1
|
Lai G, Xie B, Zhang C, Zhong X, Deng J, Li K, Liu H, Zhang Y, Liu A, Liu Y, Fan J, Zhou T, Wang W, Huang A. Comprehensive analysis of immune subtype characterization on identification of potential cells and drugs to predict response to immune checkpoint inhibitors for hepatocellular carcinoma. Genes Dis 2025; 12:101471. [PMID: 40092490 PMCID: PMC11907441 DOI: 10.1016/j.gendis.2024.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/12/2024] [Accepted: 11/02/2024] [Indexed: 03/19/2025] Open
Abstract
Immunosubtyping enables the segregation of immune responders from non-responders. However, numerous studies failed to focus on the integration of cellular heterogeneity and immunophenotyping in the prediction of hepatocellular carcinoma (HCC) patients' response to immune checkpoint inhibitors (ICIs). We categorized HCC patients into various immune subtypes based on feature scores linked to ICI response. Single-cell sequencing technology was to investigate the cellular heterogeneity of different immune subtypes and acquire significant ICI response-associated cells. Candidate drugs were identified using a blend of various drug databases and network approaches. HCC patients were divided into two distinct immune subtypes based on characterization scores of 151 immune-related gene sets. Patients in both subtypes showed varying overall survival, immunity levels, biological activities, and TP53 mutation rates. Subtype 1-related natural killer cells showed a positive correlation with immune-promoting scores but a negative correlation with immune-suppressing scores. Notably, docetaxel sensitivity in HCC patients rose as the levels of subtype 1-related natural killer cells increased. Our study demonstrated that immune subtypes have cellular heterogeneity in predicting response to ICIs. A combination of subtype 1-associated natural killer cells and docetaxel may offer new hope for ICI treatment in HCC.
Collapse
Affiliation(s)
- Guichuan Lai
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Biao Xie
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Cong Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Xiaoni Zhong
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Jielian Deng
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Kangjie Li
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Hui Liu
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Yuan Zhang
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Anbin Liu
- Department of Applied Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Yi Liu
- Department of Applied Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Tianyi Zhou
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Wei Wang
- Department of Applied Statistics, School of Public Health, Chongqing Medical University, Chongqing 401331, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Tanaka K, Sugisaka J, Shiraishi Y, Watanabe Y, Daga H, Azuma K, Nishino K, Mori M, Ota T, Saito H, Hata A, Sakaguchi T, Kozuki T, Akamatsu H, Matsumoto H, Tachihara M, Wakuda K, Sato Y, Ozaki T, Tsuchiya-Kawano Y, Yamamoto N, Nakagawa K, Okamoto I. Serum VEGF-A as a biomarker for the addition of bevacizumab to chemo-immunotherapy in metastatic NSCLC. Nat Commun 2025; 16:2825. [PMID: 40121197 PMCID: PMC11929838 DOI: 10.1038/s41467-025-58186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Anti-vascular endothelial growth factor (VEGF) agents in combination with immunotherapies have improved outcomes for cancer patients, but predictive biomarkers have not been elucidated. We report here a preplanned analysis in the previously reported APPLE study, a phase 3 trial evaluating the efficacy of the bevacizumab in combination with atezolizumab, plus platinum chemotherapy in metastatic, nonsquamous non-small cell lung cancer (NSCLC). We investigated the correlation of serum VEGF-A and its isoforms at baseline with treatment response by using an enzyme-linked immunosorbent assay. We reveal that the addition of bevacizumab significantly improves the progression-free survival in patients with the low VEGF-A level. Our results demonstrate that measuring serum VEGF-A or its isoforms may identify NSCLC patients who are likely to benefit from the addition of bevacizumab to immunotherapy. These assays are easy to measure and have significant potential for further clinical development.
Collapse
Affiliation(s)
- Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Jun Sugisaka
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Haruko Daga
- Department of Medical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, NHO Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Takayo Ota
- Department of Breast Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Kobe, Japan
| | | | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Hirotaka Matsumoto
- Department of Respiratory Medicine, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomohiro Ozaki
- Department of Medical Oncology, Kishiwada City Hospital, Osaka, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Nobuyuki Yamamoto
- Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Qu G, Liu K, Xu W, Li D. Integrated analysis and experimental validation reveal the prognostic and immunological features associated with coagulation in hepatocellular carcinoma. Sci Rep 2025; 15:8626. [PMID: 40074769 PMCID: PMC11904193 DOI: 10.1038/s41598-025-85491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025] Open
Abstract
Coagulation is intensively related to various tumors, which affects their progression and prognosis. However, research on the impact of coagulation-associated genes (CAGs) on hepatocellular carcinoma (HCC) occurrence, prognosis, and immune microenvironment is limited. Consequently, our research aims to uncover how CAGs affect the prognosis and immune microenvironments of HCC. We integrated gene expression data and clinical information from three datasets (GSE14520, GSE76427, and TCGA-LIHC). 281 CAGs were obtained from the coagulation-related pathway (hsa04610). We obtained three CAG patterns through a consensus clustering algorithm. Afterward, differential analyses of prognosis, biological processes, immune infiltration, and functional and pathway enrichment were conducted on the three CAG patterns. We intersected CAGs with differentially expressed genes in GSE76427 and then conducted Cox regression analysis to obtain the prognostic genes in HCC. Glycerol-3-phosphate dehydrogenase 2 (GPD2) was selected for further analyses. TCGA-LIHC samples with different GPD2 expression levels were analyzed for prognosis, DNA methylation, immune infiltration, and drug sensitivity. The expression level of GPD2 was verified through quantitative real-time PCR (qPCR) and immunohistochemistry. The wound-healing and Transwell assays were used to analyze the tumor cell migration and the Matrigel invasion and apoptosis assays were performed to determine cell invasion and apoptosis. Three CAG patterns were obtained through an unsupervised consensus clustering algorithm. CAGclusterA held the best prognosis compared to the other two clusters. The CAGclusterC was characterized by poor prognosis and abundant immune cell infiltration. The TCGA-LIHC dataset, as an internal validation, also yielded similar subtype classifications. Afterward, we identified the GPD2 gene, which significantly affected the prognosis of HCC and was positively correlated with the tumor progression. The upregulation of GPD2 expression was closely related to tumorigenic signatures and immune escape. The qPCR confirmed the upregulation of GPD2 expression in HCC tumor cell lines, compared to normal liver cell lines. Immunohistochemical staining confirmed the high expression of GPD2 in HCC tumor tissues compared to normal tissues. Regulating the expression level of GPD2 can inhibit the proliferation, migration, invasion, and induce apoptosis of HCC cells. Our study comprehensively elucidated the coagulation characteristics in HCC and identified a promising oncogenic gene GPD2. Exploring targeted strategies based on coagulation-related characteristics and biomarkers may shed light on HCC treatment.
Collapse
Affiliation(s)
- Guangzhen Qu
- Department of Interventional Radiology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, 100020, China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
5
|
Weinfurtner K, Tischfield D, McClung G, Crainic J, Gordan J, Jiao J, Furth EE, Li W, Supan ET, Nadolski GJ, Hunt SJ, Kaplan DE, Gade TP. Human GM-CSF/IL-3 enhance tumor immune infiltration in humanized HCC patient-derived xenografts. JHEP Rep 2025; 7:101264. [PMID: 40028346 PMCID: PMC11869099 DOI: 10.1016/j.jhepr.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background & Aims Response to immunotherapy in hepatocellular carcinoma (HCC) is suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts. Material and Methods NOG (NOD/Shi-scid/IL-2Rγnull) and NOG-EXL (huGM-CSF/huIL-3 NOG) mice conditioned with busulfan underwent i.v. injection of human CD34+ cells. HCC patient-derived xenograft tumors were then implanted subcutaneously or orthotopically. Following serial blood sampling, mice were euthanized at defined tumor sizes. Tumor, blood, liver, and spleen were analyzed by flow cytometry and immunohistochemistry. Results Humanized NOG-EXL mice demonstrated earlier and higher levels of human chimerism compared to humanized NOG mice (82.1% vs. 43.8%, p <0.0001) with a greater proportion of human monocytes (3.2% vs. 1.1%, p = 0.001) and neutrophils (0.8% vs. 0.3%, p = 0.02) in circulation. HCC tumors in humanized NOG-EXL mice exhibited greater human immune cell infiltration (57.6% vs. 30.2%, p = 0.04) with higher proportions of regulatory T cells (14.6% vs. 6.8%, p = 0.04), CD4+ PD-1 expression (84.7% vs. 32.0%, p <0.01), macrophages (1.2% vs. 0.6%, p = 0.02), and neutrophils (0.5% vs. 0.1%, p <0.0001). No differences were observed in tumor engraftment or growth latency in subcutaneous tumors, but orthotopic tumors required implantation at 2 rather than 4 weeks post-humanization for successful engraftment. Finally, utilizing adult bone marrow instead of fetal livers enabled partial HLA-matching to HCC tumors but required more CD34+ cells. Conclusions Human GM-CSF and IL-3 expression in humanized mice resulted in features more closely approximating the immune microenvironment of human disease, providing a promising model for investigating critical questions in immunotherapy for HCC. Impact and implications This study introduces a unique mouse model at a critical point in the evolution of treatment paradigms for patients with hepatocellular carcinoma (HCC). Immunotherapies have become the first-line treatment for advanced HCC; however, response rates remain low with no clear predictors of response to guide patient selection. In this context, animal models that recapitulate human disease are greatly needed. Leveraging xenograft tumors derived from patients with unresectable HCCs and a commercially available immunodeficient mouse strain that expresses human GM-CSF and IL-3, we demonstrate a novel but accessible approach for modeling the HCC tumor microenvironment.
