1
|
Yu H, Cui Y, Guo F, Zhu Y, Zhang X, Shang D, Dong D, Xiang H. Vanin1 (VNN1) in chronic diseases: Future directions for targeted therapy. Eur J Pharmacol 2024; 962:176220. [PMID: 38042463 DOI: 10.1016/j.ejphar.2023.176220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Vanin1 (VNN1) is an exogenous enzyme with pantetheinase activity that mainly exerts physiological functions through enzyme catalysis products, including pantothenic acid and cysteamine. In recent years, the crosstalk between VNN1 and metabolism and oxidative stress has attracted much attention. As a result of the ability of VNN1 to affect multiple metabolic pathways and oxidative stress to exacerbate or alleviate pathological processes, it has become a key component of disease progression. This review discusses the functions of VNN1 in glucolipid metabolism, cysteamine metabolism, and glutathione metabolism to provide perspectives on VNN1-targeted therapy for chronic diseases.
Collapse
Affiliation(s)
- Hao Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, 116011, China; College of Pharmacy, Dalian Medical University, 116044, China
| | - Yuying Cui
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - YuTong Zhu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaonan Zhang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China; Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Zhai G, Yang L, Luo Q, Wu K, Zhao Y, Wang F. Serum phosphopeptide profiling for colorectal cancer diagnosis using liquid chromatography-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9316. [PMID: 35416361 DOI: 10.1002/rcm.9316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE The identification and evaluation of novel biomarkers are essential to clinical diagnosis and prognosis of colorectal cancer (CRC). Serum phosphopeptides have been recognized as a potential signature pool for cancers; therefore, we aim to profile the expression of serum phosphopeptides and to evaluate their feasibility in CRC diagnosis. METHODS We conducted the characterization and absolute quantification of endogenous phosphopeptides in sera using liquid chromatography-mass spectrometry analysis in combination with enrichment of phosphopeptides by ZrAs-Fe3 O4 @SiO2 nanoparticles and use of deuterium-labeled standards. Differentially expressed analysis of four phosphopeptides was performed, generating a two-phosphopeptide-based biomarker, LF3-4 , by logistic regression analysis, where LF3-4 is equal to (5.85 - 5.13 × [F3] - 3.57 × [F4]), and [F3] and [F4] are the concentration of phosphopeptides DpSGEGDFLAEGGGVR and ADpSGEGDFLAEGGGVR in sera, respectively. RESULTS The LF3-4 values showed significant difference in CRC cases compared with controls, and yielded a specificity of 100%, leading to correct classification of 56 (93%) out of 60 CRC patients, including 12 (92.3%) of 13 CRC cases in stage I. Double-blind validation showed that 97.5% of CRC cases were discriminated accurately. CONCLUSIONS The LF3-4 value was firstly verified to be a potential biomarker for CRC diagnosis, and may expand our view in underlying mechanisms for CRC.
Collapse
Affiliation(s)
- Guijin Zhai
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Liping Yang
- Cancer Research Centre, Tumour Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Lin S, Xu H, Pang M, Zhou X, Pan Y, Zhang L, Guan X, Wang X, Lin B, Tian R, Chen K, Zhang X, Yang Z, Ji F, Huang Y, Wei W, Gong W, Ren J, Wang JM, Guo M, Huang J. CpG Site-Specific Methylation-Modulated Divergent Expression of PRSS3 Transcript Variants Facilitates Nongenetic Intratumor Heterogeneity in Human Hepatocellular Carcinoma. Front Oncol 2022; 12:831268. [PMID: 35480112 PMCID: PMC9035874 DOI: 10.3389/fonc.2022.831268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC.MethodsThe expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing.ResultsPRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low) to very high (PRSS3High) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow) and hypomethylated high-expression (umPRSS3-SVHigh) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome.ConclusionsThese results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.
Collapse
Affiliation(s)
- Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hanli Xu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Mengdi Pang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaomeng Zhou
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lishu Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Guan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyue Wang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Bonan Lin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rongmeng Tian
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Keqiang Chen
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaochen Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zijiang Yang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fengmin Ji
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yingying Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Jianke Ren
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Ming Wang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| | - Jiaqiang Huang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| |
Collapse
|
4
|
Fu JD, Gao CH, Li SW, Tian Y, Li SC, Wei YE, Xian LW. Atractylenolide III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein. Acta Cir Bras 2021; 36:e360802. [PMID: 34644770 PMCID: PMC8516425 DOI: 10.1590/acb360802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. METHODS We constructed a mouse sepsis model through cecal ligation and puncture. These mice were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson's staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung tissue were measured via enzyme-linked immunosorbent assay (ELISA). RESULTS Atr III-H did not only reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein O1 (FoxO1) expression. CONCLUSIONS Atr III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein.
