1
|
Vogtmann E, Yano Y, Zouiouich S, Hua X, Wan Y, Purandare V, Li S, Dagnall CL, Jones K, Hicks BD, Hutchinson A, Caporaso JG, Wheeler W, Huang W, Freedman ND, Sandler DP, Beane Freeman LE, Liao LM, Gail MH, Shi J, Abnet CC, Sinha R. The human oral microbiome and risk of colorectal cancer within three prospective cohort studies in the United States. Cancer 2025; 131:e35802. [PMID: 40069139 PMCID: PMC11896928 DOI: 10.1002/cncr.35802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Oral microbes detected in feces have been associated with colorectal cancer (CRC) in cross-sectional studies. This study investigated the prospective associations between the oral microbiome and incident CRC in the Agricultural Health Study (AHS), National Institutes of Health-AARP (NIH-AARP) Diet and Health Study, and Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. METHODS Individuals with oral samples collected before incident CRC diagnoses were identified in the AHS (N = 331), NIH-AARP (N = 249), and PLCO (N = 446) and compared with referent subcohorts (N = 3431). The V4 region of the 16S ribosomal RNA gene was sequenced from oral wash DNA, and the data were processed with QIIME2. Hazard ratios (HRs) and 95% confidence intervals (CIs) for overall CRC and by anatomic subsite (i.e., proximal colon, distal colon, and rectum) were estimated with Cox proportional hazards models with adjustment for potential confounders by cohort and then meta-analyzed. RESULTS Overall, no associations were found between microbial characteristics and CRC risk. However, associations were observed with alpha and beta diversity indices and individual genera in analyses stratified by anatomic subsite. For instance, the presence of Olsenella was strongly positively associated with distal colon cancer risk (HR, 2.16; 95% CI, 1.59-2.95), whereas the presence of Prevotella 2 was positively associated with rectal cancer risk (HR, 1.68; 95% CI, 1.14-2.46). CONCLUSIONS This large study of the prospective association between the oral microbiome and CRC risk showed numerous site-specific associations, including multiple associations with distal colon and rectal cancer risk.
Collapse
Affiliation(s)
- Emily Vogtmann
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Yukiko Yano
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Semi Zouiouich
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Xing Hua
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - Yunhu Wan
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - Vaishnavi Purandare
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Shilan Li
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Casey L. Dagnall
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - Kristine Jones
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - Belynda D. Hicks
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
- Frederick National Laboratory for Cancer Research/Leidos Biomedical Research LaboratoryFrederickMarylandUSA
| | - J. Gregory Caporaso
- Center for Applied Microbiome SciencePathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | | | - Wen‐Yi Huang
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Neal D. Freedman
- Division of Cancer Control and Population ScienceNational Cancer InstituteBethesdaMarylandUSA
| | - Dale P. Sandler
- Chronic Disease Epidemiology GroupEpidemiology BranchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Linda M. Liao
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Mitchell H. Gail
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Jianxin Shi
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| |
Collapse
|
2
|
Navarro-Sánchez A, Nieto-Vitoria MÁ, López-López JA, Martínez-Crespo JJ, Navarro-Mateu F. Is the oral pathogen, Porphyromona gingivalis, associated to colorectal cancer?: a systematic review. BMC Cancer 2025; 25:395. [PMID: 40038641 DOI: 10.1186/s12885-025-13770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The association between the oral pathogen Porphyromonas gingivalis (PG) and the gut microbiota in colorectal cancer (CRC) patients has been explored with inconsistent results. This study aims to systematically assess this potential association. MATERIALS AND METHODS A systematic review was conducted across three databases (Pubmed, Embase and Web of Science) from inception up to January 2023 and updated until November 2024. Inclusion criteria were observational studies examining PG in the microbiota of adults with CRC compared to healthy controls. Exclusion criteria were studies without control group of healthy individuals, other designs or without full-text access. Two reviewers independently selected and extracted data following a pre-registered protocol. Disagreements were resolved by consensus or with a third reviewer. Risk of bias (RoB) was assessed using the Newcastle-Ottawa Scale (NOS). Results were summarized with a flow diagram, tables, and narrative descriptions. Meta-analysis was not feasible, so Fisher's method for combining p-values and the sign test were used as alternative integration methods. RESULTS Finally, 18 studies, with 23 analysis units were included, providing a total sample of 4,373 participants (48.0% cases and 52.0%controls), 38.2% men and 61.8% women, with a similar distribution among cases and controls. The mean (SD) age of cases was 63.3 (4.382) years old and 57.0 (7.753) years for controls. Most of the studies analyzed the presence of PG in feces (70.0%) collected before colonoscopy (55.0%) and were classified with good quality (70.0%) in the RoB assessment. Results suggested an effect (Fisher's test, p = .000006) with some evidence towards a positive association of PG in CRC patients compared to healthy controls (Sign test, p = .039). CONCLUSIONS Results of the systematic review suggest that PG is associated with the microbiota of CRC patients. Lack of information to calculate the effect size prevented the performance of a meta-analysis. Future research should aim for standardized protocols and statistical approaches. FUNDING No funding was received for this work. SYSTEMATIC REVIEW REGISTRATION The research protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 2023 (registration number: CRD42023399382).
Collapse
Affiliation(s)
| | | | - José Antonio López-López
- University of Murcia, Murcia, Spain
- Department of Methodology and Basic Psychology, Meta-Analysis Unit, University of Murcia, Murcia, Spain
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain
| | | | - Fernando Navarro-Mateu
- University of Murcia, Murcia, Spain.
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain.
- Mental Health Research and Training Unit, Murcian Health Service, Murcia, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
3
|
Bakir-Gungor B, Temiz M, Canakcimaksutoglu B, Yousef M. Prediction of colorectal cancer based on taxonomic levels of microorganisms and discovery of taxonomic biomarkers using the Grouping-Scoring-Modeling (G-S-M) approach. Comput Biol Med 2025; 187:109813. [PMID: 39929003 DOI: 10.1016/j.compbiomed.2025.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/12/2025]
Abstract
Colorectal cancer (CRC) is one of the most prevalent forms of cancer globally. The human gut microbiome plays an important role in the development of CRC and serves as a biomarker for early detection and treatment. This research effort focuses on the identification of potential taxonomic biomarkers of CRC using a grouping-based feature selection method. Additionally, this study investigates the effect of incorporating biological domain knowledge into the feature selection process while identifying CRC-associated microorganisms. Conventional feature selection techniques often fail to leverage existing biological knowledge during metagenomic data analysis. To address this gap, we propose taxonomy-based Grouping Scoring Modeling (G-S-M) method that integrates biological domain knowledge into feature grouping and selection. In this study, using metagenomic data related to CRC, classification is performed at three taxonomic levels (genus, family and order). The MetaPhlAn tool is employed to determine the relative abundance values of species in each sample. Comparative performance analyses involve six feature selection methods and four classification algorithms. When experimented on two CRC associated metagenomics datasets, the highest performance metric, yielding an AUC of 0.90, is observed at the genus taxonomic level. At this level, 7 out of top 10 groups (Parvimonas, Peptostreptococcus, Fusobacterium, Gemella, Streptococcus, Porphyromonas and Solobacterium) were commonly identified for both datasets. Moreover, the identified microorganisms at genus, family, and order levels are thoroughly discussed via refering to CRC-related metagenomic literature. This study not only contributes to our understanding of CRC development, but also highlights the applicability of taxonomy-based G-S-M method in tackling various diseases.
