those not in remission, we found that the level of hsa_circ_0000288 (circ288) was markedly elevated in the epileptic patients in remission. We established a kainic acid-induced status epilepticus model in mice. Overexpression of Circ288 by injecting adeno-associated virus (AAV)-circ288-overexpression vector into hippocampi significantly ameliorated epilepsy-induced neuronal injury, promoted hippocampus neurogenesis, and inhibited abnormal migration of newborn neurons into the dentate hilus. Moreover, circ288 overexpression significantly decreased the epileptiform discharges and the spontaneous seizures in the chronic phase of epileptogenesis and alleviated mood disorders (anxiety, depression), and cognitive deficits in epileptic mice. We revealed that circ288 directly bound to an RNA-binding protein caprin1 and inhibited its degradation. The protective action of circ288 was reversed by the knockdown of caprin1 in an in vitro epileptic model and lost in the neuron-specific caprin1 knockout mice (CaMK2α-Cre:Caprin1f/f). Overexpression of circ288 or caprin1 raised the mRNA level of NMDA receptor 3B, a negative modulator of NMDA receptors, suggesting the involvement of the carpin1-NMDA receptor 3B pathway in the role of circ288. Given the disadvantages of circ288 overexpression by a virus, we constructed exosomes-encapsulated circ288 (EXO-circ288) and demonstrated that tail vein injection of EXO-circ288 exerted robust protective effects. This study provides a new avenue for developing anti-epileptic therapeutic RNAs.
Collapse
Affiliation(s)
- Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Na Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Jian-Lun Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Ce Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Si-Yu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zi-Yu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Ting Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhi-Dong Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
22
|
Yang H, Zhu J, Wang X. Comprehensive Analysis Identifies Hsa_circ_0058191 as a Potential Drug Resistance Target in Multiple Myeloma. Onco Targets Ther 2025; 18:225-231. [PMID: 39963489 PMCID: PMC11831480 DOI: 10.2147/ott.s505074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
Background Multiple Myeloma (MM) is the second most common hematologic malignancy, which exhibits strong resistance to bortezomib, the first-line treatment. Circular RNAs (circRNAs) are increasingly considered as important drivers of drug resistance across various cancers, but their roles in multiple myeloma are not well understood. Aim To investigate and identify potential circRNA targets and their roles in the mechanisms of bortezomib resistance. Methods Bortezomib-resistant MM patient-specific circRNAs were screened using Arraystar circRNA microarrays. The MM circRNA dataset from the GEO database was analyzed with GEO2R to identify candidate circRNAs associated with MM progression and drug resistance. CircRNA-forming and loop-forming sites, along with their structures, were identified via Sanger sequencing. The identified circRNA was validated by qRT-PCR in MM patients with and without bortezomib resistance. Bioinformatic analysis through CircInteractome was conducted to predict potential miRNA and RBP binding for the core circRNAs. Metascape was employed to perform RBP pathway analysis to identify specific biological processes in circRNAs. Results The hsa_circ_0058191 was found to be overexpressed in bortezomib-resistant MM patient samples, suggesting its pivotal role in drug resistance mechanisms. The interaction of hsa_circ_0058191 with miR-660 and AGO2 as determined through bioinformatic predictions, indicated that it regulates RNA modification and mRNA regulation pathways. These molecular interactions expand our understanding of the mechanisms of drug resistance in multiple myeloma. Conclusion This study identified the role of hsa_circ_0058191 in the development of drug resistance in MM, which provides a theoretical foundation for designing potential therapeutic strategies to prevent drug resistance.
Collapse
Affiliation(s)
- Huiye Yang
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Jie Zhu
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Xiaotao Wang
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| |
Collapse
|
23
|
Zhang P, Wang T, Chen K, Sun R, Cao X, Du M, Peng F, Yin R, He X, Yin L. CircINADL promotes nasopharyngeal carcinoma metastasis by inhibiting HuR ubiquitin degradation and disrupting the hippo signaling pathway. Cell Signal 2025; 126:111526. [PMID: 39586520 DOI: 10.1016/j.cellsig.2024.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Distant metastasis is a primary factor contributing to the low survival rate of patients with nasopharyngeal carcinoma (NPC). Circular RNAs (circRNAs) are increasingly recognized for their roles in cancer initiation and progression. However, the mechanisms underlying the abnormal expression and biological function of circRNA in NPC remain unclear. In this study, we identified a new circRNA, circINADL, which was upregulated in NPC tissues and positively correlated with the clinical stage of NPC. We found that the FUS RNA binding protein (FUS) promoted the transcription of circINADL in NPC cells. Elevated circINADL levels were shown to enhance NPC cells metastasis. Mechanistically, circINADL attenuated the interaction between human antigen R (HuR) and the E3 ubiquitin ligase β-TrCP, thereby inhibited the ubiquitination and degradation of HuR. Consequently, CircINADL enhanced the stability of the HuR target gene Yes1-associated transcriptional regulator (YAP1), leading to the dysregulation of the Hippo signaling pathway. In conclusion, our study reveals the function of circINADL in promoting NPC metastasis and highlights its potential as a biomarker and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Pingchuan Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Tianxiang Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Kun Chen
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Ruozhou Sun
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xiang Cao
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Rong Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| |
Collapse
|
24
|
Lv H, Zhou J, Qiu L, Tang X, Huang C. AURKB and circAURKB_288aa enhance Esophageal cancer drug resistance through inducing abnormal centrosome separation. Biochem Pharmacol 2025; 232:116691. [PMID: 39638069 DOI: 10.1016/j.bcp.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal malignancies worldwide, with a dramatic increase in incidence in the western world occurring over the past few decades. Chromosome instability (CIN) is a major contributor to EC progression, drug resistance, relapse, and the development of intratumoral heterogeneity. This study revealed a striking elevation of AURKB expression in EC patients, with a strong correlation to poor clinical outcomes. AURKB overexpression promoted cellular proliferation and induced drug resistance in both cell culture and animal models. Conversely, genetic targeting of AURKB abrogated these effects. Mechanistically, enforced AURKB expression triggered CIN, a key driver of poor EC outcomes, primarily through CEP250 phosphorylation. Interestingly, we identified a novel circular form of AURKB (circAURKB_288aa) harboring the AURKB kinase domain and encoding a 288-amino acid protein. Elevated levels of circAURKB_288aa in EC peripheral blood samples mirrored poor patient outcomes and synergistically enhanced CIN alongside AURKB. Furthermore, EC cells were capable of secreting circAURKB_288aa, influencing tumor microenvironmental cells similarly to full-length AURKB protein. Notably, AURKB siRNA targeting the shared kinase domain of both AURKB and circAURKB_288aa significantly inhibited EC malignancy. Collectively, these findings establish AURKB and circAURKB_288aa as promising targets for EC prognosis and therapy.
