1
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2025; 67:1463-1482. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
2
|
Liu R, Zhang Q, Yan X, Lv Y. A critical review on the relevance, essentiality, and analytical techniques of trace elements in human cancer. Metallomics 2025; 17:mfaf005. [PMID: 39929194 DOI: 10.1093/mtomcs/mfaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Trace elements (TEs) are indispensable nutritional elements, playing a pivotal role in maintaining human health and serving as essential cofactors for numerous enzymes that facilitate crucial biological processes. The dysregulation (excess or deficiency) of TEs can affect the proper functioning of various organs and lead to diseases like cancer. However, the current research findings remain contentious, and the association between TE variations and cancer remains elusive. This article reviews the recent advances in the quantitative detection of TEs in tumor research to fully understand the important role of TEs in disease diagnosis and prognosis. The changes in the levels of various elements (such as Cu, Zn, Fe, Se, Ca, etc.) are analyzed and summarized from five systems of the human body, including the digestive system, urinary system, reproductive system, endocrine system, and respiratory system. By analyzing the relevant findings in diverse biological samples, we systematically investigate the disruption of TEs homeostasis in cancer patients, thereby underscoring the potential of TEs as cancer biomarkers. We also present novel analytical techniques such as isotope ratio determination and bioimaging, along with advanced auxiliary tools like machine learning, for the detection of TEs in disease research. This review aims to provide a comprehensive overview of TEs variations in the main cancer types of different systems, which addresses the knowledge gap in TEs on human health, and provides proposals for future research.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qian Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
Zheng D, Deng Y, Deng L, He Z, Sun X, Gong Y, Shi B, Lu D, Yu C. CDCA7 enhances STAT3 transcriptional activity to regulate aerobic glycolysis and promote pancreatic cancer progression and gemcitabine resistance. Cell Death Dis 2025; 16:68. [PMID: 39905019 PMCID: PMC11794584 DOI: 10.1038/s41419-025-07399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cell division cycle associated 7 (CDCA7) plays a role in various malignancies, especially pancreatic cancer (PC). However, its expression pattern and functional significance in PC require further research. Therefore, this study aimed to investigate CDCA7 expression levels and biological functions in PC using in vitro and in vivo experiments. Western blotting, immunohistochemistry, and real-time polymerase chain reaction were performed to detect CDCA7 expression in PC cells and tissues. Additionally, the biological functions of CDCA7 were assessed using cell proliferation, wound healing, and Transwell assays. CDCA7 overexpression promoted PC cell proliferation, migration, and invasion, and increased resistance to the chemotherapy drug gemcitabine, possibly through enhanced aerobic glycolysis. Additionally, immunoprecipitation assay showed that CDCA7 interacted with STAT3 protein and affected the transcriptional regulation of hexokinase 2. Conclusively, targeting CDCA7 might be a promising therapeutic strategy to increase gemcitabine sensitivity by inhibiting glycolysis in PC cells.
Collapse
Affiliation(s)
- Dijie Zheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Yazhu Deng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
- Department of Vascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Lu Deng
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Xinghao Sun
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Yanyu Gong
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Binbin Shi
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Deqin Lu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| | - Chao Yu
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, Guizhou Province, 550001, China.
- Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, Guizhou Province, 550001, China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
4
|
Ye Q, Zou T, Chen B, Xu L, Yuwen Z, Liu H, Zhang K. Engineering of a low intrinsic fluorescence and chemical-stable fluorescent probe enables highly sensitive detection of biothiols and high-fidelity imaging of dihydroartemisinin-induced ferroptosis. SENSORS AND ACTUATORS B: CHEMICAL 2025; 424:136913. [DOI: 10.1016/j.snb.2024.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Ma Y, Liu E, Fan H, Li C, Huang P, Cui M, Wang Z, Zhou J, Chen K. RBM47 promotes cell proliferation and immune evasion by upregulating PDIA6: a novel mechanism of pancreatic cancer progression. J Transl Med 2024; 22:1164. [PMID: 39741300 DOI: 10.1186/s12967-024-05970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC. Moreover, RBM47 was predicted to bind to the 3'-UTR region of Protein Disulfide Isomerase Family A Member 6 (PDIA6), an oncogene of the development of PC. Therefore, we supposed that RBM47 might affect PC progression by regulating PDIA6. METHODS Bioinformatics analysis was performed to screen the candidate gene affecting PC progression using public databases. Loss- and gain-of-function effects of RBM47 on cell proliferation, tumor growth, and immune evasion were determined by CCK-8, EdU incorporation, colony formation assays, the xenogeneic tumor model, and co-culture system of PC and NK-92 cells. RBM47-RNA immunoprecipitation (RIP) followed by PCR and dual luciferase reporter assay were used to detect whether RBM47 could interact with the PDIA6 mRNA and how RBM47 would regulate the transcriptional activity of PDIA6, respectively. Simultaneous overexpression of PDIA6 in RBM47 knockdown PC cells was conducted to clarify whether PDIA6 would mediated effects of RBM47. Given the important role of cellular metabolism in cells proliferation and immune evasion, PC cells with RBM47 knockdown were subjected to metabolomics analysis to further investigate how RBM47 regulate PC progression. RESULTS RBM47 overexpression drove PC progression by promoting cell proliferation and xenografted tumor growth. Consistently, our results showed that RBM47 overexpression weakened sensitivity of PC cells to cytotoxic NK cells. However, RBM47 knockdown exhibited the opposite effects on proliferation and immune evasion of PC cells. RBM47 was able to bind to the 3'-UTR region of PDIA6, maintained PDIA6 mRNA stability, and increased the PDIA6 expression in PC cells. Rescue experiments supported that PDIA6 overexpression reversed the suppressing effects of RBM47 knockdown on cell proliferation and immune evasion. RBM47 knockdown significantly changed metabolites of PC cells. CONCLUSIONS In summary, our findings demonstrate that RBM47 contributes to PC progression, which might be mediated by the upregulated PDIA6 expression and the altered cellular metabolites in PC cells, offering a potential therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenfei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Meiying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Jing Zhou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
6
|
Hu CY, Yin YF, Xu DP, Xu Y, Yang JY, Xu YN, Hua R. Construction and validation of immunogenic cell death-related molecular clusters, signature, and immune landscape in pancreatic cancer. Clin Exp Med 2024; 25:19. [PMID: 39708151 DOI: 10.1007/s10238-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer (PC) is a malignancy of the gastrointestinal tract that is characterized by a poor prognosis. This study investigates the roles of immunogenic cell death (ICD) genes in the prognosis and progression of PC. Expression data for PC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, while ICD genes were sourced from published literature. We explored the expression patterns and identified two distinct clusters based on ICD genes. Kaplan-Meier analysis, differential expression analysis, tumor mutational burden analysis, and immune cell infiltration analysis were performed on these clusters. An ICD gene-based risk model was developed, categorizing samples from the TCGA and GEO datasets into low- and high-risk groups. Additionally, we investigated the expression levels of the genes included in the risk model within the TCGA cohort and our own samples. Finally, a loss-of-function assay was conducted to assess the role of MYD88 in PC. Two clusters of PC samples were identified, patients in the ICD-low cluster exhibited a higher degree of immune cell enrichment. The survival time of patients in the low-risk group was longer than that of those in the high-risk group. The genes included in the risk model (CASP1, MYD88, and PIK3CA) showed upregulated expression levels in tumor samples. Furthermore, the predictive accuracy of our risk model was validated using our own samples. Genetic inhibition of MYD88 led to significantly decreased proliferation and migration of PC cells in the loss-of-function assay. There were disparities in survival time and tumor immune microenvironment (TIME) between two ICD gene clusters. Additionally, we developed an ICD-related risk model that was validated as an independent prognostic indicator for patients with PC.
Collapse
Affiliation(s)
- Cheng-Yu Hu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Da-Peng Xu
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China.
| | - Yu Xu
- Department of Hepatopancreatobiliary Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yan-Nan Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
7
|
Zhang Z, Liu Z, Yao Y, Li M, Shen C, Zhou F. Exploring the clinical significance of TPX2 in pancreatic cancer: from biomarker to immunotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03628-0. [PMID: 39688710 DOI: 10.1007/s00210-024-03628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Pancreatic cancer (PC) is a highly aggressive malignancy characterized by a dismal prognosis. The present study is designed to elucidate the pivotal role of Xenopus kinesin-like protein 2 (TPX2) as a biomarker with substantial clinical prognostic significance in PC. By conducting a comprehensive analysis of RNA sequencing data and protein expression profiles obtained from multiple databases, we observed a pronounced upregulation of TPX2 expression in PC tissues compared to normal pancreatic tissues. Importantly, TPX2 emerged as an independent prognostic factor, demonstrating remarkable diagnostic accuracy. Notably, its expression levels were found to be significantly associated with the PC immune microenvironment and sensitivity to various therapeutic modalities. Functional assays revealed that the silencing of TPX2 markedly inhibited PC cell proliferation, metastasis, and the growth of subcutaneous tumors in PC mouse models. These effects were potentially mediated by the activation of CD8+ T cell immune responses and the inhibition of cell cycle progression and adhesion mechanisms. Taken together, our findings indicate that TPX2 may serve as a critical biomarker for the diagnosis and clinical management of patients with PC.