Collapse
Affiliation(s)
- Ji-ding Fu
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Chun-hui Gao
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Shi-wei Li
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Yan Tian
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Shi-cheng Li
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Yi-er Wei
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Le-wu Xian
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| |
Collapse
|
5
|
Beklen H, Yildirim E, Kori M, Turanli B, Arga KY. Systems-level biomarkers identification and drug repositioning in colorectal cancer. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
Beklen H, Yildirim E, Kori M, Turanli B, Arga KY. Systems-level biomarkers identification and drug repositioning in colorectal cancer. World J Gastrointest Oncol 2021; 13:638-661. [PMID: 34322194 PMCID: PMC8299930 DOI: 10.4251/wjgo.v13.i7.638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most commonly diagnosed fatal cancer in both women and men worldwide. CRC ranked second in mortality and third in incidence in 2020. It is difficult to diagnose CRC at an early stage as there are no clinical symptoms. Despite advances in molecular biology, only a limited number of biomarkers have been translated into routine clinical practice to predict risk, prognosis and response to treatment. In the last decades, systems biology approaches at the omics level have gained importance. Over the years, several biomarkers for CRC have been discovered in terms of disease diagnosis and prognosis. On the other hand, a few drugs are being developed and used in clinics for the treatment of CRC. However, the development of new drugs is very costly and time-consuming as the research and development takes about 10 years and more than $1 billion. Therefore, drug repositioning (DR) could save time and money by establishing new indications for existing drugs. In this review, we aim to provide an overview of biomarkers for the diagnosis and prognosis of CRC from the systems biology perspective and insights into DR approaches for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Hande Beklen
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Medi Kori
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Beste Turanli
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| |
Collapse
|
7
|
Singh S, Li H. Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA Sequencing. RNA Biol 2021; 18:254-267. [PMID: 34142643 DOI: 10.1080/15476286.2021.1940047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric RNAs are gaining more and more attention as they have broad implications in both cancer and normal physiology. To date, over 40 chimeric RNA prediction methods have been developed to facilitate their identification from RNA sequencing data. However, a limited number of studies have been conducted to compare the performance of these tools; additionally, previous studies have become outdated as more software tools have been developed within the last three years. In this study, we benchmarked 16 chimeric RNA prediction software, including seven top performers in previous benchmarking studies, and nine that were recently developed. We used two simulated and two real RNA-Seq datasets, compared the 16 tools for their sensitivity, positive prediction value (PPV), F-measure, and also documented the computational requirements (time and memory). We noticed that none of the tools are inclusive, and their performance varies depending on the dataset and objects. To increase the detection of true positive events, we also evaluated the pair-wise combination of these methods to suggest the best combination for sensitivity and F-measure. In addition, we compared the performance of the tools for the identification of three classes (read-through, inter-chromosomal and intra-others) of chimeric RNAs. Finally, we performed TOPSIS analyses and ranked the weighted performance of the 16 tools.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Landscape of Chimeric RNAs in Non-Cancerous Cells. Genes (Basel) 2021; 12:genes12040466. [PMID: 33805149 PMCID: PMC8064075 DOI: 10.3390/genes12040466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.
Collapse
|
9
|
Singh S, Qin F, Kumar S, Elfman J, Lin E, Pham LP, Yang A, Li H. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Res 2020; 48:1764-1778. [PMID: 31965184 PMCID: PMC7038929 DOI: 10.1093/nar/gkz1223] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Chimeric RNAs and their encoded proteins have been traditionally viewed as unique features of neoplasia, and have been used as biomarkers and therapeutic targets for multiple cancers. Recent studies have demonstrated that chimeric RNAs also exist in non-cancerous cells and tissues, although large-scale, genome-wide studies of chimeric RNAs in non-diseased tissues have been scarce. Here, we explored the landscape of chimeric RNAs in 9495 non-diseased human tissue samples of 53 different tissues from the GTEx project. Further, we established means for classifying chimeric RNAs, and observed enrichment for particular classifications as more stringent filters are applied. We experimentally validated a subset of chimeric RNAs from each classification and demonstrated functional relevance of two chimeric RNAs in non-cancerous cells. Importantly, our list of chimeric RNAs in non-diseased tissues overlaps with some entries in several cancer fusion databases, raising concerns for some annotations. The data from this study provides a large repository of chimeric RNAs present in non-diseased tissues, which can be used as a control dataset to facilitate the identification of true cancer-specific chimeras.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shailesh Kumar
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Justin Elfman
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Lin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Amy Yang
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Abstract