Collapse
Affiliation(s)
- Hongzhen Lv
- School of Basic Medical Sciences, Jiangsu Medical College, Yancheng, China
| | - Jing Zhou
- General Medicine Department, Yancheng Third People's Hospital, Yancheng, China
| | - Limin Qiu
- Thoracic Surgery Department, Yancheng NO.1 People's Hospital, Yancheng, China
| | - Xiaozhu Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Cheng Huang
- School of Traditional Chinese Medicine, Jiangsu Medical College, Yancheng, China.
| |
Collapse
|
25
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
26
|
Liu YC, Ishikawa M, Sakakibara S, Kadi MA, Motooka D, Naito Y, Ito S, Imamura Y, Matsumoto H, Sugihara F, Hirata H, Ogura H, Okuzaki D. Full-length nanopore sequencing of circular RNA landscape in peripheral blood cells following sequential BNT162b2 mRNA vaccination. Gene 2025; 933:148971. [PMID: 39343185 DOI: 10.1016/j.gene.2024.148971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Circular RNAs (circRNA) lack 5' or 3' ends; their unique covalently closed structures prevent RNA degradation by exonucleases. These characteristics provide circRNAs with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNAs. CircRNA levels are reportedly associated with certain human diseases, making them novel disease biomarkers and a noncanonical class of therapeutic targets. In this study, the endogenous circRNAs underlying the response to BNT162b2 mRNA vaccination were evaluated. To this end, peripheral blood samples were subjected to full-length sequencing of circRNAs via nanopore sequencing and transcriptome sequencing. Fifteen samples, comprising pre-, first, and second vaccination cohorts, were obtained from five healthcare workers with no history of SARS-CoV-2 infection or previous vaccination. A total of 4706 circRNAs were detected; following full-length sequencing, 4217 novel circRNAs were identified as being specifically expressed during vaccination. These circRNAs were enriched in the binding motifs of stress granule assemblies and SARS-CoV-2 RNA binding proteins, namely poly(A) binding protein cytoplasmic 1 (PABPC1), pumilio RNA binding family member 1 (PUM1), and Y box binding protein 1 (YBX1). Moreover, 489 circRNAs were identified as previously reported miRNA sponges. The differentially expressed circRNAs putatively originated from plasma B cells compared to circRNAs reported in human blood single-cell RNA sequencing datasets. The pre- and post-vaccination differences observed in the circRNA expression landscape in response to the SARS-CoV-2 BNT162b2 mRNA vaccine.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Masakazu Ishikawa
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Japan
| | - Mohamad Al Kadi
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shingo Ito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yuko Imamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Japan
| | - Fuminori Sugihara
- Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Japan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan; Institute for Open and Transdisciplinary Research Initiatives, OsakaUniversity, Osaka, Japan.
| |
Collapse
|
27
|
Chunhui G, Yanqiu Y, Jibing C, Ning L, Fujun L. Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics. Metab Brain Dis 2025; 40:84. [PMID: 39754674 PMCID: PMC11700052 DOI: 10.1007/s11011-024-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Collapse
Affiliation(s)
- Guo Chunhui
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - You Yanqiu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Luo Ning
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Li Fujun
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
28
|
Fan Z, Yuan X, Yuan Y. Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 2025; 55:11. [PMID: 39513584 PMCID: PMC11573316 DOI: 10.3892/ijmm.2024.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zengguang Fan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| | - Ye Yuan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
30
|
Khalaf BH, Suleiman AA, Suwaid MA. Exploring the Regulatory Roles of miR-21, miR-15, and miR-let-7 in ABC Transporter-Mediated Chemoresistance: Implications for Breast Cancer Etiology and Treatment. Mol Biotechnol 2025; 67:149-159. [PMID: 38133750 DOI: 10.1007/s12033-023-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer, a prevalent and aggressive malignancy among females worldwide, poses a significant challenge due to resistance to chemotherapy and tyrosine kinase inhibitors. In breast cancer, ABC transporters play a pivotal role by contributing to chemoresistance and drug efflux, a phenomenon observed also in various cancers. This study aims to elucidate the role of oncomiRs miR-15, miR-21, and miR-let-7 in breast cancer etiology and their impact on chemotherapy-resistant oncogenes ABCA1, ABCB1, and ABCC1. Blood samples from female breast cancer patients were analyzed to assess the expression levels of miRNAs and oncogenes by qPCR. Significantly, miR-21 exhibited a positive correlation with ABCA1 in newly diagnosed patients, while miR-15 and miR-let-7 displayed a positive correlation with ABCA1 in the metastasis group. Additionally, miR-let-7 demonstrated a negative correlation with ABCC1 in newly diagnosed patients. This study's findings provide valuable insights into the cancer etiology of these miRNAs and their interactions with ABCA1, ABCB1, and ABCC1. Targeting these interactions holds promise for mitigating drug efflux and chemoresistance in breast cancer, potentially enhancing current treatments and improving patient outcomes.
