1
|
Cao LM, Qiu YZ, Li ZZ, Wang GR, Xiao Y, Luo HY, Liu B, Wu Q, Bu LL. Extracellular Vesicles: Hermes between cancers and lymph nodes. Cancer Lett 2025; 623:217735. [PMID: 40268131 DOI: 10.1016/j.canlet.2025.217735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer is one of the main causes of death and a major obstacle to increasing life expectancy in all countries of the world. Lymph node metastasis (LNM) of in cancer patients indicates poor prognosis and it is an important indication to determine the therapeutic regime. Therefore, more attention should be given to the molecular mechanics of tumor lymphangiogenesis and LNM. Extracellular vesicles (EVs) are nanoscale cargo-bearing membrane vesicles that can serve as key mediators for the intercellular communication. Like Hermes, the messenger of the Greek gods, EVs can be secreted by tumor cells to regulate the LNM process. Many evidence has proved the clinical correlation between EVs and LNM in various cancer types. EVs plays an active role in the process of metastasis by expressing its connotative molecules, including proteins, nucleic acids, and metabolites. However, the clear role of EVs in the process of cancer LNM has not been thoroughly studied yet. In this review, we will summarize the clinical and mechanical findings of EVs regulating role on cancer LNM, and discuss the advanced modification of the research proposal. We propose the "PUMP" principle of EVs in LNM, including Preparation, Unleash, Migration, and Planting.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Zhong Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Han-Yue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Yang X, Wu X, Hao X, Li T, Guo H, Yang R. Unleashing the therapeutic potential of tumor-draining lymph nodes: spotlight on bladder cancer. J Transl Med 2025; 23:489. [PMID: 40301883 PMCID: PMC12042586 DOI: 10.1186/s12967-024-05864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 05/01/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are often involved during the metastasis of bladder cancer (BC), which is associated with a poor prognosis. Recent studies have shown that TDLNs are a major source of host anti-tumor immunity, which can impede tumor progression and favor tumor immunotherapy. However, during tumor progression, various tumor-derived mediators modulate the TDLN microenvironment, impairing their protective function. Ultimately, TDLNs provide the soil for the proliferation and dissemination of tumor cells. Therefore, surgical removal of TDLNs is commonly recommended in various solid tumors to prevent metastasis, but this poses significant challenges for leveraging TDLNs in immunotherapy. Additionally, lymph node dissection (LND) has not shown survival benefits in some tumors. Hence, the decision to remove TDLNs in oncological treatment needs to be reconsidered. Herein, we spotlight the TDLNs of BC and introduce how BC cells modulate stromal cells and immune cells to shape an immunosuppressive TDLN microenvironment for BC progression. We summarize the existing therapeutic strategies to reinvigorate anti-tumor immunity in TDLNs. Furthermore, we discuss whether to preserve TDLNs and the role of LND during oncological treatment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuyang Hao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Sun H, Zhang Y, Wang F, Wang Z, Zhang Y, Chen Y, Wang L, Zhou J. SORBS3-β suppresses lymph node metastasis in cervical cancer by promoting the ubiquitination of β-catenin. J Transl Med 2025; 23:406. [PMID: 40200335 PMCID: PMC11978191 DOI: 10.1186/s12967-025-06409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) is a prevalent gynecological malignancy, with lymph node metastasis (LNM) serving as a critical factor influencing patient prognosis. SORBS3, an adaptor protein with two known isoforms (α and β), has been implicated in tumor suppression, but the specific roles of its isoforms in CC metastasis remains unexplored. This study aimed to identify the functional isoform of SORBS3 driving LNM suppression and elucidate its mechanisms. METHODS Proteomic analysis of clinical CC tissues and metastatic lymph nodes revealed progressive downregulation of SORBS3. The mRNA and protein levels of SORBS3-α and SORBS3-β were subsequently examined in normal cervical epithelial and CC cell lines. Functional studies, including siRNA-mediated knockdown of SORBS3-α, lentiviral-mediated overexpression and knockdown of SORBS3-β, Transwell migration, lymphangiogenesis assays, and in vivo footpad xenograft models, were conducted to evaluate the role of SORBS3 isoforms in LNM. SORBS3 DNA methylation mechanisms were analyzed by MSP and Targeted Bisulfite sequencing. Mechanistic insights were derived from Co-IP, ubiquitination assays, RNA-seq, and LC-MS/MS. RESULTS Knockdown of SORBS3-α had no effect on CC cell migration, invasion, or lymphangiogenesis. In contrast, SORBS3-β overexpression markedly suppressed CC cell invasion, lymphangiogenesis, and adhesion to lymphatic endothelial cells, whereas its knockdown significantly promoted these phenotypes. Promoter hypermethylation driven by DNMT-1 inhibited SORBS3 expression in CC. SORBS3- β directly binds to β-catenin and recruits UBA1 to enhance its ubiquitination and degradation, thereby inhibiting Wnt/β-catenin signaling. This inhibition reduced accumulation of β-catenin and downregulated the pro-lymphangiogenic gene VEGFC, ultimately suppressing lymphangiogenesis and LNM. In vivo, SORBS3-β overexpression attenuated lymphatic metastasis in nude mice, whereas its knockdown promoted metastasis. CONCLUSION SORBS3-β is the major isoform of SORBS3 that inhibits lymphatic metastasis of cervical cancer by degrading β-catenin through UBA1-mediated ubiquitination, blocking Wnt/β-catenin signaling and downstream lymphangiogenesis pathways, thereby inhibiting lymphatic metastasis. Our findings elucidate key molecular mechanisms underlying cervical cancer lymph node metastasis, offering potential therapeutic targets.metastasis.
Collapse
Affiliation(s)
- Huating Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yinghui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zizhao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuhong Zhang
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou Municipal Hospital, Nanjing Medical University, No. 26, Daoqian Street, Suzhou, 215002, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Li Wang
- Changzhou Maternal and Child Health Care Hospital, Changzhou, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Yang LX, Li H, Cheng ZH, Sun HY, Huang JP, Li ZP, Li XX, Hu ZG, Wang J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int J Mol Sci 2025; 26:3055. [PMID: 40243658 PMCID: PMC11988403 DOI: 10.3390/ijms26073055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNAs that largely lack the capacity to encode proteins. They have garnered significant attention due to their central regulatory functions across numerous cellular and physiological processes at transcriptional, post-transcriptional, and translational levels. Over the past decade, ncRNA-based therapies have gained considerable attention in the diagnosis, treatment, and prevention of diseases, and many studies have revealed a significant relationship between ncRNAs and diseases. At the same time, due to their tissue specificity, an increasing number of projects have focused on the application of ncRNAs as biomarkers in diseases, as well as the design and development of novel ncRNA-based vaccines and therapies for clinical use. These ncRNAs may also drive research into the potential molecular mechanisms and complex pathogenesis of related diseases. However, new biomarkers need to be validated for their clinical effectiveness. Additionally, to produce safe and stable RNA products, factors such as purity, precise dosage, and effective delivery methods must be ensured to achieve optimal bioactivity. These challenges remain key issues in the clinical application of ncRNAs. This review summarizes the prospects of ncRNAs as potential biomarkers, as well as the current research status and clinical applications of ncRNAs in therapies and vaccines, and discusses the challenges and expectations of ncRNAs in disease diagnosis and drug therapy.