Collapse
Affiliation(s)
- Kelley Weinfurtner
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, United States
| | - David Tischfield
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - George McClung
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Crainic
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Gordan
- Division of Hematology/Oncology, University of California- San Francisco, San Francisco, CA, United States
| | - Jing Jiao
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma E. Furth
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, United States
| | - Wuyan Li
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Erena Tuzneen Supan
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory J. Nadolski
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Hunt
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David E. Kaplan
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, Corporal Michael J Crescenz Philadelphia VAMC, Philadelphia, PA, United States
| | - Terence P.F. Gade
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, Corporal Michael J Crescenz Philadelphia VAMC, Philadelphia, PA, United States
| |
Collapse
|
6
|
Wei H, Suo C, Gu X, Shen S, Lin K, Zhu C, Yan K, Bian Z, Chen L, Zhang T, Yan R, Yang Z, Yu Y, Li Z, Liu R, He J, He Q, Zhong X, Jia W, Wong CM, Dong Z, Cao J, Sun L, Zhang H, Gao P. AKR1D1 suppresses liver cancer progression by promoting bile acid metabolism-mediated NK cell cytotoxicity. Cell Metab 2025:S1550-4131(25)00011-7. [PMID: 40010348 DOI: 10.1016/j.cmet.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bile acid metabolism and antitumor immunity are both disrupted during liver cancer progression. However, the complex regulatory relationship between them remains largely unclear. Here, we find that loss of aldo-keto reductase 1D1 (AKR1D1) promotes the accumulation of isolithocholic acid (iso-LCA) through gut microbiome dysregulation, thereby impairing the cytotoxic function of natural killer (NK) cells and leading to the accelerated development of hepatocellular carcinoma (HCC). Mechanistically, AKR1D1 deficiency leads to an increased proportion of Bacteroidetes ovatus (B. ovatus), which breaks down chenodeoxycholic acid (CDCA) into iso-LCA. Moreover, accumulated iso-LCA impairs the antitumor activity of hepatic NK cells in a phosphorylated-CREB1 (p-CREB1)-dependent manner. The potassium-sparing diuretic spironolactone treatment significantly enhances the inhibitory effect of anti-PD1 antibody on HCC progression by targeting iso-LCA-mediated tumor immune escape. Taken together, our results uncover a previously unappreciated link between AKR1D1 and HCC and suggest that targeting iso-LCA produced by B. ovatus might be a promising strategy to activate NK cell cytotoxicity to treat HCC.
Collapse
Affiliation(s)
- Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kashuai Lin
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ronghui Yan
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyi Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Liu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junming He
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiwei He
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
7
|
Wang Z, Wang Z. Letter Re: Elevated serum magnesium levels prompt favourable outcomes in cancer patients treated with immune checkpoint blockers. Eur J Cancer 2025; 216:115187. [PMID: 39757023 DOI: 10.1016/j.ejca.2024.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Ziyi Wang
- Shanxi Bethune Hospital, Shanxi, China
| | - Zihan Wang
- The First Hospital of Shanxi Medical University, Shanxi, China.
| |
Collapse
|
8
|
Wang L, Bi S, Li Z, Liao A, Li Y, Yang L, Zhou X, Gao Y, Liu X, Zou Y, Zhang X, Shi J, Yu S, Yu Z, Guo J. Napabucasin deactivates STAT3 and promotes mitoxantrone-mediated cGAS-STING activation for hepatocellular carcinoma chemo-immunotherapy. Biomaterials 2025; 313:122766. [PMID: 39180916 DOI: 10.1016/j.biomaterials.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Shengnan Bi
- Department of Pharmacy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhuo Li
- Department of Pharmacy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xinyi Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuqiong Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaobo Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shihan Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Dai H, Yan C, Huang W, Pan Y, Pan F, Liu Y, Wang S, Wang H, Ye R, Li Y. A Nomogram Based on MRI Visual Decision Tree to Evaluate Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. J Magn Reson Imaging 2025; 61:970-982. [PMID: 39777758 PMCID: PMC11706310 DOI: 10.1002/jmri.29491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUNDS Anti-vascular endothelial growth factor (VEGF) therapy has been developed and recognized as an effective treatment for hepatocellular carcinoma (HCC). However, there remains a lack of noninvasive methods in precisely evaluating VEGF expression in HCC. PURPOSE To establish a visual noninvasive model based on clinical indicators and MRI features to evaluate VEGF expression in HCC. STUDY TYPE Retrospective. POPULATION One hundred forty HCC patients were randomly divided into a training (N = 98) and a test cohort (N = 42). FIELD STRENGTH/SEQUENCE 3.0 T, T2WI, T1WI including pre-contrast, dynamic, and hepatobiliary phases. ASSESSMENT The fusion model constructed by history of smoking, albumin-to-globulin ratio (AGR) and the Radio-Tree model was visualized by a nomogram. STATISTICAL TESTS Performances of models were assessed by receiver operating characteristic (ROC) curves. Student's t-test, Mann-Whitney U-test, chi-square test, Fisher's exact test, univariable and multivariable logistic regression analysis, DeLong's test, integrated discrimination improvement (IDI), Hosmer-Lemeshow test, and decision curve analysis were performed. P < 0.05 was considered statistically significant. RESULTS History of smoking and AGR ≤1.5 were clinical independent risk factors of the VEGF expression. In training cohorts, values of area under the curve (AUCs) of Radio-Tree model, Clinical-Radiological (C-R) model, fusion model which combined history of smoking and AGR with Radio-Tree model were 0.821, 0.748, and 0.871. In test cohort, the fusion model showed highest AUC (0.844) than Radio-Tree and C-R models (0.819, 0.616, respectively). DeLong's test indicated that the fusion model significantly differed in performance from the C-R model in training cohort (P = 0.015) and test cohort (P = 0.007). DATA CONCLUSION The fusion model combining history of smoking, AGR and Radio-Tree model established with ML algorithm showed the highest AUC value than others. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hanting Dai
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Chuan Yan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Wanrong Huang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yifan Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Feng Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yamei Liu
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Shunli Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Huifang Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Rongping Ye
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yueming Li
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
10
|
Bie L, Chen G, Lei X, Xiao F, Xu Z, Xiang Z, Lu Z, Jiang X. B4GALNT1 Regulates Hepatocellular Carcinoma Cell Proliferation and Apoptosis via the PI3K-AKT-mTOR Pathway. J Clin Lab Anal 2025; 39:e25155. [PMID: 39829207 PMCID: PMC11848214 DOI: 10.1002/jcla.25155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear. METHODS By analyzing the TCGA_LIHC, GSE77509, and GSE135631 datasets, the levels of B4GALNT1 expression in HCC and surrounding non-cancerous tissues were compared. The prognostic implications of B4GALNT1 were assessed using the Cox regression analysis (CRA). The relationship of B4GALNT1 mutations with CpG island methylation levels and prognosis was examined by analyzing the cBioPortal and MethSurv databases. We sifted the evidence of B4GALNT1 expression correlating with 28 immune cell types' infiltration by harnessing the "GSVA" R package. To delve into the influences of genes associated with B4GALNT1 on HCC, we implemented gene set enrichment analysis (GSEA). We constructed a lentiviral vector expressing B4GALNT1 and knocked down B4GALNT1 in HepG2 cells. The resulting effects on HCC cell proliferation and apoptosis were analyzed via cell proliferation assays and flow cytometry. RESULTS HCC tissues presented significant B4GALNT1 overexpression relative to surrounding non-cancerous tissues, marking it as a standalone risk factor for HCC progression. Methylation levels of two CpG islands were high, suggesting poor prognosis. It was detectable that B4GALNT1 expression interrelated with the infiltration extent of natural killer T cells in HCC tissues. B4GALNT1-fueled cell proliferation and enhanced resistance to apoptosis in HCC cells. CONCLUSION B4GALNT1 is a strong regulator of HCC progression and holds promise as a marker for prognosis and a hallmark for therapy in HCC.
Collapse
Affiliation(s)
- Lihan Bie
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal‐Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xin Lei
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Xiao
- Department of PathologyThe Seventh People's Hospital Affiliated to the Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zheng Xu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhouhong Xiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhicheng Lu
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiudi Jiang
- Department of Laboratory MedicineThe Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
11
|
Li J, Zhang Y, Hu L, Ye H, Yan X, Li X, Li Y, Ye S, Wu B, Li Z. T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma. J Clin Transl Hepatol 2025; 13:69-83. [PMID: 39801788 PMCID: PMC11712086 DOI: 10.14218/jcth.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Luqi Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Heqing Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xingli Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Shuwen Ye
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Bailu Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Yang ZX, Zhang LT, Liu XJ, Peng XB, Mao XR. Interleukin-17A facilitates tumor progression via upregulating programmed death ligand-1 expression in hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:97831. [PMID: 39817127 PMCID: PMC11664623 DOI: 10.4251/wjgo.v17.i1.97831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy. Interleukin-17A (IL-17A) is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors. We hypothesized that IL-17A participates in tumor progression by affecting the level of immune checkpoint molecules in HCC. AIM To investigate the effect and mechanism of action of IL-17A on PD-L1 expression and to identify attractive candidates for the treatment of HCC. METHODS The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR, western blotting, and flow cytometry. Mechanistic studies were conducted with gene knockout models and pathway inhibitors. The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells. The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro, and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo. RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner, whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A. IL-17A enhanced the survival of HCC cells in the coculture system. IL-17A increased the viability, G2/M ratio, and migration of HCC cells and decreased the apoptotic index. Cyclin D1, VEGF, MMP9, and Bcl-1 expression increased after IL-17A treatment, whereas BAX expression decreased. The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8 + T lymphocyte infiltration in an HCC mouse model. CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapentaplegic 2 signaling pathway in HCC cells. Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.