Collapse
|
31
|
Wu S, Hu Y, Lei X, Yang X. The Emerging Roles of CircPVT1 in Cancer Progression. Curr Pharm Biotechnol 2025; 26:1-8. [PMID: 38454774 DOI: 10.2174/0113892010282141240226112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
CircRNA is stable due to its ring structure and is abundant in humans, which not only exists in various tissues and biofluids steadily but also plays a significant role in the physiology and pathology of human beings. CircPVT1, an endogenous circRNA, has recently been identified from the PVT1 gene located in the cancer risk region 8q24. CircPVT1 is reported to be highly expressed in many different tumors, where it affects tumor cell proliferation, apoptosis, invasion, and migration. We summarize the biosynthesis and biological functions of circPVT1 and analyze the relationship between circPVT1 and tumors as well as its significance to tumors. Further, it's noteworthy for the diagnosis, treatment, and prognosis of cancer patients. Therefore, circPVT1 is likely to become an innovative tumor marker.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yan Hu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
32
|
Zeng M, Chen Z, Wang Y, Yang Z, Xiang J, Wang X, Wang X. LncRNA MALAT1 to Enhance Pyroptosis in Viral Myocarditis Through UPF1-Mediated SIRT6 mRNA Decay and Wnt-β-Catenin Signal Pathway. Cardiovasc Toxicol 2024; 24:1439-1454. [PMID: 39367210 DOI: 10.1007/s12012-024-09922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Viral myocarditis (VMC) is an inflammatory disease of the myocardium caused by cardioviral infection, especially coxsackievirus B3 (CVB3), and is a major contributor to acute heart failure and sudden cardiac death in children and adolescents. LncRNA MALAT1 knockdown reportedly inhibits the differentiation of Th17 cells to attenuate CVB3-induced VMC in mice. Moreover, long non-coding RNAs (lncRNAs) interact with RNA-binding proteins (RBPs) to regulate UPF1-mediated mRNA decay. However, it remains unclear whether MALAT1 can bind to UPF1 to mediate the mRNA decay of its target genes in VMC. Herein, we aimed to explore the effect of lncRNA MALAT1 on UPF1-mediated SIRT6 mRNA decay in VMC using in vivo and in vitro experiments. CVB3-infected BABL/C mice were used as VMC models, and MALAT1 interfering adenovirus was injected to achieve MALAT1 knockdown. The heart function of the VMC mice was assessed using echocardiography. Pathological changes in myocardial tissues were assessed after hematoxylin-eosin staining. Myocardial injury and inflammation were evaluated by measuring creatine kinase isoenzyme B, cardiac troponin T, interleukin (IL)-1β, and IL-18. TUNEL staining was performed to assess apoptosis in myocardial tissues. In vitro experiments were performed using H9c2 cells after transfection and CVB3 infection. The lactic dehydrogenase release, caspase-1 activity, and IL-1β and IL-18 levels in the cellular supernatant were detected. Western blotting was performed to determine the expression of pyroptosis-related proteins (GSDMD-N, NLRP3, ASC, and Cleaved-Caspase-1) and Wnt/β-catenin signal pathway-related proteins (Wnt1, β-catenin, and p-GSK-3β). RNA immunoprecipitation and RNA stability assays assessed the relationship between MALAT1, UPF1, and SIRT6. CVB3-infected mice and H9c2 cells exhibited elevated MALAT1 and reduced SIRT6 expression. MALAT1 knockdown or SIRT6 overexpression suppressed inflammation and pyroptosis and inhibited the activation of the Wnt/β-catenin signal pathway in myocardial tissues and cells. MALAT1 enhanced the enrichment of SIRT6 mRNA by UPF1 and disturbed the stability of SIRT6 mRNA to promote the development of VMC. MALAT1 can bind UPF1 to mediate SIRT6 mRNA decay and activate the Wnt/β-catenin signal pathway in VMC.
Collapse
Affiliation(s)
- Min Zeng
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China.