Collapse
Affiliation(s)
- Burcu Bakir-Gungor
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Mustafa Temiz
- Department of Electrical and Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey.
| | - Beyza Canakcimaksutoglu
- Department of Bioengineering, Faculty of Life and Natural Science, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, 13206, Israel; Galilee Digital Health Research Center (GDH), Zefat Academic College, Israel
| |
Collapse
|
4
|
Li G, Zhao D, Ouyang B, Chen Y, Zhao Y. Intestinal microbiota as biomarkers for different colorectal lesions based on colorectal cancer screening participants in community. Front Microbiol 2025; 16:1529858. [PMID: 39990152 PMCID: PMC11844352 DOI: 10.3389/fmicb.2025.1529858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction The dysregulation of intestinal microbiota has been implicated in the pathogenesis of colorectal cancer (CRC). However, the utilization of intestinal microbiota for identify the lesions in different procedures in CRC screening populations remains limited. Methods A total of 529 high-risk individuals who underwent CRC screening were included, comprising 13 advanced adenomas (Aade), 5 CRC, 59 non-advanced adenomas (Nade), 129 colon polyps (Pol), 99 cases of colorectal inflammatory disease (Inf), and 224 normal controls (Nor). 16S rRNA gene sequencing was used to profile the intestinal microbiota communities. The Gut Microbiota Health Index (GMHI) and average variation degree (AVD) were employed to assess the health status of the different groups. Results Our findings revealed that the Nor group exhibited significantly higher GMHIs and the lowest AVD compared to the four Lesion groups. The model incorporating 13 bacterial genera demonstrated optimal efficacy in distinguishing CRC and Aade from Nor, with an area under the curve (AUC) of 0.81 and a 95% confidence interval (CI) of 0.72 to 0.89. Specifically, the 55 bacterial genera combination model exhibited superior performance in differentiating CRC from Nor (AUC 0.98; 95% CI, 0.96-1), the 25 bacterial genera combination showed superior performance in distinguishing Aade from Nor (AUC 0.95). Additionally, the 27 bacterial genera combination demonstrated superior efficacy in differentiating Nade from Nor (AUC 0.82). The 13 bacterial genera combination exhibited optimal performance in distinguishing Inf from Nor (AUC 0.71). Discussion Our study has identified specific microbial biomarkers that can differentiate between colorectal lesions and healthy individuals. The intestinal microbiota markers identified may serve as valuable tools in community-based CRC screening programs.
Collapse
Affiliation(s)
- Gairui Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Dan Zhao
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Binfa Ouyang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yinggang Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Deng J, Sun C, Xu G, Wang B, Tzortzopoulou E, Deng D, Giovannetti E. The Oral Microbiome and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:151-170. [PMID: 40111691 DOI: 10.1007/978-3-031-79146-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing evidence suggesting a strong association between members of the oral microbiota and various types of cancer, including oral cancer, colorectal cancer, esophageal squamous cell carcinoma, and pancreatic cancer. Periodontal diseases closely associated with pathogenic bacteria in the oral cavity have been shown to be correlated with the occurrence and development of cancers. Among the periodontal disease-associated bacteria in the oral cavity, two prominent oral pathogens, Porphyromonas gingivalis and Fusobacterium nucleatum, have been found to promote tumor cell proliferation, invasion, and migration, as well as to inhibit immune cell function, thereby facilitating tumor progression. The presence of other oral pathogenic bacteria, such as Treponema denticola, Tannerella forsythia, Parvimonas micra, and Aggregatibacter actinomycetemcomitans, has also been found to be associated with cancer worsening. Oral commensal bacteria play a crucial role in maintaining the normal oral homeostasis. However, the relationship between oral commensal bacteria and the occurrence and development of cancers remains controversial. Some studies suggest an increase in oral commensal bacteria during tumor development, while others suggest an association of certain commensal bacteria with lower tumor risk. The microbiota can significantly alter responses and toxicity to various forms of cancer treatment through interactions with the human body, thereby influencing disease progression. In this chapter, we provide a concise overview of current understanding of the role of the oral microbiota in cancer.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chen Sun
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleni Tzortzopoulou
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
6
|
Zhang Z, Fang Y, He Y, Farag MA, Zeng M, Sun Y, Peng S, Jiang S, Zhang X, Chen K, Xu M, Han Z, Zhang J. Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites. NPJ Biofilms Microbiomes 2024; 10:144. [PMID: 39632843 PMCID: PMC11618631 DOI: 10.1038/s41522-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Sarcopenia is a major health challenge due to an aging population. Probiotics may improve muscle function through gut-muscle axis, but their efficacy and mechanisms in treating sarcopenia remain unclear. This study investigated the impact of Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) on old mice and sarcopenia patients. We analyzed 43 subjects, including gut microbiome, fecal metabolome, and serum metabolome, using a multi-omics approach to assess whether Probio-M8 can improve sarcopenia by modulating gut microbial metabolites. Probio-M8 significantly improved muscle function in aged mice and enhanced physical performance in sarcopenia patients. It reduced pathogenic gut species and increased beneficial metabolites such as indole-3-lactic acid, acetoacetic acid, and creatine. Mediating effect analyses revealed that Probio-M8 effectively reduced n-dodecanoyl-L-homoserine lactone level in gut concurrent with increased creatine circulation, to significantly enhance host physical properties. These findings provide new insights into probiotics as a potential treatment for sarcopenia by modulating gut microbiota metabolism.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Min Zeng
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Siqi Peng
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Xian Zhang
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Meng Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China.
- One Health Institute, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
7
|
Camañes-Gonzalvo S, Montiel-Company JM, Lobo-de-Mena M, Safont-Aguilera MJ, Fernández-Diaz A, López-Roldán A, Paredes-Gallardo V, Bellot-Arcís C. Relationship between oral microbiota and colorectal cancer: A systematic review. J Periodontal Res 2024; 59:1071-1082. [PMID: 38775019 PMCID: PMC11626693 DOI: 10.1111/jre.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 12/10/2024]
Abstract
This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sara Camañes-Gonzalvo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Miriam Lobo-de-Mena
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | - María José Safont-Aguilera
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | | | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Mancini A, Vitucci D, Lasorsa VA, Lupo C, Brustio PR, Capasso M, Orrù S, Rainoldi A, Schena F, Buono P. Six months of different exercise type in sedentary primary schoolchildren: impact on physical fitness and saliva microbiota composition. Front Nutr 2024; 11:1465707. [PMID: 39512522 PMCID: PMC11542257 DOI: 10.3389/fnut.2024.1465707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Lifestyle influences microbiota composition. We previously reported a healthier microbiota composition in saliva from active schoolchildren compared to sedentary. In the present study, we evaluated the effects of 6 months of different exercise types on physical fitness and saliva microbiota composition in 8-11-years-old sedentary schoolchildren. Methods Sixty-four sedentary children from five primary schools in Turin, Italy, were divided into three groups: one continued normal curricular activity while two underwent different exercise protocols for 6 months. The Structured Exercise (Sa) group did 2 h per week of muscle activation, strength and coordination exercises supervised by a kinesiologist. The Daily Mile (Dm) group did 1 h per week of Sa plus 15 min of walking/running outdoors four times a week, supervised by a class teacher; control group (Ct) did 2 h a week of curricular exercise supervised by a class teacher. Physical fitness was evaluated before and after the intervention. Saliva samples were collected post-intervention in all participants and analyzed using PCR amplification of 16S rRNA bacterial genes. The Amplicon Sequence Variants were filtered, decontaminated, and phylogenetically classified using DADA2 software. Differential abundance analysis of microbiome taxa and pathway data was conducted using the LEfSe algorithm and PICRUSt. Results The Sa group showed better performances in lower limb power and sprint performance while both the Sa and Dm groups improved in endurance and balance at the end of the intervention; only balance resulted slightly improved in the Ct group. Among the genera differently enriched in saliva after the training intervention, we found that the Prevotella, the Dubosiella and the Family XIII AD3011 group were the most abundant in the Sa group; differently, the Neisseria and the Abiotrophia in Ct group. Four species showed significant the Prevotella melaninogenica and the Prevotella nanceiensis were more abundant in the Sa, conversely, Gemella sanguinis was enriched in Dm and Abiotrophia defectiva in Ct saliva group. Conclusion We demonstrated that Sa and Dm, not curricular exercise, improve the physical fitness components in sedentary schoolchildren correlated to health and promote an enrichment in saliva microbiota species associated to a healthier profile.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Daniela Vitucci
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Stefania Orrù
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
9
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
10
|
Yin LL, Qi PQ, Hu YF, Fu XJ, He RS, Wang MM, Deng YJ, Xiong SY, Yu QW, Hu JP, Zhou L, Zhou ZB, Xiong Y, Deng H. Dysbiosis promotes recurrence of adenomatous polyps in the distal colorectum. World J Gastrointest Oncol 2024; 16:3600-3623. [PMID: 39171160 PMCID: PMC11334022 DOI: 10.4251/wjgo.v16.i8.3600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal polyps, which are characterized by a high recurrence rate, represent preneoplastic conditions of the intestine. Due to unclear mechanisms of pathogenesis, first-line therapies for non-hereditary recurrent colorectal polyps are limited to endoscopic resection. Although recent studies suggest a mechanistic link between intestinal dysbiosis and polyps, the exact compositions and roles of bacteria in the mucosa around the lesions, rather than feces, remain unsettled. AIM To clarify the composition and diversity of bacteria in the mucosa surrounding or 10 cm distal to recurrent intestinal polyps. METHODS Mucosal samples were collected from four patients consistently with adenomatous polyps (Ade), seven consistently with non-Ade (Pol), ten with current Pol but previous Ade, and six healthy individuals, and bacterial patterns were evaluated by 16S rDNA sequencing. Linear discriminant analysis and Student's t-tests were used to identify the genus-level bacteria differences between groups with different colorectal polyp phenotypes. Pearson's correlation coefficients were used to evaluate the correlation between intestinal bacteria at the genus level and clinical indicators. RESULTS The results confirmed a decreased level of probiotics and an enrichment of pathogenic bacteria in patients with all types of polyps compared to healthy individuals. These changes were not restricted to the mucosa within 0.5 cm adjacent to the polyps, but also existed in histologically normal tissue 10 cm distal from the lesions. Significant differences in bacterial diversity were observed in the mucosa from individuals with normal conditions, Pol, and Ade. Increased abundance of Gram-negative bacteria, including Klebsiella, Plesiomonas, and Cronobacter, was observed in Pol group and Ade group, suggesting that resistance to antibiotics may be one risk factor for bacterium-related harmful environment. Meanwhile, age and gender were linked to bacteria changes, indicating the potential involvement of sex hormones. CONCLUSION These preliminary results support intestinal dysbiosis as an important risk factor for recurrent polyps, especially adenoma. Targeting specific pathogenic bacteria may attenuate the recurrence of polyps.