Collapse
Affiliation(s)
- Zhong-Xia Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Li-Ting Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Jun Liu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xue-Bin Peng
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Rong Mao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
13
|
Zhao X, Xuan F, Li Z, Yin X, Zeng X, Chen J, Fang C. A KIF20A-based thermosensitive hydrogel vaccine effectively potentiates immune checkpoint blockade therapy for hepatocellular carcinoma. NPJ Vaccines 2025; 10:1. [PMID: 39753573 PMCID: PMC11699128 DOI: 10.1038/s41541-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development. This study confirmed KIF20A as a promising immunogenic antigen through transcriptomic mRNA sequencing analysis in the context of HCC. Therefore, we developed a thermosensitive hydrogel vaccine formulation (K/RLip@Gel) to optimize antigen delivery while enabling sustained in vivo release. The vaccine efficiently elicited robust immune responses by activating DCs and T cells. Moreover, K/RLip@Gel improved the therapeutic efficacy of PD-L1 blockade in subcutaneous and orthotopic cell-derived xenograft (CDX) models, along with immune-humanized patient-derived xenograft (PDX) HCC models, which was evidenced by improved maturation of DCs and elevated infiltration and activation of CD8+ T cells. These findings highlight the potential of KIF20A-based vaccines to synergistically improve ICB therapy outcomes in HCC, providing a promising approach for enhancing anti-tumor immunity and improving clinical outcomes.
Collapse
Affiliation(s)
- Xingyang Zhao
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feichao Xuan
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zirong Li
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyi Yin
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Chen
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chihua Fang
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Digital Intelligent Minimally Invasive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China.
- South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou, China.
| |
Collapse
|
14
|
Guo X, Cui T, Sun L, Fu Y, Cheng C, Wu C, Zhu Y, Liang S, Liu Y, Zhou S, Li X, Ji C, Ma K, Zhang N, Chu Q, Xing C, Deng S, Wang J, Liu Y, Liu L. A STT3A-dependent PD-L1 glycosylation modification mediated by GMPS drives tumor immune evasion in hepatocellular carcinoma. Cell Death Differ 2024:10.1038/s41418-024-01432-0. [PMID: 39690246 DOI: 10.1038/s41418-024-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor characterized by rapid progression. To explore the regulatory mechanism of rapid tumor growth and metastasis, we conducted proteomic and scRNA-Seq analyses on advanced HCC tissues and identified a significant molecule, guanine monophosphate synthase (GMPS), closely associated with the immune evasion in HCC. We analyzed the immune microenvironment characteristics remodeled by GMPS using scRNA-Seq and found GMPS induced tumor immune evasion in HCC by impairing the tumor-killing function of CD8 + T cells. Further investigation revealed that GMPS increased PD-L1 expression by regulating its ubiquitination and glycosylation modification. Mechanistically, GMPS enhanced the bond between PD-L1 and the catalytic subunit STT3A of oligosaccharyltransferase (OST) by acting as an additional module connecting the Sec61 channel complex and STT3A, which aided in the translocation and modification of nascent peptides. Increased PD-L1 impaired the tumor-killing function of CD8 + T cells, leading to the immune evasion. Importantly, targeting GMPS with angustmycin A, an inhibitor of GMPS activity, significantly suppressed PD-L1 expression and tumor growth in HCC, which also increased the sensitivity to anti-CTLA-4 immunotherapy. These findings suggested the potential of targeting GMPS as a promising therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
15
|
Zhang T, Li W, Chen Q, He W, Sun J, Li D, Wang Q, Duan X. Prognostic significance of early alpha fetoprotein and des-gamma carboxy prothrombin responses in unresectable hepatocellular carcinoma patients undergoing triple combination therapy. Front Immunol 2024; 15:1508028. [PMID: 39726604 PMCID: PMC11669689 DOI: 10.3389/fimmu.2024.1508028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Background Recent advancements in combination therapy for unresectable hepatocellular carcinoma (uHCC) have shown promise, but reliable serological prognostic indicators are currently lacking for patients undergoing triple combination therapy of stereotactic body radiation therapy (SBRT), immunotherapy, and targeted therapy. We aimed to investigate the prognostic significance of early alpha fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP) responses in these patients. Methods This retrospective research included 115 uHCC patients treated with SBRT in combination with immunotherapy and targeted therapy (triple therapy) at our institution from April 2021 to December 2022. Participants were categorized into high AFP and high DCP cohorts based on baseline levels. AFP and DCP responses were defined as decreases from baseline of over 50% and 70%, respectively, according to ROC curve analysis. Differences in overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) were assessed between the tumor biomarker response and non-response groups. Results Multivariate analysis indicated that AFP or DCP response at 6-8 weeks post-therapy significantly influenced ORR (high AFP cohort: odds ratio [OR] 5.50, 95% CI 2.04-14.83, p=0.001; high DCP cohort: OR 7.99, 95%CI 2.82-22.60, p<0.001). The median PFS was notably longer in tumor biomarker response groups (high AFP cohort: 13.7 vs 6.2 months, hazard ratio [HR] 0.36, 95% CI 0.20-0.62, p<0.001; high DCP cohort: 15.6 vs 9.3 months, HR 0.44, 95% CI 0.26-0.74, p=0.002). AFP or DCP response was associated with prolonged OS (high AFP cohort: not reached vs. 21.9 months, HR 0.47, 95% CI 0.22-0.99, p=0.047; high DCP cohort: not reached vs. 20.6 months, HR 0.35, 95% CI 0.14-0.86, p=0.022). Conclusion AFP or DCP response at 6-8 weeks post-therapy predicts better oncological outcomes in patients with uHCC treated with triple therapy.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Department of Oncology, The 983rd Hospital of Joint Logistic Support Force of PLA, Tianjin, China
- Medical School of Chinese PLA, Beijing, China
| | - Wengang Li
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Weiping He
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Sun
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dong Li
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
16
|
Wang Z, Fan L, Xu H, Qin Z, Zhu Z, Wu D, Zhang Y, Liu R, Wei J, Qian Z, Yang P, Xie B, Yuan M, Qian J. HSP90AA1 is an unfavorable prognostic factor for hepatocellular carcinoma and contributes to tumorigenesis and chemotherapy resistance. Transl Oncol 2024; 50:102148. [PMID: 39388959 PMCID: PMC11736399 DOI: 10.1016/j.tranon.2024.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the leading causes of tumor-related deaths. Accumulating evidence indicates that immunogenic cell death (ICD) could occur in tumor cells. However, ICD-related studies are limited in HCC. This study collected HCC RNA sequencing data from the Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. R software was used to analyze the expression of ICD in HCC and to screen essential genes with prognostic value. qRT-PCR and WB determined the mRNA and protein expressions of hub gene. Cell viability assay, Clonal formation assay, and Live/dead staining assay were employed to determine the gene functions. After cross-analysis of differentially expressed genes (DEGs) and ICD-related genes (ICDRGs), 7 differentially expressed ICDRGs were identified in HCC. Of them, HSP90AA1, with the most excellent prognostic value in HCC, was selected, whose expression was also validated in public cohorts, cell lines, and clinical tissue samples. High HSP90AA1 expression indicated an inferior prognosis of HCC, and HSP90AA1 knockdown significantly suppressed cell viability and chemotherapy resistance of HCC. ICD-related gene HSP90AA1 was an unfavorable factor for HCC, and high HSP90AA1 expression contributed to tumor cell survival and chemotherapy resistance.
Collapse
Affiliation(s)
- Zhaoying Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Longfei Fan
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Heng Xu
- Department of Medical Imaging Center, Anhui Women and Children' s Medical Center, No.15 Yimin Street, Hefei, 230001, China
| | - Zhongqiang Qin
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Ziyi Zhu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Di Wu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Yigang Zhang
- Graduate school, Bengbu Medical University, No.2006 Donghai Road, Longzihu District, Bengbu 233030, China
| | - Ruoyu Liu
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Jianzhu Wei
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Zhen Qian
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Peipei Yang
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Bo Xie
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China
| | - Mu Yuan
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China.
| | - Jingyu Qian
- Department of Interventional Radiology, the First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233004, China.
| |
Collapse
|
17
|
Fan G, Gao R, Xie T, Li L, Tang L, Han X, Shi Y. DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma. Cell Death Dis 2024; 15:797. [PMID: 39505867 PMCID: PMC11541906 DOI: 10.1038/s41419-024-07195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
18
|
Weinfurtner K, Tischfield D, McClung G, Crainic J, Gordan J, Jiao J, Furth EE, Li W, Tuzneen Supan E, Nadolski GJ, Hunt SJ, Kaplan DE, Gade TPF. Human GM-CSF/IL-3 enhance tumor immune infiltration in humanized HCC patient-derived xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561117. [PMID: 39554038 PMCID: PMC11565794 DOI: 10.1101/2023.10.05.561117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background & Aims Responses to immunotherapies in hepatocellular carcinoma (HCC) are suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts (PDXs). Material and Methods NOG (NOD/Shi- scid /IL-2R null ) and NOG-EXL (huGM-CSF/huIL-3 NOG) mice conditioned with Busulfan underwent i.v. injection of human CD34+ cells. HCC PDX tumors were then implanted subcutaneously (SQ) or orthotopically (OT). Following serial blood sampling, mice were euthanized at defined tumor sizes. Tumor, blood, liver, and spleen were analyzed by flow cytometry and immunohistochemistry. Results Humanized NOG-EXL mice demonstrated earlier and increased human chimerism compared to humanized NOG mice (82.1% vs 43.8%, p<0.0001) with increased proportion of human monocytes (3.2% vs 1.1%, p=0.001) and neutrophils (0.8% vs 0.3%, p=0.02) in circulation. HCC tumors in humanized NOG-EXL mice had increased human immune cell infiltration (57.6% vs 30.2%, p=0.04), noting increased regulatory T cells (14.6% vs 6.8%, p=0.04), CD4+ PD-1 expression (84.7% vs 32.0%, p<0.01), macrophages (1.2% vs 0.6%, p=0.02), and neutrophils (0.5% vs 0.1%, p<0.0001). No differences were observed in tumor engraftment or growth latency in SQ tumors, but OT tumors required implantation at two rather than four weeks post-humanization for successful engraftment. Finally, utilizing adult bone marrow instead of fetal livers enabled partial HLA-matching to HCC tumors but required more CD34+ cells. Conclusions Human GM-CSF and IL-3 expression in humanized mice resulted in features more closely approximating the immune microenvironment of human disease, providing a promising model for investigating critical questions in immunotherapy for HCC. Impact and Implications This study introduces a unique mouse model at a critical point in the evolution of treatment paradigms for patients with hepatocellular carcinoma (HCC). Immunotherapies have become first line treatment for advanced HCC; however, response rates remain low with no clear predictors of response to guide patient selection. In this context, animal models that recapitulate human disease are greatly needed. Leveraging xenograft tumors derived from patients with advanced HCCs and a commercially available immunodeficient mouse strain that expresses human GM-CSF and IL-3, we demonstrate a novel but accessible approach for modeling the HCC tumor microenvironment.