| | - Zhi Chen
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Yefeng Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Zhou Yang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Jinxing Xiang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Xun Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| |
Collapse
|
33
|
Liu J, Fang X. Regulation of hsa_circ_0112136 by m6A demethylase FTO can enhance the malignancy of gastric cancer via the regulation of the PI3K/AKT/mTOR pathway. Biotechnol Appl Biochem 2024; 71:1316-1328. [PMID: 39645568 DOI: 10.1002/bab.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 12/09/2024]
Abstract
A growing body of research highlights the role that N6-methyladenosine (m6A) modification and circular RNAs (circRNAs) play in gastric cancer (GC) cases. However, studies elucidating the function and mechanism of the recently discovered circRNA hsa_circ_0112136 in GC are limited. This study aimed to examine the pathophysiology of GC progression due to fat mass and obesity-associated protein (FTO)-mediated N6-methyladenosine (m6A) modification of hsa_circ_0112136. The hsa_circ_0112136 and FTO levels in the GC samples were analyzed using qRT-PCR. The Transwell invasion assay, wound healing assay, and CCK8 assays were employed to assess alterations in GC cell invasiveness, migration, and viability due to the aberrant regulation of hsa_circ_0112136 and FTO. Phosphorylated PI3K, AKT, and mTOR (the key proteins of the PI3K/AKT/mTOR pathway) were detected via western blotting after hsa_circ_0112136 suppression. A tumor transplantation mouse model was constructed to evaluate the suppression of hsa_circ_0112136's function in vivo. The correlation among hsa_circ_0112136 and FTO was identified using the MeRIP assay. Levels of hsa_circ_0112136 and FTO were evidently elevated in GC samples. Suppression of has_circ_0112136 reduced the viability, migration, and invasive ability of GC cells in vitro, as well as delayed tumor growth in vivo via suppression of the activation of the PI3K/AKT/mTOR pathway. FTO decreased hsa_circ_0112136 m6A levels and enhanced hsa_circ_0112136 expression. Furthermore, FTO upregulation enhanced GC cell invasion, migration, and survival, which was reversed by hsa_circ_0112136 suppression. Our study proposes that hsa_circ_0112136 functions as a tumor promoter, facilitating the malignant progression of GC through m6A modification (suppressed by FTO) and activating the PI3K/AKT/mTOR pathway. This suggests that targeting FTO-m6A-hsa_circ_0112136-PI3K/AKT/mTOR may be a novel approach for GC intervention.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gastroenterology, Puren Hospital Affiliated Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiangming Fang
- Department of Gastroenterology, Puren Hospital Affiliated Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Pu J, Yan X, Zhang H. The potential of circular RNAs as biomarkers and therapeutic targets for gastric cancer: A comprehensive review. J Adv Res 2024:S2090-1232(24)00551-4. [PMID: 39617262 DOI: 10.1016/j.jare.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a global health concern, contributing significantly to cancer-related mortality rates. Early detection is vital for improving patient outcomes. Recently, circular RNAs (circRNAs) have emerged as crucial players in the development and progression of various cancers, including GC. AIM This comprehensive review underscores the promising potential of circRNAs as innovative biomarkers for the early diagnosis of GC, as well as their possible utility as therapeutic targets for this life-threatening disease. Specifically, the review focuses on recent findings, mechanistic insights, and clinical applications of circRNAs in GC. KEY SCIENTIFIC CONCEPTS OF REVIEW Dysregulation of circRNAs has been consistently observed in GC tissues, offering potential diagnostic value due to their stability in bodily fluids such as blood and urine. For instance, circPTPN22 and hsa_circ_000200. Furthermore, the expression levels of circRNAs such as circCUL2, hsa_circ_0000705 and circSHKBP1 have shown strong associations with critical clinical features of GC, including diagnosis, prognosis, tumor size, lymph node metastasis, tumor-node-metastasis (TNM) stage, and treatment response. Additionally, circRNAs such as circBGN, circLMO7, and circMAP7D1 have shown interactions with specific microRNAs (miRNAs), proteins, and other molecules that play key roles in development and progression of GC. This further highlighting their potential as therapeutic targets. Despite their potential, several challenges need to be addressed to effectively apply circRNAs as GC biomarkers. These include standardizing detection methods, establishing cutoff values for diagnostic accuracy, and validating findings in larger patient cohorts. Moreover, the functional mechanisms by which circRNAs contribute to GC pathogenesis and therapeutic resistance warrant further investigation. Advances in circRNAs research could provide valuable insights into the early detection and targeted treatment of GC, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junlin Pu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuli Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Shen Y, Liang Y, Yuan Z, Qiao L, Liu J, Pan Y, Yang K, Liu W. circARID1A Inhibits Tail Fat Cell Differentiation in Guangling Large-Tailed Sheep by Regulating the miR-493-3p/YTHDF2 Axis. Int J Mol Sci 2024; 25:12351. [PMID: 39596416 PMCID: PMC11594833 DOI: 10.3390/ijms252212351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The Guangling Large-Tailed sheep is renowned for its unique tail fat deposition, with a significant proportion of its total body fat being localized in the tail region. Fat deposition is a complex biological process regulated by various molecular mechanisms. Our previous studies have identified a large number of differentially expressed circular RNAs (circRNAs) in the tail adipose tissue of the Guangling Large-Tailed sheep. These circRNAs may play a pivotal role in the process of fat deposition. Given the potential regulatory functions of circRNAs in adipose metabolism, investigating their roles in tail fat deposition is of significant scientific importance. In this study, we identified novel circARID1A. Using various experimental methods, including lentivirus infection, RNase R treatment, actinomycin D assay, qPCR, western blotting, and dual-luciferase reporter assays, we determined that circARID1A inhibits the expression of miR-493-3p through competitive binding, thereby regulating adipocyte differentiation. Further research revealed that miR-493-3p promotes adipocyte differentiation by targeting YTH domain family 2 (YTHDF2), and this regulatory effect is also influenced by circARID1A. In conclusion, our findings suggest that circARID1A inhibits tail fat cell differentiation in the Guangling Large-Tailed sheep through the circARID1A/miR-493-3p/YTHDF2 axis, providing theoretical support for improving meat quality and fat deposition in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
36
|
Ren L, Huo X, Zhao Y. CircZNF609/miR-324-5p/voltage-dependent anion channel 1 axis promotes malignant progression of ovarian cancer cells. iScience 2024; 27:110861. [PMID: 39507257 PMCID: PMC11539587 DOI: 10.1016/j.isci.2024.110861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024] Open
Abstract
The dysregulation of circular RNAs (circRNAs) has been associated with OC development and progression. This study investigated the role of circZNF609 in ovarian cancer (OC) by analyzing its impact on cell proliferation, migration, and invasion. Initially, the study assessed the expression of circZNF609 in OC tissues and adjacent normal tissues. The results revealed elevated circZNF609 levels in OC tissues and cell lines, correlating with poor prognosis, lymph node metastasis, and advanced clinical stage. Subsequently, in vitro and in vivo experiments were conducted to elucidate the biological functions of circZNF609 in OC progression. The findings showed that the knockdown of circZNF609 resulted in reduced OC cell proliferation, migration, invasion, and tumor growth. Mechanistically, circZNF609 was identified to function as a sponge for miR-324-5p, thereby upregulating voltage-dependent anion channel 1 (VDAC1) expression and promoting OC progression. Our findings indicate that circZNF609 promotes OC via the miR-324-5p/VDAC1 axis, contributing to the therapeutic targeting of this disease.