Collapse
Affiliation(s)
- Li-Li Yin
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ping-Qian Qi
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun-Fei Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jun Fu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Rui-Shan He
- The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Meng-Meng Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yan-Juan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Su-Yi Xiong
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qi-Wen Yu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Ping Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lv Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Bin Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ying Xiong
- Department of General Medicine, The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Huan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Ministry of Education Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
11
|
Onyeaghala GC, Sharma S, Oyenuga M, Staley CM, Milne GL, Demmer RT, Shaukat A, Thyagarajan B, Straka RJ, Church TR, Prizment AE. The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial. Microorganisms 2024; 12:1609. [PMID: 39203451 PMCID: PMC11357305 DOI: 10.3390/microorganisms12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50-75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches.
Collapse
Affiliation(s)
- Guillaume C. Onyeaghala
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, MN 55415, USA;
| | - Shweta Sharma
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
| | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, SSM Health St. Mary’s Hospital—St. Louis, St. Louis, MO 63117, USA;
| | - Christopher M. Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ginger L. Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA;
| | - Ryan T. Demmer
- Mayo Clinic College of Medicine & Sciences, Rochester, MN 55905, USA;
| | - Aasma Shaukat
- Department of Population Health, New York University Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Bharat Thyagarajan
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy R. Church
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna E. Prizment
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Sun J, Zhao J, Zhou S, Li X, Li T, Wang L, Yuan S, Chen D, Law PJ, Larsson SC, Farrington SM, Houlston RS, Dunlop MG, Theodoratou E, Li X. Systematic investigation of genetically determined plasma and urinary metabolites to discover potential interventional targets for colorectal cancer. J Natl Cancer Inst 2024; 116:1303-1312. [PMID: 38648753 PMCID: PMC11308169 DOI: 10.1093/jnci/djae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND We aimed to identify plasma and urinary metabolites related to colorectal cancer (CRC) risk and elucidate their mediator role in the associations between modifiable risk factors and CRC. METHODS Metabolite quantitative trait loci were derived from 2 published metabolomics genome-wide association studies, and summary-level data were extracted for 651 plasma metabolites and 208 urinary metabolites. Genetic associations with CRC were obtained from a large-scale genome-wide association study meta-analysis (100 204 cases, 154 587 controls) and the FinnGen cohort (4957 cases, 304 197 controls). Mendelian randomization and colocalization analyses were performed to evaluate the causal roles of metabolites in CRC. Druggability evaluation was employed to prioritize potential therapeutic targets. Multivariable Mendelian randomization and mediation estimation were conducted to elucidate the mediating effects of metabolites on the associations between modifiable risk factors and CRC. RESULTS The study identified 30 plasma metabolites and 4 urinary metabolites for CRC. Plasma sphingomyelin and urinary lactose, which were positively associated with CRC risk, could be modulated by drug interventions (ie, olipudase alfa, tilactase). Thirteen modifiable risk factors were associated with 9 metabolites, and 8 of these modifiable risk factors were associated with CRC risk. These 9 metabolites mediated the effect of modifiable risk factors (Actinobacteria, body mass index, waist to hip ratio, fasting insulin, smoking initiation) on CRC. CONCLUSION This study identified key metabolite biomarkers associated with CRC and elucidated their mediator roles in the associations between modifiable risk factors and CRC. These findings provide new insights into the etiology and potential therapeutic targets for CRC and the etiological pathways of modifiable environmental factors with CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinxuan Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tengfei Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
14
|
Lavilla-Lerma ML, Aibar-Almazán A, Martínez-Amat A, Jiménez-García JD, Hita-Contreras F. Moderate-intensity continuous training and high-intensity interval training modulate the composition of the oral microbiota of elderly adults: Randomized controlled trial. Maturitas 2024; 185:107973. [PMID: 38579579 DOI: 10.1016/j.maturitas.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE We investigates the effects of 16-week high-intensity interval training and moderate-intensity continuous training on the composition of the oral microbiota. To the best of our knowledge, at the time of writing this paper no other scholars had described the oral metagenomic changes associated with prescribed exercise in older adults. METHODS Forty-three participants aged 60-74 years were randomized 1:1:1 to a control group, high-intensity interval training or moderate-intensity continuous training twice weekly for 16 weeks. Saliva samples were sequenced at baseline, week 8 and week 16 of intervention. RESULTS High-intensity interval training produced significant differences over time in Richness and a clear trend to decreased Simpson and Shannon diversity indices. In contrast, Simpson and Shannon indices showed an upward trend over time with moderate-intensity continuous training, which also decreased Firmicutes and increased Bacteroidetes levels. Significant differences in the abundance of pathogenic species were also observed after the participants completed the exercise interventions of either type. CONCLUSIONS Both types of exercise promoted subtle changes in the oral microbiota, confirming the modulatory effect of high-intensity interval training and moderate-intensity continuous training on the oral microbiome. Clinical trial registration NCT05220670.