Collapse
|
19
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
20
|
Hu Q, Chen S, Deng R, Deng H, Peng M, Wang X, Deng S, Wang J, Xu B, Xu Y, Zhu H, Zheng J, Xia M, Zuo C. Exosomal PDL1 Suppresses the Anticancer Activity of CD8 + T Cells in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2024; 2024:1608582. [PMID: 39421264 PMCID: PMC11483647 DOI: 10.1155/2024/1608582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/23/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor microenvironment (TME) is essential for the development and progression of hepatocellular carcinoma (HCC). Exosomes participate in constructing TME by passing biological information, but the regulatory effect of PDL1 in exosomes on anticancer activity of CD8+ T cells in HCC still needs to be further explored. In this study, high level of PDL1 was found in plasma exosomes of HCC patients, which turned out to be significantly associated with the increased number of tumor nodules, the upregulated level of serum AFP, the raised tendency of TNM stage, and the poor prognosis of HCC. The expression of CD8 may be inhibited in HCC that is characterized with high level of PDL1, and the protein level of exosomal PDL1 was determined by intracellular PDL1 abundance. High level of exosomal PDL1 inhibited the proliferation and activation of CD8+ T cells, but exhibited limited effect on the proliferation of hepatic cancer cells. Moreover, the growth of tumors formed by hepatic cancer cells Hepa1-6 in C57L mice was significantly promoted by the exosomal PDL1, which might be caused by the inhibitory effect of exosomal PDL1 on CD8+ T cells. Thus, exosomal PDL1 promotes the development and progression of HCC through inhibiting the anticancer activity of CD8+ T cells. This study provides sights for understanding the oncogenic role of PDL1 and a reasonable explanation for the low efficacy of anti-PD1/PDL1 immunotherapies in HCC.
Collapse
Affiliation(s)
- Qi Hu
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuai Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Rilin Deng
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Xiaohong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Shun Deng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Jinfeng Wang
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Biaoming Xu
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yan Xu
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Jinhai Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, China
| | - Man Xia
- Department of Gynecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School Medicine, Central South University, Changsha 410013, Hunan, China
| | - Chaohui Zuo
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
21
|
Du J, Han S, Zhou H, Wang J, Wang F, Zhao M, Song R, Li K, Zhu H, Zhang W, Yang Z, Liu Z. Targeted protein degradation combined with PET imaging reveals the role of host PD-L1 in determining anti-PD-1 therapy efficacy. Eur J Nucl Med Mol Imaging 2024; 51:3559-3571. [PMID: 38910165 DOI: 10.1007/s00259-024-06804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.
Collapse
Affiliation(s)
- Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Han
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Feng Wang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Meixin Zhao
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Song
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hua Zhu
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weifang Zhang
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Zhi Yang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China.
| |
Collapse
|
22
|
Zhang S, Xu L, Li JQ, Du MZ, Yin Y, Zhong BY, Liang HS, Li WC, Ni CF, Zhu XL. Transarterial Embolization Enhances Programmed Cell Death Ligand 1 Expression and Influences CD8 +T Lymphocytes Cytotoxicity in an Orthotopic Hepatocellular Carcinoma Rat Model. Cardiovasc Intervent Radiol 2024; 47:1372-1381. [PMID: 39103638 DOI: 10.1007/s00270-024-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE To investigate the influence of transarterial embolization (TAE) on programmed cell death-ligand 1(PD-L1) expression and CD8+T tumour infiltrative lymphocyte cytotoxicity in the Sprague-Dawley (SD) rat model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS An orthotopic HCC model was established in twenty SD rats treated with TAE (lipiodol, n = 10) or sham (normal saline, n = 10) using homologous N1S1 hepatoma cells. Rats were euthanized 1 week after embolization. Flow cytometry was used to assess the proportion of CD4+T, CD8+T and programmed cell death-1+(PD-1+) CD8+T lymphocytes in the spleens and tumours. Distribution of CD8+T, granzyme-B+CD8+T lymphocytes and PD-L1+ cells was assessed by immunohistochemistry (IHC) or multiplex IHC. p value < 0.05 was considered statistically significant. RESULTS The CD4/CD8 ratio and PD-1+CD8+ T lymphocytes exhibited higher values in TAE-treated tumours compared to sham-treated tumours (p = 0.021 and p = 0.071, respectively). Conversely, the number of CD8+T lymphocytes was decreased in TAE-treated tumours (p = 0.043), especially in the central region (p = 0.045). However, more CD8+T lymphocytes were found infiltrating the marginal region than central region in TAE-treated tumours (p = 0.046). The proportion of granzyme-B+CD8+T lymphocytes and the PD-L1 positive areas was elevated in tumours that treated with TAE (p all < 0.05). There was a negative correlation between PD-L1 expression and the number of infiltration of CD8+ T lymphocytes (p = 0.036). CONCLUSIONS Immune cells are distributed unevenly in the tumours after TAE. The intrinsic induction state of the tumour after embolization may be insufficient to elicit a maximal response to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Lin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Jia-Qing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Ming-Zhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yin
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Bin-Yan Zhong
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Han-Si Liang
- Jiangu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wan-Ci Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Cai-Fang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China
| | - Xiao-Li Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
23
|
Zeng ZX, Wu JY, Wu JY, Zhang ZB, Wang K, Zhuang SW, Li B, Zhou JY, Lin ZT, Li SQ, Li YN, Fu YK, Yan ML. Prognostic Value of Pathological Response for Patients with Unresectable Hepatocellular Carcinoma Undergoing Conversion Surgery. Liver Cancer 2024; 13:498-508. [PMID: 39435272 PMCID: PMC11493390 DOI: 10.1159/000536376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Transarterial chemoembolization combined with lenvatinib and PD-1 inhibitor (triple therapy) has displayed encouraging clinical outcomes for unresectable hepatocellular carcinoma (uHCC). We aimed to explore the prognostic value of pathological response (PR) in patients with initially uHCC who underwent conversion surgery following triple therapy and identify predictors of major pathological response (MPR). Methods A total of 76 patients with initially uHCC who underwent conversion surgery following triple therapy were retrospectively analyzed. PR was calculated as the proportion of nonviable tumor cell surface area of the whole tumor bed surface area. MPR was identified when PR was ≥90%. Pathological complete response (pCR) was defined as the absence of viable tumor cells. Results MPR and pCR were identified in 53 (69.7%) and 25 (32.9%) patients, respectively. The 1- and 2-year overall survival in patients with MPR were significantly higher than in those without MPR (100.0% and 91.3% vs. 67.7% and 19.4%; p < 0.001). The corresponding recurrence-free survival was also improved in patients with MPR compared to those without (75.9% and 50.8% vs. 22.3% and 11.2%; p < 0.001). Similar results were observed among patients with pCR and those without. Patients who achieved MPR without pCR exhibited survival rates comparable to those of patients who achieved pCR. Baseline neutrophil-to-lymphocyte ratio ≥2.6 (p = 0.016) and preoperative alpha-fetoprotein level ≥400 ng/mL (p = 0.015) were independent predictors of MPR. Conclusion The presence of MPR or pCR could improve prognosis in patients with initially uHCC who underwent conversion surgery following triple therapy. The PR may become a surrogate marker for predicting the prognosis of these patients.
Collapse
Affiliation(s)
- Zhen-Xin Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jia-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jun-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Zhi-Bo Zhang
- Department of Hepatopancreatobiliary Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kai Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao-Wu Zhuang
- Department of Interventional Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Bin Li
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian-Yin Zhou
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Zhong-Tai Lin
- Department of General Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Shu-Qun Li
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi-Nan Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yang-Kai Fu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mao-Lin Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
24
|
Zhang Y, Chen D, Ang B, Deng X, Li B, Bai Y, Zhang Y. A necroptosis-regulated model from single-cell analysis that predicts survival and identifies the Pivotal role of MAGEA6 in hepatocellular carcinoma. Heliyon 2024; 10:e37711. [PMID: 39315163 PMCID: PMC11417173 DOI: 10.1016/j.heliyon.2024.e37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Youcheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Ang
- Department of Oncology, Tianjin First Central Hospital Clinic Institute, Tianjin 300192, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Li
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Yi Bai
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
25
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
26
|
Liang ZN, Wang H, Cui WC, Zhou W, Wang S, Zhang ZY, Wu W, Yan K, Ji YL, Yang W. Multimode Ultrasound Model for Predicting the Early Treatment Response of Anti-VEGF Agents Plus Anti-PD-1 Antibody in Patients with Unresectable Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1318-1328. [PMID: 38871491 DOI: 10.1016/j.ultrasmedbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE The purpose of the study described was to establish prediction models to initially screen the beneficiary patients with unresectable hepatocellular carcinoma (HCC) in the treatment of anti-vascular endothelial growth factor (VEGF) agents plus anti-programmed cell death-1 (PD-1) antibody. METHODS A total of 62 patients were enrolled in this study. All patients underwent ultrasound (US), color ddoppler flowing imaging (CDFI), contrast-enhanced ultrasound (CEUS) and laboratory examinations within 2 wk before the treatment. Tumor response was assessed according to mRECIST criteria. Univariate and multivariate analyses were used to select the independent predictors. US + CDFI, CEUS and FULL models were established. Three models were displayed by nomography. Receiver operating characteristic (ROC) and calibration curves were drawn to evaluate the predictive ability of models. Decision curve analysis (DCA) was used to assess the clinical utility of models. RESULTS On univariate and multivariate analysis, the US boundary (p = 0.037), halo (p = 0.002) and CDFI (p = 0.024) were included in the US + CDFI model. CEUS boundary (p = 0.001) and washout time (p < 0.001) were included in the CEUS model. The number of lesions (p = 0.104), halo on US (p = 0.014), CDFI (p = 0.057) and washout time on CEUS (p = 0.015) were incorporated into the FULL model. The C indices of the US + CDFI, CEUS and FULL models were 0.918, 0.920 and 0.973. CEUS and FULL models yielded a good net benefit for almost all threshold probabilities. CONCLUSION Nomograms based on US, CDFI, CEUS and clinical characteristics could help to non-invasively predict the response to treatment with anti-PD-1 antibodies plus anti-VEGF agents.