Collapse
Affiliation(s)
- Lina Ren
- Department of Obstetrics, The First Hospital of China Medical University, Liaoning 110001, China
| | - Xiaoxi Huo
- Department of Obstetrics and Gynecology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Yi Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Liaoning 110001, China
| |
Collapse
|
37
|
Liao X, Li T, Yang L, Li H, Li W, Liu Y, Xie Z. Tumor-Derived Exosomal Circular RNA Pinin Induces FGF13 Expression to Promote Colorectal Cancer Progression through miR-1225-5p. Gut Liver 2024; 18:1014-1025. [PMID: 38384181 PMCID: PMC11565002 DOI: 10.5009/gnl230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 02/23/2024] Open
Abstract
Background/Aims : Colorectal cancer (CRC) is a common malignant tumor, and circular RNAs (circRNAs) are abnormally expressed in CRC. However, the function and underlying mechanism of circRNA pinin (circ-PNN; hsa_circ_0101802) in CRC remain unclear. Methods : Exosomes were isolated from the plasma of CRC patients and identified by transmission electron microscopy and Western blotting. The RNA expression levels of circ-PNN, miR-1225-5p, and fibroblast growth factor 13 (FGF13) were measured by quantitative real-time polymerase chain reaction. Cell proliferation was detected by Cell Counting K-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Cell apoptosis was assessed by flow cytometry. The expression of apoptosis and metastasis-related proteins was evaluated by Western blotting. The associations among circ-PNN, miR-1225-5p, and FGF13 were confirmed by dual-luciferase report assay and RNA immunoprecipitation assay. A xenograft model was used to verify the function of circ-PNN in tumor formation in vivo. Results : circ-PNN expression was upregulated in plasmic exosomes derived from CRC patients. The expression of circ-PNN and FGF13 was upregulated, while miR-1225-5p expression was downregulated in CRC cells incubated with plasmic exosomes derived from CRC patients. Tumor-derived exosomes promoted the proliferation, migration, and invasion but inhibited apoptosis of CRC cells. Moreover, the addition of tumor-derived exosomes partly reversed the inhibitory effect of circ-PNN knockdown on CRC tumor progression in vitro and in vivo. Thus, circ-PNN acts as a sponge for miR-1225-5p to regulate FGF13 expression. Conclusions : Tumor-derived exosomal circ-PNN promoted CRC progression through the regulation of the miR-1225-5p/FGF13 pathway, providing a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Xianghui Liao
- Departments of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tuhua Li
- Departments of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Li Yang
- Departments of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haiwen Li
- Departments of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiru Li
- Departments of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuting Liu
- Departments of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhong Xie
- Departments of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
38
|
Cheng Y, Zhang H, Guan B, Zhang Y, Qin C, Li D, Zhang J, Zhang B, Lin Y, Li F. CircCDR1as orchestrates the advancement of asthma triggered by PM 2.5 through the modulation of ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175328. [PMID: 39117210 DOI: 10.1016/j.scitotenv.2024.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Exposure to fine particulate matter (PM2.5) in the ambient environment augments susceptibility to respiratory ailments. Circular RNAs, a distinctive subclass of endogenous non-coding RNAs, have been acknowledged as pivotal regulators of pathological conditions. Ferroptosis, an innovative iron-dependent form of cellular demise, has emerged as a consequential participant in numerous maladies. Despite the established association between PM2.5 exposure and the exacerbation of asthma, scant investigations have probed into the implication of circRNAs and ferroptosis in PM2.5-induced asthma. Consequently, this inquiry sought to scrutinize the potential involvement of circCDR1as and ferroptosis in PM2.5-induced asthma. Through the formulation of a PM2.5 exposure model in asthmatic mice and an in vitro cellular model, it was discerned that PM2.5 induced ferroptosis, thereby intensifying asthma progression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed an upregulation of circCDR1as in the PM2.5-stimulated asthma cell model. Molecular biology assays demonstrated that diminished circCDR1as expression hindered the onset of ferroptosis in response to PM2.5 exposure. Notably, Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, manifested the ability to impede the advancement of asthma. Mechanistically, RNA pull-down and molecular biology experiments substantiated that circCDR1as selectively bound to insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), thereby modulating the occurrence of ferroptosis. CircCDR1as emerged as a potential orchestrator of asthma progression by regulating ferroptosis under PM2.5 exposure. Additionally, PM2.5 exposure elicited activation of the Wnt/β-catenin signaling pathway, subsequently influencing the expression of C-myc and Cyclin D1, ultimately exacerbating asthma development. In summation, the interaction between circCDR1as and IGF2BP2 in regulating ferroptosis was identified as a critical facet in the progression of asthma under PM2.5 exposure. This investigation underscores the pivotal roles of circCDR1as and ferroptosis in PM2.5-induced asthma, offering a novel theoretical foundation for the therapeutic and preventive approaches to asthma.