Collapse
Affiliation(s)
- Lu-Xuan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Hui Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - He-Yue Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Jie-Ping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Peng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Xin-Xin Li
- Institute of Scientific Research, Guangxi University, Nanning 530004, China;
| | - Zhi-Gang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| |
Collapse
|
5
|
Sun Y, Qian Y, Qiu L, Zhu X, Ning H, Pang L, Niu X, Liu Y, Zhou X, Chen G, Zhai W, Gao Y. A novel peptide targeting CCR7 inhibits tumor cell lymph node metastasis. Cancer Immunol Immunother 2025; 74:153. [PMID: 40105966 PMCID: PMC11923353 DOI: 10.1007/s00262-025-03995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Lymph nodes are the most common metastasis sites for tumor cells, which are intimately linked to patient prognosis. It has been reported that cancer cells can upregulate CC Chemokine Receptor 7 (CCR7) expression and hijack its normal functions, enabling them to migrate along the gradient of CCL19 and CCL21 toward the lymph nodes and colonies as the initial stage of distant metastasis. In tumor patients, the metastatic tumor in the lymph nodes exhibited higher expression of CCR7, as well as inhibitory immune checkpoints PD-1, LAG-3, and TIM-3 compared to the primary tumors with the analysis of TCGA and GEO databases. Also, in mouse tumor model, tumor cells with elevated CCR7 expression were more susceptible to develop popliteal lymph node metastasis. Subsequently, we successfully identified a CCR7 binding peptide TC6 by phage display biopanning, which specifically blocks the interaction of CCR7/CCL19 and CCR7/CCL21. Further, the D-amino acids were introduced to substitute the N- and C-terminus of TC6 peptide to obtain the proteolysis-resistant TC6-D3 peptide, which decreased tumor cell migration in vitro via ERK1/2 pathway and inhibited tumor growth and lymph nodes metastasis in vivo, as well as effectively restored T cells cytotoxicity in both primary tumors and lymph nodes. In conclusion, CCR7 promoted tumor cell metastasis to lymph node and inhibited the anti-tumor immune responses in lymph nodes. Specific blockade of the CCR7 pathway with TC6-D3 peptide can significantly reduce lymph node tumor burden, promoting CD8+ T cell infiltration in primary tumors, meanwhile, enhancing anti-tumor immune responses in lymph nodes.
Collapse
Affiliation(s)
- Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xueqin Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
8
|
Dou X, Feng C, Li J, Jiang E, Shang Z. Extracellular vesicle-mediated crosstalk in tumor microenvironment dominates tumor fate. Trends Cell Biol 2025; 35:230-247. [PMID: 39327161 DOI: 10.1016/j.tcb.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous system containing various cells cooperating and competing with each other. Extracellular vesicles (EVs) differing in form and content are important intercellular communication mediators in the TME. Previous studies have focused on the cargoes within EVs rather than on the donors from which they originate and the recipient cells that exert their effects. Therefore, we provide here a detailed overview of the important roles of EVs in shaping tumor fate, highlighting their various mechanisms of intercellular dialog within the TME. We evaluate recent advances and also raise unresolved challenges to provide new ideas for clinical treatment strategies using EVs.
Collapse
Affiliation(s)
- Xinyu Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Chunyu Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Ji Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China
| | - Erhui Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China.
| |
Collapse
|
9
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Wubuli R, Niyazi M, Han L, Aierken M, Fan L. Transcription factor A, mitochondrial promotes lymph node metastasis and lymphangiogenesis in epithelial ovarian carcinoma. Open Med (Wars) 2025; 20:20241089. [PMID: 39927160 PMCID: PMC11806237 DOI: 10.1515/med-2024-1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 02/11/2025] Open
Abstract
Background Mitochondria play a central, multifunctional role in cancer progression. However, the mechanism of mitochondrial genes in epithelial ovarian cancer (EOC) remains unclear. This study aimed to screen candidate mitochondrial genes in EOC and then to investigate their biological functions and potential mechanisms. Methods We downloaded Gene Expression Omnibus RNA-seq profiles and identified mitochondrial differentially expressed genes in EOC by bioinformatics analysis. Transcription factor A, mitochondrial (TFAM) expression in EOC tissues was determined by immunohistochemistry. In vitro assays were applied to clarify TFAM function in EOC. Results The bioinformatics analysis results showed that the mitochondrial genes TFAM, HSPE1, and CYC1 were significantly upregulated (P < 0.05) in EOC, and their upregulation was associated with a poor prognosis. TFAM was highly expressed in EOC tissues and significantly associated with clinical stage (P = 0.004), lymph node metastasis (P = 0.043), and overall survival (P < 0.05). Silencing TFAM in EOC cells significantly inhibited cell proliferation and migration and induced cell apoptosis (P < 0.05). Conclusion TFAM promotes EOC cell secretion of VEGF-A, VEGF-C, VEGF-D, lymphangiogenesis, and EOC lymph node metastasis. Our results may provide new insights into the biological functions and potential mechanisms of TFAM in EOC, which might provide new targets for EOC diagnosis and treatment.
Collapse
Affiliation(s)
| | - Mayinuer Niyazi
- Graduate School of Xinjiang Medical University, Urumqi, 830001, China
| | - Lili Han
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| | - Mayinuer Aierken
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| | - Lingling Fan
- Department of Gynecology, People’s Hospital of Xinjiang Uygur Autonomous Region,
Urumqi, China
| |
Collapse
|
11
|
Kasiński D, Szeliski K, Drewa T, Pokrywczyńska M. Extracellular vesicles-a new player in the development of urinary bladder cancer. Ther Adv Med Oncol 2025; 17:17588359241297529. [PMID: 39850919 PMCID: PMC11755519 DOI: 10.1177/17588359241297529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 01/25/2025] Open
Abstract
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Damian Kasiński
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
12
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
13
|
Zang W, Yang Y, Chen J, Mao Q, Xue W, Hu Y. The MIR181A2HG/miR-5680/VCAN-CD44 Axis Regulates Gastric Cancer Lymph Node Metastasis by Promoting M2 Macrophage Polarization. Cancer Med 2025; 14:e70600. [PMID: 39823128 PMCID: PMC11739459 DOI: 10.1002/cam4.70600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis. METHODS The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation. Both in vitro and in vivo functional studies revealed that MIR181A2HG facilitates lymphangiogenesis and lymphatic metastasis. Techniques such as immunofluorescence, immunohistochemistry, qRT-PCR, ELISA, CHIP, RNA-pulldown, luciferase reporter assay, and Co-IP were employed to investigate the mechanism of MIR181A2HG in LNs metastasis of GC. RESULTS MIR181A2HG overexpressed in GC signifies an unfavorable prognosis and drives M2 polarization of TAMs enhancing lymphangiogenesis. Mechanistically, MIR181A2HG/miR-5680 axis as a novel ceRNA regulatory axis to upregulate versican (VCAN). On one hand, VCAN interacts with CD44 receptors on the surface of TAMs through paracrine secretion, promoting M2 macrophage polarization and subsequently enhancing the secretion of VEGF-C, ultimately facilitating lymphangiogenesis. On the other hand, VCAN binds to CD44 receptors on the surface of GC cells through autocrine secretion, activating the Hippo pathway and upregulating SP1, thereby promoting the transcription of MIR181A2HG and establishing a feedback loop driving lymphatic metastasis. CONCLUSION This study highlights the pivotal role of MIR181A2HG in GC progression and LNs metastasis. MIR181A2HG-based targeted therapy would represent a novel strategy for GC.