Collapse
Affiliation(s)
- Zhengguang Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Ying Yao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Cunsi Shen
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
8
|
Fan D, Gong Z, He G, Liu H, Wang Y, Ma H, Wu D, Wang H, Wei Q. A Dual-Ion Synergistic Catalysis Utilizing Zn 2+-Regulated CdS ySe 1-y ECL Immunosensor Employed for the Ultrasensitive CA19-9 Detection. Anal Chem 2024; 96:19750-19757. [PMID: 39572396 DOI: 10.1021/acs.analchem.4c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Carbohydrate antigen 19-9 is a well-known malignancy biomarker, and its sensitive detection is particularly crucial in the diagnosis and assessment of pancreatic cancer. In this study, an ultrasensitive CA19-9 immunosensor was constructed using the Zn2+-regulated CdSySe1-y (Zn-CdSySe1-y) nanospheres (NSs) as the electrochemiluminescence (ECL) emitter and FeCoS2 nano octahedrons (NOs) as a coreactant enhancer. The microstructure of ternary transition metal chalcogenide CdSySe1-y was precisely tuned by Zn2+ doping to avoid aggregation and thus enable stable and efficient cathodic ECL responses. The bimetallic sulfide FeCoS2 was synthesized using a metal organic framework (MOF) as the template by ion permeation. It was able to catalyze the coreactant efficiently due to the synergistic effect of the Fe2+ and Co2+. The immunosensor exhibited low detection limit (7.6 × 10-5 U mL-1) in the wide linear range of 0.0001-100 U mL-1, offering a sensitive CA19-9 detection method.
Collapse
Affiliation(s)
- Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Zhengxing Gong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Guangyue He
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hanxiao Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yingli Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Harne PS, Harne V, Wray C, Thosani N. Endoscopic innovations in diagnosis and management of pancreatic cancer: a narrative review and future directions. Therap Adv Gastroenterol 2024; 17:17562848241297434. [PMID: 39664230 PMCID: PMC11632891 DOI: 10.1177/17562848241297434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic cancer serves as the third leading cause of cancer-associated morbidity and mortality in the United States, with a 5-year survival rate of only 12% with an expected increase in incidence and mortality in the coming years. Pancreatic ductal adenocarcinomas constitute most pancreatic malignancies. Certain genetic syndromes, including Lynch syndrome, hereditary breast and ovarian cancer syndrome, hereditary pancreatitis, familial adenomatous polyposis, Peutz-Jeghers syndrome, familial pancreatic cancer mutation, and ataxia telangiectasia, confer a significantly higher risk. Screening for pancreatic malignancies currently targets patients with germline mutations or those with significant family history. Screening the general population is not currently viable owing to overall low incidence and lack of specific tests. Endoscopic ultrasound (EUS) and its applied advances are increasingly being used for surveillance, diagnosis, and management of pancreatic malignancies and have now become an indispensable tool in their management. For patients with risk factors, EUS in combination with magnetic resonance imaging/magnetic resonance cholangiopancreatography is used for screening. The role of endoscopic modalities has been expanding with the increased utilization of endoscopic retrograde cholangiopancreatography, EUS-directed therapies include EUS-guided fine-needle aspiration and EUS-fine-needle biopsy (FNB). EUS combined with FNB has the highest specificity and sensitivity for detecting pancreatic cancer amongst available modalities. Studies also recognize that artificial intelligence assisted EUS in the early detection of pancreatic cancer. At the same time, surgical resection has been historically considered the only curative treatment for pancreatic cancer, over 80% of patients present with unresectable disease. We also discuss EUS-guided therapies of physicochemicals (radiofrequency ablation, brachytherapy, and intratumor chemotherapy), biological agents (gene therapies and oncolytic viruses), and immunotherapy. We aim to perform a detailed review of the current burden, risk factors, role of screening, diagnosis, and endoscopic advances in the treatment modalities available for pancreatic cancer.
Collapse
Affiliation(s)
- Prateek Suresh Harne
- Division of Gastroenterology, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Vaishali Harne
- Division of Pediatric Gastroenterology, The University of Texas
- Health Science Center and McGovern School of Medicine, Houston, TX, USA
| | - Curtis Wray
- Department of Surgery, The University of Texas Health Science Center and McGovern School of Medicine, Houston, TX, USA
| | - Nirav Thosani
- Department of Surgery and Interventional Gastroenterology, The University of Texas
- Health Science Center and McGovern School of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Ma J, Li X, Wang C. The Application of Nanomaterials in the Treatment of Pancreatic-Related Diseases. Int J Mol Sci 2024; 25:13158. [PMID: 39684868 DOI: 10.3390/ijms252313158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic diseases, typically including pancreatic cancer, pancreatitis, and diabetes, pose enormous threats to people's lives and health. To date, therapeutics with high therapeutic efficacy and low side effects are still challenging. With the development of nanotechnology, nanomaterials have successfully been applied in pancretic disease treatment. Here, we first introduce the diversity of nanomaterials and the effects of their different physicochemical properties on pancreatic function. Following this, we analyze the potential of nanomaterials to enhance pancreatic targeting by overcoming the challenges of traditional delivery methods through surface modifications, structural adjustments, and optimized drug loading. Then, we introduce the application of structurally optimized nanomaterials to pancreatic-related diseases. For instance, on pancreatic cancer (as drug delivery platforms, for the promotion of radiation therapy, and as multifunctional tools), pancreatitis (as drug delivery systems, anti-inflammatory and anti-fibrotic agents), and diabetes (as insulin delivery carriers, for protecting pancreatic β cells, and for improving insulin resistance). Through analysis of the progress of current research, we summarize how nanomaterials can enhance treatment efficacy while minimizing side effects. Finally, we look forward to the prospects of nanomaterials in pancreatic disease treatment.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Zaman S, Saleh MA. Next-Generation Sequencing: An Advanced Diagnostic Tool for Detection of Pancreatic Disease/Disorder. JGH Open 2024; 8:e70061. [PMID: 39605899 PMCID: PMC11599877 DOI: 10.1002/jgh3.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The pancreas is involved in digestion and glucose regulation in the human body. Given the recognized link between chronic pancreatitis and pancreatic cancer, addressing pancreatic disorders and pancreatic cancer is particularly challenging. This review aims to highlight the limitations of traditional methods in diagnosing pancreatic disorders and cancer and explore several next-generation sequencing (NGS) approaches as a promising alternative. There are distinct clinical symptoms that are shared by a number of clinical phenotypes of pancreatic illness induced by particular genetic mutations. Traditional diagnostic methods encompass computed tomography, magnetic resonance imaging, contrast-enhanced Doppler ultrasound, endoscopic ultrasound, endoscopic retrograde cholangiopancreatography, transabdominal ultrasound, laparoscopy, and positron emission tomography have a prognostic ability of only 5% or less and a 5-year survival rate. Genetic sequencing can be employed as an alternative to conventional diagnostic techniques. Sanger sequencing and NGS are currently largely operated genome analysis, with no exception for pancreatic disease diagnosis. The NGS methods can sequence millions to billions of short DNA fragments, enabling enormous sample screening in a short amount of time with low-abundance detection, like in 0.1%-1% mutation prevalence declining approximate cost. Whole-genome sequencing, whole-exome sequencing, RNA sequencing, and single-cell NGS are a few NGS methods utilized to diagnose pancreatic disease. For both research and clinical applications, the NGS techniques can provide a precise diagnosis of pancreatic disorders in a short amount of time at a reasonable expenditure.
Collapse
Affiliation(s)
- Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | | | - Shahriar Zaman
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| |
Collapse
|
12
|
Wang P, Gao X, Zheng W, Zhang J. Potential impact of epithelial splicing regulatory protein 1 (ESRP1) associated with tumor immunity in pancreatic adenocarcinoma. J Proteomics 2024; 308:105277. [PMID: 39127164 DOI: 10.1016/j.jprot.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a prevalent and highly malignant gastrointestinal tumor. Therefore, exploring the mechanisms of drug resistance and immune pathways in PAAD is crucial for clinical treatment. In this study, a total of 497 differentially expressed genes (DEGs) were identified between normal and PAAD samples, and which were enriched to 117 GO terms and 7 functional pathways. Subsequently, 5 overall survival-related DEGs (ESRP1, KRT6A, H2BC11, H2BC4 and KLK) was generated using Cox hazards regression analysis in TCGA dataset. Furthermore, the weighted gene co-expression network analysis revealed a strong association between ESRP1 and PAAD among 5 survival-related DEGs. Patients were divided into two clusters based on ESRP1 expression levels, and low ESRP1 expression existed stronger immune infiltration and higher expression of immunomodulatory targets than high ESRP1 expression by single-sample gene set enrichment analysis, which indicated that low ESRP1 expression was associated with longer survival compared to high ESRP1 expression. Finally, our study also found that immune cells distribution and immunomodulatory targets gene expression in the GEO dataset were similar to the TCGA cohort. Overall, our findings suggest that ESRP1 may play a role in influencing immune contexture and regulating immune function of PAAD patients by integrating data from various databases. SIGNIFICANCE: Utilizing TCGA and GEO datasets, this study uncovers the significant impact of epithelial splicing regulatory protein 1 (ESRP1) on PAAD. ESRP1 emerges as a key regulator of immune function, influencing tumor microenvironment and immune cell infiltration. Cluster analysis shows that low ESRP1 expression correlates with enhanced immune activity, predicting better prognosis. This discovery suggests that ESRP1 can serve as a potential biomarker for the prognosis of PAAD, offering new insights into personalized immunotherapy by influencing immune regulation and tumor progression.