Collapse
Affiliation(s)
| | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Antonio Martínez-Amat
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | | | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
15
|
Chen Q, Lin F, Li W, Gu X, Chen Y, Su H, Zhang L, Zheng W, Zeng X, Lu X, Wang C, Chen W, Zhang B, Zhang H, Gong M. Distinctive Lipid Characteristics of Colorectal Cancer Revealed through Non-targeted Lipidomics Analysis of Tongue Coating. J Proteome Res 2024; 23:2054-2066. [PMID: 38775738 PMCID: PMC11165570 DOI: 10.1021/acs.jproteome.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Collapse
Affiliation(s)
- Qubo Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Fengye Lin
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Wanhua Li
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xiangyu Gu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Ying Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hairong Su
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Lu Zhang
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Zeng
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xinyi Lu
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Chuyang Wang
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weicheng Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Beiping Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiyan Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Meng Gong
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes
for Systems Genetics, Frontiers Science Center for Disease-related
Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Liang W, Zhou Z, Gao Q, Zhu Z, Zhu J, Lin J, Wen Y, Qian F, Wang L, Zhai Y, Lv J, Zhang H, Zhong F, Du H. Tumor-derived Prevotella intermedia aggravates gastric cancer by enhancing Perilipin 3 expression. Cancer Sci 2024; 115:1141-1153. [PMID: 38287724 PMCID: PMC11007001 DOI: 10.1111/cas.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
The indigenous microbial milieu within tumorous tissues exerts a pivotal influence on the genesis and advancement of gastric cancer (GC). This investigation scrutinizes the functions and molecular mechanisms attributed to Prevotella intermedia in the malignant evolution of GC. Isolation of P. intermedia from paired GC tissues was undertaken. Quantification of P. intermedia abundance in 102 tissues was accomplished using quantitative real-time PCR (qRT-PCR). Assessment of the biological effects of P. intermedia on GC cells was observed using culture medium supernatant. Furthermore, the protein profile of GC cells treated with tumor-derived P. intermedia was examined through label-free protein analysis. The functionality of perilipin 3 (PLIN3) was subsequently confirmed using shRNA. Our investigation revealed that the relative abundance of P. intermedia in tumor tissues significantly surpassed that of corresponding healthy tissues. The abundance of P. intermedia exhibited correlations with tumor differentiation (p = 0.006), perineural invasion (p = 0.004), omentum majus invasion (p = 0.040), and the survival duration of GC patients (p = 0.042). The supernatant derived from tumor-associated P. intermedia bolstered the proliferation, clone formation, migration, and invasion of GC cells. After indirect co-cultivation with tumor-derived P. intermedia, dysregulation of 34 proteins, including PLIN3, was discerned in GC cells. Knockdown of PLIN3 mitigated the malignancy instigated by P. intermedia in GC cells. Our findings posit that P. intermedia from the tumor microenvironment plays a substantial role in the malignant progression of GC via the modulation of PLIN3 expression. Moreover, the relative abundance of P. intermedia might serve as a potential biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Wei Liang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Zhengyang Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Qizhao Gao
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhichen Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jie Zhu
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jiayao Lin
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yicheng Wen
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Feinan Qian
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Liang Wang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yaxuan Zhai
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jingnan Lv
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haifang Zhang
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Fengyun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hong Du
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
17
|
Kaliamoorthy S, Priya Sayeeram S, Gowdhaman N, Jayaraj M, Radhika B, Chellapandi S, Elumalai A, Archana SP, Raju K, Palla S. Association of Periodontal Red Complex Bacteria With the Incidence of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e59251. [PMID: 38813341 PMCID: PMC11134483 DOI: 10.7759/cureus.59251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Porphyromonas gingivalis is the primary microbe in the "periodontal red complex" bacteria (PRCB) along with Tannerella forsythia and Treponema denticola, which are linked to periodontal disease (PD). These pathogens are also implicated in various systemic disorders, but their association with the incidence of gastrointestinal (GI) cancer is less explored. A systematic review followed by a meta-analysis was conducted as per standard guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2022) to find this association between GI cancers and PRCB after a literature search for full-text papers in the English language (between 2010 and 2023) in databases (Cochrane Library, PubMed, and Web of Science) with suitable keywords using the Boolean search strategy. Data extraction involved titles, abstracts, and full texts retrieved and scored by the modified Newcastle-Ottawa Scale. The data were analyzed by the Review Manager (RevMan 5.2, Cochrane Collaboration, Denmark). Standard Cochran Q test and I2 statistics (for heterogeneity) and a random effects model (pooled OR with 95% CI) were applied to report results. P. gingivalis among the PRCB was linked to GI cancers (OR: 2.16; 95% CI: 1.34-3.47). T. forsythia and T. denticola did not show meaningful associations as per existing evidence for GI cancers.
Collapse
Affiliation(s)
- Sriram Kaliamoorthy
- Department of Dentistry, Vinayaka Missions Medical College and Hospital, Vinayaka Missions Research Foundation, Karaikal, IND
| | - Sugantha Priya Sayeeram
- Department of Prosthodontics, Government Dental College and Hospital, The Tamil Nadu Dr. MGR Medical University, Pudukkottai, IND
| | - N Gowdhaman
- Departmentof Physiology, Dhanalakshmi Srinivasan Medical College and Hospital, The Tamil Nadu Dr. MGR Medical University, Perambalur, IND
| | - Merlin Jayaraj
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - B Radhika
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sugirtha Chellapandi
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Agila Elumalai
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sai P Archana
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Kanmani Raju
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Santosh Palla
- Department of Oral Medicine and Radiology, Sun Dental Care, Chennai, IND
| |
Collapse
|
18
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
19
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
20
|
Chen J, Sun Y, Li J, Lyu M, Yuan L, Sun J, Chen S, Hu C, Wei Q, Xu Z, Guo T, Cheng X. In-depth metaproteomics analysis of tongue coating for gastric cancer: a multicenter diagnostic research study. MICROBIOME 2024; 12:6. [PMID: 38191439 PMCID: PMC10773145 DOI: 10.1186/s40168-023-01730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Our previous study revealed marked differences in tongue images between individuals with gastric cancer and those without gastric cancer. However, the biological mechanism of tongue images as a disease indicator remains unclear. Tongue coating, a major factor in tongue appearance, is the visible layer on the tongue dorsum that provides a vital environment for oral microorganisms. While oral microorganisms are associated with gastric and intestinal diseases, the comprehensive function profiles of oral microbiota remain incompletely understood. Metaproteomics has unique strength in revealing functional profiles of microbiota that aid in comprehending the mechanism behind specific tongue coating formation and its role as an indicator of gastric cancer. METHODS We employed pressure cycling technology and data-independent acquisition (PCT-DIA) mass spectrometry to extract and identify tongue-coating proteins from 180 gastric cancer patients and 185 non-gastric cancer patients across 5 independent research centers in China. Additionally, we investigated the temporal stability of tongue-coating proteins based on a time-series cohort. Finally, we constructed a machine learning model using the stochastic gradient boosting algorithm to identify individuals at high risk of gastric cancer based on tongue-coating microbial proteins. RESULTS We measured 1432 human-derived proteins and 13,780 microbial proteins from 345 tongue-coating samples. The abundance of tongue-coating proteins exhibited high temporal stability within an individual. Notably, we observed the downregulation of human keratins KRT2 and KRT9 on the tongue surface, as well as the downregulation of ABC transporter COG1136 in microbiota, in gastric cancer patients. This suggests a decline in the defense capacity of the lingual mucosa. Finally, we established a machine learning model that employs 50 microbial proteins of tongue coating to identify individuals at a high risk of gastric cancer, achieving an area under the curve (AUC) of 0.91 in the independent validation cohort. CONCLUSIONS We characterized the alterations in tongue-coating proteins among gastric cancer patients and constructed a gastric cancer screening model based on microbial-derived tongue-coating proteins. Tongue-coating proteins are shown as a promising indicator for identifying high-risk groups for gastric cancer. Video Abstract.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Jie Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Mengge Lyu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Li Yuan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiancheng Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangqi Chen
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Qing Wei
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
22
|
Wang J, Gao B. Mechanisms and Potential Clinical Implications of Oral Microbiome in Oral Squamous Cell Carcinoma. Curr Oncol 2023; 31:168-182. [PMID: 38248096 PMCID: PMC10814288 DOI: 10.3390/curroncol31010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Microorganisms in the oral cavity are abundant in the human body. At present, more than 700 species of oral microorganisms have been identified. Recently, a lot of literature has indicated that the oral microbiota plays an important role in the occurrence, development, and prognosis of oral squamous cell carcinoma (OSCC) through various mechanisms. And researchers are now trying to utilize oral microbiota in cancer diagnosis and treatment. However, few articles systematically summarize the effects of oral microbes in the diagnosis, treatment, and disease outcomes of oral cancer. Herein, we made a summary of the microbial changes at cancerous sites and placed more emphasis on the mechanisms by which the oral microbiome promotes cancerization. Moreover, we aimed to find out the clinical value of the oral microbiome in OSCC.