Collapse
Affiliation(s)
- Zi-Nan Liang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Hong Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Wen-Chao Cui
- Department of Ultrasonography, Shengli Oil Field Center Hospital, Dongying District, Dongying, Shandong Province, China
| | - Wei Zhou
- Department of Ultrasonography, Shengli Oil Field Center Hospital, Dongying District, Dongying, Shandong Province, China
| | - Song Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Zhong-Yi Zhang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Wei Wu
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Kun Yan
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Yong-Li Ji
- Department of Ultrasonography, Shengli Oil Field Center Hospital, Dongying District, Dongying, Shandong Province, China
| | - Wei Yang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital, Haidian District, Beijing, China.
| |
Collapse
|
27
|
Shi S, Zhu C, Hu Y, Jiang P, Zhao J, Xu Q. ENG is a Biomarker of Prognosis and Angiogenesis in Liver Cancer, and Promotes the Differentiation of Tumor Cells into Vascular ECs. FRONT BIOSCI-LANDMRK 2024; 29:315. [PMID: 39344331 DOI: 10.31083/j.fbl2909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Liver cancer is a highly lethal malignancy with frequent recurrence, widespread metastasis, and low survival rates. The aim of this study was to explore the role of Endoglin (ENG) in liver cancer progression, as well as its impacts on angiogenesis, immune cell infiltration, and the therapeutic efficacy of sorafenib. METHODS A comprehensive evaluation was conducted using online databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 76 pairs of clinical specimens of tumor and adjacent non-tumor liver tissue, and tissue samples from 32 hepatocellular carcinoma (HCC) patients treated with sorafenib. ENG expression levels were evaluated using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Cox regression analysis, Spearman rank correlation analysis, and survival analysis were used to assess the results. Functional experiments included Transwell migration assays and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Tumor cells exhibited retro-differentiation into endothelial-like cells, with a significant increase in ENG expression in these tumor-derived endothelial cells (TDECs). High expression of ENG was associated with more aggressive cancer characteristics and worse patient prognosis. Pathway enrichment and functional analyses identified ENG as a key regulator of immune responses and angiogenesis in liver cancer. Further studies confirmed that ENG increases the expression of Collagen type Iα1 (COL1A1), thereby promoting angiogenesis in liver cancer. Additionally, HCC patients with elevated ENG levels responded well to sorafenib treatment. CONCLUSIONS This study found that ENG is an important biomarker of prognosis in liver cancer. Moreover, ENG is associated with endothelial cell differentiation in liver cancer and plays a crucial role in formation of the tumor vasculature. The assessment of ENG expression could be a promising strategy to identify liver cancer patients who might benefit from targeted immunotherapies.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Differentiation
- Endoglin/metabolism
- Endoglin/genetics
- Male
- Female
- Middle Aged
- Cell Line, Tumor
- Phenylurea Compounds/pharmacology
- Human Umbilical Vein Endothelial Cells/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Angiogenesis
Collapse
Affiliation(s)
- Shangheng Shi
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Cunle Zhu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Yue Hu
- Hepatobiliary and Pancreatic Surgery Department, Affiliated First Hospital of Ningbo University, 315000 Ningbo, Zhejiang, China
| | - Peng Jiang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Jinxin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| | - Qingguo Xu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, 266003 Qingdao, Shandong, China
- The Institute of Transplantation Science, Qingdao University, 266003 Qingdao, Shandong, China
| |
Collapse
|
28
|
Yang Z, Yu J, Wong CC. Gastrointestinal Cancer Patient Derived Organoids at the Frontier of Personalized Medicine and Drug Screening. Cells 2024; 13:1312. [PMID: 39195202 PMCID: PMC11352269 DOI: 10.3390/cells13161312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
29
|
Liu X, Lu Y, Zhou W, Peng T, Zhou J, Bi H, Xia F, Chen X. Chinese Multidisciplinary Expert Consensus on Immune Checkpoint Inhibitor-Based Combination Therapy for Hepatocellular Carcinoma (2023 Edition). Liver Cancer 2024; 13:355-375. [PMID: 39114757 PMCID: PMC11305662 DOI: 10.1159/000535496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/10/2023] [Indexed: 08/10/2024] Open
Abstract
Background Immune checkpoint inhibitor (ICI)-based combination therapy modalities for hepatocellular carcinoma (HCC) have achieved significant efficacy in clinical research and practice and have become the mainstay for the treatment of unresectable HCC. Summary To better help clinicians use combination immunotherapy drugs and regimens rationally, effectively, and safely, the editorial board facilitated a discussion with multidisciplinary experts in the field, adopted the "Delphi" consensus formation method, and finally revised and completed the "Chinese Multidisciplinary Expert Consensus on the Immune Checkpoint Inhibitors (ICIs)-Based Combination Therapy for Hepatocellular Carcinoma (2023 Edition)" on the basis of the 2021 edition. Key Messages This consensus primarily focuses on the principles and methods of clinical practice of combination therapy based on ICIs, aiming to summarize the recommendations for clinical application based on the latest research and expert experience and provide application guidance for clinicians.
Collapse
Affiliation(s)
- Xiufeng Liu
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, 5th Medical Center of PLA General Hospital, Beijing, China
| | - Weiping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tao Peng
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery and Liver Transplantation, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huaqiang Bi
- Department of Hepatobiliary Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Feng Xia
- Department of Hepatobiliary Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Xiaoping Chen
- Department of Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Wang H, Liang Y, Liu Z, Zhang R, Chao J, Wang M, Liu M, Qiao L, Xuan Z, Zhao H, Lu L. POSTN + cancer-associated fibroblasts determine the efficacy of immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e008721. [PMID: 39067872 PMCID: PMC11284881 DOI: 10.1136/jitc-2023-008721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) poses a significant clinical challenge because the long-term benefits of immune checkpoint blockade therapy are limited. A comprehensive understanding of the mechanisms underlying immunotherapy resistance in HCC is imperative for improving patient prognosis. DESIGN In this study, to systematically investigate the characteristics of cancer-associated fibroblast (CAF) subsets and the dynamic communication among the tumor microenvironment (TME) components regulated by CAF subsets, we generated an HCC atlas by compiling single-cell RNA sequencing (scRNA-seq) datasets on 220 samples from six datasets. We combined spatial transcriptomics with scRNA-seq and multiplexed immunofluorescence to identify the specific CAF subsets in the TME that determine the efficacy of immunotherapy in HCC patients. RESULTS Our findings highlight the pivotal role of POSTN+ CAFs as potent immune response barriers at specific tumor locations, as they hinder effective T-cell infiltration and decrease the efficacy of immunotherapy. Additionally, we elucidated the interplay between POSTN+ CAFs and SPP1+ macrophages, whereby the former recruits the latter and triggers increased SPP1 expression via the IL-6/STAT3 signaling pathway. Moreover, we demonstrated a spatial correlation between POSTN+ CAFs and SPP1+ macrophages, revealing an immunosuppressive microenvironment that limits the immunotherapy response. Notably, we found that patients with elevated expression levels of both POSTN+ CAFs and SPP1+ macrophages achieved less therapeutic benefit in an immunotherapy cohort. CONCLUSION Our research elucidates light on the role of a particular subset of CAFs in immunotherapy resistance, emphasizing the potential benefits of targeting specific CAF subpopulations to improve clinical responses to immunotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zheng Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Mingming Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Mu Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Zhengfeng Xuan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
31
|
Dai H, Wu B, Ge Y, Hao Y, Zhou L, Hong R, Zhang J, Jiang W, Zhang Y, Li H, Zhang L. Deubiquitylase OTUD3 regulates integrated stress response to suppress progression and sorafenib resistance of liver cancer. Cell Rep 2024; 43:114487. [PMID: 38996071 DOI: 10.1016/j.celrep.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The integrated stress response (ISR) is activated in response to intrinsic and extrinsic stimuli, playing a role in tumor progression and drug resistance. The regulatory role and mechanism of ISR in liver cancer, however, remain largely unexplored. Here, we demonstrate that OTU domain-containing protein 3 (OTUD3) is a deubiquitylase of eukaryotic initiation factor 2α (eIF2α), antagonizing ISR and suppressing liver cancer. OTUD3 decreases interactions between eIF2α and the kinase EIF2ΑK3 by removing K27-linked polyubiquitylation on eIF2α. OTUD3 deficiency in mice leads to enhanced ISR and accelerated progression of N-nitrosodiethylamine-induced hepatocellular carcinoma. Additionally, decreased OTUD3 expression associated with elevated eIF2α phosphorylation correlates with the progression of human liver cancer. Moreover, ISR activation due to decreased OTUD3 expression renders liver cancer cells resistant to sorafenib, while the combined use of the ISR inhibitor ISRIB significantly improves their sensitivity to sorafenib. Collectively, these findings illuminate the regulatory mechanism of ISR in liver cancer and provide a potential strategy to counteract sorafenib resistance.