Collapse
Affiliation(s)
- Pengpeng Wang
- Police-Dog Technology Department, Criminal Investigation Police University of China, Shenyang 110034, China
| | - Xiang Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weijie Zheng
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junnan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Lu JN, Zhou LS, Zhang S, Li JX, Xu CJ. Performance of nutritional and inflammatory markers in patients with pancreatic cancer. World J Clin Oncol 2024; 15:1021-1032. [PMID: 39193151 PMCID: PMC11346065 DOI: 10.5306/wjco.v15.i8.1021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Systemic inflammation and nutrition play pivotal roles in cancer progression and can increase the risk of delayed recovery after surgical procedures. AIM To assess the significance of inflammatory and nutritional indicators for the prognosis and postoperative recovery of patients with pancreatic cancer (PC). METHODS Patients who were diagnosed with PC and underwent surgical resection at our hospital between January 1, 2019, and July 31, 2023, were enrolled in this retrospective observational cohort study. All the data were collected from the electronic medical record system. Seven biomarkers - the albumin-to-globulin ratio, prognostic nutritional index (PNI), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), nutritional risk index (NRI), and geriatric NRI were assessed. RESULTS A total of 446 patients with PC met the inclusion criteria and were subsequently enrolled. Patients with early postoperative discharge tended to have higher PNI values and lower SII, NLR, and PLR values (all P < 0.05). Through multivariable logistic regression analysis, the SII value emerged as an independent risk factor influencing early recovery after surgery. Additionally, both univariable and multivariable Cox regression analyses revealed that the PNI value was the strongest prognostic marker for overall survival (OS; P = 0.028) and recurrence-free survival (RFS; P < 0.001). The optimal cutoff PNI value was established at 47.30 using X-tile software. Patients in the PNI-high group had longer OS (P < 0.001) and RFS (P = 0.0028) times than those in the PNI-low group. CONCLUSION Preoperative systemic inflammatory-nutritional biomarkers may be capable of predicting short-term recovery after surgery as well as long-term patient outcomes.
Collapse
Affiliation(s)
- Jie-Nan Lu
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Lu-Sha Zhou
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Shuai Zhang
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jun-Xiu Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Cai-Juan Xu
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
14
|
Yao G, Zhu Y, Liu C, Man Y, Liu K, Zhang Q, Tan Y, Duan Q, Chen D, Du Z, Fan Y. Comparative analysis of the mutational landscape and evolutionary patterns of pancreatic ductal adenocarcinoma metastases in the liver or peritoneum. Heliyon 2024; 10:e35428. [PMID: 39170579 PMCID: PMC11336646 DOI: 10.1016/j.heliyon.2024.e35428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) often presents with liver or peritoneal metastases at diagnosis. Despite similar treatment approaches, patient outcomes vary between these metastatic sites. To improve targeted therapies for metastatic PDAC, a comprehensive analysis of the genetic profiles and evolutionary patterns at these distinct metastatic locations is essential. Methods We performed whole exome sequencing on 44 tissue samples from 27 PDAC patients, including primary tumours and matched liver or peritoneal metastases. We analysed somatic mutation profiles, signatures, and affected pathways for each group, and examined clonal evolution using subclonal architectures and phylogenetic trees. Results KRAS mutations remained the predominant driver alteration, with a prevalence of 89 % across all tumours. Notably, we observed site-specific differences in mutation frequencies, with KRAS alterations detected in 77.8 % (7/9) of peritoneal metastases and 87.5 % (7/8) of liver metastases. TP53 mutations exhibited a similar pattern, occurring in 55.6 % (5/9) of peritoneal and 37.5 % (3/8) of liver metastases. Intriguingly, we identified site-specific alterations in DNA repair pathway genes, including ATM and BRCA1, with distinct mutational profiles in liver versus peritoneal metastases. Furthermore, liver metastases demonstrated a significantly higher tumor mutational burden (TMB) compared to peritoneal metastases (median [IQR]: 2.14 [1.77-2.71] vs. 1.29 [1.21-1.69] mutations/Mb; P = 0.048). Conclusions In conclusion, metastasis of pancreatic cancer may be influenced by variables other than KRAS mutations, such as TP53. PDAC peritoneal and liver metastases may differ in potential therapeutic biomarkers. Further inquiry is needed on the biological mechanisms underlying metastasis and the treatment of diverse metastases.
Collapse
Affiliation(s)
- Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanfeng Zhu
- Department of Nursing, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shangha, China
| | - Chunhui Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Yanwen Man
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Kefeng Liu
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Yuan Tan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Qianqian Duan
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shanghai, China
| | - Yonggang Fan
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, 636 Guanlin Road, Luoyang, China
| |
Collapse
|
15
|
Huang A, Li Q, Shi X, Gao J, Ma Y, Ding J, Hua S, Zhou W. An iron-containing nanomedicine for inducing deep tumor penetration and synergistic ferroptosis in enhanced pancreatic cancer therapy. Mater Today Bio 2024; 27:101132. [PMID: 38994471 PMCID: PMC11237974 DOI: 10.1016/j.mtbio.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Aiping Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Department of Pharmacy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine (Haikou People's Hospital), Haikou, Hainan, 570208, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Surong Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
16
|
Ma H, Kong L, Liu L, Du Y, Zhu X, Wang J, Zhao W. ENO1 contributes to the gemcitabine resistance of pancreatic cancer through the YAP1 signaling pathway. Mol Carcinog 2024; 63:1221-1234. [PMID: 38517039 DOI: 10.1002/mc.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.
Collapse
Affiliation(s)
- Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Kong
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Nopour R. Establishment of prediction model for mortality risk of pancreatic cancer: a retrospective study. BMC Med Inform Decis Mak 2024; 24:181. [PMID: 38937795 PMCID: PMC11210158 DOI: 10.1186/s12911-024-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND AND AIM Pancreatic cancer possesses a high prevalence and mortality rate among other cancers. Despite the low survival rate of this cancer type, the early prediction of this disease has a crucial role in decreasing the mortality rate and improving the prognosis. So, this study. MATERIALS AND METHODS In this retrospective study, we used 654 alive and dead PC cases to establish the prediction model for PC. The six chosen machine learning algorithms and prognostic factors were utilized to build the prediction models. The importance of the predictive factors was assessed using the relative importance of a high-performing algorithm. RESULTS The XG-Boost with AU-ROC of 0.933 (95% CI= [0.906-0.958]) and AU-ROC of 0.836 (95% CI= [0.789-0.865] in internal and external validation modes were considered as the best-performing model for predicting the mortality risk of PC. The factors, including tumor size, smoking, and chemotherapy, were considered the most influential for prediction. CONCLUSION The XG-Boost gained more performance efficiency in predicting the mortality risk of PC patients, so this model can promote the clinical solutions that doctors can achieve in healthcare environments to decrease the mortality risk of these patients.
Collapse
Affiliation(s)
- Raoof Nopour
- Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Hu B, Zhang W, Zhang C, Li C, Zhang N, Pan K, Ge X, Wan T. CCNI2 promotes pancreatic cancer through PI3K/AKT signaling pathway. BIOMOLECULES & BIOMEDICINE 2024; 24:323-336. [PMID: 37540586 PMCID: PMC10950348 DOI: 10.17305/bb.2023.9337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Globally, pancreatic cancer is recognized as one of the deadliest malignancies that lacks effective targeted therapies. This study aims to explore the role of cyclin I-like protein (CCNI2), a homolog of cyclin I (CCNI), in the progression of pancreatic cancer, thereby providing a theoretical basis for its treatment. Firstly, the expression of CCNI2 in pancreatic cancer tissues was determined through immunohistochemical staining. The biological role of CCNI2 in pancreatic cancer cells was further assessed using both in vitro and in vivo loss/gain-of-function assays. Our data revealed that CCNI2 expression was abnormally elevated in pancreatic cancer, and clinically, increased CCNI2 expression generally correlated with reduced overall survival. Functionally, CCNI2 contributed to the malignant progression of pancreatic cancer by promoting the proliferation and migration of tumor cells. Consistently, in vivo experiments verified that CCNI2 knockdown impaired the tumorigenic ability of pancreatic cancer cells. Moreover, the addition of phosphatidylinositol 3-kinase (PI3K) inhibitors could partially reverse the promoting effect of CCNI2 on the malignant phenotypes of pancreatic cancer cells. CCNI2 promoted pancreatic cancer through PI3K/protein kinase B (AKT) signaling pathway, indicating its potential as a prognostic marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bingyang Hu
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Wenzhi Zhang
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Changsheng Zhang
- Department of General Surgery, Kaifeng Central Hospital, Longting District, Kaifeng, Henan Province, China
| | - Chonghui Li
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Ke Pan
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Xinlan Ge
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Tao Wan
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| |
Collapse
|
19
|
Xiang J, Zheng B, Zhao L, He Y, Lou F, Li R, Fu M, Huang X, Zhang W, Hong X, Xiao L, Hu T. Exo70 Promotes the Invasion of Pancreatic Cancer Cells via the Regulation of Exosomes. Cancers (Basel) 2024; 16:336. [PMID: 38254825 PMCID: PMC10813805 DOI: 10.3390/cancers16020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive and fatal malignant tumor, and exosomes have been reported to be closely related to PC invasion and metastasis. Here we found that Exo70, a key subunit of the exocyst complex, promoted PC metastasis by regulating the secretion of tumor exosomes. Clinical sample studies showed that Exo70 was highly expressed in PC and negatively correlated with patients' survival. Exo70 promoted PC cell lines' invasion and migration. Interestingly, knockdown of Exo70, or using an Exo70 inhibitor (ES2) inhibited the secretion of tumor exosomes and increased the accumulation of cellular vesicles. Furthermore, Exo70 was found to accumulate in the exosomes, which then fused with neighboring PC cells and promoted their invasion. Moreover, Exo70 increased the expression of exosomal PD-L1, leading to the immune escape of PC cells. In vivo, knockdown of Exo70 or treatment with ES2 both decreased the tumor metastasis of PC cells in mice. This study provides new insight into the mechanism of invasion and metastasis in PC and identifies Exo70 as a potential prognostic factor and therapeutic target for PC.