Collapse
Affiliation(s)
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
23
|
Zhao J, Kuang D, Cheng X, Geng J, Huang Y, Zhao H, Yang Z. Molecular mechanism of colorectal cancer and screening of molecular markers based on bioinformatics analysis. Open Life Sci 2023; 18:20220687. [PMID: 37954103 PMCID: PMC10638842 DOI: 10.1515/biol-2022-0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 11/14/2023] Open
Abstract
Genomics and bioinformatics methods were used to screen genes and molecular markers correlated with colorectal cancer incidence and progression, and their biological functions were analyzed. Differentially expressed genes were obtained using the GEO2R program following colorectal cancer chip data GSE44076 retrieval from the Gene Expression Omnibus gene expression comprehensive database. An online database (David) that combines annotation, visualization, and gene discovery was utilized for investigating genes. Pathway and protein analyses were performed via resources from the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Visual analysis of the KEGG pathway was carried out according to ClueGO and CluePedia to establish the PPI network of gene interaction between pathways; the genes with the highest connectivity were screened by the molecular complex detection analysis method as Hub genes in this study; gene expression was verified by GEPIA online analysis tool, and Kaplan-Meier survival curve was drawn for prognosis analysis. By analyzing GSE44076 microarray data, 86 genes were selected, and colorectal cancer tissues' upregulation was observed in 27 genes and downregulation in 59 ones. GO assessment revealed that the differentially expressed genes were basically correlated with retinol dehydrogenase activity, carbon dehydrogenase activity, collagen-containing extracellular matrix, anchored component of memory, and cellular hormone metabolic process. Moreover, the KEGG assessment revealed that the differential genes contained various signal pathways such as retinol metabolism, chemical carotenogenesis, and nitrogen metabolism. Through further analysis of the PPI protein network, 4 clusters were obtained, and 16 Hub genes were screened out by combining the degree of each gene. Through the analysis of each gene on the prognosis of colon cancer through the GEPIA online analysis website, it was found that the expression levels of AQP8, CXCL8, and ZG16 genes were remarkably associated with colon cancer prognosis (P < 0.05). Genomics and bioinformatics methods can effectively analyze the genes and molecular markers correlated with colorectal cancer incidence and progression, help to systematically clarify the molecular mechanism of 16 key genes in colorectal cancer development and progression, and provide a theoretically valid insight for the screening of diagnostic markers of colorectal cancer and the selection of accurate targets for drug therapy.
Collapse
Affiliation(s)
- Jikun Zhao
- Department of General Surgery, Baoshan People’s Hospital in Yunnan Province, Baoshan678000, China
| | - Dadong Kuang
- Department of General Surgery, Baoshan People’s Hospital in Yunnan Province, Baoshan678000, China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Kunming650118, China
| | - Jiwei Geng
- Department of Oncology, Baoshan People’s Hospital in Yunnan Province, Baoshan678000, China
| | - Yong Huang
- Department of General Surgery, Baoshan People’s Hospital in Yunnan Province, Baoshan678000, China
| | - Haojie Zhao
- Department of Oncology, Baoshan People’s Hospital in Yunnan Province, Baoshan678000, China
| | - Zhibin Yang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Kunming650118, China
| |
Collapse
|
24
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
25
|
Chen Q, Wang Y, Shuai J. Current status and future prospects of stomatology research. J Zhejiang Univ Sci B 2023; 24:853-867. [PMID: 37752088 PMCID: PMC10522564 DOI: 10.1631/jzus.b2200702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 08/08/2023]
Abstract
Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral-systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, "intelligent stomatology" is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.
Collapse
Affiliation(s)
- Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Yahui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
26
|
Fukuoka H, Tourlousse DM, Ohashi A, Suzuki S, Nakagawa K, Ozawa M, Ishibe A, Endo I, Sekiguchi Y. Elucidating colorectal cancer-associated bacteria through profiling of minimally perturbed tissue-associated microbiota. Front Cell Infect Microbiol 2023; 13:1216024. [PMID: 37593761 PMCID: PMC10432157 DOI: 10.3389/fcimb.2023.1216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Sequencing-based interrogation of gut microbiota is a valuable approach for detecting microbes associated with colorectal cancer (CRC); however, such studies are often confounded by the effect of bowel preparation. In this study, we evaluated the viability of identifying CRC-associated mucosal bacteria through centimeter-scale profiling of the microbiota in tumors and adjacent noncancerous tissue from eleven patients who underwent colonic resection without preoperative bowel preparation. High-throughput 16S rRNA gene sequencing revealed that differences between on- and off-tumor microbiota varied considerably among patients. For some patients, phylotypes affiliated with genera previously implicated in colorectal carcinogenesis, as well as genera with less well-understood roles in CRC, were enriched in tumor tissue, whereas for other patients, on- and off-tumor microbiota were very similar. Notably, the enrichment of phylotypes in tumor-associated mucosa was highly localized and no longer apparent even a few centimeters away from the tumor. Through short-term liquid culturing and metagenomics, we further generated more than one-hundred metagenome-assembled genomes, several representing bacteria that were enriched in on-tumor samples. This is one of the first studies to analyze largely unperturbed mucosal microbiota in tissue samples from the resected colons of unprepped CRC patients. Future studies with larger cohorts are expected to clarify the causes and consequences of the observed variability in the emergence of tumor-localized microbiota among patients.
Collapse
Affiliation(s)
- Hironori Fukuoka
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Dieter M. Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akiko Ohashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinsuke Suzuki
- Department of Surgery, Fujisawa Shonandai Hospital, Fujisawa, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Mayumi Ozawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
27
|
Li H, Sheng D, Jin C, Zhao G, Zhang L. Identifying and ranking causal microbial biomarkers for colorectal cancer at different cancer subsites and stages: a Mendelian randomization study. Front Oncol 2023; 13:1224705. [PMID: 37538123 PMCID: PMC10395834 DOI: 10.3389/fonc.2023.1224705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The gut microbiome is directly involved in colorectal carcinogenesis, but much of the epidemiological evidence for the effect of the gut microbiome on colorectal cancer (CRC) risk comes from observational studies, and it is unclear whether identified microbial alterations are the cause or consequence of CRC development. Methods Univariate Mendelian randomization (MR) analysis and multivariate MR analysis based on Bayesian model averaging were performed to comprehensively explore the microbial risk factors associated with CRC. The Network Module Structure Shift method was used to identify microbial biomarkers associated with CRC. Mediation analysis was used to explore the dietary habits-microbiota-CRC pathway. Results The results of the four methods showed that 9 bacteria had a robust causal relationship with the development of CRC. Among them, Streptococcus thermophilus reduced the risk of CRC; Eubacterium ventriosum and Streptococcus were beneficial bacteria of malignant tumors of colon (CC); Erysipelotrichaceae was a protective factor for malignant tumors of rectal (CR); Bacteroides ovatus was a risk factor for benign tumors. Finally, the mediation analysis revealed 10 pathways by which dietary regulation bacteria affected the risk of CRC, including alcohol consumption increased the risk of CC by reducing the abundance of Eubacterium ventriosum (mediated proportion: 43.044%), and the mediated proportion of other pathways was 7.026%-34.22%. Discussion These findings will contribute to the understanding of the different carcinogenic mechanisms of intestinal flora in the colon and rectum and the risk of tumor transformation, thereby aiding CRC prevention, early screening, and the development of future strategies to reduce CRC risk.
Collapse
Affiliation(s)
- Hongfeng Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Shandong Children’s Microbiome Center, Children’s Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
28
|
Negrut RL, Cote A, Maghiar AM. Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review. Microorganisms 2023; 11:1586. [PMID: 37375087 DOI: 10.3390/microorganisms11061586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
There is growing evidence indicating that the oral microbiota, specifically certain periodontopathogens such as Fusobacterium nucleatum, may play a role in the development of colorectal cancer and that it could potentially be used as a biomarker for diagnosing colorectal cancer (CRC). The question beneath this systematic review is whether the development or progression of colorectal cancer can be attributed to the presence of certain oral bacteria, which could be used for discovering non-invasive biomarkers for CRC. This review aims to give an overview of the actual status of published studies regarding the oral pathogens related to colorectal cancer and assess the effectiveness of the oral microbiome derived biomarkers. A systematic literature search was performed using four databases, Web of Science, Scopus, PubMed, and Science Direct, on the 3rd and 4th of March 2023. The studies that did not have matching inclusion/exclusion criteria were winnowed out. A total of fourteen studies were included. The risk of bias was performed by using QUADAS-2. After assessing the studies, the general conclusion is that oral microbiota-based biomarkers can become a promising non-invasive tool for detecting CRC, but further research is needed in order to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Roxana Loriana Negrut
- Department Medicine, Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- County Clinical Emergency Hospital Bihor, 410087 Oradea, Romania
| | - Adrian Cote
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adrian Marius Maghiar
- Department Medicine, Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
29
|
Nearing JT, DeClercq V, Langille MGI. Investigating the oral microbiome in retrospective and prospective cases of prostate, colon, and breast cancer. NPJ Biofilms Microbiomes 2023; 9:23. [PMID: 37127667 PMCID: PMC10151362 DOI: 10.1038/s41522-023-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The human microbiome has been proposed as a potentially useful biomarker for several cancers. To examine this, we made use of salivary samples from the Atlantic Partnership for Tomorrow's Health (PATH) project and Alberta's Tomorrow Project (ATP). Sample selection was divided into both a retrospective and prospective case control design examining prostate, breast, and colon cancer. In total 89 retrospective and 260 prospective cancer cases were matched to non-cancer controls and saliva samples were sequenced using 16S rRNA gene sequencing. We found no significant differences in alpha diversity. All beta diversity measures were insignificant except for unweighted UniFrac profiles in retrospective breast cancer cases and weighted UniFrac, Bray-Curtis and Robust Atchinson's distances in colon cancer after testing with age and sex adjusted MiRKAT models. Differential abundance (DA) analysis showed several taxa that were associated with previous cancer in all three groupings. Only one genus (Clostridia UCG-014) in breast cancer and one ASV (Fusobacterium periodonticum) in colon cancer was identified by more than one DA tool. In prospective cases three ASVs were associated with colon cancer, one ASV with breast cancer, and one ASV with prostate cancer. Random Forest classification showed low levels of signal in both study designs in breast and prostate cancer. Contrastingly, colon cancer did show signal in our retrospective analysis (AUC: 0.737) and in one of two prospective cohorts (AUC: 0.717). Our results indicate that it is unlikely that reliable microbial oral biomarkers for breast and prostate cancer exist.. However, further research into the oral microbiome and colon cancer could be fruitful.