Collapse
Affiliation(s)
- Hongmiao Dai
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yang Hao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lijie Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruolin Hong
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinhao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Cell Biology, School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China
| | - Wenli Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yuting Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Hongchang Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
32
|
Wang Y, Lau W, Li Y, Tian Y, Lei Y, Xia F, Wang J. Efficacy comparison of immune combination therapies in subgroups for advanced hepatocellular carcinoma patients: Systematic review and network meta-analysis. PLoS One 2024; 19:e0306869. [PMID: 39038010 PMCID: PMC11262675 DOI: 10.1371/journal.pone.0306869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND There is a lack of precision in the immunotherapy strategy tailored for patients exhibiting diverse clinical characteristics. This study aims to employ a rigorous network meta-analysis (NMA) approach to systematically evaluate the effectiveness of immune-combination therapies among patients with advanced hepatocellular carcinoma, taking into account their varying clinico-characteristics. METHODS Studies were retrieved from PubMed, Embase, Cochrane Library, and Web of Science databases. The included first-line phase III studies were categorized into three types: immunotherapy combined with anti-angiogenetic agents, immunotherapy combined with tyrosine kinase inhibitors, and dual immunotherapy, with sorafenib serving as the control group. The primary endpoint used to assess efficacy was overall survival (OS), facilitating a comparative analysis among the three treatment modalities. Furthermore, subgroup analyses were conducted to evaluate the varying effectiveness for patients with diverse clinico-characteristics. Secondary outcome measures included progression-free survival, objective response rate, and toxicity assessment. RESULTS A total of 6 studies were included in the NMA, encompassing a cohort of 3840 patients. The results revealed that immunotherapy combined with anti-angiogenetic agents exhibited a significantly enhanced therapeutic effect in terms of improving OS compared to sorafenib (HR = 0.61, 95% CrI, 0.42-0.90). Furthermore, based on various clinicopathological features, this combination therapy demonstrated superior OS responses in specific patient subgroups: BCLC C (HR = 0.63, 95% CrI, 0.42-0.93), ECOG 1 (HR = 0.57, 95% CrI, 0.36-0.91), with extrahepatic spread (EHS) (HR = 0.59, 95% CrI, 0.37-0.92), alpha fetoprotein (AFP)<400ng/ml (HR = 0.56, 95% CrI, 0.33-0.94) and viral hepatitis positivity (HR = 0.56, 95% CrI, 0.39-0.77) (especially HBV (HR = 0.58, 95% CrI, 0.40-0.85)). Importantly, the advantage of this combination therapy was even more pronounced in patients with viral hepatitis positivity. Also, the adverse events associated with immunotherapy combined with antiangiogenic drugs were moderate. CONCLUSIONS Immunotherapy combined with anti-angiogenetic agents could represent the most effective first-line intervention for achieving improved OS, particularly in patients with viral hepatitis positivity.
Collapse
Affiliation(s)
- Yani Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wanyee Lau
- Faculty of Medicine, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Liu Y, Hu X, Zhou S, Sun T, Shen F, Zeng L. Golgi Protein 73 Promotes Angiogenesis in Hepatocellular Carcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0425. [PMID: 39022745 PMCID: PMC11251733 DOI: 10.34133/research.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Golgi protein 73 (GP73), a resident protein of the Golgi apparatus, is notably elevated in hepatocellular carcinoma (HCC). While its critical role in remodeling the tumor microenvironment (TME) is recognized, the intricate mechanisms are not fully understood. This study reveals that GP73 in HCC cells interacts with prolyl hydroxylase-2 (PHD-2) in a competitive manner, thereby impeding the hydroxylation of hypoxia-induced factor-1α (HIF-1α). The effect above promotes the production and secretion of vascular endothelial growth factor A (VEGFA). Moreover, exosomal GP73 derived from HCC cells can be internalized by human umbilical vein endothelial cells (HUVECs) and competitively interact with HECTD1, an E3 ubiquitin ligase targeting growth factor receptor-bound protein 2 (GRB2). This interaction stabilizes GRB2, thereby activating the Ras-mitogen-activated protein kinase (MAPK) signaling pathway. Consequently, escalated levels of GP73 intensify VEGF production in HCC cells and potentiate mitogenic signaling in vascular endothelial cells, fostering angiogenesis in the TME. Our findings propose that GP73 might serve as a novel target for anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Yiming Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310017, China
- Cancer Center,
Zhejiang University, Hangzhou 310058, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou 310017, China
- Cancer Center,
Zhejiang University, Hangzhou 310058, China
| | - Sining Zhou
- Life Sciences Institute,
Zhejiang University, Hangzhou 310058, China
| | - Ting Sun
- Department of Pathology, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province,
Hangzhou City University School of Medicine, Hangzhou 310015, China
| |
Collapse
|
34
|
Yang D, Zhang P, Yang Z, Hou G, Yang Z. miR-4461 inhibits liver cancer stem cells expansion and chemoresistance via regulating SIRT1. Carcinogenesis 2024; 45:463-474. [PMID: 36437743 DOI: 10.1093/carcin/bgac093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 11/27/2022] [Indexed: 02/17/2024] Open
Abstract
MicroRNAs (miRNAs) were involved in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. We show here that miR-4461 expression is reduced in liver cancer stem cells (CSCs) and predicts the poor prognosis of HCC patients. Knockdown of miR-4461 enhances the self-renewal and tumorigenicity of liver CSCs. Conversely, forced miR-4461 expression inhibits liver CSCs self-renewal and tumorigenesis. Mechanically, miR-4461 directly targets sirtuin 1 (SIRT1) via binding to its 3' untranslated region in liver CSCs. The correlation of miR-4461 and SIRT1 was confirmed in human HCC patients' tissues. Additionally, we found that miR-4461 overexpression hepatoma cells are more sensitive to cisplatin treatment. Patient-derived xenografts also showed that miR-4461 high HCC xenografts are sensitive to cisplatin treatment. Clinical cohort analysis further confirmed that HCC patients with high miR-4461 benefited more from transcatheter arterial chemoembolization treatment. In conclusion, our findings revealed the crucial role of miR-4461 in liver CSCs expansion and cisplatin response, rendering miR-4461 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Daji Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ziting Yang
- Department of Emergency, The 964th Hospital of the Chinese People's Liberation Army, Changchun, China
| | - Guojun Hou
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Ziyu Yang
- Department of Integrative Medicine, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
35
|
Li S, Xu Y, Hu X, Chen H, Xi X, Long F, Rong Y, Wang J, Yuan C, Liang C, Wang F. Crosstalk of non-apoptotic RCD panel in hepatocellular carcinoma reveals the prognostic and therapeutic optimization. iScience 2024; 27:109901. [PMID: 38799554 PMCID: PMC11126946 DOI: 10.1016/j.isci.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Non-apoptotic regulated cell death (RCD) of tumor cells profoundly affects tumor progression and plays critical roles in determining response to immune checkpoint inhibitors (ICIs). Prognosis-distinctive HCC subtypes were identified by consensus cluster analysis based on the expressions of 507 non-apoptotic RCD genes obtained from databases and literature. Meanwhile, a set of bioinformatic tools was integrated to analyze the differences of the tumor immune microenvironment infiltration, genetic mutation, copy number variation, and epigenetics alternations within two subtypes. Finally, a non-apoptotic RCDRS signature was constructed and its reliability was evaluated in HCC patients' tissues. The high-RCDRS HCC subgroup showed a significantly lower overall survival and less sensitivity to ICIs compared to low-RCDRS subgroup, but higher sensitivity to cisplatin, paclitaxel, and sorafenib. Overall, we established an RCDRS panel consisting of four non-apoptotic RCD genes, which might be a promising predictor for evaluating HCC prognosis, guiding therapeutic decision-making, and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chunhui Yuan
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
36
|
Wang H, Qian YW, Dong H, Cong WM. Pathologic assessment of hepatocellular carcinoma in the era of immunotherapy: a narrative review. Hepatobiliary Surg Nutr 2024; 13:472-493. [PMID: 38911201 PMCID: PMC11190517 DOI: 10.21037/hbsn-22-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/23/2023] [Indexed: 06/25/2024]
Abstract
Background and Objective Immune checkpoint inhibitor (ICI)-based therapy has achieved impressive success in various cancer types. Several ICIs have been unprecedentedly approved as the treatment regimens for advanced hepatocellular carcinoma (HCC) in recent decade. Meanwhile, numerous clinical trials are being performed to exploit more ICIs into initially unresectable HCC and postoperative HCC to expectantly induce adequate tumor downstaging for further resection or implement adjuvant treatment for relapse-free survival, respectively. In this review, we aim to summarize some pragmatic histomorphologic, immunohistochemical, and molecular pathologic parameters which promisingly indicate the response of neoadjuvant/conversion ICI-related therapy and predict the efficacy of adjuvant/therapeutic ICI-related therapy for HCC. Methods We searched PubMed using the terms hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitor, immune checkpoint blockade, conversion therapy, neoadjuvant therapy, adjuvant therapy, biomarker, pathologic evaluation, pathologic assessment till February 2023. Key Content and Findings Although there is no consensus regarding the pathologic evaluation of relevant HCC specimens, it is encouraging that a few of studies have concentrated on this field, and moreover, the methods and parameters noted on other cancer types are also worthy of reference. For the pathologic assessment of HCC specimens underwent immunotherapy, a suitable sampling scheme, identifying immunotherapy-related pathologic response, and quantification of pathologic response rate should be emphasized. For the patients of HCC who are scheduled to receive immunotherapy, tumor-infiltrating lymphocyte, intratumoral tertiary lymphoid structure, programmed cell death ligand 1, Wnt/β-catenin, microsatellite instability and mismatch repair, tumor mutational burden and tumor neoantigen, as well as some other signaling pathways are the potential predictive biomarkers of treatment response of ICI. Conclusions The management of HCC in the era of immunotherapy arises a brand-new pathological challenge that is to provide an immunotherapy-related diagnostic report. Albeit many related researches are preclinical or insufficient, they may tremendously alter the immunotherapy strategy of HCC in future.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - You-Wen Qian
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
37
|
Peng H, Feng K, Jia W, Li Y, Lv Q, Zhang Y. An integrated investigation of sulfotransferases (SULTs) in hepatocellular carcinoma and identification of the role of SULT2A1 on stemness. Apoptosis 2024; 29:898-919. [PMID: 38411862 DOI: 10.1007/s10495-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Weilu Jia
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Liu Y, Mao J, Shen D, Jin B, Wu X, Song C, Du W. Combined treatment for a rare malignant glomus tumor of the esophagus with pulmonary and liver metastases: a case report and review of literature. Front Oncol 2024; 14:1340859. [PMID: 38884095 PMCID: PMC11176459 DOI: 10.3389/fonc.2024.1340859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 06/18/2024] Open
Abstract
Background Glomus tumors are typically benign soft tissue tumors that occur at the extremities; malignant and viscerally occurring cases are extremely rare. Case presentation We report a 49-year old male patient with a malignant esophageal glomus tumor that was complicated by lung and liver metastases. Genetic test results guided the patient's individualized treatment. Consequently, treatment with Anlotinib combined with Tislelizumab achieved significant clinical benefits. Conclusion Our case report demonstrates that immunotherapy combined with anti-angiogenic therapy in patients with malignant esophageal glomus tumors can achieve significant efficacy and suggests the potential value of next-generation sequencing (NGS) detection in guiding personalized treatments in patients with malignant esophageal glomus tumors.