Collapse
Affiliation(s)
- Jingzhou Xiang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Bowen Zheng
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Lingying Zhao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Yuting He
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Fanzhuoran Lou
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Runyang Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Miao Fu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Xintian Huang
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Li Xiao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
20
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
22
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
23
|
Liu D, Bae YE, Zhu J, Zhang Z, Sun Y, Deng Y, Wu C, Wu L. Splicing transcriptome-wide association study to identify splicing events for pancreatic cancer risk. Carcinogenesis 2023; 44:741-747. [PMID: 37769343 DOI: 10.1093/carcin/bgad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
A large proportion of the heritability of pancreatic cancer risk remains elusive, and the contribution of specific mRNA splicing events to pancreatic cancer susceptibility has not been systematically evaluated. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies (Enet, LASSO and MCP) to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for pancreatic cancer risk by assessing 8275 pancreatic cancer cases and 6723 controls of European ancestry. Data from 305 subjects of whom the majority are of European descent in the Genotype-Tissue Expression Project (GTEx) were used and both cis-acting and promoter-enhancer interaction regions were considered to build these models. We identified nine splicing events of seven genes (ABO, UQCRC1, STARD3, ETAA1, CELA3B, LGR4 and SFT2D1) that showed an association of genetically predicted expression with pancreatic cancer risk at a false discovery rate ≤0.05. Of these genes, UQCRC1 and LGR4 have not yet been reported to be associated with pancreatic cancer risk. Fine-mapping analyses supported likely causal associations corresponding to six splicing events of three genes (P4HTM, ABO and PGAP3). Our study identified novel genes and splicing events associated with pancreatic cancer risk, which can improve our understanding of the etiology of this deadly malignancy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian 364012, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
24
|
Lu HR, Zhu PF, Deng YY, Chen ZL, Yang L. Third-line treatment options in metastatic pancreatic cancer patients: a real-world study. Front Oncol 2023; 13:1251258. [PMID: 37810973 PMCID: PMC10552515 DOI: 10.3389/fonc.2023.1251258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background There are currently no standard therapy regimens for the third-line treatment of metastatic pancreatic cancer (mPC) patients. The aim of the present study was to compare the efficacy and safety of different third-line therapy regimens for mPC in the real-world. Methods This study retrospectively analyzed mPC patients admitted to Zhejiang Provincial People's Hospital between June 2013 and January 2023. All patients' diagnoses were pathologically confirmed and their treatment was continued after the second-line therapy failed. The primary study endpoints included median overall survival (mOS), median progression-free survival (mPFS), and disease control rate (DCR). Results A total of 72 patients were enrolled in the study. Of these, 36 patients received chemotherapy alone, 16 received chemotherapy combined with targeted therapy or immunotherapy, 14 received chemotherapy-free antitumor therapy, and six received palliative care. The mPFS value for these groups was 4.40 months, 5.20 months, 2.33 months, and 0.80 months, respectively. The mOS value was 6.90 months, 5.90 months, 3.33 months, and 0.80 months, respectively. The DCR was 33.4%, 31.3%, 21.4%, and 0.0%, respectively. Overall, there were significant differences in prognosis between the palliative care group and the other treatment groups (mOS, P < 0.001; mPFS P < 0.001; DCR, P < 0.001). The differences among the mPFS, mOS, and DCR for different antitumor therapy regimens were not statistically significant. Compared to the chemotherapy alone group, the chemotherapy combined with targeted therapy or immunotherapy group experienced more adverse events (100% vs. 75.0%; P = 0.002). Chemotherapy combined with targeted therapy or immunotherapy was associated with a higher risk of grade 3/4 hyperaminotransferemia compared to chemotherapy alone (31.3% vs. 0.0%; P = 0.020) and chemotherapy-free antitumor therapy (31.3% vs. 0.0%; P = 0.020). Conclusions Third-line antitumor therapy can prolong the survival time of patients with mPC. Targeted therapy or immunotherapy failed to further improve survival benefits based on chemotherapy results. Patients who underwent the third-line treatment with good physical status and family history of cancer were independent prognostic factors for longer mOS. The sequencing of fluorouracil and gemcitabine in the front-line therapy did not affect third-line mOS.
Collapse
Affiliation(s)
- Hong-Rui Lu
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng-Fei Zhu
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya-Ya Deng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Qingdao University Medical College, Qingdao, Shandong, China
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liu Yang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Qian J, Zhang X, Wei B, Tang Z, Zhang B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188943. [PMID: 37355177 DOI: 10.1016/j.bbcan.2023.188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal cancers in the world and its 5-year survival rate is <10%. Due to the unique TME and dense tissue structure, its curative efficacy is far from satisfactory,the immunotherapy is even more invalid. According to the recent studies, the gut and tumor microbiota have been proved to play a key role in the development, progression and prognosis of PDAC. Based on the differences of microbiome composition observed in PDAC patients and normal pancreas, many researches have been made focusing on the latent communication between gut and intra-tumor microbiota and PDAC. In this review, we will demonstrate the potential mechanism of the oncogenic effects of GM and IM and their crucial effects on modulating the TME. Besides, we focus on their interaction with chemotherapeutic and immunotherapeutic drugs and inducing the drug resistance, thus enlightening the promising role to be used to monitor the occurrence of PDAC, accurately modulate the immune environment to promote the therapeutic efficacy and predict the prognosis.
Collapse
Affiliation(s)
- Jiwei Qian
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Butian Wei
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- The Second affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31000, China.
| |
Collapse
|
26
|
Tan Z, Liu J, Xu J, Zhang B, Yu X, Wang W, Liang C. LDHA is a prognostic biomarker on the immune response in pancreatic adenocarcinoma and associated with m6A modification. J Cancer Res Clin Oncol 2023; 149:4853-4865. [PMID: 36269388 DOI: 10.1007/s00432-022-04400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE N6-methyladenosine (m6A) is tightly associated with the progression of pancreatic ductal adenocarcinoma (PDAC). Another prominent feature of PDAC is metabolic reprogramming, which provides sufficient nutrients to support rapid cell growth via the tumor microenvironment. However, the underlying influences of m6A-associated metabolic genes on the PDAC microenvironment remain poorly understood. Therefore, we sought to construct a survival prediction model using m6A-related genes to clarify the molecular characteristics of PDAC. METHODS In the present study, m6A-related metabolic genes were obtained from The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma dataset and subjected to coexpression analysis. Consensus clustering recognized two distinct subgroups with different immune cell infiltration patterns according to the expression of m6A-associated metabolic genes. Multivariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) analysis were adopted to create an m6A-related metabolism model. A nomogram including clinical features and the risk score based on the expression of m6A-related metabolism regulators was constructed. RESULTS A four-gene signature comprising ATP8B2, GMPS, LDHA and SDR39U1 was built to predict the overall survival (OS) of PDAC patients. This signature also robustly predicted survival in two independent validation cohorts from the International Cancer Genome Consortium (ICGC) and ArrayExpress (E-MTAB-6134). The four-gene signature divided patients into high- and low-risk groups with distinct OS values as verified by the log-rank test. Among the four genes, LDHA was upregulated in both PDAC tissues and cell lines. CONCLUSIONS Collectively, we analyzed the immune microenvironment, predicted drug sensitivity and assessed the implications of the mutation landscape based on the crosstalk between m6A regulators and metabolic rewiring, and we also constructed a novel signature based on m6A-associated metabolic genes to predict PDAC prognosis.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Dahiya DS, Chandan S, Ali H, Pinnam BSM, Gangwani MK, Al Bunni H, Canakis A, Gopakumar H, Vohra I, Bapaye J, Al-Haddad M, Sharma NR. Role of Therapeutic Endoscopic Ultrasound in Management of Pancreatic Cancer: An Endoscopic Oncologist Perspective. Cancers (Basel) 2023; 15:3235. [PMID: 37370843 DOI: 10.3390/cancers15123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is a highly lethal disease with an aggressive clinical course. Patients with pancreatic cancer are usually asymptomatic until significant progression of their disease. Additionally, there are no effective screening guidelines for pancreatic cancer in the general population. This leads to a delay in diagnosis and treatment, resulting in poor clinical outcomes and low survival rates. Endoscopic Ultrasound (EUS) is an indispensable tool for the diagnosis and staging of pancreatic cancer. In the modern era, with exponential advancements in technology and device innovation, EUS is also being increasingly used in a variety of therapeutic interventions. In the context of pancreatic cancer where therapies are limited due to the advanced stage of the disease at diagnosis, EUS-guided interventions offer new and innovative options. Moreover, due to their minimally invasive nature and ability to provide real-time images for tumor localization and therapy, they are associated with fewer complication rates compared to conventional open and laparoscopic approaches. In this article, we detail the most current and important therapeutic applications of EUS for pancreatic cancer, namely EUS-guided Fine Needle Injections, EUS-guided Radiotherapy, and EUS-guided Ablations. Furthermore, we also discuss the feasibility and safety profile of each intervention in patients with pancreatic cancer to provide gastrointestinal medical oncologists, radiation and surgical oncologists, and therapeutic endoscopists with valuable information to facilitate patient discussions and aid in the complex decision-making process.
Collapse
Affiliation(s)
- Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, CHI Creighton University Medical Center, Omaha, NE 68131, USA
| | - Hassam Ali
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60612, USA
| | | | - Hashem Al Bunni
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew Canakis
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Ishaan Vohra
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jay Bapaye
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Mohammad Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neil R Sharma
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Interventional Oncology & Surgical Endoscopy Programs (IOSE), GI Oncology Tumor Site Team, Parkview Cancer Institute, Parkview Health, Fort Wayne, IN 46845, USA
| |
Collapse
|
28
|
Chen J, Fu B, Xiang Z, Chen X, Wang L, Qin Y, Zhao X, Zhou X, Liu P, Huang B. Sensitive amplified luminescent proximity homogeneous assay for the quantitative detection of CA242. J Immunol Methods 2023; 517:113487. [PMID: 37156407 DOI: 10.1016/j.jim.2023.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
We here developed a sensitive and stable amplified luminescent proximity homogeneous assay (AlphaLISA) method for fast quantification of CA242 in human serum. Donor and acceptor beads modified with carboxyl groups could be coupled with CA242 antibodies after activation in the AlphaLISA method. CA242 was rapidly detected by the double antibody sandwich immunoassay. The method yielded good linearity (>0.996) and detection range (0.16-400 U/mL). The intra-assay precisions of CA242-AlphaLISA were between 3.43% and 6.81% (< 10%), and the inter-assay precisions were between 4.06% and 9.56% (< 15%). The relative recoveries ranged from 89.61% to 107.29%. Detection time for the CA242-AlphaLISA method was only 20 min. Moreover, results of CA242-AlphaLISA and time-resolved fluorescence immunoassay had satisfactory correlation and consistency (ρ = 0.9852). The method was successfully applied to the analysis of human serum samples. Meanwhile, serum CA242 has a good detection value in the identification and diagnosis of pancreatic cancer and the monitoring of disease degree. Furthermore, the proposed AlphaLISA method is expected to be an alternative to traditional detection methods, laying a good foundation for the further development of kits to detect other biomarkers in future studies.