Collapse
Affiliation(s)
- Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| | - Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
30
|
Liu QY, Liao Y, Wu YX, Diao H, Du Y, Chen YW, Xie JR, Xue WQ, He YQ, Wang TM, Zheng XH, Jia WH. The Oral Microbiome as Mediator between Oral Hygiene and Its Impact on Nasopharyngeal Carcinoma. Microorganisms 2023; 11:microorganisms11030719. [PMID: 36985292 PMCID: PMC10058307 DOI: 10.3390/microorganisms11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case–control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52–4.25) and OR = 1.54 (1.02–2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.
Collapse
Affiliation(s)
- Qiao-Yun Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Wei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jin-Ru Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Correspondence: ; Tel.: +86-020-87342327
| |
Collapse
|
31
|
Microbial dynamics with CRC progression: a study of the mucosal microbiota at multiple sites in cancers, adenomatous polyps, and healthy controls. Eur J Clin Microbiol Infect Dis 2023; 42:305-322. [PMID: 36703031 PMCID: PMC9899194 DOI: 10.1007/s10096-023-04551-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Accumulating evidence has related the gut microbiota to colorectal cancer (CRC). Fusobacterium nucleatum has repeatedly been linked to colorectal tumorigenesis. The aim of this study was to investigate microbial composition in different sampling sites, in order to profile the microbial dynamics with CRC progression. Further, we characterized the tumor-associated F. nucleatum subspecies. Here, we conducted Illumina Miseq next-generation sequencing of the 16S rRNA V4 region in biopsy samples, to investigate microbiota alterations in cancer patients, patients with adenomatous polyp, and healthy controls in Norway. Further, Fusobacterium positive tumor biopsies were subjected to MinION nanopore sequencing of Fusobacterium-specific amplicons to characterize the Fusobacterium species and subspecies. We found enrichment of oral biofilm-associated bacteria, Fusobacterium, Gemella, Parvimonas, Granulicatella, Leptotrichia, Peptostreptococcus, Campylobacter, Selenomonas, Porphyromonas, and Prevotella in cancer patients compared to adenomatous polyp patients and control patients. Higher abundance of amplicon sequence variants (ASVs) classified as Phascolarctobacterium, Bacteroides vulgatus, Bacteroides plebeius, Bacteroides eggerthii, Tyzzerella, Desulfovibrio, Frisingicoccus, Eubacterium coprostanoligenes group, and Lachnospiraceae were identified in cancer and adenomatous polyp patients compared to healthy controls. F. nucleatum ssp. animalis was the dominating subspecies. F. nucleatum ssp. nucleatum, F. nucleatum ssp. vincentii, Fusobacterium pseudoperiodonticum, Fusobacterium necrophorum, and Fusobacterium gonidiaformans were identified in five samples. Several biofilm-associated bacteria were enriched at multiple sites in cancer patients. Another group of bacteria was enriched in both cancer and polyps, suggesting that they may have a role in polyp development and possibly early stages of CRC.
Collapse
|
32
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
33
|
Kudra A, Muszyński D, Sobocki BK, Atzeni A, Carbone L, Kaźmierczak-Siedlecka K, Połom K, Kalinowski L. Insights into oral microbiome and colorectal cancer - on the way of searching new perspectives. Front Cell Infect Microbiol 2023; 13:1159822. [PMID: 37124035 PMCID: PMC10130407 DOI: 10.3389/fcimb.2023.1159822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiome is a keystone polymicrobial community that coexist with human body in a beneficial relationship. These microorganisms enable the human body to maintain homeostasis and take part in mechanisms of defense against infection and in the absorption of nutrients. Even though microbiome is involved in physiologic processes that are beneficial to host health, it may also cause serious detrimental issues. Additionally, it has been proven that bacteria can migrate to other human body compartments and colonize them even although significant structural differences with the area of origin exist. Such migrations have been clearly observed when the causes of genesis and progression of colorectal cancer (CRC) have been investigated. It has been demonstrated that the oral microbiome is capable of penetrating into the large intestine and cause impairments leading to dysbiosis and stimulation of cancerogenic processes. The main actors of such events seem to be oral pathogenic bacteria belonging to the red and orange complex (regarding classification of bacteria in the context of periodontal diseases), such as Porphyromonas gingivalis and Fusobacterium nucleatum respectively, which are characterized by significant amount of cancerogenic virulence factors. Further examination of oral microbiome and its impact on CRC may be crucial on early detection of this disease and would allow its use as a precise non-invasive biomarker.
Collapse
Affiliation(s)
- Anna Kudra
- Scientific Circle of Studies Regarding Personalized Medicine Associated with Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Damian Muszyński
- Scientific Circle of Studies Regarding Personalized Medicine Associated with Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Alessandro Atzeni
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ludovico Carbone
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- *Correspondence: Karolina Kaźmierczak-Siedlecka,
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, Gdansk, Poland
| |
Collapse
|
34
|
Oral Microbiota as Novel Biomarkers for Colorectal Cancer Screening. Cancers (Basel) 2022; 15:cancers15010192. [PMID: 36612188 PMCID: PMC9818409 DOI: 10.3390/cancers15010192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alterations of the gut microbiome in cases of colorectal cancer (CRC) hint at the involvement of host-microbe interactions in the onset and progression of CRC and also, possibly, provide novel ways to detect and prevent CRC early. The aim of the present study was to evaluate whether the oral and fecal microbiomes of an individual can be suitable for CRC screening. Oral and fecal samples (n = 80) were gathered in Taleghani hospital, affiliated with Shahid Beheshti University of Medical Sciences, Tehran-Iran, from CRC stage 0 and I patients and healthy controls (HCs), who were screened for the first time. Microbial metagenomics assays were performed for studying microbiota profiles in all oral and fecal samples gathered. An abundance of top bacterial genera from both types of specimens (fecal and saliva samples) revealed a distinction between CRC patients and HCs. In saliva samples, the α diversity index was different between the microbiome of HCs and CRC patients, while β diversity showed a densely clustered microbiome in the HCs but a more dispersed pattern in CRC cases. The α and β diversity of fecal microbiota between HCs and CRC patients showed no statistically significant differences. Bifidobacterium was identified as a potential bacterial biomarker in CRC saliva samples, while Fusobacterium, Dialister, Catonella, Tennerella, Eubacterium-brachy-group, and Fretibacterium were ideal to distinguish HCs from CRC patients. One of the reasons for the heterogeneity of CRC may be the gastrointestinal (GI) tract microbiota, which can also cause systematic resistance to CRC. Moreover, an evaluation of saliva microbiota might offer a suitable screening test for the early detection of this malignancy, providing more accurate results than its fecal counterpart.