Collapse
Affiliation(s)
- Yanan Liu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Mao
- Department of Translational Medicine, Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Dongfeng Shen
- Department of Tumor Minimally Invasive Therapy, Shanxi Traditional Chinese Medical Hospital, Taiyuan, Shanxi, China
| | - Baoli Jin
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xueqin Wu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Congcong Song
- Department of Translational Medicine, Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Wenjing Du
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
39
|
Urquijo-Ponce JJ, Alventosa-Mateu C, Latorre-Sánchez M, Castelló-Miralles I, Diago M. Present and future of new systemic therapies for early and intermediate stages of hepatocellular carcinoma. World J Gastroenterol 2024; 30:2512-2522. [PMID: 38817666 PMCID: PMC11135412 DOI: 10.3748/wjg.v30.i19.2512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a high mortality neoplasm which usually appears on a cirrhotic liver. The therapeutic arsenal and subsequent prognostic outlook are intrinsically linked to the HCC stage at diagnosis. Notwithstanding the current deployment of treatments with curative intent (liver resection/local ablation and liver transplantation) in early and intermediate stages, a high rate of HCC recurrence persists, underscoring a pivotal clinical challenge. Emergent systemic therapies (ST), particularly immunotherapy, have demonstrate promising outcomes in terms of increase overall survival, but they are currently bound to the advanced stage of HCC. This review provides a comprehensive analysis of the literature, encompassing studies up to March 10, 2024, evaluating the impact of novel ST in the early and intermediate HCC stages, specially focusing on the findings of neoadjuvant and adjuvant regimens, aimed at increasing significantly overall survival and recurrence-free survival after a treatment with curative intent. We also investigate the potential role of ST in enhancing the downstaging rate for the intermediate-stage HCC initially deemed ineligible for treatment with curative intent. Finally, we critically discuss about the current relevance of the results of these studies and the encouraging future implications of ST in the treatment schedules of early and intermediate HCC stages.
Collapse
Affiliation(s)
- Juan Jose Urquijo-Ponce
- Hepatology Unit, Department of Digestive Diseases, Consorcio Hospital General Universitario of Valencia, Valencia 46014, Spain
| | - Carlos Alventosa-Mateu
- Hepatology Unit, Department of Digestive Diseases, Consorcio Hospital General Universitario of Valencia, Valencia 46014, Spain
| | - Mercedes Latorre-Sánchez
- Hepatology Unit, Department of Digestive Diseases, Consorcio Hospital General Universitario of Valencia, Valencia 46014, Spain
| | - Inmaculada Castelló-Miralles
- Hepatology Unit, Department of Digestive Diseases, Consorcio Hospital General Universitario of Valencia, Valencia 46014, Spain
| | - Moisés Diago
- Hepatology Unit, Department of Digestive Diseases, Consorcio Hospital General Universitario of Valencia, Valencia 46014, Spain
| |
Collapse
|
40
|
Yang M, Chen W, Gupta D, Mei C, Yang Y, Zhao B, Qiu L, Chen J. Nanoparticle/Engineered Bacteria Based Triple-Strategy Delivery System for Enhanced Hepatocellular Carcinoma Cancer Therapy. Int J Nanomedicine 2024; 19:3827-3846. [PMID: 38708180 PMCID: PMC11068060 DOI: 10.2147/ijn.s453709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Background New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Dhanu Gupta
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Congjin Mei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Yang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Bingke Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
41
|
Wu T, Yang H, Li J, Fang H, Shi X, Li J, Feng L. Jolkinolide B inhibits the progression of hepatocellular carcinoma by regulating Musashi-2 protein. PLoS One 2024; 19:e0299920. [PMID: 38630658 PMCID: PMC11023458 DOI: 10.1371/journal.pone.0299920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. However, the HCC treatment is still challenging. Herein, we aimed to reveal the anti-tumor effect of Jolkinolide B in HCC cell lines Huh-7 and SK-Hep-1. The results showed that Jolkinolide B inhibited the migration, invasion, and epithelial-to-mesenchymal transition(EMT) of HCC cells. In addition, Jolkinolide B induced HCC cell apoptosis by upregulating Bax and downregulating BCL-2 expressions. Furthermore, we demonstrated that Jolkinolide B inactivated the β-catenin signaling and reduced Musashi-2 expression. Finally, we revealed that Musashi-2 overexpression reversed the Jolkinolide B-induced anti-HCC effect. Overall, we proved that Jolkinolide B is a potential candidate for treating HCC.
Collapse
Affiliation(s)
- Tianchun Wu
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Han Yang
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinjin Li
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongbo Fang
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoyi Shi
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Li
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liushun Feng
- Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplanation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
42
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
43
|
He L, Li H, Wang Y, Li W, Gao L, Xu B, Hu J, He P, Pu W, Sun G, Wang Z, Han Q, Liu B, Chen H. Complete remission in a pretreated, microsatellite-stable, KRAS-mutated colon cancer patient after treatment with sintilimab and bevacizumab and platinum-based chemotherapy: a case report and literature review. Front Immunol 2024; 15:1354613. [PMID: 38617840 PMCID: PMC11010642 DOI: 10.3389/fimmu.2024.1354613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
Metastatic colon cancer remains an incurable disease, and it is difficult for existing treatments to achieve the desired clinical outcome, especially for colon cancer patients who have received first-line treatment. Although immune checkpoint inhibitors (ICIs) have demonstrated durable clinical efficacy in a variety of solid tumors, their response requires an inflammatory tumor microenvironment. However, microsatellite-stable (MSS) colon cancer, which accounts for the majority of colorectal cancers, is a cold tumor that does not respond well to ICIs. Combination regimens open the door to the utility of ICIs in cold tumors. Although combination therapies have shown their advantage even for MSS colon cancer, it remains unclear whether combination therapies show their advantage in patients with pretreated metastatic colon cancer. We report a patient who has achieved complete remission and good tolerance with sintilimab plus bevacizumab and platinum-based chemotherapy after postoperative recurrence. The patient had KRAS mutation and MSS-type colon cancer, and his PD-1+CD8+ and CD3-CD19-CD14+CD16-HLA-DR were both positive. He has achieved a progression-free survival of 43 months and is still being followed up at our center. The above results suggest that this therapeutic regimen is a promising treatment modality for the management of pretreated, MSS-type and KRAS-mutated metastatic colorectal cancer although its application to the general public still needs to be validated in clinical trials.
Collapse
Affiliation(s)
- Lijuan He
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyuan Li
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Weidong Li
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jike Hu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Weigao Pu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhuanfang Wang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qinying Han
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ben Liu
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Provincial Key Laboratory Of Environmental Oncology, Lanzhou, China
| |
Collapse
|
44
|
Fan G, Xie T, Li L, Tang L, Han X, Shi Y. Single-cell and spatial analyses revealed the co-location of cancer stem cells and SPP1+ macrophage in hypoxic region that determines the poor prognosis in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:75. [PMID: 38521868 PMCID: PMC10960828 DOI: 10.1038/s41698-024-00564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
In hepatocellular carcinoma (HCC), classical cancer stem cells (CSC) markers were shared by normal stem cells, targeting which may hinder hepatic regeneration and cause liver failure. Additionally, the spatial structure of CSC still remained elusive. To address these limitations, we undertook a comprehensive study combining single-cell data (56,022 cells from 20 samples) and spatial data (38,191 spots from eight samples) to obtain CSC signature and uncover its spatial structure. Utilizing the CytoTRACE algorithm, we discretely identified CSC, which displayed upregulated proliferation pathways regulated by HIF1A. A CSC signature of 107 genes was then developed using Weighted Gene Co-expression Network Analysis (WGCNA). Notably, HCC patients with high CSC levels exhibited an accumulation of SPP1+ macrophages (Macro_SPP1) expressing metalloproteinases (MMP9, MMP12, and MMP7) regulated by HIF1A, suggesting a hypoxic tumor region connecting Macro_SPP1 and CSC. Both CSC and Macro_SPP1 correlated with worse prognosis and undesirable immunotherapy response. Spatial analysis revealed the co-location of CSC and Macro_SPP1, with CD8 T cells excluded from the tumor region. The co-location area and non-tumor area of boundary exhibited a high level of hypoxia, with the HAVRC2 checkpoint highly expressed. Within the co-location area, the SPP1 signaling pathway was most active in cell-cell communication, with SPP1-CD44 and SPP1-ITGA/ITGB identified as the main ligand-receptor pairs. This study successfully constructed a CSC signature and demonstrated the co-location of CSC and Macro_SPP1 in a hypoxic region that exacerbates the tumor microenvironment in HCC.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College; No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs; No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
45
|
Liu J, Yang T, Luo Y, Ma Z, Yu Z, Zhang L, Liu G, Wen J, Lu G, Zhang G, Zhao Y, Luo W, Li Y, Yang N, Zhou J, Lu Y, Chen S, Zeng X. DEAD-box helicase 1 inhibited CD8 + T cell antitumor activity by inducing PD-L1 expression in hepatocellular carcinoma. Cancer Sci 2024; 115:763-776. [PMID: 38243657 PMCID: PMC10921000 DOI: 10.1111/cas.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) does not respond well to current treatments, even immune checkpoint inhibitors. PD-L1 (programmed cell death ligand 1 or CD274 molecule)-mediated immune escape of tumor cells may be a key factor affecting the efficacy of immune checkpoint inhibitor (ICI) therapy. However, the regulatory mechanisms of PD-L1 expression and immune escape require further exploration. Here, we observed that DDX1 (DEAD-box helicase 1) was overexpressed in HCC tissues and associated with poor prognosis in patients with HCC. Additionally, DDX1 expression correlated negatively with CD8+ T cell frequency. DDX1 overexpression significantly increased interferon gamma (IFN-γ)-mediated PD-L1 expression in HCC cell lines. DDX1 overexpression decreased IFN-γ and granzyme B production in CD8+ T cells and inhibited CD8+ T cell cytotoxic function in vitro and in vivo. In conclusion, DDX1 plays an essential role in developing the immune escape microenvironment, rendering it a potential predictor of ICI therapy efficacy in HCC.