Collapse
Affiliation(s)
- Jianye Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Benqi Fu
- Sichuan Friendship Hospital, Chengdu, China
| | - Zhongyi Xiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xindong Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lu Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengfei Liu
- Department of Gastroenterology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, People's Republic of China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
29
|
Chen Y, Lin X, Zou X, Qian Y, Liu Y, Wang R, Wang X, Yu X, Liu C, Cheng H. A novel immune checkpoint score system for prognostic evaluation in pancreatic adenocarcinoma. BMC Gastroenterol 2023; 23:113. [PMID: 37024802 PMCID: PMC10080823 DOI: 10.1186/s12876-023-02748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) remains a lethal malignancy making the detection of novel prognostic biomarkers urgent. Limited studies have investigated the predictive capability of immune checkpoints in PAAD. METHOD Gene expression data and correlative clinical information of PAAD cohort were obtained from public databases, including TCGA, ICGC, GTEX and GEO databases. Risk factors were screened and used to establish a risk score model through LASSO and Cox regression analyses. The prognostic ability of the risk score model was demonstrated. The association between risk score with immune cells infiltration, immune checkpoint genes expression, immunogenic cell death, somatic mutations and signaling pathways enrichment were analysed. scRNA-seq data were collected to confirmed the immune checkpoints expression in PAAD samples. The prognosis prediction ability of OX40/TNFRSF4 was identified. The mRNA and protein expression of OX40 in our clinical specimens were examined by RT-PCR and IHC method and its prognosis ability was verified. RESULTS First of all, the difference of immune microenvironment between pancreatic cancer and adjacent tissues was shown. A risk score system based on three immune checkpoints (OX40, TNFSF14 and KIR3DL1) was established. The risk score model was an independent prognostic factor and performed well regarding overall survival (OS) predictions among PAAD patients. A nomogram was established to facilitate the risk model application in clinical prognosis. Immune cells including naive B cells, CD8+ T cells and Tregs were negatively correlated with the risk score. The risk score was associated with expression of immune checkpoint genes, immunogenic cell death related genes and somatic mutations. Glycolysis processes, IL-2-STAT5, IL-6-STAT3, and mTORC1 signaling pathways were enriched in the high-risk score group. Furthermore, scRNA-seq data confirmed that TNFRSF4, TNFSF14 and KIR3DL1 were expressed on immune cells in PAAD samples. We then identified OX40 as an independent prognosis-related gene, and a higher OX40 expression was associated with increased survival rate and immune environment change. In 84 PAAD clinical specimens collected from our center, we confirmed that higher OX40 mRNA expression levels were related to a good prognosis. The protein expression of OX40 on tumor-infiltrating immune cells (TIICs), endothelial cells and tumor cells was verified in PAAD tissues by immunohistochemistry (IHC) method. CONCLUSIONS Overall, our findings strongly suggested that the three-immune checkpoints score system might be useful in the prognosis and design of personalized treatments for PAAD patients. Finally, we identified OX40 as an independent potential biomarker for PAAD prognosis prediction.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - He Cheng
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Yang Y, Guo Y, Luo H, Wang M, Chen F, Cui H, Chen P, Yin Z, Li L, Dai Y, Zeng J, Zhao J. Metabolomics-based discovery of XHP as a CYP3A4 inhibitor against pancreatic cancer. Front Pharmacol 2023; 14:1164827. [PMID: 37081969 PMCID: PMC10110895 DOI: 10.3389/fphar.2023.1164827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Xihuang Wan (XHW), a purgative and detoxifying agent, is commonly utilized in modern medicine as a treatment and adjuvant therapy for various malignancies, including breast cancer, liver cancer, and lung cancer. A clinical study demonstrated the potential usefulness of the combination of XHW and gemcitabine as a therapy for pancreatic cancer (PC), indicating that XHW’s broad-spectrum antitumor herbal combination could be beneficial in the treatment of PC. However, the precise therapeutic efficacy of XHW in treating pancreatic cancer remains uncertain.Aim: This study assessed the biological activity of XHW by optimizing the therapeutic concentration of XHW (Xihuang pills, XHP). We performed cell culture and developed an animal test model to determine whether XHP can inhibit pancreatic cancer (PC). We also applied the well-known widely targeted metabolomics analysis and conducted specific experiments to assess the feasibility of our method in PC therapy.Materials and Methods: We used UPLC/Q-TOF-MS to test XHP values to set up therapeutic concentrations for the in vivo test model. SW1990 pancreatic cancer cells were cultured to check the effect the anti-cancer effects of XHP by general in vitro cell analyses including CCK-8, Hoechst 33258, and flow cytometry. To develop the animal model, a solid tumor was subcutaneously formed on a mouse model of PC and assessed by immunohistochemistry and TUNEL apoptosis assay. We also applied the widely targeted metabolomics method following Western blot and RT-PCR to evaluate multiple metabolites to check the therapeutic effect of XHP in our cancer test model.Results: Quantified analysis from UPLC/Q-TOF-MS showed the presence of the following components of XHP: 11-carbonyl-β-acetyl-boswellic acid (AKBA), 11-carbonyl-β-boswellic acid (KBA), 4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo [5.2.0]nonane, and (1S-endo)-2-methyl-3-methylene-2-(4-methyl-3-3-pentenyl)-bicyclo [2.2.1heptane]. The results of the cell culture experiments demonstrated that XHP suppressed the growth of SW1990 PC cells by enhancing apoptosis. The results of the animal model tests also indicated the suppression effect of XHP on tumor growth. Furthermore, the result of the widely targeted metabolomics analysis showed that the steroid hormone biosynthesis metabolic pathway was a critical factor in the anti-PC effect of XHP in the animal model. Moreover, Western blot and RT-PCR analyses revealed XHP downregulated CYP3A4 expression as an applicable targeted therapeutic approach.Conclusion: The results of this study demonstrated the potential of XHP in therapeutic applications in PC. Moreover, the widely targeted metabolomics method revealed CYP3A4 is a potential therapeutic target of XHP in PC control. These findings provide a high level of confidence that XHP significantly acts as a CYP3A4 inhibitor in anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Yuting Yang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Huawei Cui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| | - Junning Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| |
Collapse
|
31
|
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, Li X, Wang X, Shi B. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat 2023; 68:100960. [PMID: 37003125 DOI: 10.1016/j.drup.2023.100960] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Pancreatic cancer continues to be one of the world's most lethal cancers. Chemotherapy resistance in patients with advanced pancreatic cancer often accompany with dismal prognosis, highlighting the need to investigate mechanisms of drug resistance and develop therapies to overcome chemoresistance. METHODS This research was filed with the Chinese Clinical Trial Registry (ChiCTR2200061320). In order to isolate primary normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) samples of pancreatic ductal adenocarcinoma (PDAC) and paracancerous pancreatic tissue from individuals diagnosed with PDAC were obtained. The exosomes were obtained using ultracentrifugation, and their characteristics were determined by Western blotting, nanoparticle tracking analysis, and transmission electron microscopy. CAF-derived miRNAs were analyzed by RT-qPCR and high-throughput sequencing. Gemcitabine (GEM) was employed to promote ferroptosis, and ferroptosis levels were determined by monitoring lipid reactive oxygen species (ROS), cell survival, and intracellular Fe2+ concentrations. To assess in vivo tumor response to GEM therapy, a xenograft tumor mouse model was utilized. RESULTS Exosomes derived from CAFs in PDAC did not exhibit innate GEM resistance. CAFs promoted chemoresistance in PDAC cells following GEM treatment by secreting exosomes, and maintaining signaling communication with cancer cells. Mechanistically, miR-3173-5p derived from CAF exosomes sponged ACSL4 and inhibited ferroptosis after uptake by cancer cells. CONCLUSION This work demonstrates a novel mode of acquired chemoresistance in PDAC and identifies the miR-3173-5p/ACSL4 pathway as a promising treatment target for GEM-resistant pancreatic cancer.