Collapse
|
35
|
Karaçam S, Tunçer S. Exploiting the Acidic Extracellular pH: Evaluation of Streptococcus salivarius M18 Postbiotics to Target Cancer Cells. Probiotics Antimicrob Proteins 2022; 14:995-1011. [PMID: 34080175 DOI: 10.1007/s12602-021-09806-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Previously, we showed that the growth, antibiotic resistance, and biofilm formation properties of the pathogens Pseudomonas aeruginosa and Klebsiella pneumonia were tremendously inhibited by the cell-free supernatant of the oral probiotic Streptococcus salivarius M18. These anti-pathogenic activities of the supernatant were more efficient under acidic conditions. The present approach takes advantage of the acidic nature of the tumor microenvironment to evaluate the effect of the S. salivarius M18 postbiotics on colon cancer cells. In both two-dimensional (2D) and three-dimensional (3D) cell culture models, S. salivarius M18 cell-free supernatant showed anti-cancer actions in the pH conditions mimicking the acidity of the tumor. The inhibitory effect was more prominent when the colon cancer cells have been treated with the cell-free supernatant obtained from the inulin incubated S. salivarius M18. The results of this study point out the potential of the S. salivarius M18 functional probiotic products to be used for targeting low pH environments including the unique acidic microenvironment of tumors.
Collapse
Affiliation(s)
- Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sinem Tunçer
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Department of Medical Services and Techniques, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| |
Collapse
|
36
|
Alasiri GA. Effect of gut microbiota on colorectal cancer progression and treatment. Saudi Med J 2022; 43:1289-1299. [PMID: 36517053 PMCID: PMC9994512 DOI: 10.15537/smj.2022.43.12.20220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/25/2022] [Indexed: 12/17/2023] Open
Abstract
Microbiota is a collection of bacteria, archaea, eukaryotes, bacteriophages, viruses, and fungi that cover human body surfaces and cavities. They characterize inside the body due to several factors such as diet, nutrition, xenobiotic substances, and microbial infections. Several studies have shown that gut microbiota can induce resistance against pathogens and regulate the immune system. In addition, their disruption is associated with several physiological and biochemical disorders, including inflammatory bowel disease (IBD), obesity, autoimmune diseases such as diabetes, hypertension, colon cancer, and cardiovascular disease. Colorectal cancer (CRC) is the third-deadliest cancer worldwide, accounting for approximately 900,000 deaths per year globally. Gut microbiota has been heavily linked to CRC incidence and prevention via bacterial metabolites, invasion, translocation, host's defense modulations, and bacterial-immune system interactions. In addition, it can influence the metabolism of chemical compounds such as drugs and xenobiotics to manipulate the treatment response in CRC patients.
Collapse
Affiliation(s)
- Glowi A. Alasiri
- From the Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
37
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
38
|
Smoking-induced microbial dysbiosis in health and disease. Clin Sci (Lond) 2022; 136:1371-1387. [PMID: 36156126 PMCID: PMC9527826 DOI: 10.1042/cs20220175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Smoking is associated with an increased risk of cancer, pulmonary and cardiovascular diseases, but the precise mechanisms by which such risk is mediated remain poorly understood. Additionally, smoking can impact the oral, nasal, oropharyngeal, lung and gut microbiome composition, function, and secreted molecule repertoire. Microbiome changes induced by smoking can bear direct consequences on smoking-related illnesses. Moreover, smoking-associated dysbiosis may modulate weight gain development following smoking cessation. Here, we review the implications of cigarette smoking on microbiome community structure and function. In addition, we highlight the potential impacts of microbial dysbiosis on smoking-related diseases. We discuss challenges in studying host–microbiome interactions in the context of smoking, such as the correlations with smoking-related disease severity versus causation and mechanism. In all, understanding the microbiome’s role in the pathophysiology of smoking-related diseases may promote the development of rational therapies for smoking- and smoking cessation-related disorders, as well as assist in smoking abstinence.
Collapse
|
39
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Aloizos G, Tsagarakis A, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Implication of gut microbiome in immunotherapy for colorectal cancer. World J Gastrointest Oncol 2022; 14:1665-1674. [PMID: 36187397 PMCID: PMC9516653 DOI: 10.4251/wjgo.v14.i9.1665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) constitutes the third most frequently reported malignancy in the male population and the second most common in women in the last two decades. Colon carcinogenesis is a complex, multifactorial event, resulting from genetic and epigenetic aberrations, the impact of environmental factors, as well as the disturbance of the gut microbial ecosystem. The relationship between the intestinal microbiome and carcinogenesis was relatively undervalued in the last decade. However, its remarkable effect on metabolic and immune functions on the host has been in the spotlight as of recent years. There is a strong relationship between gut microbiome dysbiosis, bowel pathogenicity and responsiveness to anti-cancer treatment; including immunotherapy. Modifications of bacteriome consistency are closely associated with the immunologic response to immunotherapeutic agents. This condition that implies the necessity of gut microbiome manipulation. Thus, creatingan optimal response for CRC patients to immunotherapeutic agents. In this paper, we will review the current literature observing how gut microbiota influence the response of immunotherapy on CRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | | | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
40
|
Mosterd CM, Hayfron-Benjamin CF, van den Born BJH, Maitland-van der Zee AH, Agyemang C, van Raalte DH. Ethnic disparities in the association between low-grade inflammation biomarkers and chronic kidney disease: The HELIUS Cohort Study. J Diabetes Complications 2022; 36:108238. [PMID: 35791984 DOI: 10.1016/j.jdiacomp.2022.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS Ethnic differences exist in the prevalence and progression of chronic kidney disease (CKD). However, underlying mechanisms remain unclear. It has been proposed that chronic low-grade inflammation plays an important role in CKD pathogenesis. In the current analysis, we study the association between systemic inflammatory biomarkers and CKD prevalence in different ethnic groups. METHODS We examined cross-sectional associations between biomarkers of low-grade inflammation, including serum high-sensitive (hs)-CRP, fibrinogen, and D-dimer, and CKD prevalence in different ethnic groups residing in Amsterdam, the Netherlands. We included 5740 participants (similar-sized Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish and Moroccan populations) aged 18 to 70 years of the Healthy Life in an Urban Setting study (HELIUS) cohort. RESULTS In the fully adjusted models, adjusted for ethnicity-specific cut-off values, elevated fibrinogen [odds ratio 2.50 (95 % confidence interval 1.10-5.78)] and D-dimer [2.99 (1.28-7.00)] were significantly associated with CKD in Dutch. In South-Asian Surinamese, a significant association with elevated D-dimer [2.66 (1.32-5.37)] was found. CONCLUSIONS Our study shows that there are both differences in biomarker levels and the association with CKD across ethnic groups. Future research to identify potential drivers of the differential associations and susceptibility of CKD among ethnic groups to reduce the CKD burden is necessary.
Collapse
Affiliation(s)
- Charlotte M Mosterd
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Charles F Hayfron-Benjamin
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Departments of Physiology and Anesthesiology/Critical Care, University of Ghana Medical School, Ghana; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | - Charles Agyemang
- Department of Public Health, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
44
|
Herremans KM, Riner AN, Cameron ME, McKinley KL, Triplett EW, Hughes SJ, Trevino JG. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. MICROBIOME 2022; 10:93. [PMID: 35701831 PMCID: PMC9199224 DOI: 10.1186/s40168-022-01262-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/23/2022] [Indexed: 05/09/2023]
Abstract
Pancreatic cancer is a deadly disease with limited diagnostic and treatment options. Not all populations are affected equally, as disparities exist in pancreatic cancer prevalence, treatment and outcomes. Recently, next-generation sequencing has facilitated a more comprehensive analysis of the human oral microbiome creating opportunity for its application in precision medicine. Oral microbial shifts occur in patients with pancreatic cancer, which may be appreciated years prior to their diagnosis. In addition, pathogenic bacteria common in the oral cavity have been found within pancreatic tumors. Despite these findings, much remains unknown about how or why the oral microbiome differs in patients with pancreatic cancer. As individuals develop, their oral microbiome reflects both their genotype and environmental influences. Genetics, race/ethnicity, smoking, socioeconomics and age affect the composition of the oral microbiota, which may ultimately play a role in pancreatic carcinogenesis. Multiple mechanisms have been proposed to explain the oral dysbiosis found in patients with pancreatic cancer though they have yet to be confirmed. With a better understanding of the interplay between the oral microbiome and pancreatic cancer, improved diagnostic and therapeutic approaches may be implemented to reduce healthcare disparities. Video Abstract.