Collapse
Affiliation(s)
- Weijie Zang
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Yongpu Yang
- Department of General SurgeryThe First Affiliated Hospital, Army Medical UniversityChongqingChina
- Department of Graduate SchoolDalian Medical UniversityDalianChina
| | - Junjie Chen
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Qinsheng Mao
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Wanjiang Xue
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Yilin Hu
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| |
Collapse
|
14
|
Li Y, Chen H, Zhao Y, Yan Q, Chen L, Song Q. circUBE2G1 interacts with hnRNPU to promote VEGF-C-mediated lymph node metastasis of lung adenocarcinoma. Front Oncol 2024; 14:1455909. [PMID: 39664183 PMCID: PMC11631705 DOI: 10.3389/fonc.2024.1455909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Background Patients with lymph node(LN)metastasis-positive Lung adenocarcinoma(LUAD)suffer from a significantly reduced five-year survival rate. Increasing evidence indicates circular RNAs(circRNAs)play crucial roles in regulating cancer progression. However, the specific regulatory mechanisms of circRNAs in the LN metastasis of LUAD have not been fully explored. Methods GEO datasets and sequence analysis were applied for the identification of differentially expressed circRNAs between LUAD tissues and adjacent normal tissues. In vitro and in vivo experiments were performed to evaluate the function of circUBE2G1. The interaction between circUBE2G1 and VEGF-C was determined by RNA pulldown, ChIP, ChIRP and luciferase assays. Results In this study, we identified a novel circRNA, circUBE2G1 (hsa_circ_0041555), which is upregulated in LUAD and positively correlated with LN metastasis in patients with LUAD. Functionally, overexpression of circUBE2G1 promotes lymphangiogenesis and LN metastasis of LUAD both in vitro and in vivo. Mechanistically, circUBE2G1 activates the transcription of vascular endothelial growth factor C (VEGF-C) by recruiting hnRNPU to enhance H3K27ac on the VEGF-C promoter, thereby facilitating lymphangiogenesis and LN metastasis in LUAD. Conclusion Our findings offer new insights into the mechanisms behind circRNA-mediated LN metastasis in LUAD and suggest that circUBE2G1 may serve as a potential therapeutic target for LN metastasis in LUAD.
Collapse
Affiliation(s)
- Yuting Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui Chen
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qilu Yan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Wang X, Jian Q, Zhang Z, Gu J, Wang X, Wang Y. Effect of tumor-derived extracellular vesicle-shuttled lncRNA MALAT1 on proliferation, invasion and metastasis of triple-negative breast cancer by regulating macrophage M2 polarization via the POSTN/Hippo/YAP axis. Transl Oncol 2024; 49:102076. [PMID: 39222611 PMCID: PMC11402314 DOI: 10.1016/j.tranon.2024.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer (BC). Tumor-derived extracellular vesicles (EVs) trigger tumor progression by promoting M2 polarization. Some lncRNAs can be encapsulated into EVs for intercellular communication. Herein, we investigated the mechanism of TNBC-derived EV-shuttled lncRNA MALAT1 on macrophage polarization/tumorigenesis. METHODS BC-associated targeted EV-derived lncRNAs were screened. Tumor tissues/tissues adjacent to cancer of TNBC patients, and blood samples of all subjects were collected. MALAT1/POSTN mRNA levels in tumor tissues/tissues adjacent to cancer, and MALAT1 expression in EVs and its correlation with TNBC patient overall survival were assessed by RT-qPCR/Kaplan-Meier survival analysis/log-rank test. TNBC patient M2 infiltration was detected by flow cytometry. MALAT1/POSTN levels in EVs/macrophages were regulated by transfection. Hippo/YAP activation was determined by Western blot. Nude mouse xenograft model was established and metastasis was detected by H&E staining. RESULTS MALAT1/POSTN were up-regulated and correlated with M2 infiltration/poor prognosis in TNBC patients. TNBC-derived EVs induced M2 polarization. MALAT1 was highly expressed in TNBC-derived EVs and could be transferred to macrophages via EVs to induce M2 polarization. POSTN overexpression diminished the inhibitory effect of MALAT1 knockdown on M2 markers. EVs activated the Hippo/YAP pathway in macrophages. The Hippo/YAP pathway inhibition abrogated the effect of POSTN overexpression on M2 marker expression. TNBC-EV-derived MALAT1 facilitated M2 polarization, and thus promoting occurrence and metastasis of TNBC in vitro and in vivo. CONCLUSIONS TNBC-EV-derived MALAT1 activated the Hippo/YAP axis by up-regulating POSTN, thereby inducing M2 polarization to promote TNBC occurrence and metastasis in vivo.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China; Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Qiwei Jian
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Ziyun Zhang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Juan Gu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Xinping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China; Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
17
|
Tang H, Liu X, Ke J, Tang Y, Luo S, Li XK, Huang M. New perspectives of exosomes in urologic malignancies - Mainly focus on biomarkers and tumor microenvironment. Pathol Res Pract 2024; 263:155645. [PMID: 39476607 DOI: 10.1016/j.prp.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/10/2024]
Abstract
Bladder cancer (BCa) and renal cell carcinoma (RCC) are prevalent urologic malignancies (UM) characterized by high morbidity and frequent recurrence. Current diagnostic approaches, often invasive, often indicate an advanced disease stage. And the complex tumor microenvironment often promotes tumor progression and induces resistance to chemotherapy. Current diagnostic and therapeutic modalities often fail to achieve satisfactory outcomes for patients. Exosomes transport diverse cargoes, including cytokines, proteins, lipids, non-coding RNAs, and microRNAs, crucial for intercellular communication. Exosomes have shown potential as biomarkers for UM, participating in tumor progression, especially within the tumor microenvironment (TME), including tumor cell apoptosis, proliferation, migration, invasion, depletion of immune cell function, epithelial-mesenchymal transition (EMT), angiogenesis, and more.In this review, we summarize research advances related to exosomes in UM, focusing on the role of exosomes as biomarkers in bladder and renal cancer, highlighting their significance within the TME.