Collapse
|
32
|
Wang D, Zhang Y, Wang X, Zhang L, Xu S. Construction and validation of an aging-related gene signature predicting the prognosis of pancreatic cancer. Front Genet 2023; 14:1022265. [PMID: 36741321 PMCID: PMC9889561 DOI: 10.3389/fgene.2023.1022265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Pancreatic cancer is a malignancy with a high mortality rate and worse prognosis. Recently, public databases and bioinformatics tools make it easy to develop the prognostic risk model of pancreatic cancer, but the aging-related risk signature has not been reported. The present study aimed to identify an aging-related risk signature with potential prognostic value for pancreatic cancer patients. Method: Gene expression profiling and human clinical information of pancreatic cancer were derived from The Cancer Genome Atlas database (TCGA). Aging-related gene sets were downloaded from The Molecular Signatures Database and aging-related genes were obtained from the Human Ageing Genomic Resources database. Firstly, Gene set enrichment analysis was carried out to investigate the role of aging process in pancreatic cancer. Secondly, differentially expressed genes and aging-related prognostic genes were screened on the basis of the overall survival information. Then, univariate COX and LASSO analysis were performed to establish an aging-related risk signature of pancreatic cancer patients. To facilitate clinical application, a nomogram was established to predict the survival rates of PCa patients. The correlations of risk score with clinical features and immune status were evaluated. Finally, potential therapeutic drugs were screened based on the connectivity map (Cmap) database and verified by molecular docking. For further validation, the protein levels of aging-related genes in normal and tumor tissues were detected in the Human Protein Atlas (HPA) database. Result: The genes of pancreatic cancer were markedly enriched in several aging-associated signaling pathways. We identified 14 key aging-related genes related to prognosis from 9,020 differentially expressed genes and establish an aging-related risk signature. This risk model indicated a strong prognostic capability both in the training set of TCGA cohort and the validation set of PACA-CA cohort and GSE62452 cohort. A nomogram combining risk score and clinical variables was built, and calibration curve and Decision curve analysis (DCA) have proved that it has a good predictive value. Additionally, the risk score was tightly linked with tumor immune microenvironment, immune checkpoints and proinflammatory factors. Moreover, a candidate drug, BRD-A47144777, was screened and verified by molecular docking, indicating this drug has the potential to treat PCa. The protein expression levels of GSK3B, SERPINE1, TOP2A, FEN1 and HIC1 were consistent with our predicted results. Conclusion: In conclusion, we identified an aging-related signature and nomogram with high prediction performance of survival and immune cell infiltration for pancreatic cancer. This signature might potentially help in providing personalized immunotherapy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Limei Zhang
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Weng Y, Qian H, Hong L, Zhao S, Deng X, Shen B. Identification of EMT-related alternative splicing event of TMC7 to promote invasion and migration of pancreatic cancer. Front Immunol 2023; 13:1089008. [PMID: 36713450 PMCID: PMC9878378 DOI: 10.3389/fimmu.2022.1089008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Epithelial-to-mesenchymal transition (EMT) is tightly associated with the invasion and metastasis of pancreatic cancer with rapid progression and poor prognosis. Notably, gene alternative splicing (AS) event plays a critical role in regulating the progression of pancreatic cancer. Therefore, this study aims to identify the EMT-related AS event in pancreatic cancer. Methods The EMT-related gene sets, transcriptomes, and matched clinical data were obtained from the MSigDB, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Key gene AS events associated with liver metastasis were identified by prognostic analysis, gene set variation analysis (GSVA), and correlation analysis in pancreatic cancer. The cell line and organoid model was constructed to evaluate these key gene AS events in regulating pancreatic cancer in vitro. Furthermore, we established an EMT-related gene set consisting of 13 genes by prognostic analysis, the role of which was validated in two other databases. Finally, the human pancreatic cancer tissue and organoid model was used to evaluate the correlation between the enrichment of this gene set and liver metastasis. Results Prognostic analysis and correlation analysis revealed that eight AS events were closely associated with the prognosis of pancreatic cancer. Furthermore, the expression of TMC7 and CHECK1 AS events was increased in the metastatic lesions of the human tissue and organoid model. Additionally, the knockdown of exon 17 of TMC7 significantly inhibited the proliferation, invasion, and migration of pancreatic cancer cells in 2D and 3D cell experiments. Finally, the expression of exon 17 of TMC17 exhibited a significant correlation with the poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Conclusion The AS events of TMC7 and CHECK1 were associated with liver metastasis in pancreatic cancer. Moreover, exon 17 of TMC7 could be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yuanchi Weng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaxing Deng, ; Baiyong Shen,
| |
Collapse
|
34
|
Huang RQ, Zhou Y, Zheng HX, Wang D, Zheng XY, Li ZS, Hu LH. Transparency of clinical trials in pancreatic cancer: An analysis of availability of trial results from the ClinicalTrials.gov database. Front Oncol 2023; 12:1026268. [PMID: 36686766 PMCID: PMC9853913 DOI: 10.3389/fonc.2022.1026268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Background Pancreatic cancer (PC) is a highly malignant tumor of the digestive system. As clinical trials involving PC are increasingly being conducted, the transparency of the generated data has become an important issue of concern. In other areas of medicine, clinical trial transparency presents a worrying state of affairs. However, at present, there has been no study examining the transparency of data derived from PC clinical trials. Methods A comprehensive search was conducted in the ClinicalTrial.gov database for clinical trials investigating pancreatic cancer as of June 2022. We examined the availability of clinical trial results and recorded the characteristics of the trials. Results A total of 856 trials were included in this study, of which 668 were completed and 188 were terminated or suspended. The results of 626 trials (73.13%) were available, of these 230 trials (26.87%) did not disclose any information on the trial data in any form. The publication rate for trials with available results was 86.10%, but the report rate on ClinicalTrial.gov was only 39.78%. Conclusion Although approximately 90% of clinical trial investigating interventions on patients with PC have published study results, 30% of trials did not report any findings, and the disclosure of trial results from ClinicalTrial.gov was unsatisfactory. In general, there is still room for improvement in the transparency of PC clinical trials.
Collapse
Affiliation(s)
- Ren-Qian Huang
- Postgraduate training base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China.,Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - You Zhou
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China.,Pancreatic Center, Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hai-Xia Zheng
- Postgraduate training base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Dan Wang
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Yi Zheng
- Postgraduate training base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China.,Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liang-Hao Hu
- Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
Ma DM, Dong XW, Han X, Ling Z, Lu GT, Sun YY, Yin XD. Pancreatitis and Pancreatic Cancer Risk. Technol Cancer Res Treat 2023; 22:15330338231164875. [PMID: 36972517 PMCID: PMC10052482 DOI: 10.1177/15330338231164875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Purpose: The present retrospective study aimed to explore the relationship between pancreatitis and pancreatic cancer in the population cohort of the UK Biobank (UKB) (https://www.ukbiobank.ac.uk). Methods: From the 500 thousand population cohort of UKB, according to the age and gender of patients with pancreatic cancer 1:10, matching the control without pancreatic cancer, the binary Logistic regression model was used to analyze the relationship between pancreatitis and pancreatic cancer, and subgroup analyses were used to identify potential effect modifiers. Results: A total of 1538 patients with pancreatic cancer were compared with 15 380 controls. In the fully adjusted model, patients with pancreatitis had a significantly increased risk of pancreatic cancer compared with no pancreatitis. The risk of pancreatitis and pancreatic cancer increased with the age of pancreatitis, and the risk of pancreatic cancer was highest in the 61 to 70 age group. In addition, in the first 3 years of acute pancreatitis, the risk of pancreatic cancer increased significantly with the increase in the duration of the disease (odds ratio [OR] 29.13, 95% confidence interval [CI]: 16.34-51.93), after 3 years, the trend of increase decreased. After more than 10 years, there was no significant correlation between the risk of acute pancreatitis and pancreatic cancer. However, patients with chronic pancreatitis were significantly associated with an increased risk of pancreatic cancer only in the first 3 years (OR 28.14, 95% CI: 14.86-53.31). Conclusion: Pancreatitis may associate with an increased risk of pancreatic cancer. The older the age of pancreatitis, the higher the risk of pancreatic cancer. The risk of pancreatic cancer increases significantly in the first 3 years of the course of pancreatitis. This may provide an alternative strategy for the early identification of individuals at high risk of pancreatic cancer.
Collapse
Affiliation(s)
- Dong-Mei Ma
- Department of Oncology, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao-Wu Dong
- Pancreatic Center, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Yangzhou Key Laboratory of Pancreatic Diseases, Yangzhou, China
| | - Xiao Han
- Department of Oncology, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhi Ling
- Department of Oncology, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guo-Tao Lu
- Pancreatic Center, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Yangzhou Key Laboratory of Pancreatic Diseases, Yangzhou, China
| | - Yun-Yun Sun
- Pancreatic Center, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Yangzhou Key Laboratory of Pancreatic Diseases, Yangzhou, China
| | - Xu-Dong Yin
- Department of Oncology, 587863Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Xu D, Huang K, Chen Y, Yang F, Xia C, Yang H. Immune response and drug therapy based on ac4C-modified gene in pancreatic cancer typing. Front Immunol 2023; 14:1133166. [PMID: 36949954 PMCID: PMC10025374 DOI: 10.3389/fimmu.2023.1133166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
N-4 cytidine acetylation (ac4C) is an epitranscriptome modification catalyzed by N-acetyltransferase 10 (NAT10) and is essential for cellular mRNA stability, rRNA biosynthesis, cell proliferation, and epithelial-mesenchymal transition (EMT). Numerous studies have confirmed the inextricable link between NAT10 and the clinical characteristics of malignancies. It is unclear, however, how NAT10 might affect pancreatic ductal adenocarcinoma. We downloaded pancreatic ductal adenocarcinoma patients from the TCGA database. We obtained the corresponding clinical data for data analysis, model construction, differential gene expression analysis, and the GEO database for external validation. We screened the published papers for NAT10-mediated ac4C modifications in 2156 genes. We confirmed that the expression levels and genomic mutation rates of NAT10 differed significantly between cancer and normal tissues. Additionally, we constructed a NAT10 prognostic model and examined immune infiltration and altered biological pathways across the models. The NAT10 isoforms identified in this study can effectively predict clinical outcomes in pancreatic ductal adenocarcinoma. Furthermore, our study showed that elevated levels of NAT10 expression correlated with gemcitabine resistance, that aberrant NAT10 expression may promote the angiogenic capacity of pancreatic ductal adenocarcinoma through activation of the TGF-β pathway, which in turn promotes distal metastasis of pancreatic ductal adenocarcinoma, and that NAT10 knockdown significantly inhibited the migration and clonogenic capacity of pancreatic ductal adenocarcinoma cells. In conclusion, we proposed a predictive model based on NAT10 expression levels, a non-invasive predictive approach for genomic profiling, which showed satisfactory and effective performance in predicting patients' survival outcomes and treatment response. Medicine and electronics will be combined in more interdisciplinary areas in the future.