Collapse
Affiliation(s)
- Kelly M. Herremans
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Miles E. Cameron
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Kelley L. McKinley
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, 1200 E Broad St, Richmond, VA 23298-0645 USA
| |
Collapse
|
45
|
Chen H, Ye C, Cai B, Zhang F, Wang X, Zhang J, Zhang Z, Guo Y, Yao Q. Berberine inhibits intestinal carcinogenesis by suppressing intestinal pro-inflammatory genes and oncogenic factors through modulating gut microbiota. BMC Cancer 2022; 22:566. [PMID: 35596224 PMCID: PMC9123795 DOI: 10.1186/s12885-022-09635-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The role of Berberine (BBR) in colorectal cancer (CRC) and gut microbiota has begun to appreciate. However, there was no direct evidence confirm that the gut microbiota regulated by BBR could inhibit CRC. This report investigated the effect of stool from BBR treated subjects and its effect on CRC. METHODS A mouse model for CRC was developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissue from affected mice were used to determine the efficacy of BBR against CRC. Stool samples were collected for the 16s rRNA gene sequencing and fecal microbiota transplantation (FMT). Finally, the mechanism of gut microbiota from BBR treated mice on CRC was explored using immunohistochemistry, RNA-Sequencing, quantitative RT-PCR, and western blot analyses. RESULTS BBR significantly reduced intestinal tumor development. The richness of gut microbiota were notably decreased by BBR. Specifically, the relative abundance of beneficial bacteria (Roseburia, Eubacterium, Ruminococcaceae, and Firmicutes_unclassified) was increased while the level of bacteria (Odoribacter, Muribaculum, Mucispirillum, and Parasutterella) was decreased by BBR treatment. FMT experiment determined that the mice fed with stool from BBR treated AOM/DSS mice demonstrated a relatively lower abundance of macroscopic polyps and a significantly lower expression of β-catenin, and PCNA in intestinal tissue than mice fed with stool from AOM/DSS mice. Mechanistically, intestinal tissue obtained from mice fed with stool from BBR treated AOM/DSS mice demonstrated a decreased expression of inflammatory cytokines including interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), C-C motif chemokine 1 (Ccl1), Ccl6, and C-X-C motif ligand (Cxcl9). In addition, the NF-κB expression was greatly suppressed in mice fed with stool from BBR treated AOM/DSS mice. Real-time PCR arrays revealed a down-regulation of genes involved in cell proliferation, angiogenesis, invasiveness, and metastasis in mice fed with stool from BBR treated AOM/DSS mice. CONCLUSIONS Stool obtained from BBR treated AOM/DSS mice was able to increase colon length while simultaneously decreasing the density of macroscopic polyps, cell proliferation, inflammatory modulators and the expression of NF-κB. Therefore, it was concluded that suppression of pro-inflammatory genes and carcinogens factors by modulating gut microbiota was an important pathway for BBR to inhibit tumor growth in conventional mice.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Chenxiao Ye
- Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Biyu Cai
- Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Fan Zhang
- Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Xuanying Wang
- Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Jin Zhang
- Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Zewei Zhang
- Department of Abdominal Surgical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, Hangzhou, Zhejiang, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 310003, Hangzhou, Zhejiang, China.
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China. .,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
47
|
Yu L, Zhao G, Wang L, Zhou X, Sun J, Li X, Zhu Y, He Y, Kofonikolas K, Bogaert D, Dunlop M, Zhu Y, Theodoratou E, Li X. A systematic review of microbial markers for risk prediction of colorectal neoplasia. Br J Cancer 2022; 126:1318-1328. [PMID: 35292756 PMCID: PMC9042911 DOI: 10.1038/s41416-022-01740-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. METHODS A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. RESULTS Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus, Actinomyces, Bifidobacterium and Roseburia), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9-485 cases) and lack of independent external validation (76.7%). CONCLUSIONS This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme.
Collapse
Affiliation(s)
- Lili Yu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Zhao
- Center for Disease Control and Prevention of Hangzhou, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxuan Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingshuang Zhu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | | | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yimin Zhu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
48
|
Idrissi Janati A, Karp I, Von Renteln D, Bouin M, Liu Y, Tran SD, Emami E. Investigation of Fusobacterium Nucleatum in saliva and colorectal mucosa: a pilot study. Sci Rep 2022; 12:5622. [PMID: 35379861 PMCID: PMC8979950 DOI: 10.1038/s41598-022-09587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
As evidence has been linking the oral bacterium Fusobacterium nucleatum (F. nucleatum) to colorectal tumorigenesis, we aimed to produce preliminary data on the expression of F. nucleatum in both oral and colorectal body sites in cases diagnosed with colorectal neoplasms (CRN) and CRN-free controls. We conducted a pilot hospital-based case-control study among patients who underwent colonoscopy examination. Saliva samples and biopsies from healthy colon mucosa from CRN cases and CRN-free controls, and from tumors in cases, were collected, as well as data on periodontal condition and potential CRN risk factors. A total of 22 CRN cases and 21 CRN-free controls participated in this study, with a total of 135 biospecimens collected and analyzed by qPCR for detection and quantification of F. nucleatum. The detection rate of F. nucleatum was 95% in saliva samples and 18% in colorectal mucosa specimens. The median (95% CI) salivary F. nucleatum level was 0.35 (0.15-0.82) and 0.12 (0.05-0.65) in case and control groups, respectively, with a Spearman correlation of 0.64 (95% CI 0.2-0.94) between F. nucleatum level in saliva and healthy colorectal mucosa in controls. Our study results support the need for and the feasibility of further studies that aim to investigate the association between oral and colorectal levels of F. nucleatum in CRN cases and controls.Clinical Relevance: Considering the current evidence linking F. nucleatum to colorectal carcinogenesis, investigating the role of oral F. nucleatum expression in its colorectal enrichment is crucial for colorectal cancer screening and prevention avenues.
Collapse
Affiliation(s)
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Von Renteln
- Department of Gastroenterology, University of Montreal Hospital Centre, Montreal, QC, Canada
| | - Mickael Bouin
- Department of Gastroenterology, University of Montreal Hospital Centre, Montreal, QC, Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Elham Emami
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
49
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
50
|
Petrick JL, Wilkinson JE, Michaud DS, Cai Q, Gerlovin H, Signorello LB, Wolpin BM, Ruiz-Narváez EA, Long J, Yang Y, Johnson WE, Shu XO, Huttenhower C, Palmer JR. The oral microbiome in relation to pancreatic cancer risk in African Americans. Br J Cancer 2022; 126:287-296. [PMID: 34718358 PMCID: PMC8770575 DOI: 10.1038/s41416-021-01578-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND African Americans have the highest pancreatic cancer incidence of any racial/ethnic group in the United States. The oral microbiome was associated with pancreatic cancer risk in a recent study, but no such studies have been conducted in African Americans. Poor oral health, which can be a cause or effect of microbial populations, was associated with an increased risk of pancreatic cancer in a single study of African Americans. METHODS We prospectively investigated the oral microbiome in relation to pancreatic cancer risk among 122 African-American pancreatic cancer cases and 354 controls. DNA was extracted from oral wash samples for metagenomic shotgun sequencing. Alpha and beta diversity of the microbial profiles were calculated. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between microbes and pancreatic cancer risk. RESULTS No associations were observed with alpha or beta diversity, and no individual microbial taxa were differentially abundant between cases and control, after accounting for multiple comparisons. Among never smokers, there were elevated ORs for known oral pathogens: Porphyromonas gingivalis (OR = 1.69, 95% CI: 0.80-3.56), Prevotella intermedia (OR = 1.40, 95% CI: 0.69-2.85), and Tannerella forsythia (OR = 1.36, 95% CI: 0.66-2.77). CONCLUSIONS Previously reported associations between oral taxa and pancreatic cancer were not present in this African-American population overall.
Collapse
Affiliation(s)
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hanna Gerlovin
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Lisa B Signorello
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Evan Johnson
- Department of Medicine, Division of Computational Biomedicine, Boston University, Boston, MA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA.
| |
Collapse
|