Collapse
Affiliation(s)
- Hai Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing Liu
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwei Ke
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiquan Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Songtao Luo
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xu Kun Li
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingwei Huang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
18
|
Huang J, Liu Y, Shi M, Zhang X, Zhong Y, Guo S, Ma Y, Pan L, Yang F, Wang Y. Empagliflozin attenuating renal interstitial fibrosis in diabetic kidney disease by inhibiting lymphangiogenesis and lymphatic endothelial-to-mesenchymal transition via the VEGF-C/VEGFR3 pathway. Biomed Pharmacother 2024; 180:117589. [PMID: 39418962 DOI: 10.1016/j.biopha.2024.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a significant pathological change in diabetic kidney disease (DKD) that can be induced by endothelial-to-mesenchymal transition (EndMT). Lymphangiogenesis, mediated by the vascular endothelial growth factor-C (VEGF-C)/vascular endothelial growth factor receptor-3 (VEGFR-3) pathway, plays a crucial role in the development of RIF in DKD. Although numerous studies have demonstrated the efficacy of empagliflozin in treating renal injury, its effects on lymphangiogenesis in DKD-related RIF and the underlying mechanisms remain unclear. In the present study, significant lymphangiogenesis was assessed in the renal interstitium of patients with DKD. We subsequently explored the relationship between DKD-related RIF and lymphangiogenesis in mouse models, high-glucose (HG)-stimulated renal HK-2 cell lines, and human lymphatic endothelial cells (hLECs). Additionally, we evaluated the effects of empagliflozin on these processes. The results revealed that HG induces lymphangiogenesis, which exacerbates RIF by promoting inflammatory responses. Furthermore, hLECs directly contributed to the progression of DKD-related RIF through EndMT. Further analysis revealed that tubular epithelial cells (TECs) act as effector cells for VEGF-C, with the epithelial-to-mesenchymal transition (EMT) of TECs occurring concurrently with the EndMT of lymphatic vessels. Empagliflozin inhibited RIF in DKD by suppressing the VEGF-C/VEGFR3 pathway and reducing lymphangiogenesis. In conclusion, this study elucidates the interplay between lymphangiogenesis, EndMT, and RIF in DKD and provides new insights into the mechanism by which empagliflozin treats DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Mengting Shi
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Acupuncture and moxibustion and Massage College of Hebei University of Chinese Medicine, No.3 Xingyuan Road, Luquan District, Shijiazhuang 050200, China
| | - Xiaoyun Zhang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China
| | - Yan Zhong
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China
| | - Shuai Guo
- The Third Hospital of Hebei Medical University, Shijiazhuang 050200, China
| | - Yun Ma
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Limin Pan
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, No.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China; The Second Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Dingzhou 073000, China.
| |
Collapse
|
19
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Zhang S, Liu N, Cao P, Qin Q, Li J, Yang L, Xin Y, Jiang M, Zhang S, Yang J, Lu J. LncRNA BC200 promotes the development of EBV-associated nasopharyngeal carcinoma by competitively binding to miR-6834-5p to upregulate TYMS expression. Int J Biol Macromol 2024; 278:134837. [PMID: 39179085 DOI: 10.1016/j.ijbiomac.2024.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection. Long noncoding RNAs (lncRNAs) play important roles in cancers. However, the molecular mechanism underlying the roles of lncRNAs in EBV-associated NPC remains largely unclear. In this study, we confirmed that the expression of the lncRNA brain cytoplasmic 200 (BC200) was significantly increased in EBV-infected NPC cells and tissues. BC200 facilitated the growth and migration of NPC cells, suggesting that it participated in NPC progression by functioning as an oncogene. Mechanistically, BC200 was found to act as a ceRNA by sponging and inhibiting miR-6834-5p. Thymidylate synthetase (TYMS), whose high expression was reported to be an independent indicator of poor prognosis in NPC via an unknown mechanism, was identified as a target gene of miR-6834-5p in the present study. BC200 upregulated TYMS expression in a manner that depends on miR-6834-5p. TYMS was abnormally upregulated in EBV-positive NPC cells and tissues, and its ectopic expression contributed to the proliferation and migration of NPC cells. This study highlights the role of lncRNA BC200, which is upregulated by EBV, in promoting the development of NPC, suggesting that BC200-mediated ceRNA network may be valuable biomarkers for the diagnosis and treatment of EBV-associated NPC.
Collapse
Affiliation(s)
- Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Na Liu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Qingshuang Qin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Yujie Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Siwei Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jing Yang
- Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410080, Hunan, China; Department of Medical Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Cancer Carcinogenesis and Invasion of Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Central South University, Changsha, Hunan 410078, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
21
|
Chen H, Liu L, Zhang M, Wu S, Wu J. Correlation of LOXL2 expression in non-small cell lung cancer with immunotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:268-286. [PMID: 39399656 PMCID: PMC11470429 DOI: 10.62347/zieg9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is the most prevalent and lethal disease globally, with approximately 80% of cases being non-small cell lung cancer (NSCLC). NSCLC is primarily composed of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Despite chemotherapy currently being the primary treatment for NSCLC, chemotherapy resistance remains a significant challenge for patients. Recent studies have proposed immunotherapy as a promising new avenue for treating NSCLC. The association between the lysyl oxidase-like 2 (LOXL2) gene and NSCLC was explored using multiple online tools and bioinformatics analysis software based on the available datasets from TCGA. The immune microenvironment of the tumor was explored by calculating ImmuneScore, StromalScore, and TumorPurity of LUAD and LUSC and analyzing the infiltration of 22 immune cells in lung cancer tissues. LOXL2-related loads were obtained from the Xena database for LUSC and LUAD patients, and relevant prognostic genes were identified by analyzing survival curves. Functional and pathway enrichment analyses of prognostic, predictive genes were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of LOXL2 in NSCLC was detected by RT-qPCR. LOXL2 may be involved in the progression of LUAD and LUSC and is closely related to the T-lymphocyte subpopulation, T-reg cells. SEMA7A and VEGFC are identified as the genes that interact with LOXL2 and could be used as prognostic signature genes in NSCLC patients. LOXL2 may become a prognostic marker and a new target for immunotherapy.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Mingjiong Zhang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
22
|
Zhou H, Hu S, Yan W. Extracellular vesicles as modifiers of epigenomic profiles. Trends Genet 2024; 40:797-809. [PMID: 38845265 DOI: 10.1016/j.tig.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.