Collapse
Affiliation(s)
- Dong Xu
- Department of General Surgery, Gaochun People’s Hospital, Nanjing, Jiangsu, China
| | - Kaige Huang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fei Yang
- Department of General Surgery, Gaochun People’s Hospital, Nanjing, Jiangsu, China
| | - Cunbing Xia
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Cunbing Xia, ; Hongbao Yang,
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
- *Correspondence: Cunbing Xia, ; Hongbao Yang,
| |
Collapse
|
37
|
Pan Y, Tang H, Li Q, Chen G, Li D. Exosomes and their roles in the chemoresistance of pancreatic cancer. Cancer Med 2022; 11:4979-4988. [PMID: 35587712 PMCID: PMC9761084 DOI: 10.1002/cam4.4830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal human malignancies worldwide. Due to the insidious onset and the rapid progression, most patients with PC are diagnosed at an advanced stage rendering them inoperable. Despite the development of multiple promising chemotherapeutic agents as recommended first-line treatment for PC, the therapeutic efficacy is largely limited by unwanted drug resistance. Recent studies have identified exosomes as essential mediators of intercellular communications during the occurrence of drug resistance. Understanding the underlying molecular mechanisms and complex signaling pathways of exosome-mediated drug resistance will contribute to the improvement of the design of new oncologic therapy regimens. This review focuses on the intrinsic connections between the chemoresistance of PC cells and exosomes in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Yubin Pan
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Qijun Li
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Guangpeng Chen
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
38
|
Na Y, Kim SW, Park IB, Choi SJ, Nam S, Jung J, Lee DH. Association Between DPP4 Inhibitor Use and the Incidence of Cirrhosis, ESRD, and Some Cancers in Patients With Diabetes. J Clin Endocrinol Metab 2022; 107:3022-3034. [PMID: 36108097 DOI: 10.1210/clinem/dgac540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 02/04/2023]
Abstract
CONTEXT There are relatively few data on noncardiovascular (non-CV) long-term clinical outcomes of dipeptidyl peptidase 4 inhibitor (DPP4i) treatment. OBJECTIVE We aimed to evaluate some non-CV effects of DPP4is in patients with diabetes. METHODS Based on data from the National Health Insurance Service database in Korea (2007-2018), we conducted 3 pairwise comparisons of metformin-combined antidiabetic therapies in adult patients with diabetes: DPP4is vs (1) all other oral antidiabetic agents, (2) sulfonylureas/glinides, and (3) thiazolidinediones (TZDs). Major outcomes were liver cirrhosis, end-stage renal disease (ESRD), and cancers in the liver, kidney, and pancreas. Adjusted hazard ratios (HRs) and 95% CIs for the outcomes were estimated using an adjusted Cox model. RESULTS Of the 747 124 patients included, 628 217 had received DPP4i therapy for a mean duration of 33.8 ± 25.0 months. Compared with TZD therapy, DPP4i therapy was associated with higher adjusted HRs [95% CIs] for liver cirrhosis (1.267 [1.108-1.449]), ESRD (1.596 [1.139-2.236]), liver cancer (1.117 [1.011-1.235]), and pancreatic cancer (1.158 [1.040-1.290]). Furthermore, apart from liver cirrhosis, a higher risk of each of these outcomes was associated with DPP4i use than with non-DPP4i use. The higher adjusted HRs associated with DPP4i use further increased when patients with long-term exposure to DPP4is were analyzed. CONCLUSION DPP4i therapy in patients with diabetes was associated with a higher risk of liver cirrhosis and cancer, ESRD, and pancreatic cancer than TZD therapy and, except for liver cirrhosis, the risk of these outcomes was greater with DPP4i treatment than with non-DPP4i treatment.
Collapse
Affiliation(s)
- Yewon Na
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Artificial Intelligence and Big-Data Convergence Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Soo Jung Choi
- Department of Family Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- AI Convergence Center for Medical Science, Department of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Jaehun Jung
- Artificial Intelligence and Big-Data Convergence Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| |
Collapse
|
39
|
Han ZY, Chen QW, Fu ZJ, Cheng SX, Zhang XZ. Probiotic Spore-Based Oral Drug Delivery System for Enhancing Pancreatic Cancer Chemotherapy by Gut-Pancreas-Axis-Guided Delivery. NANO LETTERS 2022; 22:8608-8617. [PMID: 36259687 DOI: 10.1021/acs.nanolett.2c03131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
40
|
Sharma N, Arora V. Strategies for drug targeting in pancreatic cancer. Pancreatology 2022; 22:937-950. [PMID: 36055937 DOI: 10.1016/j.pan.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is expected to replace lung cancer as the second greatest cause of cancer mortality by 2025. It has been a particularly the most lethal kind of cancer. OBJECTIVE Despite the new innovations, research, and improvements in drug design; there are many hurdles limiting their therapeutic applications such as intrinsic resistance to chemotherapeutics, inability to deliver a sufficient concentration of drug to the target site, lack of effectiveness of drug delivery systems. These are the major contributing factors to limit the treatment. So, the main objective is to overcome these types of problems by nanotechnology and ligand conjugation approach to achieve targeted drug delivery. METHOD Nanotechnology has emerged as a major approach to develop cancer treatment. Regardless of the severity, there are several issues that restrict the therapeutic impact, including inadequate transport across biological barriers, limited cellular absorption, degradation, and faster clearance. RESULT Targeted drug delivery may overcome these obstacles by binding a natural ligand to the surface of nanocarriers, which enhances the drug's capacity to release at the desired site and minimizes adverse effects. CONCLUSION This study will investigate the possible outcomes of targeted therapeutic agent delivery in the treatment of pancreatic cancer, as well as the limitations and future prospects.
Collapse
Affiliation(s)
- Navni Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India.
| | - Vimal Arora
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India
| |
Collapse
|
41
|
Chen F, Zheng X, Liang W, Jiang C, Su D, Fu B. Long Noncoding RNA MIR600HG Binds to MicroRNA-125a-5p to Prevent Pancreatic Cancer Progression Via Mitochondrial Tumor Suppressor 1-Dependent Suppression of Extracellular Regulated Protein Kinases Signaling Pathway. Pancreas 2022; 51:1434-1443. [PMID: 37099789 DOI: 10.1097/mpa.0000000000002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Significance of long noncoding RNAs in pancreatic cancer (PC) progression has been documented. Here, we identified a novel long noncoding RNA MIR600HG in PC and its underlying mechanism during PC progression. METHODS Through bioinformatics analysis, we selected MIR600HG, microRNA-125a-5p (miR-125a-5p), and mitochondrial tumor suppressor 1 (MTUS1) as objects with their expression patterns assayed in the collected PC tissues and PC cells. Pancreatic cancer cells were manipulated with ectopic expression and deficiency of MIR600HG, miR-125a-5p, and/or MTUS1 for assaying cell biological processes in vitro and tumorigenesis in vivo. RESULTS MIR600HG and MTUS1 levels were downregulated and miR-125a-5p was upregulated in PC tissues and cells. MIR600HG could bind to miR-125a-5p, while miR-125a-5p negatively targeted MTUS1. MIR600HG resulted in suppression in malignant properties of PCs. All these changes could be reversed by miR-125a-5p elevation. In addition, miR-125a-5p targeted MTUS1 to activate the extracellular regulated protein kinases signaling pathway. In vivo experiment also verified the inhibitory role of MIR600HG in PC. CONCLUSIONS Taken together, MIR600HG acts as an inhibitor for PC progression by upregulating miR-125a-5p-mediated MTUS1 through extracellular regulated protein kinases pathway.
Collapse
Affiliation(s)
- Fang Chen
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Xiang Zheng
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Wenmei Liang
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Chunxia Jiang
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - De Su
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| | - Bao Fu
- From the Intensive Care Unit, Affiliated Hospital of Zunyi Medical University
| |
Collapse
|
42
|
Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, Xu K, Gu T, Yang X, Tian G. Cuprotosis Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis and Immune Landscape in PAAD Patients. Cells 2022; 11:cells11213436. [PMID: 36359832 PMCID: PMC9658590 DOI: 10.3390/cells11213436] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In terms of mortality and survival, pancreatic cancer is one of the worst malignancies. Known as a unique type of programmed cell death, cuprotosis contributes to tumor cell growth, angiogenesis, and metastasis. Cuprotosis programmed-cell-death-related lncRNAs (CRLs) have been linked to PAAD, although their functions in the tumor microenvironment and prognosis are not well understood. This study included data from the TCGA-PAAD cohort. Random sampling of PAAD data was conducted, splitting the data into two groups for use as a training set and test set (7:3). We searched for differentially expressed genes that were substantially linked to prognosis using univariate Cox and Lasso regression analysis. Through the use of multivariate Cox proportional risk regression, a risk-rating system for prognosis was developed. Correlations between the CRL signature and clinicopathological characteristics, tumor microenvironment, immunotherapy response, and chemotherapy sensitivity were further evaluated. Lastly, qRT-PCR was used to compare CRL expression in healthy tissues to that in tumors. Some CRLs are thought to have strong correlations with PAAD outcomes. These CRLs include AC005332.6, LINC02041, LINC00857, and AL117382.1. The CRL-based signature construction exhibited outstanding predictive performance and offers a fresh approach to evaluating pre-immune effectiveness, paving the way for future studies in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Fengyi Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
- Correspondence: (X.Y.); (G.T.); Tel.: +86-150-8687-8251 (X.Y.); +86-182-4436-2063 (G.T.)