Collapse
Affiliation(s)
- Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Guan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Chuhao Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Dongsheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jiahui Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingwei Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
39
|
Verwilt J, Vromman M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1872. [PMID: 39506237 DOI: 10.1002/wrna.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Circular RNAs (circRNAs) are closed RNA loops present in humans and other organisms. Various circRNAs have an essential role in diseases, including cancer. Cells can release circRNAs into the extracellular space of adjacent biofluids and can be present in extracellular vesicles. Due to their circular nature, extracellular circRNAs (excircRNAs) are more stable than their linear counterparts and are abundant in many biofluids, such as blood plasma and urine. circRNAs' link with disease suggests their extracellular counterparts have high biomarker potential. However, circRNAs and the extracellular space are challenging research domains, as they consist of complex biological systems plagued with nomenclature issues and a wide variety of protocols with different advantages and disadvantages. Here, we summarize what is known about excircRNAs, the current challenges in the field, and what is needed to improve extracellular circRNA research.
Collapse
Affiliation(s)
- Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Marieke Vromman
- CNRS UMR3244 (Dynamics of Genetic Information), Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| |
Collapse
|
40
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
41
|
Zhao W, Erhan D, Liu S, Zhang L, Hai C, Zhang Y, Li H, Wang H, Wang C. Adipose-derived stem cells exosomal circHIPK3 protects ovarian function by regulating MAPK signaling. Indian J Pharmacol 2024; 56:411-419. [PMID: 39973830 PMCID: PMC11913337 DOI: 10.4103/ijp.ijp_499_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Exosomes derived from adipose-derived stem cells (ADSCs) have garnered significant attention for their therapeutic potential in various diseases. These vesicles are capable of transporting bioactive molecules such as noncoding RNAs and proteins. Among these noncoding RNAs, circular RNAs (circRNAs) are characterized as end-to-end circular structures, which are notably enriched within exosomes. OBJECTIVE This study aims to investigate the impact of the circHIPK3 delivered via ADSC-derived exosomes on ovarian aging. MATERIALS AND METHODS ADSCs were isolated, and exosomes were obtained from a cell culture medium. The exosomes were labeled with PKH26, and uptake by primary granulosa cells (pGCs) was detected. ADSCs were transfected with circHIPK3 siRNAs, and the exosomes were isolated for the treatment of aging female mice. Ovary weight was recorded, and HE staining, Masson's trichrome, and TUNEL staining were performed to detect tissue morphology and apoptosis in ovary tissues. In addition, the senescence and apoptosis of pGCs were evaluated using the S-β-gal staining kit and Annexin V/PI detection kit. Further experiments included immunoprecipitation and RNA pulldown, determined the ubiquitination of p38 protein under circHIPK3 alteration. RESULTS Results showed that ADSC-derived exosomes effectively delivered circHIPK3 to pGCs. Treatment with these exosomes significantly increased ovary weight and enhanced follicular development in aged mice. Conversely, the depletion of circHIPK3 reversed these effects, promoting cell apoptosis. ADSC-derived exosomes also mitigated senescence and apoptosis in pGCs, while circHIPK3 depletion hindered these benefits. CONCLUSION Exosomal circHIPK3 modulated the ubiquitination of p38 in pGCs to improve ovarian function in aging mice and to promote pGC cell viability.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
- The Obstetric and Gynecologic, Grand Hospital of Shuozhou, Shanxi Shuozhou, China
| | - Da Erhan
- The Second Xiangya Hospital, Central South University, Hunan Changsha, China
| | - Shujun Liu
- Department of Science and Education Section, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Liyan Zhang
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Caizhu Hai
- Department of Reproductive Center, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Yanan Zhang
- Department Of Gynecology, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Haiyan Li
- Department Of Gynecology, Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Hongwu Wang
- Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| | - Caisheng Wang
- Xilingol League Central Hospital, Inner Mongolia Xilingol League, China
| |
Collapse
|
42
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
43
|
Lin X, He SQ, Shan SK, Xu F, Wu F, Li FXZ, Zheng MH, Lei LM, Duan JY, Wu YY, Wu YL, Tang KX, Cui RR, Huang B, Yang JJ, Liao XB, Liu J, Yuan LQ. Endothelial cells derived extracellular vesicles promote diabetic arterial calcification via circ_0008362/miR-1251-5p/Runx2 axial. Cardiovasc Diabetol 2024; 23:369. [PMID: 39420345 PMCID: PMC11488141 DOI: 10.1186/s12933-024-02440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Arterial calcification, an independent predictor of cardiovascular events, increases morbidity and mortality in patients with diabetes mellitus (DM), but its mechanisms remain unclear. Extracellular vesicles (EVs) play an important role in intercellular communication. The study investigates the role and potential mechanisms of EVs derived from endothelial cells (ECs) in regulating vascular smooth muscle cell (VSMC) calcification under high glucose (HG) condition, with a goal of developing effective prevention and treatment strategies for diabetic arterial calcification. RESULTS The results showed that EVs derived from HG induced ECs (ECHG-EVs) exhibited a bilayer structure morphology with a mean diameter of 74.08 ± 31.78 nm, expressing EVs markers including CD9, CD63 and TSG101, but not express calnexin. ECHG-EVs was internalized by VSMCs and induced VSMC calcification by increasing Runx2 expression and mineralized nodule formation. The circ_0008362 was enriched in ECHG-EVs, and it can be transmitted to VSMCs to promote VSMC calcification both in vitro and in vivo. Mechanistically, miR-1251-5p might be one of the targets of circ_0008362 and they were co-localization in the cytoplasm of VSMCs. Runx2 was identified as the downstream target of miR-1251-5p, and circ_0008362 acted as a sponge, enhancing Runx2 expression and then promoted VSMC calcification. Besides, circ_0008362 could directly interact with Runx2 to aggravate VSMC calcification. Notably, DiR-labelled ECHG-EVs was detected in the vessels of mice. Meanwhile, the level of circ_0008362 and Runx2 were increased significantly, while the expression of miR-1251-5p was decreased significantly in calcified artery tissues of mice. However, inhibiting the release of EVs by GW4869 attenuated arterial calcification in diabetic mice. Finally, the level of circulation of plasma EVs circ_0008362 was significantly higher in patients with DM compared with normal controls. Elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. CONCLUSIONS Our findings suggested that circ_0008362 was enriched in EVs derived from ECs and promoted VSMC calcification under HG conditions, both by sponging miR-1251-5p to upregulate Runx2 expression and through direct interaction with Runx2. Furthermore, elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. These results may serve as a potential prevention and therapeutic target for diabetic arterial calcification.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/etiology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Extracellular Vesicles/metabolism
- Gene Expression Regulation
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Signal Transduction
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
Collapse
Affiliation(s)
- Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Sha-Qi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Rong-Rong Cui
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Bei Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun-Jie Yang
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Changsha, 410011, China.