Collapse
Affiliation(s)
- Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China..
| |
Collapse
|
23
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
24
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
25
|
Strope AM, Phillips C, Khadgi S, Jenkinson SA, Coschigano KT, Malgor R. Differential expression of WNT5A long and short isoforms in non-muscle-invasive bladder urothelial carcinoma. Histol Histopathol 2024; 39:715-727. [PMID: 38445662 DOI: 10.14670/hh-18-723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Wnt ligands belong to a family of secreted glycoproteins in which binding to a range of receptors/co-receptors activates several intracellular pathways. WNT5A, a member of the Wnt family, is classified as a non-canonical Wnt whose activation triggers planar cell polarity (PCP) and Ca+2 downstream pathways. Aberrant expression of WNT5A has been shown to play both protective and harmful roles in an array of conditions, such as inflammatory disease and cancer. In the present study, using histological, immunohistochemical, and molecular methods, we investigated the expression of two isoforms of WNT5A, WNT5A-Short (WNT5A-S) and WNT5A-Long (WNT5A-L) in bladder urothelial carcinoma (UC). Three UC cell lines (RT4, J82, and T24), as well as a normal urothelial cell line, and formalin-fixed, paraffin-embedded (FFPE) transurethral resection (TUR) tissue samples from 17 patients diagnosed with UC were included in the study. WNT5A-L was the predominantly expressed isoform in urothelial cells, although WNT5A-S was also detectable. Further, although no statistically significant difference was found between the percentage of WNT5A-S transcripts in low-grade versus high-grade tumors, we did find a difference between the percentage of WNT5A-S transcripts found in non-invasion versus invasion of the lamina propria, subgroups of non-muscle-invasive tumors. In conclusion, both WNT5A-S and WNT5A-L isoforms are expressed in UC, and the percentage of their expression levels suggests that a higher proportion of WNT5A-S transcription may be associated with lamina propria invasion, a process preceding muscle invasion.
Collapse
Affiliation(s)
- Amy M Strope
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Cody Phillips
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Sabin Khadgi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Scott A Jenkinson
- OhioHealth O'Bleness Laboratory Services, O'Bleness Hospital, Athens, Ohio, USA
| | - Karen T Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
26
|
Arima J, Yoshino H, Fukumoto W, Kawahara I, Saito S, Li G, Fukuda I, Iizasa S, Mitsuke A, Sakaguchi T, Inoguchi S, Matsushita R, Nakagawa M, Tatarano S, Yamada Y, Enokida H. LncRNA BCYRN1 as a Potential Therapeutic Target and Diagnostic Marker in Serum Exosomes in Bladder Cancer. Int J Mol Sci 2024; 25:5955. [PMID: 38892143 PMCID: PMC11172611 DOI: 10.3390/ijms25115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Bladder cancer (BC) is a common genitourinary malignancy that exhibits silent morbidity and high mortality rates because of a lack of diagnostic markers and limited effective treatments. Here, we evaluated the role of the lncRNA brain cytoplasmic RNA 1 (BCYRN1) in BC. We performed loss-of-function assays to examine the effects of BCYRN1 downregulation in T24 and BOY BC cells. We found that BCYRN1 downregulation significantly inhibited the proliferation, migration, invasion, and three-dimensional spheroid formation ability and induced apoptosis in BC cells. Additionally, gene set enrichment analysis (GSEA) using RNA sequences from tumor fractions showed that BCYRN1 downregulation decreased the expression of mRNAs associated with the cell cycle. These findings were supported by observations of G2/M arrest in flow cytometry assays. Finally, we examined the expression of serum exosomal BCYRN1 as a biomarker. Clinically, BCYRN1 expression in serum exosomes from patients with BC (n = 31) was significantly higher than that in healthy donors (n = 19; mean difference: 4.1-fold higher, p < 0.01). Moreover, in patients who had undergone complete resection of BC, serum exosomal BCYRN1 levels were significantly decreased (n = 8). Thus, serum exosomal BCYRN1 may be a promising diagnostic marker and therapeutic target in patients with BC.
Collapse
Affiliation(s)
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yin C, Liufu C, Zhu T, Ye S, Jiang J, Wang M, Wang Y, Shi B. Bladder Cancer in Exosomal Perspective: Unraveling New Regulatory Mechanisms. Int J Nanomedicine 2024; 19:3677-3695. [PMID: 38681092 PMCID: PMC11048230 DOI: 10.2147/ijn.s458397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.
Collapse
Affiliation(s)
- Cong Yin
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Cen Liufu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Tao Zhu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shuai Ye
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiahao Jiang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Clinical College of Anhui Medical University, Shenzhen, People’s Republic of China
| | - Mingxia Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Bentao Shi
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
28
|
Zheng H, An M, Luo Y, Diao X, Zhong W, Pang M, Lin Y, Chen J, Li Y, Kong Y, Zhao Y, Yin Y, Ai L, Huang J, Chen C, Lin T. PDGFRα +ITGA11 + fibroblasts foster early-stage cancer lymphovascular invasion and lymphatic metastasis via ITGA11-SELE interplay. Cancer Cell 2024; 42:682-700.e12. [PMID: 38428409 DOI: 10.1016/j.ccell.2024.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Cancer-associated fibroblasts (CAFs) exhibit considerable heterogeneity in advanced cancers; however, the functional annotation and mechanism of CAFs in early-stage cancers remain elusive. Utilizing single-cell RNA sequencing and spatial transcriptomic, we identify a previously unknown PDGFRα+ITGA11+ CAF subset in early-stage bladder cancer (BCa). Multicenter clinical analysis of a 910-case cohort confirms that PDGFRα+ITGA11+ CAFs are associated with lymphovascular invasion (LVI) and poor prognosis in early-stage BCa. These CAFs facilitate LVI and lymph node (LN) metastasis in early-stage BCa, as evidenced in a PDGFRα+ITGA11+ CAFs-specific deficient mouse model. Mechanistically, PDGFRα+ITGA11+ CAFs promote lymphangiogenesis via recognizing ITGA11 surface receptor SELE on lymphatic endothelial cells to activate SRC-p-VEGFR3-MAPK pathway. Further, CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding matrix to assist cancer cell intravasation, fostering early-stage BCa LVI and LN metastasis. Collectively, our study reveals the crucial role of PDGFRα+ITGA11+ CAFs in shaping metastatic landscape, informing the treatment of early-stage BCa LVI.
Collapse
Affiliation(s)
- Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, P.R. China
| | - Yina Yin
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - Le Ai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
29
|
Fan J, Chen B, Luo Q, Li J, Huang Y, Zhu M, Chen Z, Li J, Wang J, Liu L, Wei Q, Cao D. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Biomed Pharmacother 2024; 173:116312. [PMID: 38417288 DOI: 10.1016/j.biopha.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.