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.Y.); (G.T.); Tel.: +86-150-8687-8251 (X.Y.); +86-182-4436-2063 (G.T.)
| |
Collapse
|
43
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Prognostic Value, Immune Signature, and Molecular Mechanisms of the PHLDA Family in Pancreatic Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810316. [PMID: 36142223 PMCID: PMC9499624 DOI: 10.3390/ijms231810316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Increasing evidence supports the belief that the pleckstrin homology domain family A (PHLDA) family is associated with the development of a variety of cancers. However, the function of the PHLDA family members in PAAD is still unclear. Methods: Comprehensive bioinformatic analyses using R (version 3.6.3), Cytoscape (version 3.9.1), UALCAN, etc., were performed to study the clinicopathological characteristics, prognostic value, immune features, and functional mechanisms of the PHLDA family members in PAAD. Results: The PHLDA family members showed significantly elevated expression in PAAD compared with paracancerous or normal tissues. Their high expression or amplification were significantly correlated with worse clinicopathological characteristics and prognosis in PAAD patients. In addition, the role of the PHLDA family members in the immune regulation is diverse and complex. Mechanistically, TP53 mutations were significantly associated with the promoter methylation and expression levels of the PHLDA family members, which were activated in multiple oncogenic pathways, including the EMT, RAS/MAPK, and TSC/mTOR pathways. Moreover, we found that their expression levels were significantly correlated with the sensitivity of multiple traditional chemotherapeutic drugs and novel targeted MEK1/2 inhibitors. Conclusion: The PHLDA family members play an oncogenic role in the development of PAAD and might serve as new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaohao Zheng
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Correspondence: ; Tel.: +86-10-87787120; Fax: +86-10-87787123
| |
Collapse
|
44
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
45
|
Liu C, Wang L, Sun Y, Zhao X, Chen T, Su X, Guo H, Wang Q, Xi X, Ding Y, Chen Y. Probe Synthesis Reveals Eukaryotic Translation Elongation Factor 1 Alpha 1 as the Anti‐Pancreatic Cancer Target of BE‐43547A
2. Angew Chem Int Ed Engl 2022; 61:e202206953. [DOI: 10.1002/anie.202206953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Can Liu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yuanjun Sun
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xiuhe Zhao
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Tianyang Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xiuwen Su
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Hui Guo
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Qin Wang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
46
|
Lu L, Wang H, Fang J, Zheng J, Liu B, Xia L, Li D. Overexpression of OAS1 Is Correlated With Poor Prognosis in Pancreatic Cancer. Front Oncol 2022; 12:944194. [PMID: 35898870 PMCID: PMC9309611 DOI: 10.3389/fonc.2022.944194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background OAS1 expression in pancreatic cancer has been confirmed by many studies. However, the prognostic value and mechanism of OAS1 in pancreatic cancer have not been analyzed. Methods The RNA-seq in pancreatic cancer were obtained by UCSC XENA and GEO database. In addition, immunohistochemical validation and analysis were performed using samples from the 900th hospital. The prognosis of OAS1 was evaluated by timeROC package, Cox regression analysis, and Kaplan-Meier survival curves. Then, the main functional and biological signaling pathways enrichment and its relationship with the abundance of immune cells were analyzed by bioinformatics. Results OAS1 was highly expressed in pancreatic cancer compared with normal pancreatic tissue. High OAS1 expression was associated with poor overall survival (p<0.05). The OAS1 was significantly correlated to TNM staging (p=0.014). The timeROC analysis showed that the AUC of OAS1 was 0.734 for 3-year OS. In addition, the expression of OAS1 was significantly correlated with the abundance of a variety of immune markers. GSEA showed that enhanced signaling pathways associated with OAS1 include Apoptosis, Notch signaling pathway, and P53 signaling pathway. Conclusions OAS1 is a valuable prognostic factor in pancreatic cancer. Moreover, it may be a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaxiang Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Jian Fang
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaolong Zheng
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lei Xia
- Department of Hepatobiliary Medicine, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Disease, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, Fuzhou, China
- *Correspondence: Dongliang Li,
| |
Collapse
|
47
|
Ji D, Hou L, Xie C, Feng H, Bao D, Teng Y, Liu J, Cui T, Wang X, Xu Y, Tan G. Deoxyelephantopin Suppresses Pancreatic Cancer Progression In Vitro and In Vivo by Targeting linc00511/miR-370-5p/p21 Promoter Axis. JOURNAL OF ONCOLOGY 2022; 2022:3855462. [PMID: 35794978 PMCID: PMC9252706 DOI: 10.1155/2022/3855462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022]
Abstract
Objectives Deoxyelephantopin (DET) is a kind of natural active ingredient extracted from the Chinese herbal medicine Elephantopus scaber L. Many studies have revealed the potential antitumor effect on multiple malignancies. However, the detailed mechanism of its antitumor effect in pancreatic cancer remains unclear. Recently, studies have confirmed that noncoding RNA (ncRNA) plays an important regulatory role in malignancies. This research was performed to explore the relationship between ncRNA and DET-induced tumor inhibition in pancreatic cancer. Methods Microarray profiling was applied to identify the candidate ncRNAs associated with DET-induced tumor inhibition. Quantitative real-time PCR was used to evaluate the expression of linc00511 in pancreatic cancer cells and tissues. The influence of DET on the cell proliferation, migration, and invasion was assessed by CCK-8, colony formation, wound healing, and Transwell assays. The relationship between lncRNAs, miRNAs, and p21 promoter region was analyzed by bioinformatics and verified by luciferase reporter gene and western blotting. The effect of linc00511 on nuclear translocation of miR-370-5p was explored by cytoplasmic and nuclear RNA purification. Moreover, the effect of DET on tumor growth and metastasis, and the prophylactic effect were investigated by establishing subcutaneous and lung metastatic tumor models. Results Microarray assay indicated linc00511 was a potential target gene. The antitumor effect of DET in pancreatic cancer depended on downregulating linc00511 expression, and linc00511 might be an oncogene in pancreatic cancer. Silencing linc00511 enhanced the antitumor function of DET; conversely, linc00511 overexpression antagonized the DET cytotoxic effect. Additionally, miR-370-5p could bind to p21 promoter to exert the RNA activation and then promote p21 expression. P21 was a downstream gene of linc00511 and associated with pancreatic cancer progression. Linc00511 regulated p21 expression by blocking miR-370-5p nuclear translocation. Conclusions To sum up, the present finding confirmed that DET suppressed the malignant biological behavior of pancreatic cancer via linc00511/miR-370-5p/p21 promoter axis.
Collapse
Affiliation(s)
- Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Li Hou
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunyang Xie
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haonan Feng
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dongdong Bao
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Junhao Liu
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tiangang Cui
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Gang Tan
- Department of Hepatopancreatobiliary Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Liu C, Wang L, Sun Y, Zhao X, Chen T, Su X, Guo H, Wang Q, Xi X, Ding Y, Chen Y. Probe Synthesis Reveals Eukaryotic Translation Elongation Factor 1 Alpha 1 as the Anti‐Pancreatic Cancer Target of BE‐43547A2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Can Liu
- Nankai University College of Pharmacy CHINA
| | - Liang Wang
- Nankai University College of Chemistry CHINA
| | | | - Xiuhe Zhao
- Nankai University College of Pharmacy CHINA
| | | | - Xiuwen Su
- Nankai University College of Pharmacy CHINA
| | - Hui Guo
- Nankai University College of Pharmacy CHINA
| | - Qin Wang
- Nankai University College of Pharmacy CHINA
| | - Xiaonan Xi
- Nankai University College of Pharmacy CHINA
| | - Yahui Ding
- Nankai University College of Chemistry CHINA
| | - Yue Chen
- Nankai University College of Pharmacy Weijin RoadNankai district 300071 Tianjin CHINA
| |
Collapse
|
49
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
50
|
Zhang Y, Wu J, Fu Y, Yu R, Su H, Zheng Q, Wu H, Zhou S, Wang K, Zhao J, Shen S, Xu G, Wang L, Yan C, Zou X, Lv Y, Zhang S. Hesperadin suppresses pancreatic cancer through ATF4/GADD45A axis at nanomolar concentrations. Oncogene 2022; 41:3394-3408. [PMID: 35551503 DOI: 10.1038/s41388-022-02328-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer (PC) is a fatal disease with poor survival and limited therapeutic strategies. In this study, we identified Hesperadin as a potent anti-cancer compound against PC, from a high-throughput screening of a commercial chemical library associated with cell death. Hesperadin induced potent growth inhibition in PC cell lines and patient-derived tumor organoids in a dose- and time-dependent manner, with IC50 values in the nanomolar range. Cellular studies showed that Hesperadin caused mitochondria damage in PC cells, resulting in reactive oxygen species production, ER stress and apoptotic cell death. Transcriptomic analysis using RNA-sequencing data identified GADD45A as a potential target of Hesperadin. Mechanistic studies showed that Hesperadin could increase GADD45A expression in PC cells via ATF4, leading to apoptosis. Moreover, immunohistochemical staining of 92 PC patient samples demonstrated the correlation between ATF4 and GADD45A expression. PC xenograft studies demonstrated that Hesperadin could effectively inhibit the growth of PC cells in vivo. Together, these findings suggest that Hesperadin is a novel drug candidate for PC.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Jianzhuang Wu
- Nanjing University Institute of Pancreatology, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Haochen Su
- Nanjing University Institute of Pancreatology, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qisi Zheng
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Siqi Zhou
- Nanjing University Institute of Pancreatology, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Jiangsu University, Nanjing, China
| | - Kun Wang
- Nanjing University Institute of Pancreatology, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Xuzhou Medical University, Nanjing, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Nanjing University Institute of Pancreatology, Nanjing, China
| | - Chao Yan
- Nanjing University Institute of Pancreatology, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
- Nanjing University Institute of Pancreatology, Nanjing, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
- Nanjing University Institute of Pancreatology, Nanjing, China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
- Nanjing University Institute of Pancreatology, Nanjing, China.
| |
Collapse
|