BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Long ZD, Yu X, Xing ZX, Wang R. Multiparameter magnetic resonance imaging-based radiomics model for the prediction of rectal cancer metachronous liver metastasis. World J Gastrointest Oncol 2025; 17(1): 96598 [PMID: 39817139 DOI: 10.4251/wjgo.v17.i1.96598]
URL: https://www.wjgnet.com/1948-5204/full/v17/i1/96598.htm
Number Citing Articles
1
Yuwei Zhang. Enhancing rectal cancer liver metastasis prediction: Magnetic resonance imaging-based radiomics, bias mitigation, and regulatory considerationsWorld Journal of Gastrointestinal Oncology 2025; 17(2): 102151 doi: 10.4251/wjgo.v17.i2.102151
2
Christopher Mejias, Bahar Mansoori, Guilherme Moura Cunha, Joel G. Fletcher, Natally Horvat, Avinash Nehra, Aiming Lu, Achille Mileto. Challenges in rectal cancer MRI: from image acquisition to interpretationAbdominal Radiology 2025;  doi: 10.1007/s00261-025-05268-1
3
Xu-Xing Ye, Hui-Heng Qu, Chao Yang, Wei-Jun Teng, Yan-Ping Chen, Jun-Mei Lin, Xiao-Bo Wang. Precision medicine in the prediction of metachronous liver metastasis in rectal cancer: Applications and challengesWorld Journal of Gastrointestinal Oncology 2025; 17(4): 102469 doi: 10.4251/wjgo.v17.i4.102469
4
Arunkumar Krishnan. Radiomics and machine learning for predicting metachronous liver metastasis in rectal cancerWorld Journal of Gastrointestinal Oncology 2025; 17(4): 102324 doi: 10.4251/wjgo.v17.i4.102324