Collapse
Affiliation(s)
- Junping Fan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiuping Luo
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Chen Y, Shi K, Fu X, Guo H, Gao T, Yu H. Diagnostic and prognostic potential of exosome non-coding RNAs in bladder cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1336375. [PMID: 38500660 PMCID: PMC10944871 DOI: 10.3389/fonc.2024.1336375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background Bladder cancer stands as the predominant malignant tumor in the urological system, presenting a significant challenge to public health and garnering extensive attention. Recently, with the deepening research into tumor molecular mechanisms, non-coding RNAs (ncRNAs) have emerged as potential biomarkers offering guidance for the diagnosis and prognosis of bladder cancer. However, the definitive role of ncRNAs in bladder cancer remains unclear. Hence, this study aims to elucidate the relevance and significance of ncRNAs through a Meta-analysis. Methods A systematic meta-analysis was executed, including studies evaluating the diagnostic performance of ncRNAs and their associations with overall survival (OS) and disease-free survival (DFS). Key metrics such as hazard ratios, sensitivity, specificity, and diagnostic odds ratios were extracted and pooled from these studies. Potential publication bias was assessed using Deeks' funnel plot, and the robustness of the results was ascertained through a sensitivity analysis. Results Elevated ncRNA expression showed a positive correlation with improved OS, evidenced by a hazard ratio (HR) of 0.82 (95% CI: 0.66-0.96, P<0.001). Similarly, a significant association was observed between heightened ncRNA expression and DFS, with an HR of 0.86 (95% CI: 0.73-0.99, P<0.001). Diagnostic performance analysis across 17 articles yielded a pooled sensitivity of 0.76 and a specificity of 0.83. The diagnostic odds ratio was recorded at 2.71, with the area under the ROC curve (AUC) standing at 0.85. Conclusion Exosome ncRNAs appear to possess potential significance in the diagnostic and prognostic discussions of bladder cancer. Their relationship with survival outcomes and diagnostic measures suggests a possible clinical utility. Comprehensive investigations are needed to fully determine their role in the ever-evolving landscape of bladder cancer management, especially within the framework of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
31
|
Miao D, Shi J, Lv Q, Tan D, Zhao C, Xiong Z, Zhang X. NAT10-mediated ac 4C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun (Lond) 2024; 44:361-383. [PMID: 38407929 PMCID: PMC10962679 DOI: 10.1002/cac2.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.
Collapse
Affiliation(s)
- Daojia Miao
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Jian Shi
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qingyang Lv
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Diaoyi Tan
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Chuanyi Zhao
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhiyong Xiong
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Zhang
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
32
|
Peña-Flores JA, Muela-Campos D, Guzmán-Medrano R, Enríquez-Espinoza D, González-Alvarado K. Functional Relevance of Extracellular Vesicle-Derived Long Non-Coding and Circular RNAs in Cancer Angiogenesis. Noncoding RNA 2024; 10:12. [PMID: 38392967 PMCID: PMC10891584 DOI: 10.3390/ncrna10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer lipid membrane that function as important intercellular communication by transporting active biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many biological processes, including a plethora of diseases including cancer. Growing evidence shows an active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Doctoral Program in Biomedical and Stomatological Sciences, Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico; (D.M.-C.); (R.G.-M.); (D.E.-E.); (K.G.-A.)
| | | | | | | | | |
Collapse
|
33
|
Zhao Y, Chen J, Zheng H, Luo Y, An M, Lin Y, Pang M, Li Y, Kong Y, He W, Lin T, Chen C. SUMOylation-Driven mRNA Circularization Enhances Translation and Promotes Lymphatic Metastasis of Bladder Cancer. Cancer Res 2024; 84:434-448. [PMID: 37991737 PMCID: PMC10831341 DOI: 10.1158/0008-5472.can-23-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Aberrant gene expression is a prominent feature of metastatic cancer. Translational initiation is a vital step in fine-tuning gene expression. Thus, exploring translation initiation regulators may identify therapeutic targets for preventing and treating metastasis. Herein, we identified that DHCR24 was overexpressed in lymph node (LN) metastatic bladder cancer and correlated with poor prognosis of patients. DHCR24 promoted lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Mechanistically, DHCR24 mediated and recognized the SUMO2 modification at lysine 108 of hnRNPA2B1 to foster TBK1 mRNA circularization and eIF4F initiation complex assembly by enhancing hnRNPA2B1-eIF4G1 interaction. Moreover, DHCR24 directly anchored to TBK1 mRNA 3'-untranslated region to increase its stability, thus forming a feed forward loop to elevate TBK1 expression. TBK1 activated PI3K/Akt signaling to promote VEGFC secretion, resulting in lymphangiogenesis and LN metastasis. DHCR24 silencing significantly impeded bladder cancer lymphangiogenesis and lymphatic metastasis in a patient-derived xenograft model. Collectively, these findings elucidate DHCR24-mediated translation machinery that promotes lymphatic metastasis of bladder cancer and supports the potential application of DHCR24-targeted therapy for LN-metastatic bladder cancer. SIGNIFICANCE DHCR24 is a SUMOylation regulator that controls translation initiation complex assembly and orchestrates TBK1 mRNA circularization to activate Akt/VEGFC signaling, which stimulates lymphangiogenesis and promotes lymph node metastasis in bladder cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
34
|
Wei X, Zhang D, Zhu Y. Exosomes: Toward a potential application in bladder cancer diagnosis and treatment. SMART MEDICINE 2024; 3:e20230027. [PMID: 39188515 PMCID: PMC11235804 DOI: 10.1002/smmd.20230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 08/28/2024]
Abstract
Bladder cancer (BC) is a prevalent malignant tumor of the urinary system, known for its rapid progression and high likelihood of recurrence. Despite ongoing efforts, clinical diagnosis and treatment of BC remain limited. As such, there is an urgent need to investigate potential mechanisms underlying this disease. Exosomes, which contain a variety of bioactive molecules such as nucleic acids, proteins, and lipids, are regarded as extracellular messengers because they are implicated in facilitating intercellular communication in various diseases and are pivotal in tumor advancement, serving as a promising avenue for such researches. Nevertheless, the heterogeneous nature of BC necessitates further exploration of the potential involvement of exosomes in disease progression. This review comprehensively outlines the biological attributes of exosomes and their critical roles in tumorigenesis, while also discussing their potential applications in regulating the progression of BC involving clinical diagnosis, prognostication and treatment.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine Center The Second Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of Rheumatology and Immunology Institute of Translational Medicine Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Dagan Zhang
- Department of Rheumatology and Immunology Institute of Translational Medicine Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Yefei Zhu
- Laboratory Medicine Center The Second Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
35
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
36
|
Lei P, Liang J, Su X, Gao J, Ren B, Ma X, Zhang Y, Ma W. Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer. Anticancer Agents Med Chem 2024; 24:1419-1430. [PMID: 39192640 DOI: 10.2174/0118715206313028240819103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC. METHODS Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins. RESULTS PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells. CONCLUSION PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.