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
44
|
Zhang X, Bian Y, Li Q, Yu C, Gao Y, Tian B, Xia W, Wang W, Xin L, Lin H, Wang L. EIF4A3-mediated oncogenic circRNA hsa_circ_0001165 advances esophageal squamous cell carcinoma progression through the miR-381-3p/TNS3 pathway. Cell Biol Toxicol 2024; 40:84. [PMID: 39382613 PMCID: PMC11481643 DOI: 10.1007/s10565-024-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a major clinical challenge due to its poor prognosis and the scarcity effective therapeutic targets. Circular RNAs (circRNAs) are crucial in cancer progression. In this study, high-throughput sequencing was employed to profile ESCC tissues, revealing that hsa_circ_0001165 is notably elevated in both ESCC tumor samples and cell lines, with its expression is positively associated with patients' TNM staging. Knockdown of hsa_circ_0001165 resulted in reduced malignant biological behavior of ESCC cells in vitro and also inhibited tumor growth in vivo. Mechanism experimental analysis found that hsa_circ_0001165 expression is positively enhanced by eukaryotic translation initiation factor 4A3 (EIF4A3). Hsa_circ_0001165 acts as a miRNA sponge for miR-381-3p, increasing the expression of tensin-3 (TNS3) through a series of related mechanism assays include dual-luciferase reporter gene, RNA Immunoprecipitation and RNA-pulldown. The downregulation in miR-381-3p expression was observed in ESCC tissues, and the cell proliferation, invasion, and migration of ESCC were suppressed. The upregulated expression of hsa_circ_0001165 modulates the miR-381-3p/TNS3 axis and promotes aggressive phenotypes of ESCC. Hsa_circ_0001165 is regarded as a encouraging biomarker and potential therapeutic target for ESCC, presenting innovative options for both diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qiuxin Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bo Tian
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wenqiang Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Digestive Endoscopic Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
45
|
Lodde V, Zarbo IR, Farina G, Masia A, Solla P, Campesi I, Delogu G, Muroni MR, Tsitsipatis D, Gorospe M, Floris M, Idda ML. Identification of hsa_circ_0018905 as a New Potential Biomarker for Multiple Sclerosis. Cells 2024; 13:1668. [PMID: 39404430 PMCID: PMC11475351 DOI: 10.3390/cells13191668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by early onset, for which the interaction of genetic and environmental factors is crucial. Dysregulation of the immune system as well as myelinization-de-myelinization has been shown to correlate with changes in RNA, including non-coding RNAs. Recently, circular RNAs (circRNAs) have emerged as a key player in the complex network of gene dysregulation associated with MS. Despite several efforts, the mechanisms driving circRNA regulation and dysregulation in MS still need to be properly elucidated. Here, we explore the panorama of circRNA expression in PBMCs purified from five newly diagnosed MS patients and five healthy controls (HCs) using the Arraystar Human circRNAs microarray. Experimental validation was then carried out in a validation cohort, and a possible correlation with disease severity was tested. We identified 64 differentially expressed circRNAs, 53 of which were downregulated in PBMCs purified from MS compared to the HCs. The discovery dataset was subsequently validated using qRT-PCR with an independent cohort of 20 RRMS patients and 20 HCs. We validated seven circRNAs differentially expressed in the RRMS group versus the HC group. hsa_circ_0000518, hsa_circ_0000517, hsa_circ_0000514, and hsa_circ_0000511 were significantly upregulated in the MS group, while hsa_circ_0018905, hsa_circ_0048764, and hsa_circ_0003445 were significantly downregulated; Among them, the expression level of hsa_circ_0018905 was significantly decreased in patients showing a higher level of disability and in progressive forms of MS. We described the circRNAs expression profile of PBMCs in newly diagnosed MS patients and proposed hsa_circ_0018905 as potential MS biomarker.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Ignazio Roberto Zarbo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | | | - Aurora Masia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
- Unit of Clinical Neurology, AOU, Sassari 07100, Italy;
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Giuseppe Delogu
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy; (I.R.Z.); (A.M.); (P.S.); (M.R.M.)