Chimeric RNAs as well as their fused protein products have therapeutic applications ranging from diagnostics to being used as therapeutic target. Many algorithms have been developed to identify chimeric RNAs, however, identification and validation of fused protein product of the chimeric RNA is still an emerging field. These chimeric proteins can be validated by searching and identifying them in publicly available proteomics datasets. Here we describe the detailed steps for (1) downloading and processing publicly available proteomics datasets, (2) developing fusion peptide database by performing in silico tryptic digestion of chimeric proteins, and (3) software used to identify chimeric peptides in the proteomics data.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Lin Y, Gao Y, Ma Z, Li Z, Tang C, Qin X, Zhang Z, Wang G, Du L, Li M. Bioluminescent Probe for Detection of Starvation-Induced Pantetheinase Upregulation. Anal Chem 2018; 90:9545-9550. [PMID: 29976064 DOI: 10.1021/acs.analchem.8b02266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pantetheinase, a glycosylphosphatidylinositol (GPI) anchored enzyme, overexpresses in intestine, liver, and kidney with various biological functions such as its linkage to the inflammation and some metabolic diseases. It can hydrolyze pantetheine to cysteamine, an antioxidant, and pantothenic acid (Vitamin B5) that is an essential component of coenzyme A (CoA). Until now, very few analytic methods were developed for this enzyme, hampering the further investigation of its biological functions. In this work, we report the design, synthesis, and biological examination of a highly sensitive bioluminogenic probe for pantetheinase with a limit of detection of 1.14 ng/mL. Furthermore, animal experiments validated that our probe can be applied to detect the endogenous pantetheinase activity. To the best of our knowledge, this is the first bioluminogenic probe achieving the detection of pantetheinase level in vivo.
Collapse
Affiliation(s)
- Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Yuqi Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Chunchao Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Guankai Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China.,State Key Laboratory of Microbial Technology , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
12
|
Jang JE, Kim HP, Han SW, Jang H, Lee SH, Song SH, Bang D, Kim TY. NFATC3-PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines. Cancer Res Treat 2018; 51:391-401. [PMID: 29909608 PMCID: PMC6333966 DOI: 10.4143/crt.2018.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer (CRC) lines. Materials and Methods We performed paired-end RNA sequencing of 28 CRC cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. Results One thousand three hundred eighty FT candidates were detected through bioinformatics filtering. We selected six candidate FTs, including four inter-chromosomal and two intrachromosomal FTs and each FT was found in at least one of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3–PLA2G15 FT was found in two. Knockdown of NFATC3–PLA2G15 using siRNA reduced mRNA expression of epithelial–mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal–epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3–PLA2G15 FT. The NFATC3–PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. Conclusion These results suggest that that NFATC3–PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.
Collapse
Affiliation(s)
- Jee-Eun Jang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hoon Jang
- Department of Chemistry, College of Science, Yonsei University, Seoul, Korea
| | - Si-Hyun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, College of Science, Yonsei University, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
Gao M, Zhong A, Patel N, Alur C, Vyas D. High throughput RNA sequencing utility for diagnosis and prognosis in colon diseases. World J Gastroenterol 2017; 23:2819-2825. [PMID: 28522900 PMCID: PMC5413777 DOI: 10.3748/wjg.v23.i16.2819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/16/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
RNA sequencing is the use of high throughput next generation sequencing technology to survey, characterize, and quantify the transcriptome of a genome. RNA sequencing has been used to analyze the pathogenesis of several malignancies such melanoma, lung cancer, and colorectal cancer. RNA sequencing can identify differential expression of genes (DEG's), mutated genes, fusion genes, and gene isoforms in disease states. RNA sequencing has been used in the investigation of several colorectal diseases such as colorectal cancer, inflammatory bowel disease (ulcerative colitis and Crohn's disease), and irritable bowel syndrome.
Collapse
|
14
|
Hoff AM, Johannessen B, Alagaratnam S, Zhao S, Nome T, Løvf M, Bakken AC, Hektoen M, Sveen A, Lothe RA, Skotheim RI. Novel RNA variants in colorectal cancers. Oncotarget 2017; 6:36587-602. [PMID: 26474385 PMCID: PMC4742197 DOI: 10.18632/oncotarget.5500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 01/03/2023] Open
Abstract
With an annual estimated incidence of 1.4 million, and a five-year survival rate of 60%, colorectal cancer (CRC) is a major clinical burden. To identify novel RNA variants in CRC, we analyzed exon-level microarray expression data from a cohort of 202 CRCs. We nominated 25 genes with increased expression of their 3′ parts in at least one cancer sample each. To efficiently investigate underlying transcript structures, we developed an approach using rapid amplification of cDNA ends followed by high throughput sequencing (RACE-seq). RACE products from the targeted genes in 23 CRC samples were pooled together and sequenced. We identified VWA2-TCF7L2, DHX35-BPIFA2 and CASZ1-MASP2 as private fusion events, and novel transcript structures for 17 of the 23 other candidate genes. The high-throughput approach facilitated identification of CRC specific RNA variants. These include a recurrent read-through fusion transcript between KLK8 and KLK7, and a splice variant of S100A2. Both of these were overrepresented in CRC tissue and cell lines from external RNA-seq datasets.