Collapse
Affiliation(s)
- Panpan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Jinna Liang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xinyue Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Jiapan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Bingxi Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xiaoyu Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Yuxiu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| |
Collapse
|
37
|
Zengzhao W, Xuan L, Xiaohan M, Encun H, Jibing C, Hongjun G. Molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs regulating lymphatic metastasis of bladder cancer. Urol Oncol 2024; 42:3-17. [PMID: 37989693 DOI: 10.1016/j.urolonc.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Bladder cancer (BC), a malignancy originating in the epithelial tissue in the inner wall of the bladder, is a common urological cancer type. BC spreads through 3 main pathways: direct infiltration, lymphatic metastasis, and hematogenous metastasis. Lymphatic metastasis is considered a poor prognostic factor for BC and is often associated with lower survival rates. The treatment of BC after lymphatic metastasis is complex and challenging. A deeper understanding of the molecular mechanisms underlying lymphatic metastasis of BC may yield potential targets for its treatment. Here, we summarize the current knowledge on epigenetic factors-including miRNAs, lncRNAs, and circRNAs-associated with lymphatic metastasis in BC. These factors are strongly associated with lymphangiogenesis, cancer cell proliferation and migration, and epithelial-mesenchymal transition processes, providing new insights to develop newer BC treatment strategies.
Collapse
Affiliation(s)
- Wei Zengzhao
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lan Xuan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ma Xiaohan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hou Encun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Gao Hongjun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| |
Collapse
|
38
|
Peng M, Chu X, Peng Y, Li D, Zhang Z, Wang W, Zhou X, Xiao D, Yang X. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (Beijing) 2023; 4:e455. [PMID: 38107059 PMCID: PMC10724512 DOI: 10.1002/mco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies in men. Understanding molecular characteristics via studying signaling pathways has made tremendous breakthroughs in BC therapies. Thus, targeted therapies including immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitor (TKI) have markedly improved advanced BC outcomes over the last few years. However, the considerable patients still progress after a period of treatment with current therapeutic regimens. Therefore, it is crucial to guide future drug development to improve BC survival, based on the molecular characteristics of BC and clinical outcomes of existing drugs. In this perspective, we summarize the applications and benefits of these targeted drugs and highlight our understanding of mechanisms of low response rates and immune escape of ICIs, ADCs toxicity, and TKI resistance. We also discuss potential solutions to these problems. In addition, we underscore the future drug development of targeting metabolic reprogramming and cancer stem cells (CSCs) with a deep understanding of their signaling pathways features. We expect that finding biomarkers, developing novo drugs and designing clinical trials with precisely selected patients and rationalized drugs will dramatically improve the quality of life and survival of patients with advanced BC.
Collapse
Affiliation(s)
- Mei Peng
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xuetong Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Yan Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Zhirong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Weifan Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaochen Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| |
Collapse
|
39
|
Lin YH. The effects of intracellular and exosomal ncRNAs on cancer progression. Cancer Gene Ther 2023; 30:1587-1597. [PMID: 37884579 DOI: 10.1038/s41417-023-00679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Altered gene expression as well as mislocalization of a gene's encoded product (proteins or noncoding RNAs (ncRNAs)) can lead to disease and cancer formation. Multiple studies have indicated that exosomes and their contents act as cell-to-cell communicators and play a key role in cancer progression. Moreover, exosomes contain several functional molecules, including ncRNAs. NcRNAs function as master regulators to coordinate cell growth, cell motility and drug resistance. However, intracellular ncRNAs, which can be transferred to recipient cells via exosomes (exosomal ncRNAs), mediate common/distinct downstream molecules, signaling pathways and functions that are less emphasized concepts in cancer development research. In this study, by using exosomes as a model, we comprehensively discuss the current knowledge regarding (1) the functional role of ncRNAs, both their intracellular and exosomal forms, in cancer progression, (2) the possible mechanism of ncRNA incorporation into exosomes and (3) the therapeutic applications and limitations of exosomes based on current knowledge.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
40
|
Li Y, Zheng H, Luo Y, Lin Y, An M, Kong Y, Zhao Y, Yin Y, Ai L, Huang J, Chen C. An HGF-dependent positive feedback loop between bladder cancer cells and fibroblasts mediates lymphangiogenesis and lymphatic metastasis. Cancer Commun (Lond) 2023; 43:1289-1311. [PMID: 37483113 PMCID: PMC10693311 DOI: 10.1002/cac2.12470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play a vital role in facilitating tumor progression through extensive reciprocal interplay with cancer cells. Tumor-derived extracellular vesicles (EVs) are the critical mediators involved in the crosstalk between cancer cells and stromal cells, contributing to the metastasis of cancers. Yet, the biological mechanisms of tumor-derived EVs in triggering CAFs phenotype to stimulate the lymph node (LN) metastasis of bladder cancer (BCa) are largely unknown. Here, we aimed to explore the effects and molecular mechanisms of tumor-derived EV-mediated CAFs phenotype in regulating BCa LN metastasis. METHODS The high-throughput sequencing was utilized to identify the crucial long non-coding RNA (lncRNA) associated with CAF enrichment in BCa. The functional role of the transition of fibroblasts to CAFs induced by LINC00665-mediated EVs was investigated through the in vitro and in vivo assays. Chromatin isolation by RNA purification assays, fluorescence resonance energy transfer assays, cytokine profiling and patient-derived xenograft (PDX) model were performed to explore the underlying mechanism of LINC00665 in the LN metastasis of BCa. RESULTS We found that CAFs are widely enriched in the tumor microenvironment of BCa, which correlated with BCa lymphangiogenesis and LN metastasis. We then identified a CAF-associated long non-coding RNA, LINC00665, which acted as a crucial mediator of CAF infiltration in BCa. Clinically, LINC00665 was associated with LN metastasis and poor prognosis in patients with BCa. Mechanistically, LINC00665 transcriptionally upregulated RAB27B expression and induced H3K4me3 modification on the promoter of RAB27B through the recruitment of hnRNPL. Moreover, RAB27B-induced EVs secretion endowed fibroblasts with the CAF phenotype, which reciprocally induced LINC00665 overexpression to form a RAB27B-HGF-c-Myc positive feedback loop, enhancing the lymphangiogenesis and LN metastasis of BCa. Importantly, we demonstrated that blocking EV-transmitted LINC00665 or HGF broke this loop and impaired BCa lymphangiogenesis in a PDX model. CONCLUSION Our study uncovers a precise mechanism that LINC00665 sustains BCa LN metastasis by inducing a RAB27B-HGF-c-Myc positive feedback loop between BCa cells and fibroblasts, suggesting that LINC00665 could be a promising therapeutic target for patients with LN metastatic BCa.
Collapse
Affiliation(s)
- Yuting Li
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Hanhao Zheng
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Mingjie An
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Yao Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalState Key Laboratory of Oncology in South ChinaGuangzhouGuangdongP. R. China
| | - Yue Zhao
- Department of General SurgeryGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Yina Yin
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Le Ai
- Department of OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Jian Huang
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Changhao Chen
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubeiP. R. China
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
41
|
Guo S, Huang J, Li G, Chen W, Li Z, Lei J. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer 2023; 22:193. [PMID: 38037077 PMCID: PMC10688140 DOI: 10.1186/s12943-023-01909-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
Current research has demonstrated that extracellular vesicles (EVs) and circulating tumor cells (CTCs) are very closely related in the process of distant tumor metastasis. Primary tumors are shed and released into the bloodstream to form CTCs that are referred to as seeds to colonize and grow in soil-like distant target organs, while EVs of tumor and nontumor origin act as fertilizers in the process of tumor metastasis. There is no previous text that provides a comprehensive review of the role of EVs on CTCs during tumor metastasis. In this paper, we reviewed the mechanisms of EVs on CTCs during tumor metastasis, including the ability of EVs to enhance the shedding of CTCs, protect CTCs in circulation and determine the direction of CTC metastasis, thus affecting the distant metastasis of tumors.