Collapse
Affiliation(s)
- Junhao Liu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Ti Yang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yurong Luo
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zengxin Ma
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhitao Yu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Lei Zhang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Gai Liu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Jianfan Wen
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Guankun Lu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Guowei Zhang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yujun Zhao
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Wang Luo
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yanan Li
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nengjia Yang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Jiawei Zhou
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhui Lu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Siliang Chen
- Department of Interventional RadiologyGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Xiancheng Zeng
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| |
Collapse
|
46
|
Zhang Y, Zheng R, Liu M, Zhang X, Sun Y, Shen H, Chen S, Cai H, Guo W, Xie X, Liu B, Huang G. Quantitative Parameters of Contrast-Enhanced Ultrasound Predicting the Response to Combined Immune Checkpoint Inhibitor and Anti-angiogenesis Therapies for Unresectable Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:352-357. [PMID: 38072718 DOI: 10.1016/j.ultrasmedbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The aim of the work described here was to explore the value of contrast-enhanced ultrasound (CEUS) quantitative parameters in predicting the response of combined immune checkpoint inhibitor (ICI) and anti-angiogenesis therapies for unresectable hepatocellular carcinoma (HCC). METHODS Sixty-six HCC patients who underwent combined ICI and anti-angiogenesis therapies were prospectively enrolled. A CEUS examination was performed at baseline, and tumor perfusion parameters were obtained with perfusion quantification software. The differences in CEUS quantitative parameters between the responder and non-responder groups were compared, and the correlations between CEUS parameters and progression-free survival (PFS) was evaluated. RESULTS The objective response rate (ORR) was 21.2%. The values of rising time (RT) ratio, time to peak ratio, fall time ratio, peak enhancement ratio, wash-in rate ratio, wash-in perfusion index ratio and wash-out rate ratio differed significantly differed between the responder and non-responder groups (all p values < 0.05). Multivariable logistic regression analysis revealed that the RT ratio was the only independent factor associated with the ORR (odds ratio = 0.007, 95% confidence interval: 0.000-0.307, p = 0.010). The median RT ratios of the responder and non-responder groups were 36.9 and 58.9, respectively (p = 0.006). The appropriate cutoff point of the RT ratio was 80.1, determined with the X-tile program. Survival analysis indicated high PFS for the patients with a lower RT ratio (high RT ratio vs. low RT ratio = 4.4 mo vs. not reached, p = 0.001). CONCLUSION CEUS quantitative parameters may predict the efficacy of ICI and anti-angiogenesis combined therapies for HCC.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruiying Zheng
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Liu
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoer Zhang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yueting Sun
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui Shen
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Chen
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongjie Cai
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenbo Guo
- Department of Interventional Radiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Xie
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baoxian Liu
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangliang Huang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Department of Medical Ultrasonics, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangxi, China.
| |
Collapse
|
47
|
Song C, Huang M, Zhou X, Chen Y, Li Z, Tang M, Chen M, Peng Z, Feng S. Prediction of immunocyte infiltration and prognosis in postoperative hepatitis B virus-related hepatocellular carcinoma patients using magnetic resonance imaging. Gastroenterol Rep (Oxf) 2024; 12:goae009. [PMID: 38415224 PMCID: PMC10898339 DOI: 10.1093/gastro/goae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Background The immune microenvironment (IME) is closely associated with prognosis and therapeutic response of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). Multi-parametric magnetic resonance imaging (MRI) enables non-invasive assessment of IME and predicts prognosis in HBV-HCC. We aimed to construct an MRI prediction model of the immunocyte-infiltration subtypes and explore its prognostic significance. Methods HBV-HCC patients at the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) with radical surgery (between 1 October and 30 December 2021) were prospectively enrolled. Patients with pathologically proven HCC (between 1 December 2013 and 30 October 2019) were retrospectively enrolled. Pearson correlation analysis was used to examine the relationship between the immunocyte-infiltration counts and MRI parameters. An MRI prediction model of immunocyte-infiltration subtypes was constructed in prospective cohort. Kaplan-Meier survival analysis was used to analyse its prognostic significance in the retrospective cohort. Results Twenty-four patients were prospectively enrolled to construct the MRI prediction model. Eighty-nine patients were retrospectively enrolled to determine its prognostic significance. MRI parameters (relative enhancement, ratio of the apparent diffusion coefficient value of tumoral region to peritumoral region [rADC], T1 value) correlated significantly with the immunocyte-infiltration counts (leukocytes, T help cells, PD1+Tc cells, B lymphocytes). rADC differed significantly between high and low immunocyte-infiltration groups (1.47 ± 0.36 vs 1.09 ± 0.25, P = 0.009). The area under the curve of the MRI model was 0.787 (95% confidence interval 0.587-0.987). Based on the MRI model, the recurrence-free time was longer in the high immunocyte-infiltration group than in the low immunocyte-infiltration group (P = 0.026). Conclusions MRI is a non-invasive method for assessing the IME and immunocyte-infiltration subtypes, and predicting prognosis in post-operative HBV-HCC patients.
Collapse
Affiliation(s)
- Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Meicheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
48
|
Himmelsbach V, Koch C, Trojan J, Finkelmeier F. Systemic Drugs for Hepatocellular Carcinoma: What Do Recent Clinical Trials Reveal About Sequencing and the Emerging Complexities of Clinical Decisions? J Hepatocell Carcinoma 2024; 11:363-372. [PMID: 38405324 PMCID: PMC10886804 DOI: 10.2147/jhc.s443218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Liver cancer was the fourth leading cause of cancer death in 2015 with increasing incidence between 1990 and 2015. Orthotopic liver transplantation, surgical resection and ablation comprise the only curative therapy options. However, due to the late manifestation of clinical symptoms, many patients present with intermediate or advanced disease, resulting in no curative treatment option being available. Whereas intermediate-stage hepatocellular carcinoma (HCC) is usually still addressable by transarterial chemoembolization (TACE), advanced-stage HCC is amenable only to pharmacological treatments. Conventional cytotoxic agents failed demonstrating relevant effect on survival also because their use was severely limited by the mostly underlying insufficient liver function. For a decade, tyrosine kinase inhibitor (TKI) sorafenib was the only systemic therapy that proved to have a clinically relevant effect in the treatment of advanced HCC. In recent years, the number of substances for systemic treatment of advanced HCC has increased enormously. In addition to tyrosine kinase inhibitors, immune checkpoint inhibitors (ICI) and antiangiogenic drugs are increasingly being applied. The combination of anti-programmed death ligand 1 (PD-L1) antibody atezolizumab and anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has become the new standard of care for advanced HCC due to its remarkable response rates. This requires more and more complex clinical decisions regarding tumor therapy. This review aims at summarizing recent developments in systemic therapy, considering data on first- and second-line treatment, use in the neoadjuvant and adjuvant setting and combination with locoregional procedures.
Collapse
Affiliation(s)
- Vera Himmelsbach
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christine Koch
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Jörg Trojan
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
49
|
Pan D, Liu HN, Qu PF, Ma X, Ma LY, Chen XX, Wang YQ, Qin XB, Han ZX. Progress in the treatment of advanced hepatocellular carcinoma with immune combination therapy. World J Gastrointest Oncol 2024; 16:273-286. [PMID: 38425407 PMCID: PMC10900147 DOI: 10.4251/wjgo.v16.i2.273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a severe malignancy that poses a serious threat to human health. Owing to challenges in early diagnosis, most patients lose the opportunity for radical treatment when diagnosed. Nonetheless, recent advancements in cancer immunotherapy provide new directions for the treatment of HCC. For instance, monoclonal antibodies against immune checkpoint inhibitors (ICIs) such as programmed cell death protein 1/death ligand-1 inhibitors and cytotoxic t-lymphocyte associated antigen-4 significantly improved the prognosis of patients with HCC. However, tumor cells can evade the immune system through various mechanisms. With the rapid development of genetic engineering and molecular biology, various new immunotherapies have been used to treat HCC, including ICIs, chimeric antigen receptor T cells, engineered cytokines, and certain cancer vaccines. This review summarizes the current status, research progress, and future directions of different immunotherapy strategies in the treatment of HCC.
Collapse
Affiliation(s)
- Di Pan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Hao-Nan Liu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Peng-Fei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Lu-Yao Ma
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Xiao Chen
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yu-Qin Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Xiao-Bing Qin
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
50
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|