Collapse
Affiliation(s)
- Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sharmini Alagaratnam
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sen Zhao
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marthe Løvf
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Anne C Bakken
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Merete Hektoen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway.,KG Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Li H, Zhang H, Lu G, Li Q, Gu J, Song Y, Gao S, Ding Y. Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol Lett 2016; 12:2329-2336. [PMID: 27698796 PMCID: PMC5038387 DOI: 10.3892/ol.2016.5027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/22/2016] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC.
Collapse
Affiliation(s)
- Hong Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Huichao Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Gang Lu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Qingjing Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Jifeng Gu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yuan Song
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Shejun Gao
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yawen Ding
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| |
Collapse
|
16
|
Lu Y, Wang X, Sun X, Feng W, Guo H, Tang C, Deng A, Bao Y. WISP3 is highly expressed in a subset of colorectal carcinomas with a better prognosis. Onco Targets Ther 2016; 9:287-93. [PMID: 26834488 PMCID: PMC4716761 DOI: 10.2147/ott.s97025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Outlier genes with marked overexpression in subsets of cancers like ERBB2 have potential for the identification of gene classifiers and therapeutic targets for the appropriate subpopulation. In this study, using the cancer outlier profile analysis strategy, we identified WNT1-inducible-signaling pathway protein 3 (WISP3) as an outlier gene that is highly expressed in a subset of colorectal cancers (CRCs) from The Cancer Genome Atlas dataset. A meta-cancer outlier profile analysis and immunohistochemistry experiment to validate the outlier expression model of WISP3 in CRC was then performed. Our immunohistochemical results indicated that WISP3 was more frequently seen in the small tumors, and there was a significant association between its overexpression with a good prognosis. Furthermore, in the multivariable model, WISP3 outlier expression retained significance for overall survival. In summary, in this study, we identified an outlier gene WISP3 overexpressed in a subset of CRC having less aggressive characteristics and a better prognosis. We suggest WISP3 may provide more accurate and precise information regarding CRC population classification.
Collapse
Affiliation(s)
| | - Xiang Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| | - Xinrong Sun
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| | - Wenming Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| | - Huihui Guo
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| | - Chengwu Tang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| | - Anmei Deng
- Department of Laboratory Diagnostic, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Ying Bao
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou
| |
Collapse
|
17
|
Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2015; 35:2413-27. [PMID: 26300000 DOI: 10.1038/onc.2015.318] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.
Collapse
Affiliation(s)
- A Sveen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - R A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Qin LR, Zhou Y, Deng XF, Li HT, Zang N, He M. Identification of genes related to hepatocellular carcinoma metastasis by a combined transcriptomics and proteomics approach. Shijie Huaren Xiaohua Zazhi 2015; 23:2050-2057. [DOI: 10.11569/wcjd.v23.i13.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screening key genes related to hepatocellular carcinoma (HCC) metastasis by high-throughput transcriptomics sequencing and serum proteomics.
METHODS: Differentially expressed genes between liver cancer cells Smmc-7721 and normal liver cells L-02 were analyzed by Ion Proton™ high-throughput sequencing. Bioinformatics methods were used to perform GO annotation, clustering and enrichment analysis. Ten serum samples from HCC patients and 10 normal serum samples were recruited to detect the differential protein expression by isobaric tags for relative and absolute quantitation (iTRAQ) and matrix-assisted laser desorption/ionization tandem time of flight mass spectrometry (MALDI-TOF/MS). The transcriptomics data and serum proteomics data were analyzed together to screen key genes related to HCC metastasis. Then, a screened key gene was verified by immunohistochemistry in 76 HCC and adjacent tissues.
RESULTS: A total of 618 differentially expressed genes (DEGs) in liver cancer cells were identified by transcriptome sequencing, and the gene functions were enriched in 14 terms, including metastasis process, transcription and REDOX process, among which metastasis process owned the most DEGs [15.05% (93/618)]. The proteomics data showed that a total of 69 differentially expressed proteins in HCC were detected, including 33 up-regulated and 36 down-regulated ones. Combination analysis found three common factors in transcriptomics and proteomics, among which heat shock protein 90 AA1 (HSP90AA1) was up-regulated in HCC and presented the most significant ratio. According to the immunohistochemical results, the strongly positive rates of HSP90α in HCC with portal vein metastasis and without were 66.7% (16/24) and 25% (13/52), respectively (P < 0.005). HSP90α was overexpressed in HCC with portal vein metastasis.
CONCLUSION: Transcriptomics and proteomics analysis revealed that HSP90AA1 might be a key gene related to HCC metastasis.
Collapse
|