Collapse
Affiliation(s)
- Siyin Guo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
42
|
Liu Y, Wang X, Liu Y, Yang J, Mao W, Feng C, Wu X, Chen X, Chen L, Dong P. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway. Cell Death Dis 2023; 14:712. [PMID: 37914704 PMCID: PMC10620198 DOI: 10.1038/s41419-023-06245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that regulates in various important biological processes. However, its role in human cancer, especially lymph node metastasis, remains largely unknown. Here, we demonstrated N-Acetyltransferase 10 (NAT10), as the only known "writer" of ac4C mRNA modification, was highly expressed in head and neck squamous cell carcinoma (HNSCC) patients with lymph node metastasis. High NAT10 levels in the lymph nodes of patients with HNSCC patients are a predictor of poor overall survival. Moreover, we found that high expression of NAT10 was positively upregulated by Nuclear Respiratory Factor 1 (NRF1) transcription factor. Gain- and loss-of-function experiments displayed that NAT10 promoted cell metastasis in mice. Mechanistically, NAT10 induced ac4C modification of Glycosylated Lysosomal Membrane Protein (GLMP) and stabilized its mRNA, which triggered the activation of the MAPK/ERK signaling pathway. Finally, the NAT10-specific inhibitor, remodelin, could inhibit HNSCC tumorigenesis in a 4-Nitroquinoline 1-oxide (4NQO)-induced murine tumor model and remodel the tumor microenvironment, including angiogenesis, CD8+ T cells and Treg recruitment. These results demonstrate that NAT10 promotes lymph node metastasis in HNSCC via ac4C-dependent stabilization of the GLMP transcript, providing a potential epitranscriptomic-targeted therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Wang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330046, China
- Centre for Medical Research and Translation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yuying Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Wei Mao
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chen Feng
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoliang Wu
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
43
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
45
|
Wu Z, Qu B, Yuan M, Liu J, Zhou C, Sun M, Guo Z, Zhang Y, Song Y, Wang Z. CRIP1 Reshapes the Gastric Cancer Microenvironment to Facilitate Development of Lymphatic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303246. [PMID: 37409440 PMCID: PMC10502640 DOI: 10.1002/advs.202303246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/07/2023]
Abstract
Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Bicheng Qu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Minxian Yuan
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Jingjing Liu
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Cen Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Mingwei Sun
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhexu Guo
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yaqing Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| |
Collapse
|
46
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
47
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
48
|
Takahashi T, Ando Y, Ichikawa H, Tsuneyama K, Hijikata T. Serum/glucose starvation strikingly reduces heterogeneous nuclear ribonucleoprotein A1 protein and its target, cyclin D1. FEBS J 2023; 290:4126-4144. [PMID: 37095740 DOI: 10.1111/febs.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Our investigation to explore cellular alterations related to undernutrition in cancer cells revealed that the protein level of heterogenous nuclear ribonucleoprotein A1 (hnRNP A1) is drastically decreased by serum/glucose starvation. Its loss was reversible, serum/glucose starvation-specific and universal throughout cell types and species. The hnRNP A1 mRNA level and hnRNP A1 mRNA/protein stability were not altered under this condition. CCND1 mRNA, which we newly identified as the binding target of hnRNP A1, was decreased by serum/glucose starvation. Under similar conditions, CCND1 protein was reduced in vitro and in vivo, whereas hnRNP A1 mRNA level and CCND1 mRNA level revealed no correlation in most clinical samples. Functional analyses revealed that CCND1 mRNA stability is certainly dependent on hnRNP A1 protein level and that RNA recognition motif-1 (RRM1) in hnRNP A1 plays a central role in maintaining CCND1 mRNA stability and subsequent protein expression. The injection of RRM1-deleted hnRNP A1-expressing cancer cells in the mouse xenograft model did not form any tumours, and that of hnRNP A1-expressing cancer cells retained CCND1 expression at the lesion adjacent to necrosis with a slight increase in tumour volume. Furthermore, RRM1 deletion caused growth suppression with the induction of apoptosis and autophagy, whereas CCND1 restoration completely recovered it. Our results indicate that serum/glucose starvation triggers entire hnRNP A1 protein loss, and its loss may play a role in CCND1 mRNA destabilization and CCND1-mediated cellular event inhibition, i.e. growth promotion, apoptosis induction and autophagosome formation.
Collapse
Affiliation(s)
- Tetsuyuki Takahashi
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Japan
| | - Yuri Ando
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Japan
| | - Hirona Ichikawa
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Takao Hijikata
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Japan
| |
Collapse
|
49
|
Zheng X, Zheng D, Zhang C, Guo H, Zhang Y, Xue X, Shi Z, Zhang X, Zeng X, Wu Y, Gao W. A cuproptosis-related lncRNA signature predicts the prognosis and immune cell status in head and neck squamous cell carcinoma. Front Oncol 2023; 13:1055717. [PMID: 37538124 PMCID: PMC10394648 DOI: 10.3389/fonc.2023.1055717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The incidence of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent tumors, is increasing rapidly worldwide. Cuproptosis, as a new copper-dependent cell death form, was proposed recently. However, the prognosis value and immune effects of cuproptosis-related lncRNAs (CRLs) have not yet been elucidated in HNSCC. Methods In the current study, the expression pattern, differential profile, clinical correlation, DNA methylation, functional enrichment, univariate prognosis factor, and the immune effects of CRLs were analyzed. A four-CRL signature was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm. Results Results showed that 20 CRLs had significant effects on the stage progression of HNSCC. Sixteen CRLs were tightly correlated with the overall survival (OS) of HNSCC patients. Particularly, lnc-FGF3-4 as a single risk factor was upregulated in HNSCC tissues and negatively impacted the prognosis of HNSCC. DNA methylation probes of cg02278768 (MIR9-3HG), cg07312099 (ASAH1-AS1), and cg16867777 (TIAM1-AS1) were also correlated with the prognosis of HNSCC. The four-CRL signature that included MAP4K3-DT, lnc-TCEA3-1, MIR9-3HG, and CDKN2A-DT had a significantly negative effect on the activation of T cells follicular helper and OS probability of HNSCC. Functional analysis revealed that cell cycle, DNA replication, and p53 signal pathways were enriched. Discussion A novel CRL-related signature has the potential of prognosis prediction in HNSCC. Targeting CRLs may be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Defei Zheng
- Department of Hematology/Oncology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaohui Shi
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Xiangmin Zhang
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Xianhai Zeng
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Yongyan Wu
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Wei Gao
- Department of Otolaryngology Head & Neck Surgery, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|