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; (D.T.); (M.G.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; (V.L.); (I.C.); (G.D.); (M.F.)
| |
Collapse
|
46
|
Dong X, Cheng T, Zhang L, Song L, Shi C. CircTSN promotes the proliferation and metastasis of gastric cancer through the miR-1825/SLC38A2 signaling axis. Discov Oncol 2024; 15:533. [PMID: 39379756 PMCID: PMC11461732 DOI: 10.1007/s12672-024-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Comprehensive treatment of gastric cancer (GC) is progressing, but the rapid proliferation and metastasis of GC remains a cause of high recurrence and mortality rates. In this study we investigated GC-associated circRNA tending to yield more insight into the mechanisms of gastric cancer development. METHODS We detected the expression levels of circTSN in GC tissues and cell lines using qRT-PCR. The circular structure of circTSN was confirmed by Sanger sequencing, agarose gel electrophoresis and RNase R. A series of cell functional experiments were employed to investigate the implication of circTSN aberrant expression on the proliferation and metastasis of GC cells. The predicted binding domain between circTSN and miR-1825 was analyzed by luciferase reporter gene analysis. Meanwhile, subcutaneous tumor xenografts in nude mice were used to validate the role of circTSN in vivo. RESULTS It was found that RNA levels of circTSN were significantly elevated in GC tissues and cell lines, which was also confirmed to contain a closed-loop structure. CCK8, clone formation, EdU, transwell and in vivo experiments indicated that the highly expressed circTSN was involved in the proliferation and metastasis process of GC. In addition, circTSN modulates the expression of SLC38A2 by sequence-specific binding to miR-1825. CONCLUSION This study identified that circTSN, which is highly expressed in GC, was able to contribute to the proliferation and metastasis of GC cell through miR-1825/SLC38A2 axis and this might provide a new candidate target for the precision treatment of GC.
Collapse
Affiliation(s)
- Xuqiang Dong
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Tianyu Cheng
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Lijun Zhang
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China
| | - Liqun Song
- Department of Operating Room, Yixing People's Hospital, Wuxi, Jiangsu, China.
| | - Chao Shi
- Department of Gastrointestinal Surgery, Yixing People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
47
|
Zheng L, Tang T, Wang Z, Sun C, Chen X, Li W, Wang B. FUS-Mediated CircFGFR1 Accelerates the Development of Papillary Thyroid Carcinoma by Stabilizing FGFR1 Protein. Biochem Genet 2024; 62:3977-3995. [PMID: 38261157 DOI: 10.1007/s10528-023-10630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024]
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent type of thyroid cancer and its incidence is rising globally. The molecular mechanisms of PTC progression remain unclear, hindering the development of effective treatments. This study focuses on hsa_circ_0008016 (circFGFR1), a circular RNA significantly up-regulated in PTC cells. Silencing circFGFR1 inhibited PTC cell proliferation and increased cell apoptosis, suggesting its role in PTC progression. The RNA-binding protein FUS was identified as a promoter of circFGFR1 formation. While circFGFR1 does not influence FGFR1 mRNA translation, it inhibits ubiquitination and degradation of FGFR1 protein, prolonging its half-life. CircFGFR1 also interacts with protein CBL, inhibiting CBL-mediated ubiquitination of FGFR1 proteins. Rescue assays confirmed circFGFR1 promotes PTC cell growth through mediating FGFR1. This study highlights the potential of circFGFR1 as a therapeutic target, offering insights into PTC's molecular mechanisms, and paving the way for novel treatment strategies.
Collapse
MESH Headings
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Humans
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA-Binding Protein FUS/genetics
- RNA-Binding Protein FUS/metabolism
- Cell Proliferation
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Apoptosis
- Protein Stability
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Lu Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Tong Tang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhitao Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Xiao Chen
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wanwan Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Benzhong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
48
|
Nie L, Jiang T. CircNUP98 promotes the malignant behavior of glioma cells through the miR-520f-3p/ELK4 axis. Int J Dev Neurosci 2024; 84:581-593. [PMID: 38923578 DOI: 10.1002/jdn.10355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Glioma, a formidable form of brain cancer, poses significant challenges in terms of treatment and prognosis. Circular RNA nucleoporin 98 (circNUP98) has emerged as a potential regulator in various cancers, yet its role in glioma remains unclear. Here, we elucidate the functional role of circNUP98 in glioma cell proliferation, invasion, and migration, shedding light on its therapeutic implications. Glioma cells were subjected to si-NUP98 transfection, followed by assessments of cell viability, proliferation, invasion, and migration. Subcellular localization of circNUP98 was determined, and its downstream targets were identified. We delineated the binding relationships between circNUP98 and microRNA (miR)-520f-3p, as well as between miR-520f-3p and ETS transcription factor ELK4 (ELK4). The expression levels of circNUP98/miR-520f-3p/ELK4 were quantified. Our findings demonstrated that circNUP98 was upregulated in glioma cells, and its inhibition significantly attenuated glioma cell proliferation, invasion, and migration. Mechanistically, circNUP98 functioned as a sponge for miR-520f-3p, thereby relieving the inhibitory effect of miR-520f-3p on ELK4. Moreover, inhibition of miR-520f-3p or overexpression of ELK4 partially rescued the suppressive effect of circNUP98 knockdown on glioma cell behaviors. In summary, our study unveils that circNUP98 promotes glioma cell progression via the miR-520f-3p/ELK4 axis, offering novel insights into the therapeutic targeting of circNUP98 in glioma treatment.
Collapse
Affiliation(s)
- Liangqin Nie
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo City, China
| | | |
Collapse
|
49
|
Mao S, Wu C, Feng G, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Selection and Regulatory Network Analysis of Differential CircRNAs in the Hypothalamus of Goats with High and Low Reproductive Capacity. Int J Mol Sci 2024; 25:10479. [PMID: 39408808 PMCID: PMC11476610 DOI: 10.3390/ijms251910479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
50
|
Long BY, Wang Y, Hao SH, Shi G. Molecular significance of circRNAs in malignant lymphoproliferative disorders: pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res 2024; 14:4633-4651. [PMID: 39417189 PMCID: PMC11477815 DOI: 10.62347/kmwb5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mechanisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Bo-Yang Long
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yan Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, Shandong, China
| | - Shu-Hong Hao
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Guang Shi
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|